
Analysis of SLA Compliance in the Cloud:
An Automated, Model-based Approach ∗

Frank S. de Boer1, Elena Giachino2, Stijn de Gouw1,3,
Reiner Hähnle4,5, Einar Broch Johnsen5, Cosimo Laneve2,

Ka I Pun5, and Gianluigi Zavattaro2

1 CWI Amsterdam, The Netherlands
2 University of Bologna, Italy & INRIA, France

3 SDL Fredhopper, Amsterdam, The Netherlands
4 TU Darmstadt, Germany

5 University of Oslo, Norway

August 2016

Summary. This white paper explains how formal models combined
with static analysis tools and generated runtime monitors enable
SLA-aware deployment of services on the cloud. The proposed ap-
proach fits well with a DevOps methodology.

1 Model-Centric Analysis of SLA Compliance

Every customer wants to be sure about the quality of their purchase. In the cloud world,
this quality assurance includes guarantees on service performance1.

Service Level Agreements (SLAs) are legal documents, signed and agreed upon by
cloud service providers and their customers, where the specification of the agreed qual-
ity of service is written down. An SLA violation will result in penalties and possibly in
a loss of money, clients, and credibility. Even though the stakes are high, there are only
few tools with limited capabilities available to check the compliance of cloud services
with SLAs. Why is it so difficult to provide tool support for SLA compliance checking?

∗Partially funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized Services
(http://www.envisage-project.eu).

1Other important concerns include security aspects, support, data and data protection [1].

1

http://www.envisage-project.eu


For a start, a large number of complex and challenging questions arise: How to
describe the performance of a service? How many resources should be assigned to a
particular service? How to react optimally at runtime to take advantage of the elasticity
of the cloud? How to estimate the future behavior of a service and adjust the resource
configuration accordingly?

These are challenging issues! It is beyond current technology to address them in a
general way for any given SLA and any given software. To develop tools for SLA com-
pliance checking, we believe it is essential to work at the level of models: it is important
to describe and analyze SLAs in a way which is independent of the concrete technol-
ogy offered by the cloud service provider. Shifting to the modeling level increases the
level of abstraction, reduces complexity, and removes dependency on a specific runtime
environment.

The importance of models applies to SLAs as well as to software: a model-centric
approach allows us to create a formal representation of the essential aspects of an SLA.
At the same time, software deployed on the cloud can be represented as an executable
model annotated with parametric expressions for the use of resources. Combining these
models, we may now employ techniques with a formal basis, such as state-of-art static
software analysis, to provide proven guarantees on service performance, thereby vastly
raising the degree of automation.

Benefits of model-centric, tool-based SLA analysis

An effective solution to SLA design and compliance must coordinate all phases of
service provisioning. It must encompass

• assistance in the configuration of SLA metric bounds and resource deployment
to be compliant with a given service deployed on the cloud

• the automatic monitoring of the service at runtime

• prompt reaction to a SLA violation and assistance in its resolution

• deployment: significant simplification and increased automation

2 What to be Measured? What to be Verified?

Service performance metrics are used to quantitatively and periodically measure and
assess the performance level of a service. Typical metrics fall into one of the following
categories:

Availability is the property of a service to be accessible and usable on demand. It in-
cludes (i) the level of uptime, namely the percentage of time a service is up within

2



EXTERNAL FACTORS
monitor, mitigate, redeploy

INTERNAL FACTORS
analyse, plan, deploy

Time

Q
ua

lit
y

Figure 1: Service Quality Level

a defined period; (ii) the percentage of successful requests, namely the number of re-
quests processed without an error over the total number of submitted requests;
(iii) the percentage of timely service provisioning requests, that is the number of ser-
vice provisioning requests completed within a defined time period over the total
number of service provisioning requests.

Response time is the time period between a client request event and a service response
event. The service metrics used to constrain the response time may return either
an average time or a maximum time, given a particular form of request.

Capacity is the maximum amount of a resource used by a service. It includes the service
throughput metric, namely the minimum number of requests that can be processed
by a service in a stated time period.

Several factors contribute to the quality level of a service, as depicted in Figure 1.
They can be classified as internal, such as the available resources or the computational
complexity, and external. The latter are outside the direct control of the stakeholders and
include, for example, network availability or the number of accesses/requests.

Internal factors can principally be controlled (and, if needed, modified) at deploy-
ment time with techniques that either directly verify the code (static analysis) or with the
help of an underlying mathematical model (model checking, simulation, etc.). When-
ever the service implementation does not comply with the metric, the designer makes
code modifications that eventually lead to compliance. A typical example of this is the
analysis of the resource capacity of a service, which measures how much a critical re-
source is used. For instance, a static analysis technique can determine an upper bound

3



of the number of virtual machines needed by a service; if a service is deployed on an
insufficient number of machines, then its response time increases, or it even becomes
unavailable.

External factors can not be controlled or analyzed in advance, but they can be super-
vised by monitoring code that runs independently of the service implementation. Mon-
itoring is always needed, as there are (performance) metrics that are affected by external
factors, that cannot be statically verified, for example, hardware failures. In this case,
neither the service implementation nor the resource configuration is at fault. However,
a runtime monitor can still be helpful, for example, when it triggers a dynamic resource
re-allocation that compensates for a faulty component.

3 The Work Flow

In Section 1 we argued that a model-centric representation of SLAs and services con-
stitutes the basis for advanced tool support for cloud service configuration and deploy-
ment. In Section 2 we explained how the service quality is influenced by internal factors,
to be addressed by compliance checking of service implementations against SLAs; and
by external factors, to be mitigated with the help of runtime monitors. In Figure 2 we
illustrate a work flow that realizes such a scenario.

Static (deployment time) techniques play an important role in generating metrics
and monitors that are used in run-time techniques (e.g., monitoring). Feedback loops,
denoted with a dashed line, to a previous phase of the analysis, represent modifications
to the system that ensure, for example, compliance.

Negotiation phase. This phase includes everything that might happen before sign-
ing the SLA. At this stage the SLA metrics are set, such that the service model can be
verified against them. The SLA is written in a machine-readable standard format (ISO
19086-2) and mathematical metric functions, expressing upper bounds on the possible
measurements, are extracted from it. The initial resource configuration is defined with the
resource types that are allocated for the service. Such initial resource configurations can
be specified manually, or they can be computed automatically by a solver that returns
an optimal distribution of resources to objects, given the knowledge of the initial objects
to be deployed, their required computing resources, and the resource costs. At the same
time, an executable service model is extracted from the components of the actual service
implementation. The configuration of the actual service implementation is generated from
the service model and deployed according to the resource configuration.

A suite of deploy-time tools now takes these three inputs (SLA metric functions,
Service model, and Resource configuration) and produces responses as output to form
a feasibility assessment. The tools can verify properties such as: upper bounds of the
resource consumption (bandwidth, virtual machines, memory allocation, CPU process-
ing cycles), liveness (deadlock-freedom), safety (functionality). If the tools report that
a service model violates an SLA constraint, then either the constraint can be relaxed or

4



Deploy-
time tech-
niques

Metric
functions

SLA

com
pliance violation

extract

Service
Model

Resource
configura-
tion

com
pliance

violation

Monitor
Add-on

generate

verif
y

Runtime Techniques

Monitoring
platform

observe/react

(d
e-)

all
oca

te

feedback

Service
Implemen-
tation

generate code

extract

provision

test cases

Figure 2: Work flow of service configuration and deployment

the resource allocation can be suitably enlarged during the negotiation phase (with a
possible charge for the client). The tools can also produce test cases that can be used to
validate that the service model captured the implementation.

Thus, the feedback provided by the deploy-time analysis guides the negotiation
phase by discarding resource configurations, that hinder the ability of the service to
meet the SLA. Feedback may also be used to select a better metric bound, given the
available resources. A third feedback loop may connect back to the program and allow
changes in the code to be applied, so as to better adapt to the given SLA and available
resources.

Once the configuration is approved by the deploy-time tools—guaranteeing that, in
the absence of external factors, the service implementation and the resource configuration
comply to the SLA—the next phase can start.

Observation phase. The SLA is signed and the service is up and running. At this
stage, factors under external control, such as the network infrastructure, may come into
play and affect the behavior of the service in ways which could not have been predicted
statically. To supervise the service metrics we use a monitoring system, namely code

5



external to the service that continuously monitors its execution.
The code of the monitors is automatically generated (or configured), starting from

the specific metric functions they are intended to monitor. Static techniques may be used
at this stage for proving the correctness of the generated code, i.e., that the monitors
are observing the right property. Moreover, static techniques may be performed again
at runtime, periodically, on the service model, to estimate the future behavior of the
service in a next time window. Feedback from the monitoring system can significantly
augment the precision of the analysis.

Reaction phase. Monitoring systems allow service providers to report violations of
the agreed SLA. However, the ultimate goal for a provider is to maintain the resource
configuration so that SLA violations remain under a given threshold while minimizing
the cost of the running system. The first objective can be achieved by adding resources
to the service (for instance, adding more CPUs).

The observation phase takes measurements on services. Subsequently, if an SLA
mismatch is observed, in the reaction phase, the number of allocated resources is in-
creased or decreased accordingly. As was done for the initial configuration, also in this
phase the modification of the resources assigned to objects can be done either manually
or automatically. A solver computes how new resources should be distributed when
new objects are deployed, or how old objects and resources which are no longer neces-
sary should be un-deployed, given the knowledge of the current resource configuration
and the new requirements indicated by the monitoring framework. Fully automatic dy-
namic elasticity can be obtained thanks to the combined use of the monitoring frame-
work and the external deployment solver.

4 ABS: A Modeling Language and Tool Suite for Systems
Deployed on the Cloud

ABS is a modeling language which can be used to realize model-centric analysis of
SLA compliance according to the workflow outlined in Section 3. The box on top
of the next page gives a very concise overview of ABS. For more information, see
http://www.abs-models.org.

ABS is a modeling language that was designed for analyzability. One of its strengths
is the availability of a large portfolio of analysis and deployment tools, see the box at
the bottom of the next page.

6

http://www.abs-models.org


The ABS modeling language (R http://www.abs-models.org)

ABS is a language for Abstract Behavioral Specification, which combines
implementation-level specifications with verifiability, high-level design with ex-
ecutability, and formal semantics with practical usability. ABS is a concurrent,
object-oriented modeling language built around a simple functional language
with user-defined algebraic datatypes. Models are easy to understand and writ-
ten in a familiar, Java-like syntax. ABS supports the modeling and analysis of
deployment decisions. Both the resource requirements and timing properties of
models can be expressed and analyzed, which makes it easy to compare deploy-
ment decisions at the level of models.

The ABS tool suite (R http://abs-models.org/abs-tools)

Simulation tool allows rapid model exploration and visualization

Deadlock analysis tool automatically checks that the model is deadlock free,
focusing on the communication protocols in the model

Systematic testing tool provides a technique to eliminate redundant test cases
for the concurrent execution of ABS models.

Test case generation tool for the automatic generation of test cases for concurrent
objects in ABS

Termination and resource consumption tool automatically infers cost bounds
for selected parts of the model for, e.g., execution cost or transmission data size

ABS Smart Deployer finds the optimal deployment of components on virtual
machines, given a user specification of how components should be connected and
their resource requirements

Code generation tools enable rapid prototyping on real machines and integra-
tion with other programs, using Haskell or a Java library

Formal verification tool supports deductive analysis of behavioral properties,
including communication traces

Monitoring framework for SLA metrics is used to automatically configure cor-
rect monitors for the deployed system and monitor the system at a high level,
according to the SLA

7

http://www.abs-models.org
http://abs-models.org/abs-tools/


Service EndpointService Endpoint

Infrastructure

Platform Service

Service 
Instance

Load Balancing Service

Monitoring/
Alerting
Service

Service Endpoint

Service 
Instance

Service 
Instance

Service 
Instance

Deployment Service

Service APIs

Fredhopper 
Cloud 
Service

Cloud 
Provider

Consumes Provides

CustomersCustomers

Figure 3: The architecture of the Fredhopper Cloud Services

5 Example

Fredhopper2 provides Fredhopper Cloud Services to offer search and targeting facilities
on a large product database to e-Commerce companies as services (SaaS) over the cloud
computing infrastructure (IaaS). Fredhopper Cloud Services drives over 350 global re-
tailers with more than 16 billion in online sales every year. A customer (service con-
sumer) of Fredhopper is a web shop, and an end user is a visitor to the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice, these
services are implemented to be RESTful and accept connections over HTTP. Software
services are deployed as service instances. Each instance offers the same service and is
exposed via Load Balancer endpoints that distribute requests over the service instances.
Figure 3 shows a block diagram of the Fredhopper Cloud Services.

The number of requests can vary greatly over time, and typically depends on several
factors. For instance, the time of the day in the time zone where most of the end users
are located, plays an important role. Typical lows in demand are observed between 2 am
and 5 am. Figure 4 shows a visualization of monitored data in Grafana (the visualization
framework used by ABS).

2http://www.sdl.com/cxc/digital-experience/ecommerce-optimization/
fredhopper.html

8

http://www.sdl.com/cxc/digital-experience/ecommerce-optimization/fredhopper.html
http://www.sdl.com/cxc/digital-experience/ecommerce-optimization/fredhopper.html


Figure 4: Visualization of metrics

SLA. Peaks in Fredhopper Cloud Services typically occur during promotions of the
shop or around Christmas. To ensure a high quality of service, web shops negotiate an
aggressive Service Level Agreement (SLA) with Fredhopper. QoS attributes of interest
include query latency (response time) and throughput (queries per second). The SLA nego-
tiated with a customer could express, e.g., service degradation requirements as follows:

“Services must maintain 100 queries per second with less than 200 milliseconds
of response time over 99.5% of the service uptime, and 99.9% with less than 500
milliseconds.”

9



An SLA specifies properties of service metric functions. In this case, the service met-
ric function is defined in terms of the percentage of client requests which are processed
in a “slow” manner. For the example SLA, the service degradation is concerned with
the percentage of queries slower than 200 (500) milliseconds.

Formalizing the service metric function. In ABS we formalize a service metric func-
tion as a mapping of traces of events to values by a certain kind of grammar. These
events indicate client interactions with an endpoint of an exposed service API. The val-
ues correspond to different levels of the provided quality of service. The grammars
are a user-friendly formalism and are particularly well suited for the specification of
both data- and protocol-oriented properties of event traces. It is not necessary to know
technical details about them.

Suppose we wish to formalize our service degradation metric. We identify the pro-
cessing of a client request that interacts with an endpoint of an exposed service API by
an event

invoke(Time t, Rat procTime)

This event indicates that the request has been issued at time t and that the request
has the rational procTime as its processing time. In our formalization, a service view
identifies all the events which are relevant for a particular service metric and associates
a name to each such event. A view which simply identifies the invoke event as the only
relevant event and associates the name “query” with this event, is expressed as follows:

view Degradation {
invoke(Time t, Rat procTime) query

}

Figure 5 presents the grammar which computes as the main metric the percentage of
slow queries “degradation”. The string “fas.live.200ms” gives the name of the metric.
The parameters of the invoke event, e.g., procTime , are directly referred to in the
grammar by their name and are used to compute “degradation”. The grammar further
makes use of the auxiliary concepts “cnt” and “slowCnt”.

The resource-aware service. We model in ABS the various services shown in Figure 3
at an abstract level. By way of example we show the model of a Service Instance (Fig-
ure 6) and the Load Balancing Service (Figure 7). The load balancer distributes re-
quests by means of a round robin policy and forwards them to the service instances.
The real service instances process the requests and return a response, e.g., a list of
products in the case of Fredhopper Cloud Services. The ABS model abstracts from
a detailed implementation and focuses on execution cost by means of the statement
[Cost: cost] log = log + 1. The annotation [Cost: cost] is a measure of the esti-
mated number of instructions. An initial value for it can be obtained by using the SACO

10



Pair<String, Rat> degradation = Pair("fas.live.200ms", 0);
Int cnt = 0;
Int slowCnt = 0;

S ::= query
{ cnt = cnt+1;
slowCnt = slowCnt + case(procTime > 200) { True => 1;

False => 0;};
degradation = Pair("fas.live.200ms", slowCnt/cnt);

}
S

Figure 5: Grammar for Service Degradation

tool for cost analysis of models in the ABS tool suite, or by averaging execution times
for existing code.

class ServiceImpl (...) implements Service {
...
Response invoke (Request request) {
assert state == RUNNING;
Int cost = cost(request);
Int time = currentms();
[Cost: cost] log = log + 1;
time = currentms() - time;
latency = max(latency, time);
return success();

}
}

Figure 6: Service Instance

Negotiation phase. Before we can accept a proposed SLA we need to determine whether
we can meet it at with appropriate expense by deploying a number of ServiceImpl in-
stances. We assume a setting where ServiceImpl instances run on machines with an
allocated capacity of K execution resources (CPU execution capacity, also called ECU).

Static analysis with SACO yields cost/K as the total time required by the invoke

method to reply to a single query, so we obtain (cost/K)≤ 0.2 as a first bound from the
SLA. In order to meet the service degradation requirement expressed in the SLA above,
we need to determine the minimum number of resources in a configuration that com-
plies with the SLA. For simplicity, we here assume a uniform arrival time for the re-
quests, ignore the overhead of load balancing and distribution, and let n be the num-
ber of machines with k execution resources that we need. In this case, we know that

11



class LoadBalancerEndPointImpl implements LoadBalancerEndPoint {
Int log = 0;
State state = STOP;
List<Service> services = Nil;
List<Service> current = Nil;
...
Response invoke (Request request) {
log = log + 1;
assert state == RUNNING;
if (current=Nil) { current = services; }
EndPoint p = head(current);
current = tail(current);
return await p!invoke(request);

}
...

}

Figure 7: Load Balancing Service Endpoint

(100×cost/n×K)≤ 20, and we obtain (5×cost/K)≤ n. For more complex scenarios (es-
pecially involving sub-services and synchronization), the ABS tool suite comes in handy
to help calculating the required number of machines.

This ignores the actual arrival time of requests as well as any external factors (see Fig-
ure 1) which may come into play and disrupt service execution. To ensure compliance
to the service metrics under non-ideal conditions, we use code, external to the service,
that continuously monitors it.

The observation phase. The observation phase in our framework consists of comput-
ing the value of the service metric function as specified by the grammar in Figure 5
from a given event trace. This involves parsing the event trace according to the gram-
mar. From the grammar we automatically synthesize an ABS implementation of the
corresponding parser. The use of grammars allows to build on well-established and
widely known parsing technology with optimal performance. Observations can also
come from external systems which interact with the model using an API over HTTP.

Given an ABS model of the system, we can now replay a real-world log using this API,
which generates corresponding invoke events for the model according to the specified
timings in the logfile (see Figure 8). The resulting trace of invoke events is then parsed
according to the grammar in order to compute the “degradation” service metrics.

Reaction phase. Figure 9 shows a monitor corresponding to the above grammar for
service degradation. Here metricHist contains the time-stamped history of metric
values which is provided by the general monitoring framework. The monitoring frame-
work further integrates a powerful tool (the ABS Smart Deployer) for the automated

12



Figure 8: Log replay

deployment of new service instances which is based on high-level requirements of de-
ployment configurations. A solver synthesizes an ABS class implementing deployerIF

with appropriate scaling actions.

Unit monitor (DeployerIF deployer) {
Rat degradation = head(metricHist);
if (degradation > 5/1000) {

deployer.scaleUp();
} else if (degradation < 1/1000) {

deployer.scaleDown();
}

}

Figure 9: Monitor for Service Degradation

The above ABS monitor can react to these metrics by calling to the deployer to scale
up or down the service instances. Running a monitor can be expensive and great care
must be taken that it does not itself degrade performance below the level stipulated
in the SLA. Static analysis and simulation of the ABS model together with the monitor
allows to analyze the effect of the monitor on the SLA before the system is deployed.
ABS allows monitors to be deployed asynchronously and decoupled.

13



Feedback

Would you spend

3 minutes

to answer

3 simple questions

about this white paper? Your feedback is essential, please reply at

https://goo.gl/forms/vMNzDQX6cvLWPE292

References

[1] Cloud Select Industry Group. Cloud service level agreement standardisation guide-
lines, June 2014. Developed as part of the Commissions European Cloud Strategy.
Available at http://ec.europa.eu/information_society/newsroom/cf/
dae/document.cfm?action=display&doc_id=6138.

14

https://goo.gl/forms/vMNzDQX6cvLWPE292
http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?action=display&doc_id=6138
http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?action=display&doc_id=6138

	Model-Centric Analysis of SLA Compliance
	What to be Measured? What to be Verified?
	The Work Flow
	ABS: A Modeling Language and Tool Suite for Systems Deployed on the Cloud
	Example

