
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D5.2.2
Envisage Virtual Collaboratory (Final Version)

Date of document: T36

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: UCM

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Envisage Virtual Collaboratory (Final Version)

This document summarises deliverable D5.2.2 of project FP7-610582 (Envisage), a Collaborative Project
supported by the 7th Framework Programme of the EC. within the Information & Communication Tech-
nologies scheme. Full information on this project is available online at http://www.envisage-project.eu.

Deliverable D5.2.2 is the final version of the Envisage Virtual Collaboratory1 as part of the activities of
Task T5.2. This task aims at making tools and technologies developed in the context of Envisage available for
the general public as online services. This report supplements the prototype by documenting background
work to realize the collaboratory.

List of Authors

Samir Genaim (UCM)
Einar Broch Johnsen (UIO)

1http://abs-models.org/laboratory

2

http://www.envisage-project.eu
http://abs-models.org/laboratory

Contents

1 Introduction 4

2 ABS Web Site 5
2.1 Arriving at the web site . 5
2.2 Vision . 6
2.3 The Collaboratory . 6
2.4 Documentation . 7
2.5 Projects & Contributors . 8
2.6 Mailing Lists . 8

3 Overview of the EasyInterface Toolkit 9
3.1 Objectives . 9
3.2 The Overall Architecture of EasyInterface . 10
3.3 The Server Side . 10

3.3.1 Installing a New Tool . 11
3.3.2 Communicating with the Server . 12
3.3.3 Example Sets . 13
3.3.4 Security Issues . 13

3.4 The Client Side . 13
3.5 The EasyInterface Output Language . 14
3.6 Web-site of the Envisage Virtual Collaboratory . 14
3.7 Source Code . 15

4 Conclusions 17

Glossary 18

A EasyInterface User Manual 19

3

Chapter 1

Introduction

Deliverable D5.2.2 is a prototype documenting the final version of the Envisage Virtual Collaboratory, as
part of the activities of task T5.2. This task aims at making tools and technologies developed in the context
of Envisage available for the general public as online services, without any need for downloading and
installing tools locally. This report supplements the prototype by documenting background work to realize
the collaboratory.

We have developed a web site

http://www.abs-models.org,

of which the collaboratory itself is one component, which also features documentation about ABS and its
associated tools, tutorials, examples, etc.

The Envisage Virtual Collaboratory is available at:

http://abs-models.org/laboratory.

The Envisage Virtual Collaboratory is built around a framework that we call EasyInterface. This framework
allows developers to develop their applications once, and get several interfaces for free, e.g., a web-interface,
an Eclipse-interface, a remote shell, etc. EasyInterface has been released as open source, and is available
at http://github.com/abstools/easyinterface. This framework is described in Chapter 3, and its user
manual is attached to this report as Appendix A.

In addition, for expert users that prefer local installation of the different tools, the GitHub repository
http://github.com/abstools/abstools includes Vagrant and Docker configuration files for creating a
Linux virtual machine with all tools installed (including an installation of EasyInterface). We will keep
links in abs-models web site to pre-created virtual machines with the latest releases of all tools.

In Chapter 4 we finish this report with some concluding remarks.

4

http://www.abs-models.org
http://abs-models.org/laboratory
http://github.com/abstools/easyinterface
http://github.com/abstools/abstools

Chapter 2

ABS Web Site

We develop a web site http://www.abs-models.org which makes the ABS tools available as a service
through the Envisage Virtual Collaboratory, and additionally document the vision and approach of the
Envisage project, the modeling language and tools. We have opted to build this web site around ABS
rather than Envisage in order to make the language and tools less project specific. This chapter documents
the current state of the web site, by a visual tour.

2.1 Arriving at the web site

Figure 2.1: ABS web site: Compositionality in the clouds.

5

http://www.abs-models.org

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

2.2 Vision

Figure 2.2: ABS web site: A vision for the clouds.

2.3 The Collaboratory

Figure 2.3: ABS web site: the Virtual Collaboratory.

6

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

2.4 Documentation

Figure 2.4: ABS web site: Documentation.

7

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

2.5 Projects & Contributors

Figure 2.5: ABS web site: overview of projects and contributors.

2.6 Mailing Lists

Figure 2.6: ABS web site: Mailing lists.

8

Chapter 3

Overview of the EasyInterface Toolkit

In this chapter we describe the overall design of EasyInterface, in particular we define its different com-
ponents, their corresponding requirements and responsibilities, and how they communicate to accomplish
our objectives that we state in Section 3.1. The content of this chapter is a summary of chapters 1 and 2 of
the EasyInterface user manual, that is attached as Appendix A.

3.1 Objectives

Our main objective is to develop a toolkit that can be used to easily develop GUIs for research prototype
tools, and, moreover, integrating them in a common environment. We focus on tools that have the following
common aspects:

• A request to a tool corresponds to executing a program from a command-line, where the input is
passed as command-line parameters (including file names) and the output is printed on the standard
output. Note that this does not limit us to command-line tools, since, for example, if the tool runs as a
server we can write a command-line wrapper that forwards the requests to the server and prints the
server’s response on the standard output.

• The tools are, in principle, supposed to process programs, e.g., static analysis tools. Thus, they receive
as parameters (i) file names that represent programs; and (ii) possibly a list of program entities (e.g.,
method names, class names) which indicate some information to the tool (e.g., for static analysis tools
it might indicate where to start the analysis from).

• The output of the tool mainly includes information that is related to some parts of the input program.
For example, associating information to a program line, drawing graphs that represent some property
of the program such as resource consumption, etc.

Note that the above aspects where not chosen arbitrarily, but they rather cover tools developed in the
Envisage project. As regards the capabilities of the toolkit that we want to develop, we aim at developing
one that complies with the following objectives:

O1 Using the toolkit for developing simple GUIs for existing tools, and integrating them in a common en-
vironment, should not take more than few minutes, and, moreover, without requiring any modification
to the tool’s code at all.

O2 Developing more sophisticated GUIs might require mild modifications to the tool’s code, and by no
mean deep modifications — requiring deep modifications would make it less likely that the toolkit
will be used.

O3 Using the toolkit for presenting the output graphically should not require any knowledge on GUI or
WEB programming. The user should describe the output in a natural language, e.g., “highlight line

9

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

number 10 of file ex.c” (or a structured version of such statement, e.g., using XML or JSON, to be able
to parse it easily).

O4 The toolkit must provide common environments in which tools can be integrated. The most important
environment is the web-based one (i.e., it runs in a web browser). In addition, the design should allow
developing more environments in the future without modifying the toolkit or existing integrated tools.

O5 The common environments should be completely transparent to the integrated tools. This means that
the work for integrating the tool or modifying it to produce graphical output should be done only
once, and it should work in all environments equally (including future ones).

O6 The toolkit should be secure, it should not pose any security risks both to developers and users of to
the corresponding tools.

To evaluate the developed toolkit, it should be used to build GUIs for the tools of the Envisage project, and,
moreover, integrating them in a common environment.

3.2 The Overall Architecture of EasyInterface

In this section we describe the overall design of EasyInterface, which is driven by the objectives we have
stated in Section 3.1. One of the most important objectives is O5, which aims at reducing the effort of
integrating a tool in a common environment, namely, it aims at achieving a situation where a tool can be
installed once, and then appears automatically in all available environments. This objective leads us to an
architecture with two abstract components:

(i) the first abstract component represents an entity where tools can be installed; and

(ii) the second abstract component represents clients (e.g., development environments) that can commu-
nicate with the previous component to consult the list of installed tools, to execute a tool, etc.

This abstraction leads us to a client-server architecture as depicted in Figure 3.1, where the server side
represents the first abstract component, and the client side represents the second abstract component.

The server side is intended to be a machine with several tools (the circles Tool1, Tool2, etc., in Figure 3.1)
that can be executed from a command-line, and their output goes to the standard output (recall that our
objectives are restricted to such tools – see Section 3.1). These are the tools that we want to make available
for the outside world, i.e., execute them as services on the internet. The client side includes several clients
that make it easy, to a user, to communicate with the server side to execute a tool, etc. Clients can be simple,
e.g., a program that sends a very specific request, or more sophisticated development environments such
as the web-based one that is included in Objective O4. Note that although Figure 3.1 includes only one
server component, the overall setting allows several ones, and clients are configurable to connect to one or
more servers.

The rest of this chapter is organized as follows. In Section 3.3 we explain the details of the server side;
in Section 3.4 we explain the details of the client side, and finally, in Section 3.5, we explain how tools can
produce output that is shown graphically in the client side (see Objective O3).

3.3 The Server Side

The problem that we want to solve at the server side can be summarized as follows:

Provide a uniform way for remotely accessing locally installed tools as services, such that
installing new tools and accessing them is straightforward.

However, this problem encapsulates different issues. In what follows, we address these issues and briefly
explain how the are solver in EasyInterface.

10

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

EasyInterface
 Server

PHP scripts on top of HTTP server

App1

App2

App1.cfg

WebInterface

Eclipse Plugin

Remote Shell

Server Side
(A machine with Linux, Windows or OSX)

Client Side

The server executes applications
through command-line

C
lients com

m
unicate

w
ith the server using

H
TTP

 P
O

S
T requests

App2 AppN

app2.cfg
App2.cfg

AppN.cfg

Figure 3.1: The Architecture of the EasyInterface Toolkit

3.3.1 Installing a New Tool

Developers (of research prototype tools) can make their tools available on the server in a straightforward
way, in terms of simple configuration files (Tool1.cfg, Tool2.cfg, etc., in Figure 3.1). The only information
they should provide is how the tool can be executed from a command-line, and which parameters it takes.
Information about the parameters is crucial as clients will use it to ask users to select the desired values,
etc. The following XML snippet corresponds to a tool configuration:

<app id="myapp">

...

<execinfo>
<cmdlineapp>/path-to/myapp.sh _ei_files _ei_parameters </cmdlineapp>

</execinfo>
<parameters prefix = "-" check="true">

<selectone name="c">

<option value="1" />

<option value="2" />

</selectone>
...

</parameters>
</app>

This XML defines a tool that has a unique identifier myapp, which is used to refer to this tool later. The
important parts in this XML are the command-line tag cmdlineapp, and the parameters tag parameters, that
we explain next.

The content of the cmdlineapp tag is a template that describes how to execute the tool from a command-

11

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

line. Here _ei_files and _ei_parameters are template parameters that are replaced, by the server, with
appropriate values when receiving a request to execute the corresponding tool. As expected, _ei_files

should be replaced by a list of file names that the client passes to the tool to process, and _ei_parameters

by a list of parameters that the client passes to the tool. The idea of using command-line templates is
very convenient, because any information that the server wants to pass to a tool can be encoded in such a
template, and, moreover, the template can indicate which information a tool is interested in. For example, if
the server maintains sessions for the different connected clients, and the tool is interested in this information,
it can use a corresponding template parameter _ei_sessionid .

The content of the parameters tag includes a list of parameters that are accepted by the tool. For example,
in the above snippet, there is a parameter called “c” that can take one of the values 1 or 2. The prefix

attribute can be used to indicate how the parameter is translated when passed in the command-line, e.g.,
one tool might require it as -c and another as --c. The check attribute indicates if the server should check
the validity of the provided values for the different parameters, and if they are not valid to reject the client’s
request. Support for different kinds of parameters is provided, e.g., one value out of many, several values
out of many, Boolean parameters (i.e., either they appear or not), free text, etc.

To summarize, the work-flow of the server when receiving a request to execute a tool, with some values
for the parameters, is as follows: it replaces the template parameters with corresponding values; it executes
the corresponding command-line; and finally forwards back the output to the client. Apart from this
work-flow, we can think of the following variants:

(i) in some tools, generating the output might take long time, and thus we want to disconnect the
connection with the client and provide a key that can be used to fetch the (partial) output when it is
ready; and

(ii) in some tools, the generated output is very large or even not in a text format, and thus it is convenient
to provide the client with a link through which this output can be fetched instead of sending it
immediately.

The EasyInterface server supporting these variants through the steaming and download features (see the
user manual in Appendix A).

3.3.2 Communicating with the Server

Our EasyInterface server is implemented as a collection of PHP scripts on top of an HTTP server, thus the
communication is done using the HTTP POST protocol where the content of the actual request is given in
JSON. For example, the following snippet corresponds to such request:

{

command: "execute",

app_id: "myapp",

parameters: {

c: ["1"],

...

},

...

}

This request indicates that we want to execute the tool identified by myapp, passing it some parameters as
indicated in the parameters field, etc. The command field supports, apart from executing a tool, other services,
e.g., fetching the list of available tools and example, etc.

12

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

3.3.3 Example Sets

Research prototype tools typically come with a default set of examples from which the user can start. The
server side provides a mechanism that allows developers to specify such sets of examples, and allows
clients to fetch them as well. Specifying such a sets is using an XML structure that represent a directory,
where each entity that represents a file has a URL to its actual content as well. In addition, URLs to public
GitHub repositories are supported.

3.3.4 Security Issues

There are different security issues that are considered at the server side, among them are the following:

• It guarantees that the client cannot manipulate the server, and make it execute a local program that
is not supposed to be executed. The use of command-line templates opens a door for such attacks,
and thus before executing the resulting command-line the server checks that it actually executes the
desired program and nothing else.

• The server provides a way to control the resources that can be consumed by a tool once it is executed,
e.g., maximum cputime.

Our EasyInterface server explicitly address the above issues.

3.4 The Client Side

Although it is now relatively easy to execute tools on the server side, as services, users would not be willing
to send requests in the above format in order to execute a tool on their own input. Thus, our aim is to
simplify this process further by providing graphical user interfaces that:

(i) connect to EasyInterface servers and ask for the list of available tools;

(ii) allow the user to select a tool to execute and set the values of the corresponding parameters;

(iii) generate a corresponding request and send it to the corresponding EasyInterface server; and

(iv) show the returned output to the user.

The EasyInterface toolkit provides such client which is in addition web-based, as depicted in Figure 3.2.
This client has the following components with some associated functionalists:

(i) Code Editor: an area were programs can be edited. It supports editing different programming
languages easily, and support features such as search and replace and syntax highlighting;

(ii) File Manager: an area that allows accessing different sets of examples, and also creating new pro-
grams. In addition, it provides a mechanism to save and load programs via GitHub repositories;

(iii) Outline: an area where the elements of the edited programs, such as class and method names, are
shown. It is configurable to allow generating the outline for different programming languages; and

(iv) Console: an area where the output of a tool can be printed.

In addition, the web-client should includes a settings section were the parameters of the different tools
(that are shown graphically) can be set. The web-client is configurable to include specific sets of tools and
examples, from one or more EasyInterface servers.

Note that, by default, the output of a tool is shown in the Console area, unless it uses the EasyInterface
output language (see next Section) in which case it is passed through a corresponding interpreter to convert
it to graphical widgets. This interpreter is an essential part of the web-client.

13

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

3.5 The EasyInterface Output Language

Since sophisticated clients that provide a development environment, such as the web-client, are GUI based
developing environments, the EasyInterface toolkit provides tools with an easy way to view their output
as widgets in the corresponding environment (see Objective O3). This is done in a generic way, i.e., in
principle, it should take effect in all such environments, without changing the tool to produce specific
output for each one. Thus, our output language t abstracts away from the specific environment, and, in
addition, it is text-based and does not require any knowledge on WEB or GUI programming. The following
is a snippet of such output:

<highlightlines dest="/Examples_1/iterative/sum.s">

<lines> <line from="5" to="10"/> </lines>
</highlightlines>

This indicates that lines 5–10 of the file /Examples_1/iterative/sum.s (which is opened in the editor)
should be highlighted. The language also provides commands for interaction with the user such as:

<oncodelineclick dest="/Examples_1/iterative/sum.c" outclass="info" >

<lines><line from="17" /></lines>
<eicommands>
<dialogbox boxtitle="Hey!">

<content format="text">

Click on the marker again to close this window

</content>
</dialogbox>

</eicommands>
</oncodelineclick>

This indicates that when clicking on line 17, a dialog-box with a corresponding message should be opened.
The language supports commands according to the needs of the tools to which we restrict ourselves (see
Section 3.1), but it is easily extensible to meet the needs of new tools in the future.

3.6 Web-site of the Envisage Virtual Collaboratory

A version of EasyInterface that is deployed as the Envisage Virtual Collaboratory is available at the
following address: http://abs-models.org/laboratory. It currently includes the following tools:

• Resource Analysis (SACO) – by UCM, it includes also the CoFloCo backend by TUD

• Resource Analysis (SRA) – by BOL

• May-Happen-in-Parallel Analysis – it is a crucial analysis of the all other analyses of SACO (by UCM),
and, moreover, it is very useful for analysis of concurrent program in general, so we thought it would
be useful to include it as a separate tool

• Deadlock Analysis (SACO) – by UCM

• Deadlock Analysis (DSA) – by BOL

• ABS Smart Deployer – by BOL and UIO

• ABS ErLang Simulator – by UIO

• ABS-Haskell Compiler Simulator – by CWI

14

http://abs-models.org/laboratory

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

• ABS Syntax/Type Checker – by UIO

• Test-Case Generation (aPET) – by UCM

• Systematic Testing (SYCO) – by UCM

In addition, the GitHub repository http://github.com/abstools/absexamples includes ABS examples
that are automatically imported into the file-manager area of the web-client.

3.7 Source Code

The source code of EasyInterface is publicly available at the following GitHub repository: http://github.
com/abstools/easyinterface.

15

http://github.com/abstools/absexamples
http://github.com/abstools/easyinterface
http://github.com/abstools/easyinterface

Envisage Deliverable D5.2.2 Envisage Virtual Collaboratory (Final Version)

File-Manager

Console

Outline

Code Editor

Tools

Menu

Settings

Figure 3.2: EasyInterfaceweb-client

16

Chapter 4

Conclusions

During the Envisage project, the main effort of Task T5.2 has been directed to developing EasyInterface
framework, which is the central component of the Envisage Virtual Collaboratory. In addition, some effort
has been directed to writing documentation and tutorials for the different tools, and make them available
in the http://www.abs-models.org.

EasyInterface is now mature enough, and includes a comprehensive user manual, which allowed
Envisage’s developers to integrate their tools in the collaboratory and test them through the web-client.
Out plan is to keep maintaining EasyInterface as an open-source toolkit beyond Envisage, in particular to
use in other projects in which the different partners are involved.

17

http://www.abs-models.org

Glossary

GitHub is a powerful collaboration, code review, and code management for open source and private
projects – https://github.com

JavaScript is a high level, dynamic, untyped, and interpreted programming language, that is commonly
used for web programming – https://en.wikipedia.org/wiki/JavaScript

JSON (JavaScript Object Notation) is a lightweight data-interchange format – http://www.json.org

PHP is a server-side scripting language designed for web development but also used as a general-purpose
programming language – http://www.php.net/

POST (HTTP) is one of many request methods supported by the HTTP protocol used by the World Wide
Web – https://en.wikipedia.org/wiki/POST_(HTTP)

18

https://github.com
https://en.wikipedia.org/wiki/JavaScript
http://www.json.org
http://www.php.net/
https://en.wikipedia.org/wiki/POST_(HTTP)

Appendix A

EasyInterface User Manual

In this appendix we attach the user manual of EasyInterface.

19

EasyInterface User Manual
http://github.com/abstools/easyinterface

Jesús Doménech
Samir Genaim

http://www.envisage-project.eu/

Abstract

During the lifetime of a research project, different partners develop several research
prototype tools that share many common aspects. This is equally true for researchers
as individuals and as groups: during a period of time they often develop several
related tools to pursue a specific research line. Making research prototype tools easily
accessible to the community is of utmost importance to promote the corresponding
research, get feedback, and increase the tools’ lifetime beyond the duration of a specific
project. One way to achieve this is to build graphical user interfaces (GUIs) that
facilitate trying tools; in particular, with web-interfaces one avoids the overhead of
downloading and installing the tools.

Building GUIs from scratch is a tedious task, in particular for web-interfaces, and
thus it typically gets low priority when developing a research prototype. Often we opt
for copying the GUI of one tool and modifying it to fit the needs of a new related tool.
Apart from code duplication, these tools will “live” separately, even though we might
benefit from having them all in a common environment since they are related.

This work aims at simplifying the process of building GUIs for research proto-
types tools. In particular, we present EasyInterface, a toolkit that is based on novel
methodology that provides an easy way to make research prototype tools available
via common different environments such as a web-interface, within Eclipse, etc. It
includes a novel text-based output language that allows to present results graphically
without requiring any knowledge in GUI/Web programming. For example, an output
of a tool could be (a structured version of) “highlight line number 10 of file ex.c” and “when
the user clicks on line 10, open a dialog box with the text ...”. The environment will interpret
this output and converts it to corresponding visual effects. The advantage of using this
approach is that it will be interpreted equally by all environments of EasyInterface,
e.g., the web-interface, the Eclipse plugin, etc.

EasyInterface has been developed in the context of the Envisage [5] project, and
has been evaluated on tools developed in this project, which include static analyzers,
test-case generators, compilers, simulators, etc. EasyInterface is open source and
available at GitHub1.

Keywords

Generic User Interfaces, Web Programming.

1http://github.com/abstools/easyinterface

Preface

How to Read this User Manual

Start with Chapter 2 in order to understand the overall architecture of the EasyInter-
face framework and the role of each component. Next read Chapter 3 and implement
all the steps of the incremental example, after which you will probably have enough
knowledge to integrate your own applications without further reading.

iii

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 The Structure of This Document . 4

2 The EasyInterface Toolkit Architecture 5
2.1 The Overall Architecture of EasyInterface 5
2.2 The Server Side . 6

2.2.1 Installing a New Tool . 6
2.2.2 Communicating with the Server 8
2.2.3 Example Sets . 8
2.2.4 Security Issues . 8

2.3 The Client Side . 9
2.4 The Text-Based GUI Output Language . 10

3 EasyInterface in a Nutshell 12
3.1 Getting Started . 12
3.2 Adding a Tool to EasyInterface . 13
3.3 Passing Input Files to a Tool . 14
3.4 Passing Outline Entities to a Tool . 16
3.5 Passing Parameters to a Tool . 17
3.6 Using the EasyInterface Output Language 19

3.6.1 Printing in the Console Area . 20
3.6.2 Adding Markers . 22
3.6.3 Highlighting Code Lines . 23
3.6.4 Adding Inline Markers . 23
3.6.5 Opening a Dialog Box . 24
3.6.6 Adding Code Line Actions . 24
3.6.7 Adding OnClick Actions . 26

3.7 Adding Examples to the File-Manager . 27

4 EasyInterface Server 29
4.1 Configuring the EasyInterface Server . 29

4.1.1 Command-line Templates . 29
4.1.2 Work-flow of Tools . 31
4.1.3 The Syntax of the Configuration File 32

4.2 Communicating with the EasyInterface Server 45
4.2.1 Retrieve Information on Available Tools 46

iv

CONTENTS v

4.2.2 Execute a tool . 47
4.2.3 Retrieve Example Sets . 48
4.2.4 Download Output Files . 49
4.2.5 Manage Output Streams . 49

4.3 Implementation . 50

5 EasyInterface Clients 51
5.1 Web-Interface Client . 51

5.1.1 Tools Menu . 54
5.1.2 File-Manger . 54
5.1.3 Outline . 55
5.1.4 Code Editor . 56
5.1.5 Console . 57
5.1.6 Settings Section . 57
5.1.7 Help Section . 57
5.1.8 Other Features . 57

5.2 Other Clients . 58

6 The EasyInterface Output Language 59
6.1 General Overview . 59
6.2 Syntax and Semantics . 60
6.3 Other Details . 71

6.3.1 The Graph Format . 71
6.4 Examples . 71

7 Evaluation 81
7.1 Tools of the Envisage Project . 81

8 Conclusions, Related and Future Work 85
8.1 Future Work . 86
8.2 Related Work . 86

Bibliography 88

A Installation Guide 91
A.1 Downloading EasyInterface . 91
A.2 Installing EasyInterface Server . 91

A.2.1 Linux . 91
A.2.2 OS X . 92
A.2.3 Microsoft Windows . 93

A.3 Installing and Using EasyInterface Clients 93

Chapter 1

Introduction

During the lifetime of a research project, different partners typically develop several
research prototype tools that share many common aspects. For example, in the En-
visage [5] project, in the context of which this work was developed, several tools for
processing ABS programs [32] have been developed: static analyzers, test-case gen-
erators, compilers, simulators, etc. This observation is equally true for researchers as
individuals and as groups: during a period of time they develop several related tools
to pursue a specific research line. For example, in the Costa1 group, we have devel-
oped many program analysis and test-case generation tools for several programming
languages and abstract models.

Making research prototype tools available to the corresponding research communi-
ties is of utmost importance for several reasons: to promote the corresponding research;
to make the community aware of the corresponding project or research group; to get
valuable feedback; to increase the tools’ lifetime beyond the duration of a specific
project; etc. However, making tools available is not enough, they should also be easy
to use since otherwise users would avoid using them, in particular if they require some
technical skills to install or use them. One way to achieve this is to build graphical user
interfaces (GUIs) that facilitate using the tools; in particular, web-interfaces in order to
avoid the overhead/risk of downloading and installing the tools locally.

Building GUIs is a tedious task, in particular if they have to be developed from
scratch. Building web-interfaces is even more difficult since web-based applications
are typically more difficult to debug. Thus, the task of building GUIs for research
prototype tools typically gets a lower priority in the development process, and the
effort is instead directed to improving the functionality of the tools, rather than their
corresponding GUIs. In addition, due to these difficulties, researchers often opt for
copying the GUI of one tool and modifying it to fit the needs of a new related tool.
Apart from code duplication, these tools will “live” separately, even though they might
benefit from having them all in a common environment since they are related and, for
example, a user who is interested in one tool will be easily exposed to other related
tools when accessing the common environment.

Clearly many of the difficulties, and the corresponding effort, in building GUIs
are unavoidable in general. This is because (i) tools produce different outputs that
are presented graphically in different ways to the user; and (ii) the input — and the
interaction with the user — is different from one tool to another. However, if we
consider a set of related tools, e.g., those developed in a given research project, it is

1http://costa.ls.fi.upm.es

1

2 CHAPTER 1. INTRODUCTION

easy to identify many common aspects in their input and output. These common
aspects can be then used as a bases for building a GUI construction toolkit that provide
(i) an easy way to integrate tools in a common environment; and (ii) an easy way to
present the output using a predefined set of graphical widgets that cover the common
aspects of the output. Despite of the fact that such a toolkit is limited when compared
to general GUI libraries, in the sense that it can be mostly used for tools that fit in
the identified common aspects, researches would prefer this approach if it extremely
simplifies the task of building a GUI for a new tool, e.g., if it allows building such a
GUI in few hours and without the need for deep modifications to the corresponding
code. Building such a toolkit is the main objective of this work.

1.1 Objectives

The main objective of this work is to develop a toolkit that can be used to easily develop
GUIs for research prototype tools, and, moreover, integrating them in a common
environment. We focus on tools that have the following common aspects:

• A request to a tool corresponds to executing a program from a command-line,
where the input is passed as command-line parameters (including file names)
and the output is printed on the standard output. Note that this does not limit us
to command-line tools, since, for example, if the tool runs as a server we can write
a command-line wrapper that forwards the requests to the server and prints the
server’s response on the standard output.

• The tools are, in principle, supposed to process programs, e.g., static analysis
tools. Thus, they receive as parameters (i) file names that represent programs;
and (ii) possibly a list of program entities (e.g., method names, class names)
which indicate some information to the tool (e.g., for static analysis tools it might
indicate where to start the analysis from).

• The output of the tool mainly includes information that is related to some parts
of the input program. For example, associating information to a program line,
drawing graphs that represent some property of the program such as resource
consumption, etc.

Note that the above aspects where not chosen arbitrarily, but they rather cover tools
developed in the Envisage [5] project, in the context of which this work was developed,
and the tools (and research lines) of the Costa group to which the author of this work
belongs. Later, the reader will see that our toolkit is not actually limited to tools that
satisfy the above conditions, but rather it is more general.

As regards the capabilities of the toolkit that we want to develop, we aim at devel-
oping one that complies with the following objectives:

O1 Using the toolkit for developing simple GUIs for existing tools, and integrating
them in a common environment, should not take more than few minutes, and,
moreover, without requiring any modification to the tool’s code at all.

O2 Developing more sophisticated GUIs might require mild modifications to the
tool’s code, and by no mean deep modifications — requiring deep modifications
would make it less likely that the toolkit will be used.

1.2. CONTRIBUTIONS 3

O3 Using the toolkit for presenting the output graphically should not require any
knowledge on GUI or WEB programming. The user should describe the output
in a natural language, e.g., “highlight line number 10 of file ex.c” (or a structured
version of such statement, e.g., using XML or JSON, to be able to parse it easily).

O4 The toolkit must provide common environments in which tools can be integrated.
The most important environment is the web-based one (i.e., it runs in a web
browser). In addition, the design should allow developing more environments
in the future without modifying the toolkit or existing integrated tools.

O5 The common environments should be completely transparent to the integrated
tools. This means that the work for integrating the tool or modifying it to
produce graphical output should be done only once, and it should work in
all environments equally (including future ones).

O6 The toolkit should be secure, it should not pose any security risks both to devel-
opers and users of to the corresponding tools.

To evaluate the developed toolkit, it should be used to build GUIs for the tools of the
Envisage project, and, moreover, integrating them in a common environment.

1.2 Contributions

In this work we have developed EasyInterface, a toolkit for easily building GUIs for
research prototype tools that comply with the objectives and requirements stated in
Section 1.1. In particular, we developed a new methodology for building GUIs for
research prototype tools that consists of the following:

• A server side where tools are installed. Adding a tool to the server is done by
adding a configuration file (which is very easy to write) describing how to run it,
etc.

• A protocol that allows connecting to the server for, among many other things
that we will see later, executing a tool on a particular input and getting back the
result. In some sense, this allows converting the tools installed on the server to
services.

• A web-based development environment that allows users to use the tools in-
stalled on an EasyInterface servers transparently, in addition to the functionality
of a normal development environment.

• An output text-based language that can be used to describe how the output
should be shown graphically, and corresponding interpreters in the development
environments to convert these descriptions to graphical effects.

• An extensive evaluation by using EasyInterface to integrate the tools of the
Envisage project in a common development environment.

EasyInterface is open source and available at GitHub2.

2http://github.com/abstools/easyinterface

4 CHAPTER 1. INTRODUCTION

1.3 The Structure of This Document

This document is structured as follows. In Chapter 2 we describe the overall archi-
tecture of EasyInterface and how its different components interact. In Chapter 3 we
describe how to integrate a new tool in EasyInterface in details. The purpose of this
chapter is to allow the reader to briefly get familiar with the concrete details before
moving on to the next chapters. In Chapter 4 we describe the EasyInterface server
specifications, and a corresponding implementation. In Chapter 5 we describe the
available clients (web-interface, etc). In Chapter 6 we describe the syntax and seman-
tics of the EasyInterface output language. In Chapter 7 we describe the evaluation
that we have done in the context of the Envisage project. Finally, in Chapter 8, we
conclude and discuss future and related work. In addition, we include the installation
guide of EasyInterface as Appendix A.

Chapter 2

The EasyInterface Toolkit Architecture

In this chapter we describe the overall design of EasyInterface, in particular we define
its different components, their corresponding requirements and responsibilities, and
how they communicate in order to accomplish the objectives described in Section 1.1.
Note that the description of each EasyInterface component is kept general in this
chapter, however, in some cases we give partial specifications to convey the underlying
ideas. In chapters 4-6, we suggest such complete specifications, and corresponding
implementations, for each component.

2.1 The Overall Architecture of EasyInterface

In this section we describe the overall design of EasyInterface, which is driven by the
objectives we have stated in Section 1.1. One of the most important objectives is O5,
which aims at reducing the effort of integrating a tool in a common environment,
namely, it aims at achieving a situation where a tool can be installed once, and then
appears automatically in all available environments. This objective leads us to an
architecture with two abstract components:

(i) the first abstract component represents an entity where tools can be installed; and

(ii) the second abstract component represents clients (e.g., development environ-
ments) that can communicate with the previous component to consult the list of
installed tools, to execute a tool, etc.

This abstraction leads us to a client-server architecture as depicted in Figure 2.1, where
the server side represents the first abstract component, and the client side represents the
second abstract component.

The server side is intended to be a machine with several tools (the circles Tool1,
Tool2, etc., in Figure 2.1) that can be executed from a command-line, and their output
goes to the standard output (recall that our objectives are restricted to such tools – see
Section 1.1). These are the tools that we want to make available for the outside world,
i.e., execute them as services on the internet. The client side includes several clients
that make it easy, to a user, to communicate with the server side to execute a tool,
etc. Clients can be simple, e.g., a program that sends a very specific request, or more
sophisticated development environments such as the web-based one that is included
in Objective O4. Note that although Figure 2.1 includes only one server component,

5

6 CHAPTER 2. THE EASYINTERFACE TOOLKIT ARCHITECTURE

EasyInterface
 Server

Tool1

Tool3

Tool1.cfg

Web-Interface

Eclipse Plugin

Remote Shell

Server Side
(A machine with Linux, Windows or OSX)

Client Side

The server executes the tools via
command-line and forward their
standard output to the clients

Clients communicate
with the server using
HTTP POST requests

Tool2 ToolN

app2.cfg
Tool2.cfg

ToolN.cfg

Figure 2.1: The Architecture of the EasyInterface Toolkit

the overall setting should allow several ones, and clients should be configurable to
connect to one or more servers.

The rest of this chapter is organized as follows. In Section 2.2 we explain the details
of the server side; in Section 2.3 we explain the details of the client side, and finally, in
Section 2.4, we explain how tools can produce output that is shown graphically in the
client side (see Objective O3).

2.2 The Server Side

The problem that we want to solve at the server side can be summarized as follows:

Provide a uniform way for remotely accessing locally installed tools as ser-
vices, such that installing new tools and accessing them is straightforward.

However, this problem encapsulates different issues. In what follows, we address
these issues and draw general guidelines to corresponding design problems. These
guidelines are then used in Chapter 4 when developing the specifications of the Easy-
Interface server.

2.2.1 Installing a New Tool

Developers (of research prototype tools) should be able to make their tools available on
the server in a straightforward way, in terms of simple configuration files (Tool1.cfg,
Tool2.cfg, etc., in Figure 2.1). The only information they should provide is how the
tool can be executed from a command-line, and which parameters it takes. Information
about the parameters is crucial as clients will use it to ask users to select the desired

2.2. THE SERVER SIDE 7

values, etc. The following XML snippet suggests a format for a tool configuration (that
we actually adapt and extend in Chapter 4):

<app id="myapp">
...
<execinfo>

<cmdlineapp>/path-to/myapp.sh _ei_files _ei_parameters </cmdlineapp>
</execinfo>
<parameters prefix = "-" check="true">

<selectone name="c">
<option value="1" />
<option value="2" />

</selectone>
...

</parameters>
</app>

This XML defines a tool that has a unique identifier myapp, which is used to refer to this
tool later. The important parts in this XML are the command-line tag cmdlineapp, and
the parameters tag parameters, that we explain next.

The content of the cmdlineapp tag is a template that describes how to execute the tool
from a command-line. Here _ei_files and _ei_parameters are template parameters that
should be replaced, by the server, with appropriate values when receiving a request
to execute the corresponding tool. As expected, _ei_files should be replaced by a
list of file names that the client passes to the tool to process, and _ei_parameters by a
list of parameters that the client passes to the tool. The idea of using command-line
templates is very convenient, because any information that the server wants to pass
to a tool can be encoded in such a template, and, moreover, the template can indicate
which information a tool is interested in. For example, if the server maintains sessions
for the different connected clients, and the tool is interested in this information, it can
use a corresponding template parameter _ei_sessionid .

The content of the parameters tag includes a list of parameters that are accepted by
the tool. For example, in the above snippet, there is a parameter called “c” that can
take one of the values 1 or 2. The prefix attribute can be used to indicate how the
parameter is translated when passed in the command-line, e.g., one tool might require
it as -c and another as --c. The check attribute indicates if the server should check
the validity of the provided values for the different parameters, and if they are not
valid to reject the client’s request. Support for different kinds of parameters should be
provided, e.g., one value out of many, several values out of many, Boolean parameters
(i.e., either they appear or not), free text, etc.

To summarize, the work-flow of the server when receiving a request to execute
a tool, with some values for the parameters, is as follows: it replaces the template
parameters with corresponding values; it executes the corresponding command-line;
and finally forwards back the output to the client. Apart from this work-flow, we can
think of the following variants:

(i) in some tools, generating the output might take long time, and thus we want to
disconnect the connection with the client and provide a key that can be used to
fetch the (partial) output when it is ready; and

8 CHAPTER 2. THE EASYINTERFACE TOOLKIT ARCHITECTURE

(ii) in some tools, the generated output is very large or even not in a text format, and
thus it is convenient to provide the client with a link through which this output
can be fetched instead of sending it immediately.

The server should provide a mechanism for supporting such variants.

2.2.2 Communicating with the Server

Clients should be able to communicate with the server using the HTTP POST proto-
col [27]. The advantage of using this protocol is that one can build the EasyInterface
server on top of an HTTP server, and thus take advantage of the underlying machinery
for serving clients concurrently. In addition, if one is not interested in building the
EasyInterface server on top of an HTTP server, there are numerous libraries for HTTP
POST communication that one can use (this is true for the client side as well).

Apart from HTTP POST, the content of the actual request should also be in a
standard structured format, e.g., JSON [6], to facilitate their processing both at the
server and client sides. For example, the following snippet suggests a format for such
requests:

{
command: "execute",
app_id: "myapp",
parameters: {

c: ["1"],
...

},
...

}

This request indicates that we want to execute the tool identified by myapp, passing it
some parameters as indicated in the parameters field, etc. The command field should
support, apart from executing a tool, other services, e.g., fetching the list of available
tools, depending on the services that are provided by the server (according to the needs
defined in the next sections).

2.2.3 Example Sets

Research prototype tools typically come with a default set of examples from which the
user can start. The server side should provide a mechanism that allows developers to
specify such sets of examples, and allows clients to fetch them as well. Specifying such
a sets can be done, for example, using an XML structure that represent a directory,
where each entity that represents a file has a URL to its actual content as well. In
addition, URLs to public repositories such as GitHub should be supported.

2.2.4 Security Issues

There are different security issues [34] that should be considered in the server side,
among them are the following:

2.3. THE CLIENT SIDE 9

File-Manager

Console

Outline

Code Editor

Figure 2.2: EasyInterface client example

• It should be guaranteed that the client cannot manipulate the server, and make
it execute a local program that is not supposed to be executed. The use of
command-line templates opens a door for such attacks, and thus before executing
the resulting command-line the server should guarantee that it actually executes
the desired program and nothing else.

• The server must provide a way to control the resources that can be consumed by
a tool once it is executed, e.g., maximum cputime.

The server side should explicitly address the above issues, both at the specification and
implementation levels.

2.3 The Client Side

Although it is now relatively easy to execute tools on the server side, as services, users
would not be willing to send requests in the above format in order to execute a tool
on their own input. Thus, our aim is to simplify this process further by providing
graphical user interfaces that:

(i) connect to EasyInterface servers and ask for the list of available tools;

(ii) allow the user to select a tool to execute and set the values of the corresponding
parameters;

(iii) generate a corresponding request and send it to the corresponding EasyInterface
server; and

10 CHAPTER 2. THE EASYINTERFACE TOOLKIT ARCHITECTURE

(iv) show the returned output to the user.

The EasyInterface toolkit should provide at least one such client which is in addition
web-based, as depicted in Figure 2.2 (it is screenshot of the actual EasyInterfaceweb-
client – see Chapter 5). This client should have the following components with some
associated functionalists:

(i) Code Editor: an area were programs can be edited. This should support editing
different programming languages easily, and support features such as search and
replace and syntax highlighting;

(ii) File Manager: an area that allows accessing different sets of examples, and also
creating new programs. In addition, it should provide a mechanism to save and
load programs, e.g., via GitHub repositories;

(iii) Outline: an area where the different elements of the edited programs, such as
class and method names, are shown. It should be configurable to allow generating
the outline for different programming languages; and

(iv) Console: an area where the output of a tool can be printed.

In addition, this environment should include a settings section were the parameters of
the different tools (that are shown graphically) can be set. The web-client should be
configurable to include specific sets of tools and examples, from one or more EasyIn-
terface servers.

Note that, by default, the output of a tool should be shown in the Console area,
unless it uses the EasyInterface output language (see next Section) in which case it
should pass through a corresponding interpreter to convert it to graphical widgets.
Thus, such an interpreter is expected to be an essential part of this environment.

2.4 The Text-Based GUI Output Language

Since sophisticated clients that provide a development environment, such as the web-
client, are GUI based developing environments, the EasyInterface toolkit is required
to provide tools with an easy way to view their output as widgets in the corresponding
environment (see Objective O3). This should be done in a generic way, i.e., it should
take effect in all such environments, without changing the tool to produce specific
output for each one. Thus, an output language that abstracts away from the specific
environment must be developed, and preferably it should be text-based and does not
require any knowledge on WEB or GUI programming. As a possible suggestion, the
following is a snippet of such output:

<highlightlines dest="/Examples_1/iterative/sum.s">
<lines> <line from="5" to="10"/> </lines>

</highlightlines>

This indicates that lines 5–10 of the file /Examples_1/iterative/sum.s (which is
opened in the editor) should be highlighted. This language should also provide
commands that model interaction with the user such as:

2.4. THE TEXT-BASED GUI OUTPUT LANGUAGE 11

<oncodelineclick dest="/Examples_1/iterative/sum.c" outclass="info" >
<lines><line from="17" /></lines>
<eicommands>

<dialogbox boxtitle="Hey!">
<content format="text">

Click on the marker again to close this window
</content>

</dialogbox>
</eicommands>

</oncodelineclick>

This indicates that when clicking on line 17, a dialog-box with a corresponding message
should be opened. The language should support commands according to the needs of
the tools to which we restrict ourselves (see Section 1.1), and should be easily extensible
to meet the needs of new tools in the future.

Chapter 3

EasyInterface in a Nutshell

The purpose of this chapter is to give the reader the experience of how GUIs can be
developed using the EasyInterface toolkit, before moving to the specifications and
implementations details of the different components in the next chapters. This, we
believe, would help the reader to better understand the details of chapters 4-6.

In the rest of this chapter we develop a simple tool, integrate it in the EasyInterface
server, and try it out through the web-client. The presentation in this chapter is
incremental, we start with a simple tool and in each step we add more features to
demonstrate the different parts of EasyInterface. In our explanation we assume that a
Unix based operating system is used, however, we comment on how to do the analog
operations on Windows when they are different.

3.1 Getting Started

We assume that EasyInterface is already installed and working, which can be done
following the instructions in Appendix A. Let us start by trying some demo tools that
are available by default in the web-client. If you visit http://localhost/ei/clients/
web, you should get a page similar to the one shown in Figure 2.2 (see Page 9). At
the top part of this page you can see a button with the label Run, and to its right a
combo-box with several items Test-0, Test-1, etc. These items correspond to tools
available in the web-client, and we will refer to it as the tools menu. To the left of Run
there is a button with the label Settings, if you click it you will see that each Test-i
has also some parameters that can be set to some values. Note that, by default, the
web-client is configured to connect to the EasyInterface server at http://localhost/
ei/server and ask for all tools, together with their corresponding parameters, that are
available at that server. Note also that tool Test-i actually corresponds to the bash-
script server/bin/default/test-i.sh, and that its corresponding configuration file
is server/config/default/test-i.cfg (later we will go over the details of these
configuration files).

If you select a tool, from the combo-box, and click on Run, the web-client sends a
request to the server to execute this tool. The request includes also the current values
of the parameters (those in the settings section) and the file that is currently active in
the code editor area. The server, in turn, executes the corresponding program, i.e., the
bash-script server/bin/default/test-i.sh in this case, and redirects its output back
to the web-client. The web-client will either print this output in the console area, or
view it graphically if it uses the EasyInterface output language. Execute the demo

12

3.2. ADDING A TOOL TO EASYINTERFACE 13

tools just to get an idea on which graphical output we are talking about (e.g., highlight
text, markers).

In the rest of this chapter we explain, step by step, how to add a tool to EasyInter-
face. Note that all files that we create in the next sections are already available in the
directory docs/manual/myapp, each step in a sub-directory named step-i with two
files myapp.cfg and myapp.sh, so instead of creating them you can just copy them to
the appropriate places.

3.2 Adding a Tool to EasyInterface

When we add a tool to the EasyInterface server it will automatically appear in the tools
menu of the web-client (unless you have changed the configuration of the web-client
already!). Let us add a simple “Hello World” tool.

We start by creating a bash-script that represents the executable of our tool (it
could be any other executable), and placing it in the directory server/bin/default
together with the test-i.sh scripts, however, this is not obligatory and it can be placed
anywhere in the file-system as far as the server has enough permissions to access it.
Create a file myapp.sh in server/bin/defaultwith the following content:

1 #!/bin/bash
2

3 echo "Hello World!"

As you can see, it is a simple program (bash script) that prints "Hello World!" on the
standard output. Later we will see how to pass input to this tool and how to generate
more sophisticated output. Change the permissions of myapp.sh by executing the
following command (on Windows this is typically not needed):

> chmod -R 755 myapp.sh

Execute myapp.sh (in a shell) to make sure that it works correctly before proceeding to
the next step.

Next we will configure the server to recognize our tool. Create a file myapp.cfg in
the directory server/config/defaultwith the following content (we could place this
file anywhere under server/config not necessarily in default):

<app visible="true">
<appinfo>

<acronym>MFA</acronym>
<title>My First Tool</title>
<desc>
<short>A simple EI tool</short>
<long>A simple tool using the EasyInterface Toolkit</long>

</desc>
</appinfo>
<apphelp>

<content format='html'>
This is my first EasyInterface tool!

</content>

14 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

</apphelp>
<execinfo>

<cmdlineapp>./default/myapp.sh</cmdlineapp>
</execinfo>

</app>

Let us explain the meaning of the different elements of this configuration file. The app
tag is used to declare an EasyInterface tool, and its visible attribute tells the server
to list this tool when someone asks for the list of available tools. Changing this value
to false will make the tool “hidden” so only those who know its identifier can use it.
The appinfo tag provides general information about the tool, this will be used by the
clients to show the tool name, etc. The apphelp tag provides some usage information
about the tool, or simply provides a link to another page where such information can
be found. The actual content goes inside the content tag, which is HTML as indicated
by the format attribute (use ’text’ for plain text). The most important part is the execinfo
tag, which provides information on how to execute the tool. The text inside cmdlineapp
is interpreted as a command-line template, such that when the server is requested to
execute the corresponding tool it will simply execute this command-line and redirect
its output back to the client. These templates are the same as those suggested in
Section 2.2. Note that before executing the script, the server changes the current
directory to server/bin and thus the command-line can be relative to server/bin.

Next we add the above configuration file to the server. This is done by adding the
following line to server/config/default/apps.cfg (inside the apps tag):

<app id="myapp" src="default/myapp.cfg" />

Here we tell the server that we want to install a tool as defined in default/myapp.cfg,
and we want to assign it the unique identifier myapp. This identifier will be mainly
used by the server and the clients when they communicate, we are not going to use
it anywhere else. Note that the main configuration file of the EasyInterface server is
server/config/eiserver.default.cfg, and that default/apps.cfg is imported into
that file.

Let us test our tool. Go back to the web-client and reload the page, you should see
a new tool named MFA in the tools menu. If you click on the Help button you will see
the text provided inside the apphelp tag above. Select this tool and click on the Run
button, the message "Hello World!" will be printed in the console area.

3.3 Passing Input Files to a Tool

Tools typically receive input files (e.g., programs) to process. This is why we required
the web-client to provide the possibility of creating and editing such files. In this
section we explain how to pass these files, via the server, to our tool when the Run
button is clicked.

When you click on the Run button the web-client passes the currently opened file
(i.e., the content of the active tab) to the server, and if you use the Run option from
the context menu of the file-manager (select an element from the files tree-view on the
left, and use the mouse right-click to open the context menu) it passes all files in the

3.3. PASSING INPUT FILES TO A TOOL 15

corresponding sub-tree. What is left is to tell the server how to pass these files to our
tool. Let us assume that myapp.sh is prepared to receive input files as follows:

> myapp.sh -f file1.c file2.c file3.c

In order to tell the server to pass the input files (that were received from the client) to
myapp.sh, open myapp.cfg and change the command-line template, i.e, the content of
cmdlineapp, to the following:

./bin/default/myapp.sh -f _ei_files

When the server receives the files from the client, it stores them in a temporary directory,
e.g., in /tmp, replaces _ei_files by the list of their names, and then executes the
resulting command-line. It is important to note that only _ei_files changes in the
above template, the rest remains the same. Thus, the parameter “-f” means nothing
to the server, we could replace it by anything else or even completely remove it — that
depends only on how our tool is programmed to receive input files.

Let us now change myapp.sh to process the received files in some way, e.g., to
print the number of lines in each file. For this, replace the content of myapp.sh by the
following:

1 #!/bin/bash
2

3 . misc/parse_params.sh
4 files=$(getparam "f")
5

6 echo "I've received the following command-line parameters:"
7 echo ""
8 echo " $@"
9

10 echo ""
11 echo "File statistics:"
12 echo ""
13 for f in $files
14 do
15 echo " - $f has " `wc -l $f | awk '{print $1}'` "lines"
16 done

Let us explain the above code. At line 3 we executes an external bash-script to parse
the command-line parameters, the details are not important and all you should know
is that line 4 stores the list of files (that appear after -f) in the variable files. Lines
6-8 print the command-line parameters, just to give you an idea how the server called
myapp.sh, and the loop at lines 13-16 traverses the list of files and prints the number
of lines in each one.

Let us test our tool. First run myapp.sh from a shell passing it some existing text
files, just to check that it works correctly. Then go back to the web-client, reload the
page, select MFA from the tools menu, open a file from the file-manager, and finally click
the Run button. Alternatively, you can also select an entry from the file-manager and
choose Run from its context menu, in this case all files in the sub-tree will be passed to
myapp.sh. You should see the output of the tool in the console area.

16 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

3.4 Passing Outline Entities to a Tool

In the web-client, the area on the right is called the outline area (see Figure 2.2 on
Page 9). Since EasyInterface was designed mainly for tools that process programs,
e.g., program analysis tools, this area is typically dedicated for a tree-view of program
entities, e.g., method and class names. The idea is that, in addition to the input files,
the user will select some of these entities to indicate, for example, where the analysis
should start from or which parts of the program to analyze, etc. Next we explain how
we can pass these selected entities to a tool.

By default the web-client is configured to work with C programs, and thus if you
open such a program (from the file-manager) and then click on the Refresh Outline
button, you will get a tree-view of this program entities, e.g., method names (if you use
Refresh Outline from the context menu in the file-manager you will get a tree-view
of program entities for all files in the sub-tree). Note that to generate this tree-view
the web-client actually executes a “hidden” tool that is installed on the server, namely
server/bin/default/coutline.sh, but this is not relevant to our discussion now (see
Section 5.1.3 for more details). Note also that coutline.sh is limited and will not
work perfectly for any C program: it simply looks for lines that start with int or void
followed by something of the form name(...). This script is provided just to explain
how a tool that generates an outline is connected to the web-client (see Section 5.1.3
for more details).

As in the case of input files, the web-client always passes the selected entities to
the server when the Run button is clicked, and it is our responsibility to indicate how
these entities should be passed to our tool. Let us assume that myapp.sh is prepared
to receive entities using the parameter “-e” as follows:

> myapp.sh -f file1.c file2.c file3.c -e sum.c:main sum.c:sum

In order to tell the server to pass the entities (that were received from the client) to
our tool, open myapp.cfg and change the command-line template, i.e., the content of
cmdlineapp, to the following:

./bin/myapp.sh -f _ei_files -e _ei_outline

As in the case of files, before executing the above command-line the server will replace
_ei_outline by the list of received entities. Let us now change myapp.sh to process
these entities in some way, e.g., printing them on the standard output. Open myapp.sh
and add the following lines at the end:

1 entities=$(getparam "e")
2

3 echo ""
4 echo "Selected entities:"
5 echo ""
6 for e in $entities
7 do
8 echo "- $e"
9 done

3.5. PASSING PARAMETERS TO A TOOL 17

This code simply prints the entities in separated lines. Again, the first line stores the
list of entities in the variable entities.

First run myapp.sh from a shell passing it some existing text files and entities, just
to check that it works correctly. Then go back to the web-client, reload the page, select
some files, refresh the outline, select some entities, and finally execute the MFA tool to
see the result of the last changes.

3.5 Passing Parameters to a Tool

In addition to input files and outline entities, real tools receive other parameters to
control different aspects. In this section we explain how to declare parameters in the
EasyInterface toolkit such that (i) they automatically appear in the web-client (or any
other client) so the user can set their values; and (ii) the selected values are passed to
the tool when executed.

Let us start by modifying myapp.sh to accept some command-line parameters: we
add a parameter “-s” to indicate if the received outline entities should be printed;
and “-c W” that takes a value W to indicate what to count in each file — here W can
be “lines”, “words” or “chars”. For example, myapp.sh could then be invoked as
follows:

> myapp.sh -f file1.c file2.c file3.c -e sum.c:main sum.c:sum -s -c words

To support these parameters, change the content of myapp.sh to the following:

1 #!/bin/bash
2

3 . misc/parse_params.sh
4 files=$(getparam "f")
5 entities=$(getparam "e")
6 whattocount=$(getparam "w")
7 showoutline=$(getparam "s")
8

9 echo "I've received the following command-line parameters:"
10 echo ""
11 echo " $@"
12

13 echo ""
14 echo "File statistics:"
15 echo ""
16

17 case $whattocount in
18 lines) wcparam="-l"
19 ;;
20 words) wcparam="-w"
21 ;;
22 chars) wcparam="-m"
23 ;;
24 esac
25

18 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

26 for f in $files
27 do
28 echo " - $f has " `wc $wcparam $f | awk '{print $1}'` $whattocount
29 done
30

31 if [$showoutline == ""]; then
32 echo ""
33 echo "Selected entities:"
34 echo ""
35 for e in $entities
36 do
37 echo "- $e"
38 done
39 fi

Compared to the previous script, you can notice that: we added lines 17-24 to take the
value of “-c” into account when calling wc at Line 28; and in lines 31-39 we wrapped the
loop that prints the outline entities with a condition to account for the “-s” parameter.

Our goal is to show these parameters in the web-client (or any other client), so the
user can select the appropriate values before executing the tool. The EasyInterface
toolkit provides an easy way to do this, all we have to do is to modify myapp.cfg
to include a description of the supported parameters. Open myapp.cfg and add the
following inside the app tag (e.g., immediately after closing the execinfo tag):

<parameters prefix = "-" check="false">
<selectone name="c">
<desc>

<short>What to count</short>
<long>What you want to count in each input file</long>

</desc>
<option value="lines">

<desc>
<short>Lines</short>

<long>Count lines</long>
</desc>

</option>
<option value="words">

<desc>
<short>Words</short>
<long>Count words</long>
</desc>

</option>
<option value="chars" >

<desc>
<short>Chars</short>
<long>Count characters</long>

</desc>
</option>
<default value="lines"/>

</selectone>
<flag name="s">

3.6. USING THE EASYINTERFACE OUTPUT LANGUAGE 19

<desc>
<short>Show outline</short>
<long>Show the selected outline entities</long>

</desc>
<default value="false"/>

</flag>
</parameters>

Let us explain the different elements of the above XML snippet. The tag parameters
includes the definition of all parameters. The attribute prefix is used to specify the
symbol to be attached to the parameter name when passed to the tool, for example, if
we declare a parameter with name “c” the server will pass it to the tool as “-c”. Note
that this attribute can be overridden by each parameter. The attribute check tells the
server to check the correctness of the parameters before passing them to the tool, i.e.,
that they have valid values, etc. The tag selectone defines a parameter with name “c”
that can take one value from a set of possible ones. For example, the web-client will
view it as a combo-box. The desc tag contains a text describing this parameter and is
used by the client when viewing this parameter graphically. The option tags define the
valid values for this parameter, from which one can be selected, and the default tag
defines the default value. The desc tag of each option contains a text describing this
option, e.g., the short description is used for the text in the corresponding combo-box.
The tag flag defines a parameter with name “s”. This parameter has no value, it is either
provided in the command-line or not, and its default value is false, i.e., not provided.
For the complete set of parameters supported in EasyInterface see the specifications
of [PARAMETERS] in Chapter 4.

Go to the web-client, reload the page, and click on the Settings button and look for
the tab with the title MFA. You will now see the parameters declared above in a graphical
way where you can set their values as well. When you click on the Run button, the
web-client will pass these parameters to the server, however, we still have to tell the
server how to pass these parameters to myapp.sh. Open myapp.cfg and change the
command-line template, i.e., content of cmdlineapp, to the following:

./bin/myapp.sh -f _ei_files -e _ei_outline _ei_parameters

As in the case of _ei_files and _ei_outline , the server will replace _ei_parameters
by the list of received parameters before executing the command-line. Execute the MFA
tool from the web-client with different values for the parameters to see how the output
changes.

3.6 Using the EasyInterface Output Language

In the example that we have developed so far, the web-client simply printed the output
of myapp.sh in the console area. This is the default behavior of the web-client if the
output does not follow the EasyInterface Output Language, which is a text-based
language that allows generating more sophisticated output such as highlighting lines,
adding markers, etc. In this section we will explain the basics of this language by
extending myapp.sh to use it – for more details see Chapter 6.

20 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

An output in the EasyInterface output language is an XML structure that has the
following form:

<eiout>
<eicommands>

[EICOMMAND]*
</eicommands>
<eiactions>

[EIACTION]*
</eiactions>
</eiout>

where (i) eiout is the outermost tag that includes all the output elements; (ii) [EICOMMAND]*
is a list of commands to be executed; and (iii) [EIACTION]* is a list of actions to be de-
clared. An [EICOMMAND] is an instruction like: print a text on the console, highlight lines
5-10, add marker at line 5, etc. An [EIACTION] is an instructions like: when the user clicks on
line 13, highlight lines 20-25, etc. In the rest of this section we discuss some commands
and actions that are supported in the EasyInterface output language, for the complete
specifications see Chapter 6.

3.6.1 Printing in the Console Area

Recall that when the EasyInterface output language is used, the web-client does not
redirect the output to the console area, and thus we need a command to print in the
console area. The following is an example of a command that prints “Hello World” in
the console area:

<printonconsole consoleid="1" consoletitle="Welcome">
<content format="text">

Hello World
</content>

</printonconsole>

The value of the consoleid attribute is the console identifier in which the given text
should be printed (e.g., in the web-client the console area has several tabs, so the
identifier refers to one of those tabs). If a console with such identifier does not exist
yet, a new one, with a title as specified in consoletitle, is created. If consoleid is
not given the output goes to the default console. Inside printonconsole we can have
several content tags which include the content to be printed (in the above example we
have only one). The attribute format indicates the format of the content. In the above
example it is plain ’text’, other formats are supported as well, e.g., ’html’ and ’svg’.

Let us change myapp.sh to print the different parts of its output in several consoles.
Open myapp.sh and change its content to the following:

1 #!/bin/bash
2

3 . misc/parse_params.sh
4 files=$(getparam "f")
5 entities=$(getparam "e")

3.6. USING THE EASYINTERFACE OUTPUT LANGUAGE 21

6 whattocount=$(getparam "w")
7 showoutline=$(getparam "s")
8

9 echo "<eiout>"
10 echo "<eicommands>"
11 echo "<printonconsole>"
12 echo "<content format='text'>"
13 echo "I've received the following command-line parameters:"
14 echo ""
15 echo " $@"
16 echo "</content>"
17 echo "</printonconsole>"
18

19 echo "<printonconsole consoleid='stats' consoletitle='Statistics'>"
20 echo "<content format='html'>"
21 echo "File statistics:"
22 echo "<div>"
23 echo ""
24

25 case $whattocount in
26 lines) wcparam="-l"
27 ;;
28 words) wcparam="-w"
29 ;;
30 chars) wcparam="-m"
31 ;;
32 esac
33

34 for f in $files
35 do
36 echo " $f has " `wc $wcparam $f | awk '{print $1}'` $whattocount

""
37 done
38 echo ""
39 echo "</div>"
40 echo "</content>"
41 echo "</printonconsole>"
42

43 if [$showoutline == 1]; then
44 echo "<printonconsole consoleid='outline' consoletitle='Outline'>"
45 echo "<content format='html'>"
46 echo ""
47 echo "Selected entities:"
48 echo ""
49 echo ""
50 for e in $entities
51 do
52 echo " $e "
53 done
54 echo ""
55 echo "</content>"

22 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

56 echo "</printonconsole>"
57 fi
58 echo "</eicommands>"
59 echo "</eiout>"

The output of myapp.sh is given in the EasyInterface output language, because at
Line 9 we start the output with the tag eiout which we close at Line 59. At Line 10 we
start an eicommands tag, inside eiout, which we close at Line 58. Inside eicommands we
have 3 printonconsole commands: the first one is generated by lines 11-17; the second
by lines 19-41; and the last one by lines 44-56. Note that the first one uses the default
console, while the last two use different consoles. Note also that the content in the last
two is given in HTML. Execute myapp.sh in a shell first to check that it works correctly,
and then execute the MFA tool from the web-client to see the effect of these changes.

3.6.2 Adding Markers

Next we explain a command for adding a marker next to a code line in the editor area.
The following is an example of such command:

<addmarker dest="path" outclass="info">
<lines>

<line from="4" />
</lines>
<content format="text">

text to associated to the marker
</content>

</addmarker>

The attribute dest indicates the full path to the file (as received from the server) in which
the marker should be added. The attribute outclass indicates the nature of the marker,
which can be ’info’, ’error’, or ’warning’. This value typically affects the type/color of
the icon to be used for the marker. The tag lines includes the lines in which markers
should be added, each line is given using the tag line where the from attribute is the
line number (line can be used to define a region in other commands, this is why the
attribute is called from). The text inside the content tag is associated to the marker (as
a tooltip, a dialog box, etc., depending on the client).

Let us modify myapp.sh to add a marker at Line 1 of each file that it receives.
Open myapp.sh and add the following code snippet immediately before Line 58 of the
previous script (i.e., immediately before closing the eicommands tag):

1 for f in $files
2 do
3 echo "<addmarker dest='$f' outclass='info'>"
4 echo "<lines><line from='1'/></lines>"
5 echo "<content format='text'> text for info marker of $f </content>"
6 echo "</addmarker>"
7 done

3.6. USING THE EASYINTERFACE OUTPUT LANGUAGE 23

Lines 3-6 generate the actual command to add a marker for each file passed to myapp.sh.
Execute myapp.sh in a shell first to check that it works correctly, and then execute the
MFA tool from the web-client to see the effect of these changes.

3.6.3 Highlighting Code Lines

The following command can be used to highlight code lines:

<highlightlines dest="path" outclass="info" >
<lines>

<line from="5" to="10"/>
</lines>

</highlightlines>

Attributes dest and outclass are as in the addmarker command. Each line tag defines
a region to be highlighted. E.g., in the above example it highlights lines 5-10. You can
also use the attributes fromch and toch to indicate the columns in which the highlight
starts and ends respectively.

Let us modify myapp.sh to highlight lines 5-10 of each file that it receives. Open
myapp.sh and add the following code snippet immediately before the instruction that
closes the eicommands tag:

1 for f in $files
2 do
3 echo "<highlightlines dest='$f' outclass='info'>"
4 echo "<lines><line from='5' to='10'/></lines>"
5 echo "</highlightlines>"
6 done

Execute myapp.sh in a shell first to check that it works correctly, and then execute the
MFA tool from the web-client to see the effect of these changes.

3.6.4 Adding Inline Markers

Inline markers are widgets placed inside the code. They typically include some read-
only text. The following command adds an inline marker:

<addinlinemarker dest="path" outclass="info">
<lines>

<line from="15" />
</lines>
<content format="text">

Text to be viewed in the inline marker
</content>

</addinlinemarker>

Attributes dest and outclass are as in the addmarker command. Each line tag defines
a line in which a widget, showing the text inside the content, is added. Note that some
clients, e.g., the web-client, allow only plain ’text’ content.

24 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

Let us modify myapp.sh to add an inline marker at Line 15 of each file that it
receives. Open myapp.sh and add the following code snippet immediately before the
instruction that closes the eicommands tag:

1 for f in $files
2 do
3 echo "<addinlinemarker dest='$f' outclass='info'>"
4 echo " <lines><line from='15' /></lines>"
5 echo " <content format='text'> Awesome line of code!! </content>"
6 echo "</addinlinemarker>"
7 done

Execute myapp.sh in a shell first to check that it works correctly, and then execute the
MFA tool from the web-client to see the effect of these changes.

3.6.5 Opening a Dialog Box

The following command can be used to open a dialog box with some content:

<dialogbox outclass="info" boxtitle="Done!" boxwidth="100" boxheight="100">
<content format="html">

Text to be shown in the dialog box
</content>

</dialogbox>

The dialog box will be titled as specified in boxtitle, and it will include the content as
specified in the content tag. The attributes boxwidth and boxheight are optional, they
determine the initial size of the window.

Let us modify myapp.sh to open a dialog box with some message. Open myapp.sh
and add the following code snippet immediately before the instruction that closes the
eicommands tag:

1 echo "<dialogbox boxtitle='Done!' boxwidth='300' boxheight='100'>"
2 echo " <content format='html'>"
3 echo " Hurray!."
4 echo " The MFA tool has been applied."
5 echo " </content>"
6 echo "</dialogbox>"

Execute myapp.sh in a shell first to check that it works correctly, and then execute the
MFA tool from the web-client to see the effect of these changes.

3.6.6 Adding Code Line Actions

A code line action defines a list of commands to be executed when the user clicks on a
line of code (more precisely, on a marker placed next to the line). The commands can
be any of those seen above. The following is an example of such action:

3.6. USING THE EASYINTERFACE OUTPUT LANGUAGE 25

<oncodelineclick dest="/Examples_1/iterative/sum.c" outclass="info" >
<lines><line from="17" /></lines>
<eicommands>

<highlightlines>
<lines>

<line from="17" to="19"/>
</lines>

</highlightlines>
<dialogbox boxtitle="Hey!">
<content format="html">

Click on the marker again to close this window
</content>

</dialogbox>
</eicommands>

</oncodelineclick>

First note that the above XML should be placed inside the eiactions tag (that we
have ignored so far). When the above action is executed, by the web-client for
example, a marker (typically an arrow) will be shown next to Line 17 of the file
/Examples_1/iterative/sum.c. Then, if the user clicks on this marker the commands
inside the eicommands tag will be executed, and if the user clicks again the effect of
these commands is undone. In the above case a click highlights lines 17-19 and opens
a dialog box, and another click removes the highlights and closes the dialog box.
Note that the commands inside eicommands inherit the dest and outclass attributes of
oncodelineclick, but one can override them, e.g., if we add dest="/Examples_1/iterative
/fact.c" to the highlightlines command then a click highlights lines 17-19 of fact.c
instead of sum.c.

Let us modify myapp.sh to add a code line action, as the one above, for each file that
it receives. Open myapp.sh and add the following code snippet immediately before
the instruction that closes the eiout tag (i.e., after closing eicommands):

1 echo "<eiactions>"
2

3 for f in $files
4 do
5 echo "<oncodelineclick dest='$f' outclass='info' >"
6 echo "<lines><line from='17' /></lines>"
7 echo "<eicommands>"
8 echo "<highlightlines>"
9 echo "<lines><line from='17' to='19'/></lines>"

10 echo "</highlightlines>"
11 echo "<dialogbox boxtitle='Hey!'> "
12 echo "<content format='html'>"
13 echo "Click on the marker again to close this window"
14 echo "</content>"
15 echo "</dialogbox>"
16 echo "</eicommands>"
17 echo "</oncodelineclick>"
18 done
19

26 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

20 echo "</eiactions>"

Note that at Line 1 we open the tag eiactions and at Line 20 we close it. The rest of the
code simply prints a code line action as the one above for each file. Execute myapp.sh
in a shell first to check that it works correctly, and then execute the MFA tool from the
web-client to see the effect of these changes.

3.6.7 Adding OnClick Actions

OnClick actions are similar to code line actions. The difference is that instead of
assigning the action to a line of code, we can assign it to any HTML tag that we
have generated. For example, suppose that at some point the tool has generated the
following content in the console area:

<content format="html"/>
10 errors were found
in the file sum.c

</content>

Note that the text “10 errors” is wrap by a span tag with an identifier err1. The OnClick
action can assign a list of commands to be executed when this text is clicked as follows:

<onclick>
<elements>

<selector value="#err1"/>
</elements>
<eicommands>

<dialogbox boxtitle="Errors">
<content format="html">

There are some variables used but not declared
</content>

</dialogbox>
</eicommands>

</onclick>

It is easy to see that this action is very similar to oncodelineclick, the difference is that
instead of lines we now use elements to identify those HTML elements a click on which
should execute the commands.

Let us modify myapp.sh to add an OnClick action assigned to the list of files that it
prints on the console. First look for the first occurrence of

1 echo ""

which should be at Line 23, and replace it by

1 echo "<ul style='background: yellow;' id='files'>"

This change will give the list of files that we print in the console (i.e., the corresponding
HTML) the identifier files, and will change its background color to yellow. Next add
the following code immediately before the instruction that closes eiactions:

3.7. ADDING EXAMPLES TO THE FILE-MANAGER 27

1 echo "<onclick>"
2 echo "<elements>"
3 echo "<selector value='#files'/>"
4 echo "</elements>"
5 echo "<eicommands>"
6 echo "<dialogbox boxtitle='Errors'> "
7 echo "<content format='html'>"
8 echo "There are some variables used but not declated"
9 echo "</content>"

10 echo "</dialogbox>"
11 echo "</eicommands>"
12 echo "</onclick>"

This defines an OnClick actions such that when clicking on the list of files in the console
area (anywhere in the yellow region) a dialog box is opened. Execute myapp.sh in a
shell first to check that it works correctly, and then execute the MFA tool from the
web-client to see the effect of these changes.

3.7 Adding Examples to the File-Manager

Consider again the web-client as depicted in Figure 2.2 (see Page 9). The file-manager
on left-hand side includes a predefined set of examples. In this section we explain
how to modify this set of examples. Adding a set of examples consists of two steps:
(i) make it available on an EasyInterface server; and (ii) configure the client to include
it in the file-manager. By default the web-client is configured to include all examples
that are available on the default server (see Section 5.1.2 for details), so what is left is
to define such sets on the server side. Later, in Chapter 5, we will see how to configure
the examples on the client side.

A set of examples is an XML structure that represents a folder, for example, the
following one is what we have in server/config/default/examples.1.cfg, which is
actually the first set that appears in the web-client (see Figure 2.2 on Page 9):

<exset id="set1">
<folder name="Examples_1">

<folder name="iterative">
<file name="sum.c" url="https://.../sum.c" />
<file name="fact.c" url="https://.../iterative/sum.c" />
...

</folder>
<folder name="recursive">
<file name="sum.c" url="https://.../recursive/sum.c" />
<file name="fact.c" url="https://.../recursive/sum.c" />
...

</folder>
</folder>
</exset>

28 CHAPTER 3. EASYINTERFACE IN A NUTSHELL

It is easy to see that it defines a folder structure, where each file is associated with
a URL to its actual content. EasyInterface provides also the possibility to asso-
ciate a set of examples to a specific directory in a GitHub repository as follows (see
server/config/default/examples.2.cfg):

<exset id="set2">
<folder name="Examples_2">

<github repo="easyinterface" owner="abstools" branch="master"
path="examples/c/arrays" />

</folder>
</exset>

To make the above two sets available on the EasyInterface server we should also
include them in the configuration file server/config/default/examples.cfg as fol-
lows:

<examples>
<exset id="set1" src="default/examples.1.cfg" />
<exset id="set2" src="default/examples.2.cfg" />

</examples>

Note that examples.cfg is also included in the main configuration file of the server
eiserver.default.cfg by default.

Chapter 4

EasyInterface Server

This chapter describes the server side of the EasyInterface toolkit which, as explained
in Section 2.2, mainly aims at providing a uniform way to access local tools, i.e., those
installed on the machine where the server runs. The EasyInterface server achieves
this by:

(i) providing a way to describe, using XML based configuration files, how to execute
a local tool and which parameters it takes, as well as how to define sets of related
examples; and

(ii) providing a JSON based protocol that can be used to request information on those
tools and examples, execute tools, etc.

In the rest of this chapter we give specifications for the above two points. In particular,
in Section 4.1 we describe how to configure the server, and what is the expected
corresponding functionality, and in Section 4.2 we describe how to send requests to
the server and how the server should react on these requests. Any implementation
must respect these specifications, in particular, we describe such an implementation in
Section 4.3.

4.1 Configuring the EasyInterface Server

In Section 4.1.1 we first describe the notion of command-line templates, which is crucial
for describing how to execute a tool, in Section 4.1.2 we describe the work-flow of a
tool, and then in Section 4.1.3 we describe the syntax and semantics of the server
configuration.

4.1.1 Command-line Templates

A command-line template is a syntactic object that describes how to run a tool from
a command-line, in the context of an EasyInterface server. It is, in principle, a string
that corresponds to a command-line, but also includes template parameters that are
replaced by corresponding values before executing the command-line. The following
is an example to such template:

/path-to/app _ei_files -m _ei_outline _ei_parameters

29

30 CHAPTER 4. EASYINTERFACE SERVER

In this template, anything that starts with _ei is a template parameter that is replaced
by some corresponding value, and /path-to/app is the tool’s executable. When the
server receives a request for executing the corresponding tool, the request includes
several data that should be passed to the tool. For example, the following are typical
data that should be passed to a tool:

1. files to be processed (e.g., a program to be analyzed);

2. entities selected from the program outline (e.g., methods); and

3. values for the different parameters.

The server passes this data to the tool by replacing the template parameters with
corresponding data as follows:

1. the files are stored locally (e.g., in /tmp), and _ei_files is replaced by a list file
names (each with an absolute path, separated by a space);

2. _ei_outline is replaced by a list of selected entities (e.g., method names); and

3. _ei_parameters is replaced by the list of parameters generated from those pro-
vided in the request.

This results in, for example, the following instance of the template:

/path-to/app /tmp/ei_FAJw1B/a.c /tmp/ei_FAJw1B/b.c -m a.main -v 1 -d 3 -a

which is then executed and its output is redirected to the client.
The following is the full-list of template parameters that should be supported by

the server:

• _ei_root : this parameter is replaced by a path to a temporal directory that
corresponds to the current execution request. This directory is created by the
server, and all information related to the corresponding request is stored under
this directory. In addition, this directory should be writable such that the tool
can use it to write temporal information as well. This directory must include the
following sub-directory:

(i) _ei_files: it is used to store the files received from the client before passing
them to the tool – see template parameter _ei_files below;

(ii) _ei_download: can be used by a tool to leave files that can be downloaded
later – see sections 4.1.2 and 4.2.4;

(iii) _ei_stream: can be used by a tool to store partial output such that clients
can fetch it later periodically – see sections 4.1.2 and 4.2.5; and

(iv) _ei_tmp: can be used by tools to write temporal files, i.e., it is like /tmp
in UNIX but for this specific execution in order to avoid conflicts between
different requests.

• _ei_files : this parameter should replaced by a list of files that are received from
the client (each with an absolute path, separated by a space). The server should
store the files under the directory _ei_root /_ei_files, using the same structure
as passed by the client.

4.1. CONFIGURING THE EASYINTERFACE SERVER 31

• _ei_outline : this parameter should be replaced by a list of selected outline
entities (separated by space) that passed by the client;

• _ei_parameters : this parameter should be replaced by a corresponding list of
parameters that are passed by the client (see [PARAMETERS] in Section 4.1.3 to
understand how the parameters are constructed);

• _ei_sessionid : should be replaced by a session identifier that corresponds to a
user, this makes it possible to track information of a user along several requests
(see next item). The server is supposed to provide support for this sessions
mechanism;

• _ei_sessiondir : should be replaced by a path to a temporal directory that cor-
responds to the session _ei_sessionid . Tools can use this directory to store data
related to the corresponding session.

• _ei_clientid : should be replaced by the client identifier, i.e., webclient, eclipse,
shell, etc.

• _ei_outformat : should be replaced by either eiol or txt, which indicates if the
client supports the EasyInterface output language or just plain text format. This
value is passed by the client as we will see later. This makes it possible to provide
output depending on the formats supported by the client.

• _ei_execid : should be replaced by an execution identifier that corresponds to the
current execution of the tool, this identifier is mainly used to fetch information
left in the _ei_download and _ei_stream directories (see sections 4.1.2, 4.2.4 and
4.2.5).

4.1.2 Work-flow of Tools

In this section we describe the possible work-flows of tools installed in an EasyInter-
face server. These work-flows are different in the way the output is passed to the client,
and they can be combined together as well.

Default Work-flow

The simplest work-flow of tool is the one in which once a tool is executed, anything
that it prints on the standard output will be forwarded to the client who requested to
execute the tool. This output could be plain text, or uses the EasyInterface output
language.

Download Output

In this work-flow a tool can leave files in the directory under _ei_root /_ei_download,
and then clients can send special requests for downloading such files (see Section 4.2.4).
This is particularly useful when such files are large or not in text format. Note that the
tool should provide the client with the _exec_id (using the default work-flow) as it is
required for downloading these files.

32 CHAPTER 4. EASYINTERFACE SERVER

Streaming Output

In this work-flow a tool can leave processes that generate output chunks in the back-
ground, such that clients can fetch these chunks periodically later – see Section 4.2.5.
The tool should adhere to the following rules:

• When the background processes are started, their process ids (as in the underlying
operating system) should be written to the file _ei_root /_ei_stream/pid. This
way clients can request to stop these processes later before the timeout forced by
the server expires;

• Before the background processes terminate, they should create an empty file
_ei_root /_ei_stream/terminated. This way clients can consult if the background
processes have terminated already; and

• Output chunk should be written to files in the directory _ei_root /_ei_stream,
the file names are not important, but rather their extension: the server allows
retrieving these chunks (in order of creation) by their extension.

Note that the tool should provide the client with the _exec_id (using the default
work-flow) as it is required for queries that correspond to the above points.

4.1.3 The Syntax of the Configuration File

This section describes how to configure the EasyInterface server. The content of
the configuration file should adhere to the [EISERVER] XML structure that is described
below. Inside this tag we can define tools, examples, etc. The best way to read this
XML is by following the links in the definition of [EISERVER].

General Comments about XML Structures

For the purpose of better organization of the configuration files, the server should
provide a way to split them into several files and import one file into another one. Any
XML structure

<tagname ...>
....

</tagname>

should be possible to write as

<tagname src=[CFGFILENAME] />

where the file [CFGFILENAME] includes the actual XML structure (of the first form above).
It will be automatically imported when needed. However, if the XML structure (the
first form) has an attribute id then it must appear as an attribute in the second form as
well. This is useful for loading a partial XML structure, e.g., that refers to a tool with a
specific identifier, instead of loading the whole XML and looking for that part.

4.1. CONFIGURING THE EASYINTERFACE SERVER 33

The Main XML Tag of the Configuration File

EISERVER

<eiserver version=[VERSION]?>
[SETTINGS]?
[SANDBOX]?
[EXAMPLES]?
[APPS]?

</eiserver>

Since Version: 1.0

Description:

This XML tag is the root of the configuration file. The [SETTINGS] section is used
for setting some global parameters; [SANDBOX] is used for setting some limits on
resources when executing a tool; [EXAMPLES] defines which sets of examples are
available on the server; and [APPS] defines which tools are available on the server.
The version attribute indicates the version of the configuration syntax, which is
1.0 by default.

General Settings

SETTINGS

<settings>
[SETPROP]+

</settings>

Since Version: 1.0

Description:

The purpose of this tag is to provide general settings for the server, it is mainly
implementation dependent.

SETPROP

<setprop name=[STRING] value=[STRING] />

Since Version: 1.0

Description:

This tag describes a settings property, the actual properties are left open and will
be instantiated depending on the implementation.

Sandbox Settings

34 CHAPTER 4. EASYINTERFACE SERVER

SANDBOX

<sandbox>
[SANDBOXPROP]+

</sandbox>

Since Version: 1.0

Description:

This tag is used for setting limits on resources when executing a tool.

SANDBOXPROP

<sandboxprop name=[STRING] value=[STRING] />

Since Version: 1.0

Description:

This tag describes a sandbox property, the actual properties are left open and will
be instantiated depending on the implementation. However, it must include a
property with name timeout which indicates the maximum time (in seconds) that
a tool can run before it is forced to terminate by the server.

Examples Settings

EXAMPLES

<examples>
[EXSET]*

</examples>

Since Version: 1.0

Description:

This tag is used to declare sets of examples that are available in the server, where
each such set is defined by one [EXSET].

EXSET

<exset id=[EXSETID]>
[EXELEMENT]*

</exset>

Since Version: 1.0

Description:

This tag declares a set of examples, which are defined by a collection of [EXELEMENT]

4.1. CONFIGURING THE EASYINTERFACE SERVER 35

(a file, a directory, or a link to a GitHub repository). The attribute id is a unique
identifier that is used to refer to this set when communicating with the server.

EXELEMENT

([FILE] | [FOLDER] | [GITHUB])

Since Version: 1.0

Description:

An example element, which can be a file [FILE], a folder [FOLDER], or a link to a
GitHub repository [GITHUB].

FILE

<file name=[FILENAME] url=[URL] />

Since Version: 1.0

Description:

This tag declares a file, where the name attribute is its name and url is a link to its
content. Note that name is not necessarily the same as the one in url.

FOLDER

<folder name=[FOLDERNAME]>
[EXELEMENT]*

</folder>

Since Version: 1.0

Description:

This tags declares a folder with name as its name. The content of this tag is a list of
[EXELEMENT] tags, which in turn declare the inner files, folders, etc.

GITHUB

<github repo=[GITHUBREPO] owner=[GITHUBUSER] branch=[GITHUBBRANCH]?
path=[GITHUBPATH]?/>

Since Version: 1.0

Description:

Declares a reference to the public GitHub repository repo which is owned by the
user owner. Optionally one can also refer to a specific branch, which is master by
default, and to a specific path (a directory or a single file) which is the root of the

36 CHAPTER 4. EASYINTERFACE SERVER

repository by default.

Tools Settings

APPS

<apps>
[APP]*

</apps>

Since Version: 1.0

Description:

This tag declares a list of tools (to be added to the server). Each such tool is defined
by one [APP] environment.

APP

<app id=[APPID] visible=[BOOL]?>
[APPINFO]
[APPHELP]
[SANDBOX]
[EXECINFO]
[PARAMETERS]
[PROFILES]

</app>

Since Version: 1.0

Description:

This tag defines a tool, where the meaning of the different parts is as follows:

• id is a unique identifier used to refer to this tool when communicating with
the server.

• visible indicates if this tool should be listed when the list of available tools
is requested — by default it is true. Note that even if a tool is not visible, it
can be used like any other tool by those who know its id.

• [APPINFO] provides general information about the tool, e.g., title, logo, etc.

• [APPHELP] provides enough information on how the tool can be used, etc. It
is mainly used in the help sections of the different clients.

• [SANDBOX] provides limits on resources when executing this tool. They over-
ride the ones defined directly in the [EISERVER] environment.

• [EXECINFO] defines how the tool can be executed from a command-line.

4.1. CONFIGURING THE EASYINTERFACE SERVER 37

• [PARAMETERS] defines the set parameters accepted by the tool.

• [PROFILES] defines sets of default values for the different parameters. This is
intended to allow users to select a predefined set of values for the parameters
instead of setting them manually.

APPINFO

<appinfo>
[ACRONYM]?
[TITLE]?
[LOGO]?
[DESC]?

</appinfo>

Since Version: 1.0

Description:

This tag provides general information about a tool:

• [ACRONYM] is an acronym for the tool, e.g., COSTA;

• [TITLE] is the full name of the tool;

• [LOGO] is an image corresponding to the logo of the tool; and

• [DESC] is a description of the tool.

ACRONYM

<acronym>[TEXT]</acronym>

Since Version: 1.0

Description:

Plain text to be used as an acronym, e.g., COSTA.

TITLE

<title>[TEXT]</title>

Since Version: 1.0

Description:

Plain text describing a title, e.g., for a tool. It is typically more informative than an
acronym (see [ACRONYM]).

38 CHAPTER 4. EASYINTERFACE SERVER

LOGO

<logo url=[URL] />

Since Version: 1.0

Description:

A link to an image — in some standard format, e.g., png, jpg or gif — to be used
by clients as a logo (e.g., for a tool).

DESC

<desc>
<short>[TEXT]</short>
<long>[TEXT]</long>

</desc>

Since Version: 1.0

Description:

This is a description of some entities, e.g., of a tool, a parameter, a parameter
option, etc. It consists of two parts, the first one is a short description, and the
second is a detailed description. In both cases it should be plain text. Clients will
select one of them depending on the intended use.

APPHELP

<apphelp>
[CONTENT]+

</apphelp>

Since Version: 1.0

Description:

A (formatted) text that provides enough information on how a tool can be used,
etc. It can be provided in several formats, e.g., HTML or plain text, by using
several [CONTENT] tags. Clients are supposed to pick the appropriate format if more
than one is available. It is recommended to always include a content in plain text
since it can be viewed in any client.

CONTENT

<content format=[TEXTFORMAT]? >
[TEXT]

</content>

Since Version: 1.0

4.1. CONFIGURING THE EASYINTERFACE SERVER 39

Description:

A text given in a specific format, e.g., text, html, etc. If the attribute format is not
provided, then it is assumed to be text format (plain text).

EXECINFO

<execinfo>
[CMDLINEAPP]
</execinfo>

Since Version: 1.0

Description:

Provides information on how to execute a tool. Currently it includes only the
command-line template [CMDLINEAPP].

CMDLINEAPP

<cmdlineapp path=[TOOLEXEC]?> [CMDTEMPLATE] </cmdlineapp>

Since Version: 1.0

Description:

Describes how to run a tool from a command-line. It can be used in two modes:

• if the attribute path is not specified, then command-line template [CMDTEMPLATE]
is instantiated and then executed;

• if the attribute path is specified, then command-line template [CMDTEMPLATE]
is instantiated and passed to the program specified by path in the standard
input.

The second possibility is more safe, since it does not allow clients to manipulate
the command-line in order to execute undesired programs. However, the server
should provide enough guarantees that this does not happen in the first option as
well.

Tool Parameters

PARAMETERS

<parameters prefix=[PARAMPREFIX]? check=[BOOL]?>
[PARAM]*
</parameters>

Since Version: 1.0

Description:

40 CHAPTER 4. EASYINTERFACE SERVER

Defines a list of parameters that are accepted by a corresponding tool. Each
parameter is defined by one [PARAM] environment. The prefix attribute is used
to specify a string that will be attached to each parameter name when passed to
the tool. For example, if prefix="--" and there is a parameter called level with
value X, then “--level X” will be passed to the tool. The default value of prefix
is "-". It can also be set to an empty string if there is no need for a prefix. The
check attribute is used to indicate if the server should verify that the values of
the parameters are valid (w.r.t. the specified values). The default value of check
is true. The attributes prefix and check are inherited by each parameter [PARAM],
which in turn can override them.

PARAM

([SELECTONE] | [SELECTMANY] | [FLAG] | [TEXTFIELD])

Since Version: 1.0

Description:

Defines a parameter accepted by a corresponding tool. There are several types of
parameters supported:

• [SELECTONE] defines a parameter that takes one value from a predefined set;

• [SELECTMANY] defines a parameter that takes several values from a predefined
set;

• [FLAG] defines a Boolean parameter; and

• [TEXTFIELD] defines a parameter that takes a free-text value.

SELECTONE

<selectone name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]? >
[DESC]
[OPTION]+
[DEFAULTVALUE]?

</selectone>

Since Version: 1.0

Description:

Defines a parameter that takes a single value out of a given list:

• name is the name of the parameter, it must be unique among all parameters
of a tool;

• prefix and check can be used to override the corresponding attributes of
[PARAMETERS];

4.1. CONFIGURING THE EASYINTERFACE SERVER 41

• [DESC] provides a description of this parameter;

• [OPTION]+ is a list of possible values for this parameter;

• [DEFAULTVALUE] specifies the default value. If not specified then the first
[OPTION] is considered to be the default one.

SELECTMANY

<selectmany name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]? >
[DESC]
[OPTION]+
[DEFAULTVALUE]*

</selectmany>

Since Version: 1.0

Description:

Defines a parameter that takes several values out of a given list. The meaning of
the attributes and inner environments is as in [SELECTONE], except that in this case
we can specify several [DEFAULTVALUE].

FLAG

<flag name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]?
explicit=[BOOL]? trueval=[PARAMVALUE]? falseval=[PARAMVALUE]? >

[DESC]
[DEFAULTVALUE]?

</flag>

Since Version: 1.0

Description:

Defines a parameter that can take true or false values. The meaning of the
attributes and inner environments is as in [SELECTONE]. The attribute explicit is
used to specify how this parameter should be passed to the tool. For example,
assume the parameter name is f, then:

• when explicit is false, the parameter is passed as “-f” if its value is true
and not passed at all if its value is false.

• when explicit is true the parameter is explicitly passed to the tool, i.e., using
“-f X” where X is the selected value. By default the possible values are true
and false, however, you can redefine them (only when explicit is true)
using the attributes trueval and falseval.

The default value of explicit is false.

42 CHAPTER 4. EASYINTERFACE SERVER

TEXTFIELD

<textfield name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]?
passinfile=[BOOL]? multiline=[BOOL]? type=[TYPE]? >

[DESC]
<initialtext>[TEXT]</initialtext>

</textfield>

Since Version: 1.0

Description:

Defines a parameter that can take free-text value. The initialtext tag includes a
text to be shown in the corresponding text-area by default. The meaning of the
attributes is as follows:

• multiline is used to specify if the free-text should be single- or multi-line. By
default its values is false, i.e., single-line.

• passinfile is used to indicate that the actual value should be saved into a
file, and what is passed to the tool is the file name instead of the actual text.
This should be used for safety, when there is a risk that the free-text can be
harmful to the command-line (although the server should do some checks to
avoid this).

• type restricts the value that can be provided to a specific type.

The meaning of the other attributes and inner environments is as in [SELECTONE].

OPTION

<option value=[PARAMVALUE]>[DESC]</option>

Since Version: 1.0

Description:

Defines an option (i.e., a possible value) for a parameter.

DEFAULTVALUE

<default value=[PARAMVALUE] />

Since Version: 1.0

Description:

Defines a default value for a parameter.

Tool Profiles

4.1. CONFIGURING THE EASYINTERFACE SERVER 43

PROFILES

<profiles>
[PROFILE]*

</profiles>

Since Version: 1.0

Description:

This tag declares a list of profiles. Each such profiles is defined by one [PROFILE]
environment.

PROFILE

<profile name=[PROFILENAME] >
[DESC]
[PROFILEPARAM]*

</profile>

Since Version: 1.0

Description:

This tag defines a profile which is a list of [PROFILEPARAM] parameters. [DESC] gives
a description of this profile. The semantics of applying a profile is as follows:
(i) all parameters of the tool are set to their default value; and (ii) the values of the
parameters indicated in this profile are set to their corresponding values.

PROFILEPARAM

<setparamvalue name=[PARAMNAME] value=[PARAMVALUE] /> or
<setparamvalue name=[PARAMNAME]>[TEXT]</setparamvalue>

Since Version: 1.0

Description:

This tag is used to define a value for a parameter in the context of a profile. The
attributes name and value refers to the parameter name and value respectively.

It has two forms that are used depending on the type of parameter as follows.

• for [SELECTONE] parameters we use the first form. The corresponding [PROFILE]
should include only one setparamvalue for such parameter;

• for [SELECTMANY] parameters we use the first form. The corresponding [PROFILE]
can include one setparamvalue tag for each value (since such parameters take
several values);

• for [FLAG] parameters we use the first form. The value must be false or true.
In addition one can use the values of the corresponding trueval or falseval
attributes.

44 CHAPTER 4. EASYINTERFACE SERVER

• for [TEXTFIELD] parameters we use the second form, where [TEXT] refer to the
value of this parameter.

Others

TEXTFORMAT
(text | html | svg)

PARAMVALUE
[a-z,A-Z,0-9,-,_]+

PARAMNAME
[a-z,A-Z,0-9,-,_]+

BOOL
(true | false)

APPID
[a-z,A-Z,0-9,-,_]+

EXSETID
[a-z,A-Z,0-9,-,_]+

WIDGETID
[a-z,A-Z,0-9,-,_]+

PROFILENAME
[a-z,A-Z,0-9,-,_]+

URL
A valid http or https URL.

PARAMPREFIX
Can be any string that matches [a-z,A-Z,0-9,-,_]+, typically - or --.

TEXT
Free text.

GITHUBPATH
A path to a file or a directory in a GitHub repository (relative to the root of the

repository).

GITHUBBRANCH
A valid branch name for a GitHub repository.

GITHUBUSER
A valid GitHub user name.

GITHUBREPO
A valid GitHub repository.

4.2. COMMUNICATING WITH THE EASYINTERFACE SERVER 45

FOLDERNAME
[a-z,A-Z,0-9,-,.,_]+

FILENAME
[a-z,A-Z,0-9,-,.,_]+

CFGFILENAME
A path to a configuration file. Depending on the implementation, it might be

restricted to relative to some configuration directory.

TYPE
(bool | int | float | string | word) where word means a string without whitespaces

TOOLEXE
A path describing an executable (of a tool).

CMDTEMPLATE
A command-line template as explained in Section 4.1.1.

4.2 Communicating with the EasyInterface Server

This section describes the protocol to be used for communicating with the EasyInter-
face server. The server should receive requests using the HTTP POST protocol [27].
The advantage of using this protocol is that one can build the EasyInterface server
on top of an HTTP server, and thus take advantage of the underlying machinery for
serving clients concurrently. In addition, if one is not interested in building the Easy-
Interface server on top of an HTTP server, there are numerous libraries, for different
languages, for HTTP POST communication that one can use (this is true for the client
side as well).

The HTTP POST request should include a single attribute called eirequest. The
actual value of eirequest is a JSON record that as described in the next sections. The
following is an example of how one can communicate with the server, that we have
implemented, using JavaScript and jQuery [7]:

var req;

// here we set variable ’req’ to the JSON record
// that represents the request

$.post("http://localhost/ei/server/eiserver.php",
{
eirequest: req

},
function(data) {
// do something with the response 'data'

});

The response of the server should be an XML structure of the following form:

46 CHAPTER 4. EASYINTERFACE SERVER

<ei_response>
<ei_server_output> ... </ei_server_output>
<ei_output> ... </ei_output>
<ei_error> ... </ei_error>

</ei_response>

Where

• ei_server_output includes messages printed by the server. These messages are not
the response to the request, but rather debugging messages that can be useful
when developing clients, debugging the server, etc. Most users should ignore
this environment.

• ei_output includes the response to the request, i.e., if we request to execute a tool
the output of that tool goes inside this tag.

• ei_error includes error messages that are related to the request (not to the tool).

Typically, ei_output and ei_error are mutually exclusive, i.e., only one can appear in the
response.In the next sections we describe the format of the different requests that one
can make to the EasyInterface server.

4.2.1 Retrieve Information on Available Tools

To retrieve information on a given tool, or all visible tools on the server, the request
should adhere to the following format:

{
"command": CMD,
"app_id": ID

}

where

(i) CMD can be app_info, app_parameters, or app_details; and

(ii) ID is either the special value _ei_all (i.e., all tools) or a tool identifier as specified
in [APP].

A successful request will return (inside the ei_output tag) the XML structure [APPS]
(that is defined in the configuration file) after filtering out some information as we
explain next. First any tool that does not match ID is removed (if ID is _ei_all then
only non-visible tools are removed). Then, for the remaining tools:

• If CMD equals app_info, it returns only the [APPINFO] of each tool;

• If CMD equals app_parameters, it returns only the [PARAMETERS] and [PROFILES] of
each tool; and

• If CMD equals app_details, it returns everything except [EXECINFO] and [SANDBOX]
of each tool.

Note that [EXECINFO] and [SANDBOX] are never returned as they reveal information on
how to execute a tool locally, etc.

4.2. COMMUNICATING WITH THE EASYINTERFACE SERVER 47

4.2.2 Execute a tool

Next we describe, by mean of an example, the form of a request for executing a tool.
Suppose we are interested in executing a tool with identifier myapp where, in addition,
we would like to pass it some values for the parameters, files to process, outline
entities, the identifier of the client who is making the request and which output format
it supports. Such a request has the following form:

{
"command": "execute",
"app_id": "myapp",
"parameters": {

"l": ["true"],
"f": ["false"],
"s": ["yes"],
"x": ["1", "2"],
"_ei_clientid": "webclient",
"_ei_outformat": "eiol",
"_ei_outline": ["ent1", "ent2", ...],
"_ei_files": [

{
path: "dir1",
type: "dir",

},
{

path: "dir2",
type: "dir",

},
{

path: "dir1/file1.c",
type: "text",
content: "This is the content of the file"

},
{

path: "dir2/file2.c",
type: "text",
content: "This is the content of the file"

},
{

path: "dir2/file3.c",
type: "text",
content: "This is the content of the file"

}
]

}
}

Let us explain the different parts of this request:

• The field command must have the value execute;

48 CHAPTER 4. EASYINTERFACE SERVER

• The filed app_id should refer to the identifier of the tool that we want to execute,
it can be visible or not;

• The filed parameters is a JSON record that includes all the information, e.g., tool
parameters and files, that we want to pass over, as we explain below.

Before explaining the details of the parameters record, it is recommend that you re-
fresh your memory with the details of the command-line template as described in
Section 4.1.1. The parameters record includes the following information:

• Tool parameters: any field of record whose name does not start with “_ei” is a
parameter that is supposed to be defined in the [PARAMETERS] environment of the
corresponding tool. The value of such field is a list of elements that represent the
value of the parameter. If the parameter is supposed to take a single value then
the list must have a single element.

• Files: the field _ei_files represents the files that we want to pass to the tool. Its
value is an array of JSON records where each record represents a text file or a
directory. The path field of the record refers to the file or directory name, it is
relative to the root of the temporary directory where the server saves these files.
The type field indicates the type of the file. In the case of text files, the field
content represents the actual content of the file. Note that binary files can be
supported as well by encoding them to text representation, we leave this feature
implementation dependent.

• Outline entities: the filed _ei_outline is a list of elements representing the selected
entities from the outline.

• Client identifier: the field _ei_clientid indicates the identifier of the client who
has performed the request.

• Supported output format: the field _ei_outformat indicates the supported output
format, it can be eiol or txt.

4.2.3 Retrieve Example Sets

To retrieve example sets we use the following request:

{
"command": "exset_details",
"exset_id": ID

}

where ID is either the special value _ei_all (i.e., all example sets) or an examples set
identifier as specified in [EXSET]. A successful request will return (inside the ei_output
tag) the XML structure [EXAMPLES] after filtering out those example sets that do not
match the value of ID, i.e, if ID is _ei_all then it returns all example sets, otherwise
only the indicated one.

4.2. COMMUNICATING WITH THE EASYINTERFACE SERVER 49

4.2.4 Download Output Files

Assuming that a tool has left a file in the directory _ei_root /_ei_download, we can
download it later using the following request to the same server on which that tool
was executed:

{
"command": "download",
"exec_id": EXECID,
"file": FILENAME

}

Here EXECID is the corresponding execution identifier (see Section 4.1.1), and FILENAME
is the name of the file to be downloaded.

4.2.5 Manage Output Streams

Assuming that a tool has left some processes in the background which generate some
output chunks into _ei_root /_ei_stream, we can retrieve those chunks using the
following request to the same server on which that tool was executed:

{
"command": "get_stream",
"exec_id": EXECID,
"extention": EXT

}

Here EXECID is the corresponding execution identifier (see Section 4.1.1), and EXT is the
extension of the files that represent the chunks to be retrieve – note that a tool can
generate chunks with different extensions and retrieve them separately. The server re-
sponds to this request by sending back the following XML structure for each generated
chunk (each chunk corresponds to one file with the extension EXT):

<ei_stream state=[STATE]>
[CHUNKCONTENT]

</ei_stream>

Apart from the content of the corresponding chunk, the attribute state indicates the
state of the background processes as follows:

• nostream: if there is no stream with identifier EXECID;

• terminated: if the corresponding background processes have terminated nor-
mally.

• stopped: if the corresponding background processes have been stopped (see
kill_stream request below);

• running: if the corresponding background processes are still running.

• empty: if there is no new content generated for the corresponding stream. Note
that the corresponding background processes are still running in this case.

50 CHAPTER 4. EASYINTERFACE SERVER

• unknown: if some other unexpected error has occured.

In addition, clients can request to stop the background processes using the following
request:

{
"command": "kill_stream",
"exec_id": EXECID,

}

where EXECID is the corresponding execution identifier. The response to such request
is as above with a state terminated or stopped, but has no content.

4.3 Implementation

We have implemented an EasyInterface server as a collection of PHP programs that
run on top of an HTTP server, e.g., Apache. It implements the specification as described
in this chapter. It is part of the GitHub repository http://github.com/abstools/
easyinterface, under the directory server.

By default the server uses server/config/eiserver.cfg as a configuration file,
and if no such file exists it uses server/config/eiserver.default.cfg. The default
installation comes with a default sever/config/eiserver.default.cfg that includes
some demo tools and corresponding examples. It is recommended not to modify
server/config/eiserver.default.cfg, but rather create your own configuration file
server/config/eiserver.cfg. This way you can always have a correct configuration
file at hand from which you can copy, etc. Note that all references to configuration
files, when including them via the src attribute, should be relative to server/config.

When installing a tool, it is recommended that, instead of refereeing to the tool’s
executable directly, to write a bash-script wrapper that execute the tool and place this
script under server/bin. This way we have more control on the installed tools. Note
that when refereeing to these wrappers, in the configuration files, it is enough to use
paths relative to server/bin (the server switches to the directory server/bin before
executing the command-line).

Chapter 5

EasyInterface Clients

The aim of the EasyInterface clients is to facilitate the way users connect to EasyIn-
terface servers, i.e., instead of directly using the protocol described in Section 4.2, they
can use a (graphical) user interface that: (i) connects to the EasyInterface servers and
retrieves for the list of available tools; (ii) allows the user to choose a tool to execute
on some input files, and set the values of the corresponding parameters; (iii) generates
a corresponding request and sends it to a corresponding EasyInterface server; and
(iv) shows the returned output to the user. In addition, in some cases, clients are
supposed to provide code editing capabilities so user can edit their code as well in an
integrated developing environment. In Section 5.1 we describe the web-client of the
EasyInterface toolkit, and in Section 5.2 we discuss other possible clients.

5.1 Web-Interface Client

The web-client of EasyInterface is a JavaScript program that runs in a web browser. It
uses jQuery [7, 35] as well as some other libraries like jsTree [8] and CodeMirror [3]. It
is part of the github repository http://github.com/abstools/easyinterface, under
the directory clients/web. Once EasyInterface is installed (see Appendix A), the web-
client can be accessed using http://localhost/ei/clients/web. A representative
screenshot of the different parts of the web-client is depicted in Figure 5.1. The web-
client is designed like a development environment, and it includes the following main
components:

1. Code Editor: an area were programs can be edited, which also provides the func-
tionality of an editor in general such as search and replace and syntax highlighting;

2. File Manager: an area where users can manage their own files, and also access
predefined sets of examples. In addition, it supports accessing GitHub reposito-
ries;

3. Outline: an area where the different elements of the edited programs, such as class
and method names, are shown. It is configurable depending on the programming
languages used;

4. Console: an area where the output of a tool can be printed, which includes several
tabs for better organization of the output; and

51

52 CHAPTER 5. EASYINTERFACE CLIENTS

File-Manager

Console

Outline

Code Editor

Tools

Menu

Settings

Figure 5.1: EasyInterfaceWeb Client

5. Settings: an area where the parameters of each tool are viewed graphically,
allowing users to set their values, or selecting a predefined profile, before running
a tool.

The interface has also a tool bar with a combo-box that includes the list of available
tools, a button to execute a tool, a button to access the settings section, a button to
create an outline, a button to access the help section, and a button to clear the last
output generated. The web-client includes an interpreter for the EasyInterface output
language that is describe in Chapter 6.

The web-client can be easily configured to fit the user’s needs, it has a configuration
file to control, among others, the following aspects:

(i) the tools to include in the tools menu;

(ii) the examples to show in the file-manager; and

(iii) the tool be used for generating the outline for a set of programs – note that this is
programming language dependent).

5.1. WEB-INTERFACE CLIENT 53

The web-client first looks for the configuration file clients/web/webclient.cfg, and if it
does not exists it uses clients/web/webclient.default.cfg which is shipped by default
with EasyInterface. It is recommended not to directly modify webclient.default.cfg,
but rather create a new copy into webclient.cfg.

Next we explain the different components of the configuration file. In the rest of
this chapter, when we refer the default server we mean the one that is available at the
same address as the web-client, i.e., if the web-client was accessed using the URL

“http://somedomain/.../ei/client/web”,

then the URL of the default server is

“http://somedomain/.../ei/server”.

The configuration file is a text file that includes a single JSON record with the following
fields:

{
title: A title to use for the window,
apps: A list of tools to include in the tools menu,
examples: A list of examples to include in the file manager,
outline: Indicates if the outline area should be hidden,
outlineserver: The server of the tool for generating the outline,
outlineapp: The name of the tool to generate outline
language: The programming language of the edited programs,

}

All fields in the above record are optional, the web-client assigns default values for
those that are not available. Their meaning is as follows:

• title is used to set the window title (see Figure 5.1), where its default value is
“Easy Interface”.

• apps is used to change the set of tools to be listed in the tools menu, the syntax is
explained in Section 5.1.1.

• examples is used to change the set of examples that are shown in the file-manager,
the syntax is explained in Section 5.1.2.

• outline is use to control if the Outline components (see Figure 5.1) is visible or
not, the possible values are “on” and “off”.

• outlineserver and outlineapp are used to indicate which tool to use for generating
the content of the outline, the syntax is explained in Section 5.1.3.

• language is used to set the programming language in which programs are written
(for syntax highlighting purposes), the syntax is explained in Section 5.1.4.

In the next section we give some example values for these fields.

54 CHAPTER 5. EASYINTERFACE CLIENTS

5.1.1 Tools Menu

The tool menu, the combo-box next to the Run button in Figure 5.1, includes a list of
tools that can be executed by the user. This list can be modified by setting the value
of the field apps in the configuration file. This value is an array of JSON records of the
form

{ server: SRV, apps: APPSLIST }

where SVR is a URL to an EasyInterface server and APPSLIST is an array of tool identifiers
(see [APP]). APPSLIST can also be the special value _ei_all which refers to all tools of
the corresponding server. If this field is not provided, all tools from the default server
will be included in the tools menu.

EXAMPLE 5.1. The following is a possible value for field apps:

apps: [{server: "http://domain1/ei/server, apps: ["costa", "mhp"]},
{server: "http://domain2/ei/server, apps: "_ei_all"}]

It takes the tools identified by costa and mhp from the EasyInterface server http://domain1
/ei/server, and all tools available at the EasyInterface server http://domain2/ei/server.

5.1.2 File-Manger

In the file-manager area, of Figure 5.1, we can see a tree-view that represents programs
on which tools can be applied, etc. The one with the name User_Projects corresponds
to programs that are created by the user; and the rest are predefined set of examples.
This set of examples can be modified by setting the value of the field examples in the
configuration file. This value is an array of JSON records of the form

{ server: SRV, examples: EXLIST }

where SVR is a URL to an EasyInterface server and EXLIST is an array of example set
identifiers (see [EXSET]). EXLIST can also be the special value _ei_all which refers to all
example sets of the corresponding server. If this field is not provided, all example sets
from the default server will be included.

EXAMPLE 5.2. The following is a possible value for field examples:

examples: [{server: "http://domain1/ei/server, examples: ["cost"]},
{server: "http://domain2/ei/server, examples: "_ei_all"}]

It takes the example set identified by cost from the EasyInterface server http://domain1/
ei/server, and all example sets available at the EasyInterface server http://domain2/ei/
server.

Note that the file-manager has a context menu (use the mouse right-click to open
it) with options for: creating new files; running tools; creating outline; cloning and
committing to GitHub repositories, etc.

5.1. WEB-INTERFACE CLIENT 55

5.1.3 Outline

The outline area of Figure 5.1 includes a tree-view that represents information on some
programs entities, e.g., methods, classes, etc. The actual values in this tree and its
structure depend very much on the intended use of EasyInterface, and thus, it is
completely configurable – apart from the possibility of hiding it by setting outline to
“off”. The idea is that the user will select some of the entries in this tree, and then they
will be passed to the tool that we run (see Section 3.4 and [CMDLINEAPP]).

The actual content of the outline is not generated by the web-client, but rather by
an external tool that is installed on some EasyInterface server that we refer to as the
outline tool. It is like any other tool but typically non-visible. The exact work-flow for
generating an outline is as follows:

1. The user clicks on the Refresh Outline button to generate an outline for the
currently opened tab (in the code editor), or select the Refresh Outline option
from the context menu of the file-manager to generate an outline for all programs
in the corresponding sub-tree;

2. The web-client sends a request to execute the outline tool, passing it all files of
interest;

3. The outline tool processes the input files and generates (on the standard output)
some XML structure that represents the content of the outline, which is sent back
to the client; and

4. The web-client converts this XML into a tree view as shown in Figure 5.1.

The fields outlineserver and outlineapp in the configuration file can be used to indicate
which tool to use for generating the outline content. The default value of outlineserver
is the default server, and the one of outlineapp is coutline which a simple example
tool that comes with EasyInterface to generate outlines for C programs.

As for the outline content, it must be a sequence of XML environments that adhere to
the following syntax, each element (i.e., tree) in this sequence will be show at the root
level in the outline area:

OUTLINE

<category version=[VERSION]? text=[NODETEXT] value=[NODEVAL]
selectable=[BOOL]? icon=[URL]?>

[OUTLINE]*
</category>

Since Version: 1.0

Description:

Defines a tree that represent (part of) an outline. The outer category tag is the root
of this tree, and the inner [OUTLINE]* are its children. The meaning of the different
attributes is as follows:

• version indicates the version of the outline structure, which is 1.0 by default.

• text is the text to be show for that node.

56 CHAPTER 5. EASYINTERFACE CLIENTS

• value is the value to passed to a tool if that node is selected.

• selectable indicates if this node can be selected. Its default value is true.
Such nodes are used to divide the tree in several logical categories. Note
that, in some clients, nodes might be still selectable even if the value is false,
however, in such case they will not be passed to the tool.

• icon is a URL to an alternative icon to be used for that node.

NODETEXT
A string.

NODEVAL
[a-z,A-Z,0-9,-,_,:,.]+

BOOL
(true | false)

URL
A valid http or https URL.

EXAMPLE 5.3. The following is an example of a simple outline for an ABS program:

<category text="Module PingPong" selectable="false">
<category text="Class PingImpl" selectable="false">
<category text="initPing" value="PingImpl.initPing" selectable="true" />
<category text="ping" value="PingImpl.ping" selectable="true" />
</category>
<category text="Class PongSessionImpl" selectable="false">
<category text="initPongSession" value="PongSessionImpl.initPongSession"
selectable="true" />
<category text="pong" value="PongSessionImpl.pong" selectable="true" />
</category>
<category text="Class PongImpl" selectable="false">
<category text="hello" value="PongImpl.hello" selectable="true" />
<category text="sessionFinished" value="PongImpl.sessionFinished"
selectable="true" />

</category>
<category text="main" value="main" selectable="true" />
</category>

It represent a module with three classes, each with several methods. In addition, it includes
a node representing the main block of the module. Note that only methods have the attribute
selectable set to true. The result as viewed in the web client is depicted in Figure 5.2.

5.1.4 Code Editor

The Code Editor in Figure 5.1 is the area were programs can be edited. It provides basic
functionality of an editor in general such as search and replace and syntax highlighting. It
is implemented using the CodeMirror [3] library. The syntax highlight is configurable

5.1. WEB-INTERFACE CLIENT 57

Figure 5.2: Outline example

via the field language in the configuration file. Its value should be a valid CodeMirror
syntax highlighting mode which is a MIME1 content-type attribute, for example: text/x-
csrc (C), text/x-c++src (C++), text/x-java (Java), text/x-csharp (C#), text/x-python (Python),
etc. See http://codemirror.net/mode for the list of available modes. By default it is
text/x-csrc, i.e., C programs. Note that CodeMirror provides an easy way to add new
rules for syntax highlighting as described in http://codemirror.net/doc/manual.
html#modeapi. In such case, the new files should be incorporated in the local copy of
CodeMirror at clients/web/lib/codemirror/mode.

5.1.5 Console

The console area is where the output of a tool can be printed, which includes several
tabs for better organization of the output. It is implemented using jQuery [7].

5.1.6 Settings Section

The Settings window in Figure 5.1 includes a section for each available tool. In each
section the parameters of the corresponding tool (see [PARAMETERS]) are viewed in a
graphical way, e.g., using combo-boxes, radio buttons, etc. One can select also a profile,
which automatically sets the parameters to some predefined values (see [PROFILES]).
The Default profile sets all parameters to their default value.

5.1.7 Help Section

A click on the Help button in Figure 5.1 will open a window that includes several help
sections, one for each tool. The content of each section is taken from the corresponding
tool’s help provided in configuration file of the EasyInterface server (see [APPHELP]).

5.1.8 Other Features

The web-client can be started directly with: some files (from the file-manager) opened,
a tool selected from the tools menu, and the corresponding parameter set using some
profile. This is useful when writing, for example, tutorials for these tools, where one
can link directly to the web-client with a corresponding example opened and a tool
ready to be applied. This can be done using a URL of the following form:

1 http://en.wikipedia.org/wiki/MIME

58 CHAPTER 5. EASYINTERFACE CLIENTS

http://domain/clients/web/?app=APPID&profile=PROFILE&file=PATH

where: (i) the value of app is an identifier APPID of the tool to be selected; (ii) the value
of each file parameter (there can be several) is a PATH to be opened in the editor — it
should be full path from the root of the file-manager, e.g., “/Examples_1/iterative/sum
.c”; and (iii) the value of profile is a profile identifier PROFILE to be used for parameter
values (see [PROFILE]).

5.2 Other Clients

Although we have presented the web-client only, which is recognized as the most
important one in our objectives, other clients might be of interest as well. For example,
one can think of developing an Eclipse plugin to communicate with a server within
Eclipse, or a script (e.g., Python) to communicate with a server within a terminal.

Chapter 6

The EasyInterface Output Language

In this chapter we describe a text-based output language that allows tools to view
their output in a graphical way, e.g., highlighting lines, adding markers, defining on-
click actions, etc. The main advantage of this language is that it does not require any
knowledge on GUI or WEB programming. Some clients, e.g., the web-client described
in Section 5.1, are supposed to support this language. This is done by developing a
corresponding interpret that renders the effect of the corresponding commands in the
respective environment (e.g., a web browser).

The rest of this chapter is organized as follows: in Section 6.1 we first give a general
overview of the design of this language; in Section 6.2 we describe the syntax and
semantics of this language; in Section 6.3 we include some details that we left out of
Section 6.2 for readability (we refer the reader to these parts in Section 6.2); and in
Section 6.4 we give some examples to the different parts of the language.

6.1 General Overview

The idea behind the EasyInterface output language is that a tool should just print, on
the standard output, how it wants to view the output using some high-level description,
and leave the details to an interpreter that converts this description to graphical output.
This way we move the complexity of constructing a GUI from the tool to the interpreter,
and thus free developers of tools from mastering any WEB or GUI related libraries. To
simplify the processing of such output, we should use some structured format. In our
case we opt for XML, but we could use any other structured formatting. e.g., JSON.

The EasyInterface output language assumes that the environment in which it is
interpreted includes:

(i) A “Code Editor” where programs can be edited, typically a tab for each file;

(ii) A “File Manager” that includes a tree-view of all user files and predefined ex-
amples;

(iii) A Consolewhere output can be printed in different formats (it might include also
several consoles, e.g., several tabs).

An output in the EasyInterface output language is an XML structure of the following
form:

59

60 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

<eiout>
<eicommands>

[EICOMMAND]*
</eicommands>
<eiactions>

[EIACTION]*
</eiactions>
</eiout>

where

(i) eiout is the outermost tag that encapsulates all commands and actions;

(ii) [EICOMMAND]* is a list of commands to be executed; and

(iii) [EIACTION]* is a list of actions to be declared. Actions correspond to interactions
with the user.

Typical examples of [EICOMMAND] are: print a text on the console, highlight lines 5-10, add
marker at line 5, etc. Typical examples of [EIACTION] are: when the user clicks on line 13,
highlight lines 20-25, when the user clicks on some text, open a dialog box with some message,
etc.

In the next section we give a detailed specification of this language. Note that cur-
rently the language includes some commands and actions of interest, that we needed
for our tools in the Envisage project, however, it is design in a way that is easily exten-
sible to include more commands an actions (interpreters on the client side should be
modified to support such extensions).

6.2 Syntax and Semantics

An output in the EasyInterface output language is an XML structure that adhere to
the syntax of [EIOUT] that is described below. You can follow the links in its definition
in order to get the definitions of its different parts. The semantics of each is fully
specified, and when needed we refer the reader to clarifying examples.

IMPORTANT: note that the output must be a valid XML structure, thus, in what
follows, whenever we need to include plain text in that output, such text should be
enclosed in a <![CDATA[the-text-goes-here]]> environment (see Example 6.4).

EIOUT

<eiout version=[VERSION]? >
[EICOMMANDS]*
[EIACTIONS]*

</eiout>

Since Version: 1.0

Description:

6.2. SYNTAX AND SEMANTICS 61

This is the main environment of the output, it includes several lists of command
environments [EICOMMANDS], and several lists of action environments [EIACTIONS].
Commands are executed first, in the given order, and then actions are executed in
the given order as well. The version attribute indicates the version of the output
language that is used, which is 1.0 by default.

EICOMMANDS

<eicommands dest=[PATH]? outclass=[OUTCLASS]? >
[EICOMMAND]*

</eicommands>

Since Version: 1.0

Description:

A list of commands to be performed. The attribute dest is the destination file
on which the command is applied (if needed), it should be the full path to that
file as provided by the EasyInterface server. E.g., when highlighting a line we
might want to highlight a line in one file or another. If dest is not specified, then
the commands will be applied to the file that is currently active, e.g., if the client
includes a code editor with several tabs, one for each file, the command will be
applied to the active tab. If none is active then the behavior is not specified. The
attribute outclass specifies the output class of the commands in this environment,
that is, the nature of the corresponding output generated by the commands, e.g.,
error, information, warning, etc. The effect of this attribute is not fully specified
and it depends on the client and the actual implementation of the interpreter. All
commands inside this environment inherit the values of outclass and dest, and
each can override them.

EIACTIONS

<eiactions dest=[PATH]? autoclean=[BOOL]?>
[EIACTION]*

</eiactions>

Since Version: 1.0

Description:

A a list of actions to be declared. An action typically executes a list of [EICOMMANDS]
when the user interacts with the interface in some predetermined way, e.g., when
the user clicks on line 30, highlight lines number 12 and 16. We say the an action is
performed as a response to the user interaction. If the user interacts again with the
interface, according to what is specified in the action, then the action is unperformed
if possible (when the corresponding commands support the undo operation), e.g.,
in the above example if the user clicks again on Line 30 again, the highlights of
lines 12 and 16 are turned off.

Before performing an action, the last performed action is unperformed first. This

62 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

behavior can be disabled by setting the autoclean attribute to “false”. All actions
inside this environment inherit the value of autoclean, and each can override it.
The attribute dest and outclass are as in the case of commands (see the description
of [EICOMMANDS]).

EICOMMAND

(
[PRINTONCONSOLECOMMAND]

| [HIGHLIGHTLINESCOMMAND]
| [DIALOGBOXCOMMAND]
| [WRITEFILECOMMAND]
| [SETCSSCOMMAND]
| [CHANGECONTENTCOMMAND]
| [ADDMARKERCOMMAND]
| [ADDINLINEMARKERCOMMAND]
| [DOWNLOADCOMMAND]
)

Since Version: 1.0

Description:

A command in the EasyInterface output language, briefly:

• [PRINTONCONSOLECOMMAND] can be used to print on the console.

• [HIGHLIGHTLINESCOMMAND] can be used to highlight lines in the code editor.

• [DIALOGBOXCOMMAND] can be used to open a dialog window with a correspond-
ing message.

• [WRITEFILECOMMAND] can be used to add a file (and a corresponding content)
to the file-manager.

• [SETCSSCOMMAND] can be used to change the CSS properties of some elements
that were previously generated (e.g., content in HTML)

• [ADDMARKERCOMMAND] can be used to add a marker next to a line in the code
editor.

• [ADDINLINEMARKERCOMMAND] can be used to add a line widget (an inlined marker)
in the code editor.

• [DOWNLOADCOMMAND] can be used to download a file that was previously gener-
ated by a tool.

• [CHANGECONTENTCOMMAND] can be used to modify a content that has been previ-
ously generated.

6.2. SYNTAX AND SEMANTICS 63

EIACTION

(
[ONCODELINECLICKACTION]

| [ONCLICKACTION]
)

Since Version: 1.0

Description:

An action in the EasyInterface output language, briefly:

• [ONCODELINECLICKACTION] can be used to perform an action when the user
clicks on a line in the code editor.

• [ONCLICKACTION] can be used to perform an action when the user clicks on a
previously generated text (a DOM element in general).

PRINTONCONSOLECOMMAND

<printonconsole outclass=[OUTCLASS]? consoleid=[CONSOLEID]?
consoletitle=[STRING]?>

[CONTENT]+
</printonconsole>

Since Version: 1.0

Description:

Prints the content described by the [CONTENT] environments on the console that has
an identifier consoleid. If consoleid is not specified, the output goes to the default
console. If consoleid is specified but there is no console with such an identifier, the
console is created and consoletitle (if specified) is used as its title. The attribute
outclass is as described in [EICOMMANDS].

See Example 6.1.

HIGHLIGHTLINESCOMMAND

<highlightlines outclass=[OUTCLASS]? dest=[PATH]?>
[LINES]*

</highlightlines>

Since Version: 1.0

Description:

Highlights the lines specified by [LINES] in the file dest. The attribute outclass is
as described in [EICOMMANDS].

64 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

See Example 6.2.

DIALOGBOXCOMMAND

<dialogbox outclass=[OUTCLASS]? boxtitle=[STRING]? boxwidth=[INT]?
boxheight=[INT]?>

[CONTENT]+
</dialogbox>

Since Version: 1.0

Description:

Opens a dialog box with the content specified by the [CONTENT] environments. The
value of boxtitle, if specified, is used as a title for the dialog box. The attributes
boxwidth and boxheight can be used to set the size of the window. The attribute
outclass is as in [EICOMMANDS].

See Example 6.3.

WRITEFILECOMMAND

<writefile filename=[PATH] overwrite=[BOOL]>
[TEXT]

</writefile>

Since Version: 1.0

Description:

Creates a new file it in the file-manager, using the path specified by filename. The
file’s content is set to the value of [TEXT]. If the file exists, and overwrite is true, the
content is replaced otherwise a new file is created with a new name. The default
value of overwrite is false.

See Example 6.4.

SETCSSCOMMAND

<setcss>
[ELEMENTS]
[CSSPROPERTIES]

</setcss>

Since Version: 1.0

Description:

Changes the CSS properties, as specified by [CSSPROPERTIES], of all elements that
match the selectors in [ELEMENTS]. There must be exactly one [ELEMENTS] environ-

6.2. SYNTAX AND SEMANTICS 65

ment and one [CSSPROPERTIES] environment. The elements are selected from those
that were previously generated by other commands.

See Example 6.5.

CHANGECONTENTCOMMAND

<changecontent action=[POSITION]>
[ELEMENTS]
[CONTENT]

</changecontent>

Since Version: 1.0

Description:

Modifies the content of all elements that match the selectors in [ELEMENTS], using
[CONTENT]. These elements are typically selected from those generated by pre-
viously executed commands. The attribute action indicates how to incorporate
[CONTENT] in the current one, i.e., replace, append or prepend.

See Example 6.6.

ADDMARKERCOMMAND

<addmarker outclass=[OUTCLASS]? dest=[PATH]? boxtitle=[STRING]?
boxwidth=[INT]? boxheight=[INT]?>

[LINES]
[CONTENT]*

</addmarker>

Since Version: 1.0

Description:

Adds a marker next to each line that is specified in [LINES]. The column informa-
tion from each [LINE] in [LINES] is ignored. All markers are associated with the
content given by the [CONTENT] environments, as a tooltip for example. If the client
allows expanding the tooltip to a dialog window, the attributes boxtitle, boxwidth
and boxheight can be used to set the properties of the corresponding window (see
[DIALOGBOXCOMMAND]). If a line is already associated with a marker, then all [CONTENT]
environments should be appended to the current content. The attributes dest and
outclass are as described in [EICOMMANDS].

See Example 6.7.

66 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

ADDINLINEMARKERCOMMAND

<addinlinemarker outclass=[OUTCLASS]? dest=[PATH]?>
[LINES]
[CONTENT]*

</addinlinemarker>

Since Version: 1.0

Description:

Adds an inline marker (a line widget) for each line that is specified by [LINES]. All
line widgets will include the content specified by the [CONTENT] environments. The
column information from each [LINE] in [LINES] is ignored. If a line is already asso-
ciated with a marker, then all [CONTENT] environments should be appended to the
current content. The attributes dest and outclass are as described in [EICOMMANDS].

See Example 6.8.

DOWNLOADCOMMAND

<download execid=[EXECID] filename=[FILE] />

Since Version: 1.0

Description:

When a tool that runs on an EasyInterface server X generates this command, the
effect should be downloading the file specified in filename, from the EasyInter-
face server X, using the execution identifier execid. See sections 4.1.2 and 4.2.4 for
more information on downloading files from an EasyInterface server.

See Example 6.9.

ONCODELINECLICKACTION

<oncodelineclick dest=[PATH]? autoclean=[BOOL]? outclass=[OUTCLASS]?>
[LINES]
[CONTENT]*
[EICOMMANDS]

</oncodelineclick>

Since Version: 1.0

Description:

Adds (special) markers at the code lines specified by [LINES], such that when any is
clicked the commands in [EICOMMANDS] are performed, and if clicked again they are
unperformed (see detailed description in [EIACTIONS]). The content given by the
[CONTENT] environments is associated with the markers (as a tooltip for example). If

6.2. SYNTAX AND SEMANTICS 67

a line is already associated with such an action, then [CONTENT] should be appended
to the current content and [EICOMMANDS] should be accumulated to the current ones.
The attributes dest, outclass and autoclean are as described in [EIACTIONS]. More-
over, the [EICOMMANDS] environment inherits the dest and outclass attributes of this
environment.

See Example 6.2.

ONCLICKACTION

<onclick outclass=[OUTCLASS]? autoclean=[BOOL]? >
[ELEMENTS]
[EICOMMANDS]

</onclick>

Since Version: 1.0

Description:

A click on any element that matches any selector from [ELEMENTS] will execute the
commands declared in [EICOMMANDS], and if clicked again they are unperformed
(see detailed description in [EIACTIONS]). If the element is already associated with
an action, then [EICOMMANDS] should be accumulated to the current ones. The at-
tributes dest, outclass and autoclean are as described in [EIACTIONS]. Moreover,
the above [EICOMMANDS] environment inherits the dest and outclass attributes of
this environment.

See Example 6.5.

LINES

<lines>
[LINE]+

</lines>

Since Version: 1.0

Description:

A group of lines, typically used to specify the lines affected by an [EICOMMAND] or
an [EIACTION].

LINE

<line from=[INT] to=[INT]? fromch=[INT]? toch=[INT]? />

Since Version: 1.0

Description:

68 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

A region (of lines) typically used to specify the region on which the effect of an
[EICOMMAND] or an [EIACTION] is applied:

• from is the start line.

• to is the end line.

• fromch is the character (i.e., column number) where the first line starts.

• toch is the character (i.e., column number) where the last line ends.

The default value of to is as the value of from. The default value of fromch is 0, and
of toch is the end of the line.

ELEMENTS

<elements>
[SELECTOR]*

</elements>

Since Version: 1.0

Description:

Set of selectors (of DOM elements)

SELECTOR

<selector value=[STRING] />

Since Version: 1.0

Description:

The attribute valuemust be a valid selector as in jQuery (see https://jquery.com).
It is used to match some DOM elements.

CSSPROPERTIES

<cssproperties>
[CSSPROPERTY]*

</cssproperties>

Since Version: 1.0

Description:

A set of CSS properties.

6.2. SYNTAX AND SEMANTICS 69

CSSPROPERTY

<cssproperty name=[CSSNAME] value=[CSSVAL] />

Since Version: 1.0

Description:

A CSS property. The attributes name and value should correspond to valid CSS
properties.

CONTENT

<content format=[TEXTFORMAT]? execid=[EXECID]? ext=[STRING]?
action=[POSITION]? refreshrate=[INT]?>

[TEXT]
</content>

Since Version: 1.0

Description:

A text [TEXT] given in a specific format, that is supposed to be viewed to the user.
If the attribute format is not provided, then it is assumed to be in "text" format
(plain text). This content should be viewed to the user in the specified format. The
supported formats are:

• "text", for plain text;

• "html", for HTML;

• "svg", for Scalable Vector Graphics [26]; and

• "graph", for drawing 2D graphs – see Section 6.3.1 for the exact format.

The rest of attributes can be used to associate the content with an output stream
as follows (first see sections 4.1.2 and 4.2.5 to understand the notions behind
streaming before you continue):

• execid is the execution identifier;

• ext is the extension of output chunk files to be retrieved;

• action indicates how to incorporate new output chunks to the current content
(i.e., replace, append or prepend); and

• refreshrate is a time interval (in seconds) to be used for refreshing the output.
If the value is not specified then refreshing the output should be on demand.

The client should stop refreshing when the background processes of the corre-
sponding stream have terminated, or when the user asks to stop them explicitly.

CONSOLEID

70 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

([a-z,A-Z,0-9,-,_]+ | new | default)

The value new means a new console, we cannot refer to this console later. The value
default means the default console of the client.

EXECID
[a-z,A-Z,0-9,-,_]+

PATH
A path to a file, including the file name. There are two forms, the first one is

a full path including the temporal directory name that is created by the server, e.g.,
“/tmp/easyinterfae_XYZ/_ei_files/dir1/dir2/file.c”. The client should simply
ignore the prefix “/tmp/easyinterfae_XYZ/_ei_files/”, i.e., the value in this case is
“dir1/dir2/file.c”. The second form does not include the temporal directory prefix.

FILE
A file name, without the path. Substrings "/", "\", and ".." are not allowed.

VERSION
x.y, where x is the major version number and y is the minor one, e.g. 1.0, 1.1, etc.

OUTCLASS
(none | info | warning | error)

BOOL
(true | false)

INT
An integer

STRING
A string

TEXT
Free text.

TEXTFORMAT
(text | html | svg | graph)

CSSNAME
A valid name for a CSS property.

CSSVAL
A valid value for a corresponding CSS property.

POSITION
(prepend | append | replace)

6.3. OTHER DETAILS 71

6.3 Other Details

6.3.1 The Graph Format

The [CONTENT] tag, of the EasyInterface output language, supports drawing 2D graphs
using the value graph for the format attribute. In this section we describe the syntax of
such graphs.

Let us start by defining the notion of a graph we are discussing in this section. A
function is a list of pairs (x, y) that defines some points in the plane, and a plot of such a
function is a drawing that connects these points. A 2D graph is a collection of functions
that share all x points, i.e., we can imagine it as drawing several functions using the
same xy-axes. For the sake of compact representation, if we have n functions, every
point in a graph can be represented as (x, y1, . . . , yn) where (x, yi) corresponds to the i-th
function.

A graph is a sequence of JSON records where each record describes a graph via the
following fields:

• "title": a title to be used for the graph;

• "x-title": a title to be used for the x-axes (horizontal);

• "y-title": a title to be used for the y-axes (vertical);

• "f-titles": an array of strings, where the i-th string is a title for the i-th function.

• "values": an array of points, where each point is an array [x, y1, . . . , yn] such that
(x, yi) corresponds to a point defining the i-th function.

In addition, since the [CONTENT] tag can define several graphs, we also provide the
possibility of grouping graphs into logical groups and assigning them labels. Clients
should allow viewing graphs of interest as follows: a graph is viewed if it belongs to
at least one of the selected groups and has at least one of the selected labels. Defining
groups and labels is done using the following fields in the corresponding JSON record:

• "groups": array of groups, where each group is simply a string.

• "labels": array of labels, where each label is simply a string.

See Example 6.3 for an example of 2D graphs.

6.4 Examples

In this section we give some examples for the different commands and actions of the
EasyInterface output language. Note that they are referred to from the definitions of
the corresponding commands in Section 6.2.

EXAMPLE 6.1. The following is an example of [PRINTONCONSOLECOMMAND] using different
[CONTENT] environments with different formats:

72 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

<printonconsole consoleid="1" consoletitle="Welcome">
<content format="text">
Hello World

</content>
<content format="html">
Hello World

</content>
<content format="svg">
<svg height="100" width="100">
<circle cx="50" cy="50" r="40" fill="red" />

</svg>
</content>

</printonconsole>

Its execution in the web-client generates the output depicted in Figure 6.1.

Figure 6.1: Output of Example 6.1

EXAMPLE 6.2. The following is an example of [ONCODELINECLICKACTION] which executes two
[HIGHLIGHTLINESCOMMAND], each with different outclass:

<eiactions>
<oncodelineclick>
<lines> <line from="3" /> </lines>
<eicommands>
<highlightlines outclass="info">
<lines> <line from="2" to="4" /> </lines>
</highlightlines>
<highlightlines outclass="warning">

6.4. EXAMPLES 73

<lines> <line from="6" fromch="4" toch="8" /> </lines>
</highlightlines>
</eicommands>
</oncodelineclick>
</eiactions>

Its execution in the web-client generates the output depicted in Figure 6.2. Note that a click
on the arrow (in the left-side gutter) executes the commands and another click undo their
corresponding effect.

Figure 6.2: Output of Example 6.2

EXAMPLE 6.3. The following is an example of [DIALOGBOXCOMMAND], using a [CONTENT] envi-
ronment with graph format.

<dialogbox boxtitle="CPU use" boxwidth="800" boxheight="500">
<content format="graph">
{ "title":"BFS - Acer G5453",
"f-titles":["Time","% CPU","% Mem"],
"y-title":"%",
"x-title":"Time",
"groups":["BFS"],
"labels":["Acer","G5453"],
"values":[[1,22,43],[2,40,47],[3,82,88],[4,40,75]]

}
{ "title":"BFS - Acer B12",
"f-titles":["Timee","% CPU","% Mem"],
"y-title":"%",
"x-title":"Time",
"groups":["BFS"],

74 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

"labels":["Acer","B12"],
"values":[[1,42,66],[2,65,47],[3,99,91],[4,68,92]]

}
</content>

</dialogbox>

Its execution in the web-client generates the output depicted in Figure 6.3.

Figure 6.3: Output of Example 6.3

EXAMPLE 6.4. The following is an example of [WRITEFILECOMMAND], which adds a new file to
the file-manager:

<writefile filename="dir1/newfile.cpp" overwrite="false">
<![CDATA[
#include <iostream>
using namespace std;
int main(){
cout << "Hello World!" << endl;
return 0;

}
]]>
</writefile>

Note the of <![CDATA[...]]>, this is necessary due to the use of plain-text with special
characters. Its execution in the web-client generates the output depicted in Figure 6.4.

EXAMPLE 6.5. The following is an example of [SETCSSCOMMAND], together with an action
[ONCLICKACTION] which changes the size of some text when it is clicked:

6.4. EXAMPLES 75

Figure 6.4: Output of Example 6.4

<eicommands>
<printonconsole>
<content format="html">
<div id="wrap">
Some text

Click me!

</div>
</content>
</printonconsole>
</eicommands>
<eiactions>
<onclick>
<elements>
<selector value="#text" />
</elements>
<eicommands>
<setcss>
<elements>
<selector value="#text" />
</elements>
<cssproperties>
<cssproperty name="font-size" value="30px" />
</cssproperties>
</setcss>
</eicommands>
</onclick>
</eiactions>

76 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

Its execution in the web-client generates the output depicted in Figure 6.5 – it includes the
result after clicking on the text “Click me!”.

Figure 6.5: Output of Example 6.5

EXAMPLE 6.6. The following is an example of [CHANGECONTENTCOMMAND]. Assuming that we
add the following command to the list of commands of the [ONCLICKACTION] in Example 6.5, it
will add some text to the HTML tag with identifier wrap when “Click me!” is clicked:

<changecontent action="append">
<elements>
<selector value="#wrap"/>
</elements>
<content format="html">
New Text added

</content>
</changecontent>

Its execution in the web-client generates the output depicted in Figure 6.6 (after clicking on
“Click me!”).

EXAMPLE 6.7. The following is an example of [ADDMARKERCOMMAND], using different outclass
values:

<addmarker outclass="info">
<lines>
<line from="2" />
</lines>
<content format="text">
Information

6.4. EXAMPLES 77

Figure 6.6: Output of Example 6.6

</content>
</addmarker>
<addmarker outclass="warning">
<lines>
<line from="4" />
</lines>
<content format="text">
Warning
</content>
</addmarker>
<addmarker outclass="error">
<lines>
<line from="6" />
</lines>
<content format="text">
Error
</content>
</addmarker>

Its execution in the web-client generates the output depicted in Figure 6.7.

EXAMPLE 6.8. The following is an example of [ADDINLINEMARKERCOMMAND] using different
outclass values:

<addinlinemarker outclass="info">
<lines>
<line from="2" />
</lines>

78 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

Figure 6.7: Output of Example 6.7

<content format="text">
Information
</content>
</addinlinemarker>
<addinlinemarker outclass="warning">
<lines>
<line from="4" />
</lines>
<content format="text">
Warning
</content>
</addinlinemarker>
<addinlinemarker outclass="error">
<lines>
<line from="6" />
</lines>
<content format="text">
Error
</content>
</addinlinemarker>

Its execution in the web-client generates the output depicted in Figure 6.8.

EXAMPLE 6.9. The following is an example of [DOWNLOADCOMMAND], to download a file called
download.test generated by a tool execution with execution identifier xV54fga:

<download execid="xV54fga" filename="download.test" />

6.4. EXAMPLES 79

Figure 6.8: Output of Example 6.8

Its execution in the web-client generates the output as in Figure 6.9.

80 CHAPTER 6. THE EASYINTERFACE OUTPUT LANGUAGE

Figure 6.9: Output of Example 6.9

Chapter 7

Evaluation

The EasyInterface toolkit has been successfully applied in the context of the Envis-
age [5] project, where the tools developed in the project have been installed on an
EasyInterface server, and they are accessible via a web-client that is available at fol-
lowing address: http://www.abs-models.org.

The integration effort was extremely low in general: a tool with a basic GUI could
be integrated in few minutes. In some cases, where the EasyInterface output language
has been used, the effort was higher but negligible when compared to developing GUIs
from scratch. We note that in the case of Envisage, the integration was expected to be
more costly since EasyInterface was developed in parallel to those tools. Using it for
future projects should require even less effort.

In what follows we briefly describe each tool, and explain which parts of the
EasyInterface output language were used.

7.1 Tools of the Envisage Project

Resource Analysis (SACO)

Description:

A static analysis tool for inferring the resource usage of ABS programs. It is
parametric on the notion of resource to measure (e.g., memory, number of executed
instructions, etc.), and can infer different kinds of cost (i.e., usage) such as parallel
cost, peak cost, sequential cost, etc.

Further reading:

For more details see [24, 14].

Integration:

It uses the EasyInterface output language to view the output graphically, e.g.,
adding markers, drawing graphs using SVG, defining actions to view resource
usage per method or per groups of objects, etc.

Resource Analysis (SRA)

81

82 CHAPTER 7. EVALUATION

Description:

A static analysis tool that computes upper bounds on virtual machine usage in
a dialect of ABS, called vml, which has explicit acquire and release operations of
virtual machines.

Further reading:

For more details see [30].

Integration:

It uses the EasyInterface output language to view the different parts of the result
in different consoles.

May-Happen-in-Parallel Analysis (SACO)

Description:

A static analysis tool that infers a set of pairs of instructions that may happen in
parallel (MHP) in any execution of a given ABS program. This is a very important
analysis on which other analysis of concurrent programs build.

Further reading:

For more details see [28, 21, 19, 20].

Integration:

It uses the EasyInterface output language to view the output graphically, in
particular, it defined code line actions such that when clicking on a line, it highlights
other lines that might happen in parallel with it.

Deadlock Analysis (SACO)

Description:

A static analysis tool for proving deadlock freedom for ABS programs. The crux
of the analysis is that it integrates the MHP information within dependency graph
in order to discard unfeasible cycles that otherwise would lead to false positives.
It is both precise and scalable.

Further reading:

For more details see [23].

Integration:

It uses the EasyInterface output language to view the output graphically, in par-
ticular, if there is a deadlock it highlight lines involved in the potential deadlock.

Deadlock Analysis (DSA)

Description:

A modular static analysis tool for proving deadlock freedom for ABS programs [32],

7.1. TOOLS OF THE ENVISAGE PROJECT 83

that is based on behavioral types.

Further reading:

For more details see [29, 31].

Integration:

It makes a minimal use of the EasyInterface output language to view the output
or errors in the console.

ABS Smart Deployer

Description:

A tool that first processes the original ABS program to retrieve relevant cost an-
notation and deploy annotations defined in an ad-hoc domain specific declarative
language. For each annotations, Smart Deployer relies on the Zephyrus2 config-
uration optimizer to concretely compute the objects that need to be deploy and
then it generates a new ABS class that specifies the deployment steps to reach the
desired target. This class can be used to trigger the execution of the deployment,
and to undo it in case the system needs to downscale directly from the ABS code.

Further reading:

For more details see [33].

Integration:

It makes a minimal use of EasyInterface output language to view the output or
errors in the console.

ABS ErLang Simulator

Description:

A simulator for ABS programs that is based on compiling ABS programs to corre-
sponding ErLang programs.

Further reading:

For more details see [11].

Integration:

It uses the streaming and download features. It also uses the EasyInterface output
language to view the output graphically, e.g., resource consumption graphs.

ABS-Haskell Compiler Simulator

Description:

A tool that compiles ABS programs to corresponding Haskell code, and then
executes them and stream the output back to the client.

Further reading:

84 CHAPTER 7. EVALUATION

For more details see [12].

Integration:

It uses the streaming feature.

Syntax/Type Checker

Description:

A tool that checks the syntax and types of ABS programs.

Further reading:

For more details see [10].

Integration:

It uses the EasyInterface output language to mark lines that have syntax or type
errors.

Test-Case Generation (aPET)

Description:

A tool for static systematic testing for ABS which includes state-of-the-art partial
order reduction and deadlock-guided testing techniques.

Further reading:

For more details see [17, 22, 13, 18, 15, 36].

Integration:

It uses the EasyInterface output language to view the output graphically, e.g.,
drawing execution traces using SVG and adding test units to the file-manager.

Systematic Testing (SYCO)

Description:

A tool for dynamic systematic testing for ABS which includes state-of-the-art
partial order reduction and deadlock-guided testing techniques.

Further reading:

For more details see [16, 22, 13, 18, 15, 36].

Integration:

It uses the EasyInterface output language to view the output graphically, draw
execution traces using SVG, etc.

Chapter 8

Conclusions, Related and Future Work

In this work, we have addressed the problem of easily constructing GUIs for research
prototype tools, and integrating them in common environments. This is crucial since
(i) it reduces the effort dedicated to building GUIs, which is usually tedious and
complicated, and thus the main effort can be dedicated to improving the functionality
of the tools; and (ii) it makes the tools continuously available to corresponding research
communities since modifying the GUI when a tool changes, if needed, is immediate,
and thus the dissemination of the corresponding research is improved as well — note
that research prototype tools are expected to change continuously, for example, during
a research project.

Clearly, attempting to significantly reduce the effort required for building GUIs in
general is not feasible, since tools produce different outputs and receive different input.
However, as we have observed in this work, this become feasible when focusing on
a set of related tools that have common input and output aspects. In this work, we
have focused on the tools developed in the Envisage [5] project which include: static
analyzers, test-case generators, compilers, simulators, etc. We have developed a toolkit
called EasyInterface that extremely simplifies the way GUIs are constructed for such
tools, and the way they are integrated in common environments as well.

EasyInterface is a toolkit that consists of two main components: (1) a server where
tools can be installed by providing simple configuration files, and then can be accessed
as services using some protocol that we have defined; and (2) a client, in the form of
a web-based development environment, that makes it easy to communicate with the
server side to execute a tool. An important feature of the design of EasyInterface is
that once a tool is installed on an EasyInterface server, it will automatically appear
in all EasyInterface clients that connect to this server, without any additional effort.
Thus, this design allows installing new tools in a common environment with minimal
effort, i.e., in few minutes.

Another important outcome of this work is the EasyInterface output language.
It is text-based language that tools can use to present their output graphically, if
the corresponding client support it. Importantly, this language does not require any
knowledge on GUI or Web programming. The advantage of using this output language
is that it is interpreted by all EasyInterface clients equally. Thus, the tool is modified
once to use this language and the effect will take place in all clients (including ones
that will be developed in the future).

The EasyInterface toolkit has been successfully used in the context of the Envisage
project, where the tools developed by the different partners has been integrated in a

85

86 CHAPTER 8. CONCLUSIONS, RELATED AND FUTURE WORK

common web-based environment. Some of the tools use the EasyInterface language
as well, and others, whose output is very simple, do not.

8.1 Future Work

We have identified several future work directions, that would make EasyInterface a
more powerful toolkit for building GUIs for research prototypes:

• Generating output in the EasyInterface output language is currently done by
directly printing the corresponding XML on the standard output. It would be
useful to provide libraries, for different programming languages, that abstract
this level away. Namely, tools will not print directly but rather would use meth-
ods/objects of such libraries to generate the output, which in turn will generate
the corresponding XML. Note that we have such a library for Prolog, which we
use in tools marked by SACO in Section 7.1.

• Developing more EasyInterface clients, as the ones describes in Section 5.2,
would make the toolkit adequate for different scenarios. For example, an Eclipse
plugin would allow users to continue using their preferred development envi-
ronment instead of learning to use a new one.

• Developing a simpler web-client that allows to inline an EasyInterface environ-
ment inside HTML documents. This is useful for writing interactive tutorials
for example. Currently we have a simple support for this as described in Sec-
tion 5.1.8.

• Improving the handling of sessions (in the EasyInterface server) to provide tools
with and easy way to store and reload sessions. To take full advantage of this
feature, the EasyInterface output language should be also extended to allow
new kind of interaction that allows specialized callbacks to the corresponding
tools.

We plan to continue the work on EasyInterface in the near future following the above
directions, independently from the Envisage project.

8.2 Related Work

There are many powerful web-based IDEs that allow developers to develop their code
online, and, in addition, some can be customized to connect external tools. In this
section we overview some closely related ones.

Orion [25] is a web-based IDE developed by the Eclipse Foundation.1 It provides
some powerful features like connecting to git repositories, syntax-highlighting, etc.
Once can use it to develop and compile code in several programming languages like C,
C++ or Java. It also includes some plug-ins that can be activated like web-tools support
for editing HTML and CSS, JSON editor for editing JSON records, etc.

1http://www.eclipse.org

8.2. RELATED WORK 87

Coding Ground [4] is a web-based IDE developed by TutorialsPoint.2 It was devel-
oped with the main objective of adding exercises to their tutorials, but since then it has
evolved into an IDE where developers can edit, compile, execute, and share their code.
It supports more than 90 programming languages, but only one at a time. It does not
allow integrating external tools.

Cloud9 [1] is a web-based IDE that supports hundreds of programming languages,
and allows creating collaborative workspaces with multiple real-time edition. It has
some advanced features like code completion, name refactoring, etc. It also provides
support for using repositories like git, mercurial and FTP servers.

Codeboard [2] is web-based IDE to teach programming in the classroom. One
can easily create and share exercises with students, analyze and inspect students’
submissions, etc. One can customize it to connect external tools, however, their output
can be shown only on the console area.

The IDEs described above are very powerful, but focused on developing code. They
do not address most of the objectives that we stated in Section 1.1, in particular (i) they
do not provide an easy way to integrate external tools; and (ii) they do not provide a
simple way to produce output or code annotations as in our output language that is
described in Chapter 6.

An exception is the tool rise4fun [9], which is developed by Microsoft to allow
making, among others, program analysis tools available online. However, it is far
simpler than EasyInterface: (i) tools are not integrated in a common environment,
but rather each has its own page; (ii) the output can be shown only in a console area;
and (iii) tools cannot easily receive parameters.

2http://www.tutorialspoint.com

Bibliography

[1] Cloud9. https://c9.io.

[2] Codeboard. https://www.codeboard.io.

[3] CodeMirror. http://codemirror.net.

[4] CodingGround. http://www.tutorialspoint.com/codingground.htm.

[5] ENVISAGE: Engineering Virtualized Services. http://www.envisage-project.eu.

[6] Introducing json, official web-site. http://www.json.org/.

[7] JQuery. http://jquery.com.

[8] JSTree. http://www.jstree.com.

[9] Rise4Fun. http://www.rise4fun.com.

[10] Syntax/Type Checker.

[11] Tutorial on ABS ErLang Simulator. http://abs-models.org/chapter/1-simulation/.

[12] Tutorial on ABS-Haskell Compiler Simulator. http://abs-models.org/chapter/9-
code-generation-haskell/.

[13] E. Albert, M. Gómez-Zamalloa, and M. Isabel. Combining Static Analysis and
Testing for Deadlock Detection. In 12th International Conference on integrated Formal
Methods, iFM 2016, 2016. To appear.

[14] Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel
Gómez-Zamalloa, Enrique Martin-Martin, German Puebla, and Guillermo
Román-Díez. SACO: Static Analyzer for Concurrent Objects, pages 562–567. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[15] Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Test Case Generation
of Actor Systems. In 13th International Symposium on Automated Technology for
Verification and Analysis, ATVA 2015. Proceedings, volume 9364, pages 259–275,
2015.

[16] Elvira Albert, Puri Arenas, Miguel Gómez-Zamalloa, and Miguel Isabel. Tuto-
rial on Systematic Testing (SYCO). http://abs-models.org/chapter/4-systematic-
testing-syco/.

88

BIBLIOGRAPHY 89

[17] Elvira Albert, Puri Arenas, Miguel Gómez-Zamalloa, and Miguel Isabel. Tuto-
rial on Test-Case Generation (aPET). http://abs-models.org/chapter/5-test-case-
generation-apet/.

[18] Elvira Albert, Puri Arenas, Miguel Gómez-Zamalloa, and Jose Miguel Rojas. Test
Case Generation by Symbolic Execution: Basic Concepts, a CLP-Based Instance,
and Actor-Based Concurrency. In Formal Methods for Executable Software Models,
volume 8483 of Lecture Notes in Computer Science, pages 263–309. Springer, 2014.

[19] Elvira Albert, Antonio Flores-Montoya, Samir Genaim, and Enrique Martin-
Martin. May-happen-in-parallel analysis for actor-based concurrency. ACM Trans.
Comput. Logic, 17(2):11:1–11:39, December 2015.

[20] Elvira Albert, Samir Genaim, and Pablo Gordillo. May-Happen-in-Parallel Anal-
ysis for Asynchronous Programs with Inter-Procedural Synchronization. In Static
Analysis - 22nd International Symposium, SAS 2015. Proceedings, volume 9291 of
Lecture Notes in Computer Science, pages 72–89. Springer, 2015.

[21] Elvira Albert, Samir Genaim, and Enrique Martin-Martin. May-Happen-in-
Parallel Analysis for Priority-based Scheduling. In Ken McMillan, Aart Mid-
deldorp, and Andrei Voronkov, editors, 19th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR-19), volume 8312 of Lec-
ture Notes in Computer Science, pages 18–34. Springer, December 2013.

[22] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. SYCO: A systematic
testing tool for concurrent objects. In Ayal Zaks and Manuel V. Hermenegildo,
editors, 25th International Conference on Compiler Construction (CC’16), pages 269–
270. ACM, 2016.

[23] Jesús Correas, Antonio Flores, Samir Genaim, Enrique Martín, and Guillermo
Román. Tutorial on Deadlock Analysis (SACO). http://abs-models.org/chapter/2-
deadlock-analysis-saco/.

[24] Jesús Correas, Antonio Flores, Samir Genaim, Enrique Martín, and Guillermo
Román. Tutorial on Resource Analysis (SACO). http://abs-models.org/chapter/6-
resource-analysis-saco/.

[25] Eclipse Fundation. Orion. http://orionhub.org.

[26] Ola Andersson et al. Scalable vector graphics (svg) 1.2. 2004.
https://www.w3.org/Graphics/SVG/1.2/WD-SVG12-20041027.pdf.

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. Obsoleted by RFCs 7230, 7231, 7232, 7233, 7234, 7235, updated by RFCs
2817, 5785, 6266, 6585.

[28] Antonio Flores-Montoya, Elvira Albert, and Samir Genaim. May-Happen-in-
Parallel based Deadlock Analysis for Concurrent Objects. In Dirk Beyer and
Michele Boreale, editors, Formal Techniques for Distributed Systems (FMOODS/-
FORTE 2013), volume 7892 of Lecture Notes in Computer Science, pages 273–288.
Springer, June 2013.

90 BIBLIOGRAPHY

[29] Abel García and Elena Gianchino. Tutorial on Deadlock Analysis (DSA).
http://abs-models.org/chapter/3-deadlock-analysis-dsa/.

[30] Abel García and Elena Gianchino. Tutorial on Resource Analysis (SRA). http://abs-
models.org/chapter/7-resource-analysis-sra/.

[31] Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for dead-
lock detection in core_ABS. Software & Systems Modeling, pages 1–36, 2015.

[32] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Stef-
fen. ABS: A Core Language for Abstract Behavioral Specification. In Bernhard K.
Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Formal Methods
for Components and Objects - 9th International Symposium, FMCO 2010, Graz, Aus-
tria, November 29 - December 1, 2010. Revised Papers, volume 6957, pages 142–164.
Springer, 2012.

[33] Jacopo Mauro. Tutorial on ABS Smart Deployer. http://abs-models.org/chapter/8-
smart-deployer/.

[34] Ivan Ristić. Apache Security. Feisty Duck, March 2005.

[35] Ralph Steyer. Learning JQuery: A Hands-on Guide to Building Rich Interactive Web
Front Ends. Addison-Wesley, 2013.

[36] Peter Y. H. Wong, Richard Bubel, Frank S. de Boer, Miguel Gómez-Zamalloa, Stijn
de Gouw, Reiner Hähnle, Karl Meinke, and Muddassar Azam Sindhu. Testing
Abstract Behavioral Specifications. 17(1):107–119, 2015.

Appendix A

Installation Guide

In this appendix we explain how to install the server and how to use the different
clients.

A.1 Downloading EasyInterface

We assume that you have already downloaded1 EasyInterface into a directory called
easyinterface, and that all files inside this directory have read and execute permissions
to others which can be done, for example, in Unix based systems by executing:

> chmod -R 755 easyinterface

The purpose of this is to make all files visible to the Apache\ Web\ Server on which the
EasyInterface server runs. This is (most likley) not required if you are using Microsoft
Windows.

A.2 Installing EasyInterface Server

The installation consists in installing an Apache\ Web\ Server (with PHP > 5.0 enabled)
and then configuring it to recognize the easyinterface directory. If you already have
Apache installed and the easyinterface directory is visible then no further configu-
ration is required, simply visit the corresponding address (e.g., if it is placed in the
public_html directory, visit http://localhost/~user/easyinterface). Otherwise
follow the steps below depending on which operating system you are using, Linux,
OS X or Windows.

A.2.1 Linux

Installing Apache depends on the Linux distribution you are using, for example, if you
are using Ubuntu you can install it by executing the following in a shell:

> sudo apt-get update
> sudo apt-get install apache2
> sudo apt-get install php5 libapache2-mod-php5 php5-mcrypt

1http://github.com/abstools/easyinterface

91

92 APPENDIX A. INSTALLATION GUIDE

> sudo service apache2 start

Once installed test that it works correctly by visiting http://localhost and test that
PHP works correctly by visiting http://localhost/info.php (this address might be
different from one distribution to another). Next, to make the easyinterface directory
visible, edit /etc/apache2/mods-enabled/alias.conf and add the following lines:

Alias /ei "/path-to/easyinterface"

<Directory "/path-to/easyinterface">
Options FollowSymlinks MultiViews Indexes IncludesNoExec
AllowOverride All
Require all granted

</Directory>

To activate this change you need to restart Apache by executing the following in a
shell:

> sudo service apache2 restart

Now visit http://localhost/ei to check that EasyInterface works correctly. If no
error message is shown, you can proceed to the next section and start using the Web
client.

A.2.2 OS X

OS X typically comes with Apache installed, and all you need is to configure it to
recognize the easyinterface directory. To do so, edit /etc/apache2/httpd.conf add the
following lines:

Alias /ei "/path-to/easyinterface"

<Directory "/path-to/easyinterface">
Options FollowSymlinks MultiViews Indexes IncludesNoExec
AllowOverride All
Require all granted

</Directory>

To activate this change you need to restart Apache by executing the following in a
shell:

> sudo apachectl restart

You can also restart Apache using System Preferences > Sharing > Web Sharing. Now
visit http://localhost/ei to check that EasyInterfaceworks correctly.

A.3. INSTALLING AND USING EASYINTERFACE CLIENTS 93

A.2.3 Microsoft Windows

Apache Web Server for Microsoft Windows is available from a number of third party
vendors.2 We have tested EasyInterface using WampServer.3

Install the WampServer, for example in c:\wamp, and then edit the configuration file
c:\wamp\bin\apache\apache.X.Y.Z\httpd.conf and add the following lines to make the
easyinterface directory visible:

Alias /ei "\path-to\easyinterface"

<Directory "\path-to\easyinterface">
Options FollowSymlinks MultiViews Indexes IncludesNoExec
AllowOverride All
Require all granted

</Directory>

Next restart the WampServer by executing

c:\wamp\wampserver.exe -restart

Now visit http://localhost/ei to check that EasyInterface works correctly. If
you have permission problems when accessing this address, try to remove the file
easyinterface/.htaccess.

By default the server is configured to execute the demo applications in a Unix based
operating system, for using them in Windows you should copy the configuration file
server/config/eiserver.default.win.cfg to server/config/eiserver.cfg.

The demo applications are simple bash scripts, and thus you need to install win-
bash if you want to use them. To do so, simply download the corresponding zip file
and extract it in c:\bash (it is important to place it in c:\bash since the configuration
files use c:\bash\bash.exe to execute the bash scripts).

A.3 Installing and Using EasyInterface Clients

The Web client can be used by visiting http://localhost/ei/clients/web.

2http://httpd.apache.org/docs/current/platform/windows.html#down
3http://www.wampserver.com/

	1 Introduction
	2 ABS Web Site
	2.1 Arriving at the web site
	2.2 Vision
	2.3 The Collaboratory
	2.4 Documentation
	2.5 Projects & Contributors
	2.6 Mailing Lists

	3 Overview of the EasyInterface Toolkit
	3.1 Objectives
	3.2 The Overall Architecture of EasyInterface
	3.3 The Server Side
	3.3.1 Installing a New Tool
	3.3.2 Communicating with the Server
	3.3.3 Example Sets
	3.3.4 Security Issues

	3.4 The Client Side
	3.5 The EasyInterface Output Language
	3.6 Web-site of the Envisage Virtual Collaboratory
	3.7 Source Code

	4 Conclusions
	Glossary
	A EasyInterface User Manual

