
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D4.5
Overall Assessment

Date of document: T36

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: FRH

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Overall Assessment

This document summarizes deliverable D4.5 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable contains the overall assessment of the methodology, modeling artifacts, and tool-support-
ed analysis techniques developed in Envisage. The assessment is in terms of the list of expected project
outcomes (Description of Work, Part B, Figure 10 and Figure 26), the initial user requirements (D4.1 [3]),
and the association of the case studies to the project objectives (described in D4.x.1 [1,2,6]). This deliverable
forms the basis for verification of Milestone M5 (Project assessment).

List of Authors
Einar Broch Johnsen (UIO)
Stijn de Gouw (FRH)
David Costa (FRH)
Keven Kearney (ENG)
Vegard Havdal (ATB)
Crystal Din (UIO)
Samir Genaim (UCM)
Rudolf Schlatte (UIO)
Jacopo Mauro (UIO)
Richard Bubel (TUD)
Antonio Flores-Montoya (TUD)
Elena Giachino (BOL)
Gianluigi Zavattaro (BOL)
Guillermo Roman-Diez (UCM)
Miguel Gomez-Zamalloa (UCM)
Vlad Serbanescu (CWI)
Nikolaos Bezirgiannis (CWI)

2

http://www.envisage-project.eu

Contents

1 Introduction 5

2 Expectations 6
2.1 Initial Industrial Requirements . 6

2.1.1 Requirements from ATB . 6
2.1.2 Requirements from ENG . 13
2.1.3 Requirements from FRH . 16

2.2 Envisage KPIs . 22

3 Coverage of Project Objectives by Industrial Cases 23
3.1 Objective O1: Foundations of Computation with Virtualized Resources 23
3.2 Objective O2: Behavioral Specification Language for Virtualized Resources 23
3.3 Objective O3: Design-by-Contract Methodology for Service Contracts 24
3.4 Objective O4: Model Conformance Demonstrator . 24
3.5 Objective O5: Model Analysis Demonstrator . 25

4 Feedback to Technical Tasks in Year 2 26
4.1 Formal Feedback . 26
4.2 Other Feedback (Year 3) . 34

5 Language Features and Analysis Tools 36
5.1 Language Features . 36
5.2 Tools . 38

5.2.1 Erlang Simulator . 38
5.2.2 Deadlock Analysis - SDA . 39
5.2.3 Deadlock Analysis - SACO . 40
5.2.4 Resource Analysis - SRA . 40
5.2.5 Resource Analysis - SACO . 41
5.2.6 Resource Analysis - CoFloCo . 42
5.2.7 Monitoring - SAGA . 42
5.2.8 Systematic Testing - SYCO . 43
5.2.9 Verification - KeY ABS . 43
5.2.10 Deployment - Smart Deployer . 44
5.2.11 Haskell Backend . 45
5.2.12 Java Backend . 45

6 Conclusion 47
6.1 Overall Coverage of Overall Project Objectives . 47
6.2 Modeling Capabilities . 47
6.3 Analysis Capabilities . 48
6.4 Integration in Working Practices . 48

3

Envisage Deliverable D4.5 Overall Assessment

6.5 Follow-up on Industrial Case Studies . 49

Bibliography 49

Glossary 52

4

Chapter 1

Introduction

This is Envisage deliverable D4.5. The task description in the DoW is as follows:

In this task we evaluate the methodology, modeling artifacts, and tools developed in WP1–3 to
support the development of services in virtualized environments with respect to their application
to the case studies. These tools may include, among others, model simulators, static analyzers,
debuggers, log/trace analyzers and visualizers, and so on. The (semi-)automation of the tool-
supported design process for services in virtualized environments requires all the theoretical
methods, application analyses, modeling and implementation to have reached certain level of
maturity. Therefore, this task contributes to the final evaluation of the project results against
the initial academic and industrial expectations, and against the additional understanding of the
area developed during the course of the project. This evaluation will involve all industry partners
and forms the basis for the overall assessment of the potential use and practical impact of formal
specification and verification technology in the area of highly adaptable software. It will be the
basis for verification of Milestone M5.

Outline Chapter 2 assesses how and the extent to which the initial industrial and academic expectations
are satisfied. Chapter 3 discusses how the three industrial cases have realized coverage of the overall high-
level project objectives. Chapter 4 evaluates how the detailed feedback after Year 2 from the industrial
partners given in D4.x.2 [9–11] to specific ongoing technical tasks is addressed. Chapter 5 details the
Envisage technology (specifically, the ABS language and the analysis tools) that is used in the case studies.
The deliverable concludes with Chapter 6.

5

Chapter 2

Expectations

This chapter assesses the extent to which the initial industrial (Section 2.1) and academic (Section 2.2)
expectations have been satisfied by the Envisage framework.

2.1 Initial Industrial Requirements

This section assesses how the initial industrial requirements identified in D4.1 [3] are covered by the Envisage
framework. For each requirement in the “Evaluation” segment, we discuss whether the requirement remains
relevant and update it if needed based on the additional understanding gained throughout the course of the
project, and assess if and how the requirement is satisfied. Table 2.1 shows a legend for the scoring system.

Score Meaning
MF Modeled and fully supported by Envisage framework
PF Partially modeled, but fully supported by Envisage framework
NF Not modeled, but could, in principle, be fully supported
ML Modeled and supported by Envisage framework with minor limitations
MP Modeled and partially supported by Envisage framework

Table 2.1: Meaning of Requirement Evaluation Scores

2.1.1 Requirements from ATB

Requirements ATB-R001, ATB-R016, ATB-R017, ATB-R018, ATB-R020, ATB-R021, ATB-R025, ATB-
R026 and ATB-R027 are deprecated as effort has been refocused on other parts of the modeling, as well as
supporting Envisage tool authoring work. All other requirements are discussed below.

6

Envisage Deliverable D4.5 Overall Assessment

Identifier ATB-R002
Name Specification and Simulation of Crawl Activation Time for New Sites
Description The Envisage framework must be able to model and simulate the effect of the

time between content site addition and active crawling (Tincluded).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation In the Memkite model (in Crawling.abs), content publishing is naturally mod-

eled by the addition of an object to a crawling queue, the most common way
for crawlers to work. ABS supports the modeling of such a queue. The model
expresses the time between addition to this queue and crawling as an asyn-
chronous call to the target web-server.

Score MF

Table 2.2: ATB-002 Specification and Simulation of Crawl Activation Time for New Sites

Identifier ATB-R003
Name Specification and Simulation of Content Publish to Crawler Detection Time
Description The Envisage framework must be able to model and simulate the effect of the

time between content publishing and crawler discovery (Tdiscover).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation The action of getting and storing a web document is naturally expressed in the

ABS model, including possible processing, such as new link discovery, of the
document.

Score PF

Table 2.3: ATB-003 Specification and Simulation of Content Discover to Crawl Time

Identifier ATB-R004
Name Specification and Simulation of Content Update to Crawl Time
Description The Envisage framework must be able to model and simulate the effect of the

time between content updates (of old objects) and crawling (Tupdate).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation In the ATB model, the crawling queue is modeled as a ring queue, so updates

and content site addition share the same code path in the model. See ATB-
R002.

Score PF

Table 2.4: ATB-004 Specification and Simulation of Content Update to Crawl Time

7

Envisage Deliverable D4.5 Overall Assessment

Identifier ATB-R005
Name Specification and Simulation of Discovery to Crawl Time
Description The Envisage framework must be able to model and simulate the effect of the

time between new object discovery and crawling (Tcrawl).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation It is easy to express in ABS that time elapses between the time when a new

object enters the crawling queue and the crawling itself.
Score MF

Table 2.5: ATB-005 Specification and Simulation of Discovery to Crawl Time

Identifier ATB-R006
Name Specification and Simulation of Re-crawl Scheduling
Description The Envisage framework must be able to model and simulate the effect of how

recrawls are scheduled (Treschedule).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation Re-adding an object to the crawling queue was covered in the model in a natural

way. Different strategies for priorities of adding new content as opposed to re-
crawled content have been left for future work, but we are not aware of any
limitations of ABS for modeling such strategies.

Score PF

Table 2.6: ATB-006 Specification and Simulation of Re-crawl Scheduling

Identifier ATB-R007
Name Specification and Simulation of Priority Classes for Content Sites
Description The Envisage framework must be able to model and simulate different aggregate

crawl priority strategy distributions (Psite).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation Crawling priorities have not been directly incorporated in the model, but it

is relatively straightforward future work and ABS should allow modeling of
a priority queue without any problems. That queue would then replace the
current crawling queue without affecting any other parts of the model..

Score NF

Table 2.7: ATB-007 Specification and Simulation of Priority Classes for Content Sites

8

Envisage Deliverable D4.5 Overall Assessment

Identifier ATB-R008
Name Specification and Simulation of Different types of Content Sites
Description The Envisage framework must be able to model and simulate different content

site/type distributions (Sclass).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Extend model for different types of content and run the ABS simulation tool.
Evaluation The are no restrictions in ABS with respect to modeling data and operations

on data. Although the current model does not directly classify content site
types, the WebServer class could be easily augmented to cover this aspect.

Score NF

Table 2.8: ATB-008 Specification and Simulation of Different types of Content Sites

Identifier ATB-R009
Name Specification and Simulation of Different Classes of Content Object Sizes
Description The Envisage framework must be able to model and simulate different content

object size distributions (Csize).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of content sizes using the ABS simulation tool.
Evaluation The crawling model keeps track of content objects in internal data structure.

This is easy to model in ABS.
Score PF

Table 2.9: ATB-009 Specification and Simulation of Different Classes of Content Object Sizes

Identifier ATB-R010
Name Specification and Simulation of the Effect of Bandwidth Usage
Description The Envisage framework must be able to model and simulate the effect of

bandwidth usage, including peak bandwidth (Bpeakbandwidth) and aggregate
bandwidth (Baggregatedailybandwidth).

Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Compare against measured value from crawler in cloud system production.
Evaluation To evaluate this requirement, we focused on the handset serving subsystem

rather than the crawling system, since this was the most interesting. Band-
width resource analysis was carried out and compared against measured serving
bandwidth.

Score MF

Table 2.10: ATB-010 Specification and Simulation of the Effect of Bandwidth Usage

9

Envisage Deliverable D4.5 Overall Assessment

Identifier ATB-R011
Name Specification and Simulation of the effect of CPU Usage
Description The Envisage framework must be able to model and simulate the effect

of CPU usage, including peak usage (Cpeakcpuresources) and average usage
(Caveragedailycpuresources).

Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of CPU usage using the ABS simulation tool.
Evaluation The ATB model supports CPU speed on the handset, the load balancer, and

the back-end deployment components. This is directly supported using cost
annotations in ABS. Cost annotations based on real CPU capacity have not
been included due to time constraints.

Score PF

Table 2.11: ATB-011 Specification and Simulation of the effect of CPU Usage

Identifier ATB-R012
Name Specification and Simulation of Mapreduce Mapper function
Description The Envisage framework must be able to support writing and simulating the

performance of Mapreduce Mapper functions and generate tests for these
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Compare against the resource consumption of corresponding real

Hadoop/MapReduce mapper jobs, e.g. running at scale on AWS Elastic
MapReduce or Windows Azure HDInsight Service.

Evaluation The Mapreduce model supports CPU performance modeling with parameter-
ized cost. SYCO systematic testing has been carried out for this model. A
detailed model of Hadoop was additionally developed by UIO and used to
compare model-based predictions with Hadoop YARN for standard Hadoop
YARN benchmarks [24].

Score PF

Table 2.12: ATB-R012 Specification and Simulation of MapReduce Mapper function

Identifier ATB-R013
Name Specification and Simulation of MapReducer Reducer function
Description The Envisage framework must be able to support writing and simulating the

performance of MapReduce Reducer functions and generate tests for these
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Compare against the resource consumption of corresponding real

Hadoop/MapReduce Reducer functions, e.g. running at scale on AWS
Elastic MapReduce or Windows Azure HDInsight Service.

Evaluation Analogous evaluation to ATB-R012.
Score PF

Table 2.13: ATB-R013 Specification and Simulation of MapReduce Reducer function

10

Envisage Deliverable D4.5 Overall Assessment

Identifier ATB-R014
Name Specification and Simulation of Processing Time
Description The Envisage framework must be able to model and simulate the effect of the

time between content object crawl and processing (Tprocessed).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation The coupling between crawling and processing is currently not covered in the

model, the two subsystems are separated. Connecting them and simulating
the time is future work for ATB. The evaluation of this requirement was given
low priority by ATB because it is similar to previously evaluated requirements;
there are no limitations of ABS with respect to addressing this requirement.

Score NF

Table 2.14: ATB-014 Specification and Simulation of Processing Time

Identifier ATB-R015
Name Specification and Simulation of Indexing Time
Description The Envisage framework must be able to model and simulate the effect of the

time between content object crawl and indexing (Tindexed).
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation The coupling between crawling and indexing is currently not covered in the

model, the two subsystems are separated. Connecting them and simulating the
time is future work. The evaluation of this requirement was given low priority
by ATB because it is similar to previously evaluated requirements; there are
no limitations of ABS with respect to addressing this requirement.

Score NF

Table 2.15: ATB-015 Specification and Simulation of Indexing Time

Identifier ATB-R019
Name Specification and Simulation of Dynamic Cloud Resource Pricing
Description The Envisage framework must be able to model and simulate the effect of

dynamic cloud resource pricing on general resource usage.
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Evaluate using the ABS simulation tool.
Evaluation The Mapreduce model features parameterized cost annotations. The relation

between used resource and spending can be defined using the functional layer
of ABS, it is straightforward to accumulate the incurred cost for the previous
pricing intervals whenever the pricing model changes.

Score PF

Table 2.16: ATB-019 Specification and Simulation of Dynamic Cloud Resource Pricing

11

Envisage Deliverable D4.5 Overall Assessment

Identifier ATB-R022
Name Specification and Simulation of Indexing to Distribution Time
Description The Envisage framework must be able to model and simulate the effect of the

time between content object processing/indexing and push to mobile apps.
Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation The processing subsystem is not currently connected to the serving system in

the model. The latter uses a static data structure in lieu of results from pro-
cessing. There are no limitations that we are aware of for modeling this in ABS,
both the modeling and evaluation would be similar to previous requirements.

Score PF

Table 2.17: ATB-022 Specification and Simulation of Indexing to Distribution Time

Identifier ATB-R023
Name Specification and Simulation of Click to Index Bundle Download Time
Description The Envisage framework must be able to model and simulate the effect of the

time between an app link click and object download to the mobile app as part
of an index bundle.

Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Observe effect of time using the ABS simulation tool.
Evaluation The handset model keeps track of link click events and object download times.

This is captured naturally in the model.
Score MF

Table 2.18: ATB-023 Specification and Simulation of Click to Index Bundle Download Time

Identifier ATB-R024
Name Specification and Simulation of Distribution Outbound Bandwidth
Description The Envisage framework must be able to support modeling and simulation of

bandwidth, in particular the (out)bound bandwidth from the cloud service to
a large number of mobile app customers that have data plans and potentially
periodic download behavior.

Objectives O1.1, O1.2, O1.3, O1.4, O3.2
Evaluation criteria Compare against measured value from production.
Evaluation One of the main efforts in year 3. Measured bandwidth numbers from real

cloud back-end has been aligned with model. Some discrepancies and Erlang
back-end stability issues have come into play.

Score ML

Table 2.19: ATB-024 Specification and Simulation of Distribution Outbound Bandwidth

12

Envisage Deliverable D4.5 Overall Assessment

2.1.2 Requirements from ENG

The requirements with the following Identifiers all pertain to the original, rejected ENG case study and
have thus been deprecated: ENG-R001, ENG-R002, ENG-R003, ENG-R004, ENG-R005, ENG-R006, ENG-
R007, ENG-R008, ENG-R009, ENG-R010, ENG-R011, ENG-R012, ENG-R013, ENG-R014, ENG-R015,
ENG-R016 and ENG-R017.

The following requirements have been added and pertain to the revised ENG case study—which is de-
scribed in the resubmitted deliverable D4.4.1 [6], and in more detail in D4.4.2 [10]. In brief: the case study
concerns an on-line code build and test service, ETICS, for software developers, that is able to dynam-
ically exploit on-demand, distributed computing resources (virtual machines, VMs) to ‘optimally’ satisfy
service requests—taking into account existing workloads, as well as cost and penalty terms specified in both
consumer- and provider-facing SLAs. The elastic pool of VMs is managed by an automated Resource Pool
Manager (RPM), which employs a distributed genetic algorithm (DGA) to determine the best allocation of
request processing tasks to VMs. The goal of the case study is to model the RPM & DGA using ABS, and
then use the Envisage tools to test this model for possible deadlocks, to analyze its scalability w.r.t. resource
consumption, and finally to automatically generate a Java version of the model for live deployment.

Identifier ENG-R018
Name ETICS - ABS Model Coverage
Description It must be possible to model a significant proportion of RPM and DGA com-

putational operations in detail in ABS.
Objectives O1
Evaluation criteria The degree to which the relevant computational operations can be modeled.
Evaluation It was possible to fully model all relevant operations at the required level of

detail in ABS.
Score MF

Table 2.20: ENG-R018 ETICS - ABS Model Coverage

Identifier ENG-R019
Name ETICS - ABS Modeling Effort
Description The effort required for ABS modeling (see ENG-R018) must be comparable to

the effort required for the standard programming languages used by ENG (e.g.
Java and Swift).

Objectives O5.3
Evaluation criteria Open list of comments based on user experience.
Evaluation

• ABS is somewhat verbose compared to modern programming languages.

• As an OO language, ABS only supports inheritance at the interface (as
opposed to class) level, hence it is not possible to inherit class method
implementations - leading either to code repetition/redundancy, or the
added complication of using deltas.

• The current ABS implementation offers only minimal debugging facilities
- namely syntax & type checking.

Score MP

Table 2.21: ENG-R019 ETICS - ABS Modeling Effort

13

Envisage Deliverable D4.5 Overall Assessment

Identifier ENG-R020
Name ETICS - Deadlock Analysis
Description The Envisage framework must provide tools capable of demonstrating (to a

high degree of confidence) that the ABS model of the RPM is either free from
deadlocks, or if it is not, exactly where and under what conditions deadlocks
may occur.

Objectives O3.3
Evaluation criteria Degree to which the requirement is satisfied.
Evaluation

• Deadlock analysis tools, with provable efficacy, were provided that re-
ported the model to be deadlock free.

• In addition, it turns out that ABS models can be constructed in such a
way that they are a priori free of deadlocks.

Score MF

Table 2.22: ENG-R020 ETICS - Deadlock Analysis

Identifier ENG-R021
Name ETICS - Resource Analysis
Description The Envisage framework must provide resource analysis tools capable of deter-

mining (with good confidence) the computational cost (or bounds on the cost)
of invoking specific methods in the ABS model for ETICS (under differing
input assumptions).

Objectives O3.3
Evaluation criteria Degree to which the requirement is satisfied.
Evaluation Appropriate resource tools were provided, and succeeded in giving useful cost

expressions for all the required ABS methods.
Score MF

Table 2.23: ENG-R021 ETICS - Resource Analysis

14

Envisage Deliverable D4.5 Overall Assessment

Identifier ENG-R022
Name ETICS - Java Code Generation
Description The Envisage framework must provide a tool capable of automatically generat-

ing complete, working, reliable & efficient Java code from the ABS model for
ETICS.

Objectives O3.1
Evaluation criteria Degree to which the requirement is satisfied.
Evaluation At the time of writing, this tool is still under development and is not incorpo-

rated into the standard ABS tool chain. In its current version the tool does
not support the complete ABS syntax, and we have not, as yet, been able to
generate Java code for the full ETICS model. We have successfully, however,
used the tool to generate Java from small test case ABS models.

Score MP

Table 2.24: ENG-R022 ETICS - Java Code Generation

Identifier ENG-R023
Name ETICS - Industrial Context
Description It must be possible to deploy and use the Envisage framework within an in-

dustrial context. For Engineering this includes the use of Windows PCs, tight
control over software installation (only approved applications), and high net-
work security.

Objectives O5.3
Evaluation criteria Degree to which the requirement is satisfied.
Evaluation

• The basic Envisage framework (excluding the Java code generation tool)
is bundled in a single ‘jar’ file, and all the tools can be invoked from the
command line (with Erlang/Haskell engines preinstalled).

• The Collaboratory (a graphical web interface for the tools) is available
on-line.

• The Collaboratory may also be deployed locally (using Vagrant, Docker,
and VirtualBox visualization software) - but doing so on Windows PCs
from behind the company proxy is highly problematic (and to date we
have not succeeded).

Score ML

Table 2.25: ENG-R023 ETICS - Industrial Context

15

Envisage Deliverable D4.5 Overall Assessment

2.1.3 Requirements from FRH

The requirements FRH-R008, FRH-R009, FRH-R016 and FRH-R017 became obsolete during the evolution
of the case study. They relate to the impact of code changes as specified using code change specifications
(Delta modeling), which was the focus of the previous FRH case study in the HATS project. Delta’s have not
been used for this purpose in the FRH Envisage case study as the impact of code changes in the production
system can be communicated in real time with the new HTTP API (delivered as part of D2.3.2 [16]).

Identifier FRH-R001
Name Resource usage
Description The Envisage framework must not generate monitors that would consume more

resources than those using the current monitoring system
Objectives O2.3
Evaluation criteria Compare against the resource consumption of the current monitoring system
Evaluation We successfully investigated resource consumption of the new monitors with

SACO and CoFloCo: the monitors are efficient (linear in the size of the event
trace) in both CPU time and memory consumption. Memory consumption
is linear since the history of the metric values are stored. This allows scaling
decisions based on the full history. Memory usage can be improved to constant
usage (!) by restricting to store the metric values for a more limited, fixed time.
The history of metric values for visualization purposes is stored in the same
platform (Grafana based) as the “legacy” monitoring system, and (thus) has
the same resource consumption.

Score MF

Table 2.26: FRH-R001 Resource usage

Identifier FRH-R002
Name Executable monitor
Description The Envisage framework must generate executable monitors
Objectives O2.3
Evaluation criteria The generated monitor must be executable
Evaluation Executable monitors are generated in ABS from declarative descriptions. De-

livered as part of D2.3.2 [16].
Score MF

Table 2.27: FRH-R002 Executable monitor

16

Envisage Deliverable D4.5 Overall Assessment

Identifier FRH-R003
Name Automatic monitor generation
Description The Envisage framework must be able to generate monitors automatically based

on a service contract
Objectives O2.3
Evaluation criteria The Envisage framework must be able to generate monitors automatically based

on a service contract
Evaluation Monitors are generated fully automatically from declarative descriptions. De-

livered as part of D2.2.2 [14] and D2.3.2 [16].
Score MF

Table 2.28: FRH-R003 Automatic monitor generation

Identifier FRH-R004
Name Correct monitor generation
Description The Envisage framework must generate correct monitors with respect to the

service contract
Objectives O2.3
Evaluation criteria Verify monitor implementations against the service contract.
Evaluation Initial verification of monitor correctness was investigated in D2.3.1 [8], based

on a translation of ABS to UPPAAL timed automata. This initial work has
been improved in two ways:

1. We now take the full, final SLAs and service contracts into account (de-
livered in D2.2.2 [14] and D2.3.2 [16], which were not available yet at the
time)

2. We leverage KeY ABS to verify monitor correctness, to allow modular,
more scalable verification and user interaction for complex properties.

Score MF

Table 2.29: FRH-R004 Correct monitor generation

Identifier FRH-R005
Name Efficient monitor generation
Description The Envisage framework must generate monitors based on a service contract

more efficiently than the manual configuration of the current monitoring system
Objectives O2.3
Evaluation criteria Compare the time that the Envisage framework takes to generate monitors

against the manual configuration of the current monitoring system
Evaluation Monitors are fully automatically generated in a few seconds from a grammar

formalizing an SLA metric.
Score MF

Table 2.30: FRH-R005 Efficient monitor generation

17

Envisage Deliverable D4.5 Overall Assessment

Identifier FRH-R006
Name Unified monitors management
Description The Envisage framework must generate monitors that can be managed under

a unified management interface
Objectives O2.3
Evaluation criteria Generated monitors can be managed under a unified management interface
Evaluation An API to interact with ABS models over HTTP was delivered. This API

was used to plug in user-defined monitors as data sources for the Grafana
visualization framework (delivered in D2.3.2 [16]).
With the HTTP API, one can plug-in external monitors, implemented in an
arbitrary language. This allows all monitors to be managed under the unified
interface offered by Grafana, and enables the definition of high-level monitors
that combine multiple lower-level monitors from different external systems.

Score MF

Table 2.31: FRH-R006 Unified monitors management

Identifier FRH-R007
Name Non-invasive monitor management
Description The Envisage framework must be able to generate and deploy monitors without

decreasing the uptime of FRH services
Objectives O2.3
Evaluation criteria Check that the uptime of FRH services does not decrease during monitor de-

ployment
Evaluation Monitors are fully decoupled (separately running asynchronously, and deployed

on dedicated VM’s) from the service instances, and thus cannot affect the
uptime of the service instances.

Score MF

Table 2.32: FRH-R007 Non-invasive monitor management

18

Envisage Deliverable D4.5 Overall Assessment

Identifier FRH-R010
Name Automatic monitor adaptation
Description Given the analysis result of code changes provided by the Envisage framework,

the Envisage framework must be able to adapt automatically the monitoring
system at runtime to ensure the relevant properties are monitored

Objectives O2.1, O2.3
Evaluation criteria Check that this facility is provided by the Envisage framework
Evaluation During the evolution of the case study, the requirement with respect to code

change specifications became obsolete. Nonetheless, the delivered HTTP API
for ABS allows plugging in external monitors over HTTP (for example, from
the live production environment), which enables immediate, real-time, propa-
gation to the ABS model of changes to the in-production system (as a simple
example: we can take into account current infrastructure problems in an Avail-
ability Zone in Amazon).

Score NF

Table 2.33: FRH-R010 Automatic monitor adaptation

Identifier FRH-R011
Name Non-invasive monitor adaptation
Description The Envisage framework must be able to adapt the monitoring system at run-

time without decreasing the uptime of FRH services
Objectives O2.3
Evaluation criteria Check that the uptime of FRH services do not decrease during adaption
Evaluation The monitors themselves are decoupled (separately running asynchronously,

and deployed on dedicated VM’s) from the service instances. However, further
tests are needed to see if/how the corrective actions taken by monitors at
run-time (such as auto-scaling) affect the uptime.

Score ML

Table 2.34: FRH-R011 Non-invasive monitor adaptation

Identifier FRH-R012
Name Unified visualization of monitored data
Description The Envisage framework must provide a unified interface to visualize and man-

age monitored data
Objectives O2.3
Evaluation criteria Monitored data can be visualized and managed under a unified interface
Evaluation All monitors are visualized using the unified interface offered by Grafana. See

D2.3.2 [16] for more information.
Score MF

Table 2.35: FRH-R012 Unified visualization of monitored data

19

Envisage Deliverable D4.5 Overall Assessment

Identifier FRH-R013
Name Automatic visualization generation
Description The Envisage framework must be able to generate real-time visualization for

monitored data.
Objectives O2.3
Evaluation criteria Check that this facility is provided by the Envisage framework
Evaluation Monitored data is forwarded and stored in InfluxDB, and is then exposed as

a HTTP endpoint for the Grafana visualization framework. The delay (in
seconds) to propagate new monitored data to InfluxDB can be configured, but
is close to real-time if needed.

Score ML

Table 2.36: FRH-R013 Automatic visualization generation

Identifier FRH-R014
Name Non-invasive visualization
Description The Envisage framework must be able to generate real-time visualization for

monitored data without affecting the monitoring process and the uptime of
FRH services

Objectives O2.3
Evaluation criteria Check that both the monitoring process and the uptime of FRH services are

not affected by the visualization generated by the Envisage framework
Evaluation Each monitor exposes its history of metric values as a time-value series, as a

HTTP endpoint. The time series is retrieved for visualization periodically by
invoking an HTTP request to that endpoint.
Invoking the endpoint generates a new asynchronous task in the monitor, which
means that when this task is processed (scheduled), other tasks in the process
queue of the monitor wait for it to finish. Thus, it may be possible to negatively
affect other processes inside the monitors by polling the endpoint at extremely
short delays. In practice however, we observed no measurable effects even when
polling with intervals of much lower than 20s (the rate at which the existing
monitoring system updates).

Score ML

Table 2.37: FRH-R014 Non-invasive visualization

20

Envisage Deliverable D4.5 Overall Assessment

Identifier FRH-R015
Name Efficient visualization
Description The Envisage framework must be able to generate real-time visualization for

monitored data efficiently
Objectives O2.3
Evaluation criteria Compare the resource usage of the Envisage framework when generating vi-

sualization of monitored data against existing techniques. Compare any time
delay in the visualization generated by the Envisage framework against existing
techniques.

Evaluation The same visualization tooling (Grafana) is used as in the in-production mon-
itoring system. This means the new monitors have the same resource con-
sumption as the existing monitors. Monitored data from the new monitors is
propagated for visualization with a configurable time delay. Preliminary tests
were successful even with delays shorter than 20s (the delay of the existing
monitors).

Score MF

Table 2.38: FRH-R015 Efficient visualization

Identifier FRH-R018
Name Efficient test case execution
Description The Envisage framework must generate and execute test cases that have better

test coverage than the existing testing methodologies. Moreover, The Envisage
framework must generate test cases that can be executed on existing resources

Objectives O3.2, O3.3, O3.4
Evaluation criteria Compare the test coverage generated by the Envisage framework against exist-

ing test cases
Evaluation Existing test cases focus on functional unit tests of service implementations.

The automated tests generated by the Envisage framework extend the test
coverage of the existing test suite by exploring all different task interleavings
to expose race conditions.

Score ML

Table 2.39: FRH-R018 Efficient test case execution

21

Envisage Deliverable D4.5 Overall Assessment

2.2 Envisage KPIs

Table 2.40 summarizes the Envisage KPIs and their realization by the end of the funding period. Further
details concerning these KPIs are given in the Year 3 periodic progress report.

Table 2.40: Quantitative Key Performance Indicators of Envisage.
KPI title KPI target value Realized
] Modeling Tools 4 (Computations, Resources, Deployment,

SLA)
4 (These have been
realized)

] Analysis Tools 4 (Resource analysis, Deadlock analysis,
Performance, SLA compliance)

4 (These have been
realized)

] Variability of the Technolog-
ical Experimentations

3 (Search Technology, e-commerce, cloud
provisioning)

3 (These have been
realized)

] Scientific Dissemination 50 peer-reviewed scientific publications (in
Conferences and Journals with ≥ 20 aver-
age field rating according to MS academic
research)
≥ 15 joint publications
2 scientific workshops

51 high-tier publications
(97 publications in total)
30 joint publications
2 scientific workshops

] Industry Dissemination 5 members of the Advisory Board
≥ 15 members of the Industry Follow
Group
≥ 5 industrial on-site presentations
≥ 4 blog posts with more than 8.000 views
2 Industry Days

5 Industrial Advisory
Board members
40 Industrial Follow Group
members
12 industrial on-site pre-
sentations
6 blog posts with more
than 8000 views
2 Industry Days

] Technological Dissemination 3 (Eclipse plugin, Open-Source Collabora-
tory, invited keynote lectures)

3 (all three points have
been addressed)

] Societal Dissemination ≥ 8 (public releases, press releases)
3 white papers

8 public releases
3 white papers

22

Chapter 3

Coverage of Project Objectives by
Industrial Cases

This chapter discusses how the case studies have covered the (verification of the) overall project objectives.
Deliverables D4.x.1 [1, 2, 6] outlined an initial planning of the association between the case studies and the
project objectives. Here we discuss how the association was actually realized.

3.1 Objective O1:
Foundations of Computation with Virtualized Resources

ATB. We have used the modeling constructs covering deployment architectures as well as compute and
bandwidth resources associated with these architectures to capture virtualization aspects of the crawling,
Mapreduce, serving and handset subsystems of the Memkite system.
ENG. The ENG case study employs the Envisage methodology to develop an automated Resource Pool
Manager (RPM) for the elastic management of the ETICS virtualized resources. A detailed account of what
(from the perspective of industry) such elastic management entails is reported in D4.4.1 [6], where ENG also
outlined a probabilistic model of service demand, from which estimates of workload (and in particular, of
dynamic variation in workload) can be derived.
FRH. The outcome of this objective is a semantic framework for scalable architectures, infrastructures, and
virtualized resources. The framework provides the means to model and to specify resource-related non-
functional requirements that arise in the context of virtualized resources. Deliverable D4.3.1 [2] forms the
verification of milestone M1. Specifically, using the ABS language, we were able to model the Fredhopper
Cloud Services. This initial model focuses on the component structure of the Fredhopper Cloud Services and
the functionalities of individual components, while abstracting away from the implementation of the services
offered.

3.2 Objective O2:
Behavioral Specification Language for Virtualized Resources

ATB. The Memkite model uses the Envisage ABS language. Resource modeling, specifically bandwidth
modeling, has been successfully deployed in year 3. The work is detailed in D4.2.3 [12].
ENG. The automated Resource Pool Manager, and all the virtual resources (machines) that it manages, are
all implemented (as executable models) entirely in the abstract behavioral specification language (ABS). This
ABS model critically relies on the resource modeling capabilities of ABS (cloud provider and deployment
component constructs). The development of the model also relied critically on the (Erlang) prototype
simulator for debugging, tracing the execution, and testing.
FRH. The initial model of the Fredhopper Cloud Services (reported in D4.3.1 [2]) was successfully extended

23

Envisage Deliverable D4.5 Overall Assessment

with resource-awareness based on the resource and deployment modeling in ABS developed in T1.2 and T1.3.
We modeled the different kinds of virtual machines used in the Fredhopper Cloud Services as deployment
components (allocated through the infrastructure service as offered by the CloudProvider API), we added cost
annotations based on measurements from real-world log files, and were able to capture real-world deployment
scenarios. This work was reported in detail in D4.3.2 [11].

3.3 Objective O3:
Design-by-Contract Methodology for Service Contracts

ATB. As discussed in D4.2.2 [9], the primary SLA for ATB is how fast data that has arrived in the Cloud
Backend becomes searchable on a customer’s mobile device. This is an end-to-end property which distributes
over the different components of the ATB case study; i.e., the individual components have been modeled with
respect to their expected available bandwidth. The bandwidth modeling carried out supports this objective:
Using the ABS model, we can assess the end-to-end processing time with different numbers of handsets and
back-end topologies.
ENG. The ENG case study is defined in terms of the relation between functional service components (in
particular the RPM) and their required non-functional properties (derived from consumer & cloud provider
facing SLAs). D4.4.1 [6] provides detailed definitions of the relevant QoS terms, and explains how these
terms impact:

• the functional properties of the service (in particular, the internal calculations of the RPM);

• the non-functional properties of the service - i.e. the actual completion-times & failure-rates (as opposed
to the normative values specified in SLAs); and

• the overarching business-level concerns of the service (for simplicity, just profit).

FRH. Using the technical contributions developed in T2.2 and T2.3, we were able to bridge the gap from
the FRH SLAs formulated in natural-language, to formal SLAs and Service Contracts amenable to static and
dynamic analysis.

Specifically, SLAs and Service Contracts are modeled as properties of service metric functions. A service
metric function maps a trace of events from the Service APIs to a value that indicates a QoS property or
the value of a Service Level Objective. The service metric functions themselves have been formalized in a
declarative manner with attribute grammars (which are synthesized to ordinary ABS code, amenable to the
Envisage analyses). This work is reported in D2.2.2 [14], D2.3.2 [16] and D4.3.3 [13], and in the papers on
which these deliverables are based.

3.4 Objective O4:
Model Conformance Demonstrator

ATB. A comparison has been carried out with respect to model conformance for network bandwidth of the
serving system. Model conformance has been gauged for this subsystem.
ENG. The actual ETICS service is implemented in Java. Using the Envisage Java Code Generation and
verification tools we expect to be able to automatically generate working Java code from the ABS model,
which also verifiably conforms to the formal semantics of the source ABS model. The goal of employing Java
code generation in the ENG case study is just to provide a proof of concept assessment of the feasibility of
adopting ABS in Engineering’s service production life-cycle.
FRH. We took various steps to ensure a close relation between the in-production Fredhopper Cloud Ser-
vices and its ABS model. The resources (i.e. kinds of virtual machines, and their properties) and resource
consumption of Service instances modeled in ABS were based directly on data from the in-production Fred-
hopper Cloud Services. Furthermore, at the API level, the ABS model is almost identical to the in-production
system. This allowed us to:

24

Envisage Deliverable D4.5 Overall Assessment

1. Faithfully formalize the FRH SLAs, as the SLAs between FRH and its customers concern QoS properties
of the Service APIs exposed to the customers.

2. Plug in data from the in-production system in real-time (such as externally defined monitors), through
the ABS HTTP API.

More details are reported in D4.3.1 [2], D4.3.2 [11], D4.3.3 [13] and D2.3.2 [16].

3.5 Objective O5:
Model Analysis Demonstrator

ATB. As D4.2.3 shows in detail, we have utilized the following analysis tools:

• Deadlock analysis

• SYCO systematic testing

• Erlang resource simulation

The D4.2.3 [12] report details the purpose of each.
ENG. The ENG case study used the tools developed in WP3 to verify the ABS model of the RPM against
non-functional requirements – specifically: to ensure the efficacy, scalability and cost-effectiveness of the
RPM (as described in D4.4.1 [6]). The main objectives of this activity were:

• To employ Envisage deadlock analysis tools to ensure (if possible) that the Distributed Genetic Algo-
rithm (DGA), employed by the RPM to determine the best resource assignment option, is deadlock
free;

• To employ Envisage resource analysis tools (specifically for calculating the number of computational
steps required for critical code segments) to determine both the scalability of the DGA, and the values
of key constants in the ABS model which directly impact overall profitability of the service.

FRH. The outcome of this objective is the runtime support for the resource analysis and for the validation
with the SLA. This was successfully accomplished through the application of a combination of Envisage
analyses on the Fredhopper Cloud Services.

• Dynamic analysis: We have used the monitoring framework to automatically synthesize executable
ABS monitors (which can be fed with real-time information from the in-production system, through the
HTTP API) that directly calculate the QoS attributes in the FRH SLAs and Service Level Objectives.
We integrated the SmartDeployer (see D1.3.2 [15]) into the monitoring framework: this allows to auto-
scale the deployment configuration, while respecting high-level deployment requirements, and does so
on a rigorous basis (i.e. based on the QoS attribute or SLOs measured by the monitors).

• Static Analysis: We have also used several static analyses on the ABS model to statically show several
properties required for compliance with SLAs. For instance we have verified deadlock freedom, proved
termination of all methods expected to terminate, statically derived bounds on resource consumption
of services (SACO) and verified monitor correctness (KeY ABS).

More details on the above work are reported in D4.3.3 [13], D1.3.2 [15] and D2.3.2 [16].

25

Chapter 4

Feedback to Technical Tasks in Year 2

Based on the usage of the Envisage framework in the case studies, the industrial partners provided detailed
feedback after year 2 in deliverables D4.x.2 [9–11], pointing out desired extensions and refinements to increase
accuracy and effectiveness.

This feedback formed input for the final reports of T1.2, T1.3, T1.4, T2.2 and T2.3. In Section 4.1 we
assess how this feedback was addressed. Each item shows the affected Task, the industry Partner that gave
the feedback, the Feedback itself, and a Discussion, detailing how the feedback is addressed. Section 4.2
shows some of the other feedback given by the industrial partners.

4.1 Formal Feedback

Task T1.2
Partner ATB
Feedback The support for modeling cloud resources with ABS is overall good, but given

the increasing importance of mobile becoming the primary point of contact
between people and the cloud, abstractions for modeling mobile resources could
be an advantage to add to ABS.

Discussion Bandwidth resource simulation was added at the behest of the FRH and ATB
case studies. For the ATB case study in particular, other mobile resources can
be added easily once their semantics are fully specified.

Task T1.2
Partner ENG
Feedback In D4.4.2 [10] ENG provided a detailed model of the distributed implementation

of a real life industrial service – employing an elastic pool of virtual machines
(VMs), with VMs dynamically added/removed according to the changing needs
of the service consumers.

Discussion The needs of the ENG case study were successfully covered by the resource
modeling task.

26

Envisage Deliverable D4.5 Overall Assessment

Task T1.2
Partner ENG
Feedback In D4.4.2 [10] ENG provided a detailed model of the resources (virtual ma-

chines, CPUs, memory, etc.) relevant to Engineering’s case study - including
a precise account of how this resource information is used to determine which
VMs to deploy and how to assign/schedule requests to VMs.

Discussion The needs of the ENG case study were successfully covered by the resource
modeling task.

Task T1.2
Partner FRH
Feedback The accuracy of the modeling of the resource types can be enhanced by sup-

porting multiple metrics as the capacity of the resource. More specifically, for
memory, in addition to the total size of the memory, its speed can be consid-
ered. For the CPU resource type, the number of cores could be distinguished
from the speed of the cores. At the moment, the capacity of each resource type
present is given by a single number, forcing the user to choose between memory
capacity or memory speed (and similarly for the other resource types).

Discussion Based on the feedback from the case studies, we have extended the modeling of
resource types to accommodate the number of cores, the memory size, as well
as a pricing model (i.e., how resource usage translates into a pricing scheme)

Task T1.2
Partner FRH
Feedback A fundamental additional resource type not currently supported is storage.

The speed (rather than the storage capacity) of the storage device has been a
bottleneck in the in-production system at FRH, and has affected deployment
decisions, in the sense that I/O-optimized machines are used for certain kinds
of services.

Discussion Based on this feedback and the related feedback from ATB, we have extended
the modeling of resources with support for bandwidth modeling, which ex-
presses the data transmission delay between two ABS objects.

27

Envisage Deliverable D4.5 Overall Assessment

Task T1.2
Partner FRH
Feedback In practice, virtual machines and resources can fail (more on this below, in

T1.3), and machines can be terminated. This should not change only the
state of the machines (or DeploymentComponents), it also affects the objects
running on these machines: in reality, these stop executing / fail. To capture
this behavior accurately, the ABS semantics for objects should take failures of
the underlying virtual machine on which it runs into account.

Discussion Appropriate failure models for virtualized systems in ABS were discussed ex-
tensively in Task T1.1. A failure model in this setting needs to address asyn-
chronous communication and delegation in an efficient way. Based on the
experiences from these discussions and the feedback from the case studies, a
failure model was developed and integrated with the ABS semantics.

Task T1.3
Partner ATB
Feedback In actual cloud deployment there is typically a separation between 1) provision-

ing of resources and 2) performing software/data deployment on provisioned
resources, where the former might be specific for a cloud vendor (e.g. AWS has
tools like Elastic Beanstalk2 or third party libraries like Boto3 for doing this—
ATB uses Boto), and the second is usually more generic and is similar for most
IAAS clouds (e.g. using tools like Chef4 or Puppet5—ATB uses Chef). The
provisioning support in ABS is good (see also T1.2), but support for modeling
of (automated) software/data deployment could be extended. Typical issues
that needs to be handled in software/data deployment is version conflicts (e.g.
on library dependencies), configuration file handling, security (e.g. creation
and distribution of encryption keys and SSL certificates) and tight integration
with continuous deployment system.

Discussion Issues like library dependencies, creation and distribution of encryption keys
are outside the Envisage objectives; they are considered orthogonal w.r.t. the
typical ABS behavioral specifications mainly considered in Envisage. Never-
theless, even if this is not central for Envisage, ABS includes delta modeling
facilities that can be used to appropriately specify these orthogonal aspects in
a modular way.
Concerning the tight integration with continuous deployment systems, the
SmartDeployer enables a such tight integration with its fully automated and
optimized deployment synthesis. It does not commit to a particular continuous
deployment system, but the SmartDeployer could be adapted to such a system
in a relatively straightforward way.

28

Envisage Deliverable D4.5 Overall Assessment

Task T1.3
Partner FRH
Feedback Virtual machines can fail, for instance due to an operating system kernel er-

ror, or a hardware failure, but currently, failures are not taken into account.
Support for modeling such failures opens the door for reasoning about failures
(both static and dynamic analyses, through monitoring and simulation), such
as how failures propagate, and design of fault-tolerant systems.

Discussion Failure of machines can be modeled as abrupt shutdown and lead, in ABS
semantics, to objects becoming unresponsive. Unresponsive objects can be
used to model both network and machine failures. The failure model of ABS
can be used to model all of these failures.

Task T1.3
Partner FRH
Feedback Virtual machines can be started, stopped, fail, and so on: they have a well-

defined state. Throughout its lifetime, the instance moves from state to state.
When an instance is started, it enters an initialization state. After it initializes
successfully, it enters a “running” state. Instance states can also be triggered
involuntarily, due to failures.
Adding states to virtual machines, and making it possible to retrieve this state
for a specified machine, is important for load balancing, monitoring, cost man-
agement (i.e. charge only for machines in running state), etc. and allows
implementing services with increased robustness.

Discussion The Cloud API and, specifically, the CloudProvider interface, implement this
deployment component life-cycle. Additionally, a mechanism was introduced
to facilitate exclusive access to deployment components among cooperative
actors; this proved useful for high-level load balancing and worker pool objects.

Task T1.3
Partner FRH
Feedback The expressiveness of the cost annotations that the Model-Driven Deployment

Engine (MODDE) (see D1.3.1 [7], Chapter 2) supports could be enhanced:
currently costs are constants. In practice, the exact cost is not necessarily
fixed over time, and can depend on certain parameters, for instance: execution
of a query by the FRH query service typically increases the larger the product
catalog is.

Discussion MODDE (and its successor, SmartDeployer) supports defining multiple deploy-
ment scenarios. This can be used to specify the cost of an object in different
situations (i.e. with a different constant for each scenario).
As future work, we are investigating invoking the solver and deployment syn-
thesizer at run-time through a foreign language interface or HTTP API for
ABS. This would allow arbitrary cost expressions (the solver at run-time would
simply receive the value the expression evaluates to), while avoiding to com-
plicate the solver.

29

Envisage Deliverable D4.5 Overall Assessment

Task T1.3
Partner FRH
Feedback The Cloud API (D1.3.1 [7], Chapter 3) currently does not take into account

which kind of virtual machines are offered by the infrastructure provider: it
is possible to acquire a machine with any resource capacity, include resource
configurations not offered by any existing machine. This could be addressed
by making the API parametric with respect to the available virtual machine
types.

Discussion We have adapted the Cloud API such that the modeler can define machine con-
figurations and create instances by name. The possibility of creating arbitrary
deployment components still exists but is optional.

Task T1.4
Partner ATB
Feedback The model supports simulation end-to-end, from the data arrives in the cloud

service until it has become searchable on the mobile devices. It also supports
simulation with varying amounts of load (e.g. amounts of data to index and
number of mobile devices) and varying resources to handle the load (e.g. num-
ber and capacity of virtual machines used for indexing and serving of data in
the cloud backend).
Since individual latency—from when the data arrives in the cloud until it ar-
rives on the mobile device—is of key importance for the SLA, a useful addition
to the model could be to add “tracer bullet” style logging that follows the data
through the system, i.e. annotate data with timestamps in every step of the
model in order to see where it uses time.

Discussion This feature can be implemented by adding a small amount of model code
at the inspection points, and defining the data in a suitable way. Current
developments integrating the ABS simulator with a time series database will
make the results visualizable and query-able easier.

Task T1.4
Partner ENG
Feedback The Erlang simulator successfully executes Engineering’s ABS model – but

only when setting the number of generated requests to 4 or less. At 5 or more
requests the simulator stalls. We would like to be able to simulate results for
thousands of requests.

Discussion When moving from Maude to Erlang from the simulation back-end, we got
a significant performance gain. The Erlang back-end has been tested with
models consisting of 10000 requests and 100 virtual machines, but not for the
ENG case study. The Erlang simulator scales well for many other models. (We
are working on it. Remark that this issue was reported at M30, not at M24.)

30

Envisage Deliverable D4.5 Overall Assessment

Task T1.4
Partner FRH
Feedback Simulation to observe the effect on the system while, for example, varying the

number of received requests can be done by modeling (various kinds of) “the
user” in ABS code: the user triggers the system by invoking requests to an
end-point at a certain rate. Nonetheless, modeling the user in this manner is
cumbersome. A “log-replay” tool that fires queries to the system according to
a specified time and duration given in a log file would be a very useful addition
for simulation purposes.

Discussion This is a very good feedback and such support is now under development. As
part of the work in T1.4, the ABS simulation back-end has been opened up
to allow interaction with external programs through an API. A prototype log
replay tool using this API has been implemented and tested on the FRH case
study.

Task T1.4
Partner FRH
Feedback An important enhancement to the Eclipse plug-in is support for navigation,

such as “browse to declaration”, “display type hierarchy” and “display call hi-
erarchy”.

Discussion This would be nice to have, but has not been given high priority in the Envisage
project. In the project, we have given priority to the collaboratory rather than
the Eclipse plug-in.

Task T1.4
Partner FRH
Feedback The Maude back-end supports inspection of the complete state of the system,

which allows exploring detailed run-time information. However, this state
can be unwieldy; sometimes a more abstract version of the information is
already sufficient and allows faster identification of relevant data. In particular,
support for visualizing the object graph, visualization of resource usage over
time, and a visualization of the trace of messages between distributed COGs
would be useful.

Discussion This is very good feedback. The simulation back-end now directly generates
visualizations of the resource usage over time through a generic format for
sharing time series with a visualization back-end in the collaboratory. Further
support for visualization is under development.

31

Envisage Deliverable D4.5 Overall Assessment

Task T2.2
Partner ATB
Feedback The primary SLA for ATB is how fast data that has arrived in the Cloud

Backend becomes searchable on a customer’s mobile device. The model, which
allows simulations of that time, is given various scenarios relevant for the SLA,
e.g. mobile bandwidth capacity for customers. Since latency is a common
metric in SLAs, we expect that the support for SLAs can be combined with
the suggested “tracer bullet” approach for simulation in T1.4.

Discussion Talking about SLA verification, latency is one of those metrics we didn’t expect
to verify statically. On the contrary, we left this for the runtime verification
framework. Simulation may indeed be used to provide auxiliary information
to the static analysis.

Task T2.2
Partner ENG
Feedback In D4.4.2 [10] ENG provided a detailed model of the SLAs and QoS terms/guar-

antees relevant to Engineering’s case study – including a precise account of how
this SLA information is used to determine which VMs to deploy and how to
assign/schedule requests to VMs.

Discussion The needs of the ENG case study were successfully covered by the task on
service contracts and SLAs.

Task T2.2, T2.3
Partner FRH
Feedback Behavioral interfaces (D2.2.1 [5], Chapter 3) naturally capture properties of

the behavior of a single instance of a given type, such as the response time
guarantee example. Support for defining aggregated properties that involve
multiple objects (or computation / communication traces) executing on dif-
ferent (distributed) virtualized resources would be useful. This would allow
to capture properties of statistics—aggregations of a metric—such as “Total
Number of Fredhopper Query Requests”, or the “Maximum response size” (in
a given time window).

Discussion Behavioral type systems express information useful for a particular property
or measurement of the code. They support the definition of properties that
involve multiple distributed objects, as long as we know either the code of
those objects (in order to be able to extract their behavior), or explicitly their
behavioral type. Furthermore, in D2.2.2 [14] and D2.3.2 [16] we have finalized
the formalization of service metric functions, which allow mapping a stream of
heterogeneous events from distributed sources to an aggregated value.

32

Envisage Deliverable D4.5 Overall Assessment

Task T2.3
Partner FRH
Feedback Service metric functions, or statistics, aggregate a sequence of basic measure-

ments (of a certain metric) to allow determining QoS levels. The question
arises how such statistics can be defined in a systematic manner. A possi-
ble option to investigate is using attributes defined in an attribute grammar
for this purpose. Informally, an attribute is a function that assigns an aggre-
gated value to a list of symbols (in our context, basic measurements). The
definition of attributes can exploit structure present when different kinds of
measurements should be aggregated.

Discussion This suggestion has been taken up. Service metric functions are formal-
ized as attributes of a regular attribute grammar, as reported in Deliverable
D2.3.2 [16].

Task T2.3
Partner FRH
Feedback The system is initially executed in a declaratively specified deployment con-

figuration using the techniques developed in T1.3. The monitors generated
in T2.3 adapt the deployment configuration dynamically, for example due to
usage peaks of a Service. Thus it is interesting to investigate the relationship
between the monitoring service and possible dynamic re-deployment actions.
In particular, do the monitors ensure that the evolved system preserves (a
certain subset of) the deployment requirements specified initially? Could a
monitor be generated automatically that checks at run-time whether the cur-
rent deployment configuration respects the requirements?

Discussion The initial report on deployment (D1.3.1 [7]) focused on static synthesis of
the initial deployment configuration. To ensure preservation of deployment
requirements at run-time, we follow a correct-by-construction approach based
on the new Smartdeployer for dynamic deployment (D1.3.2 [15]).
In particular, we annotate the dynamic deployment actions (which are taken
based on monitored SLA metrics, SLOs and KPIs) with the relevant high-level
deployment requirements and use the Smartdeployer to carry out the actions.
This ensures that whenever the system scales, the scaling is done in such a way
that the requirements are satisfied. This work is reported in D2.3.2 [16].

33

Envisage Deliverable D4.5 Overall Assessment

4.2 Other Feedback (Year 3)

The following list collects other feedback from the use of the ABS tool suite which is not part of the formal
feedback loop planned in Year 2 (addressed in the previous section). It concerns general aspects of ABS and
its tool suite which have not been the research focus of the Envisage project.

• The requirement to use different syntactic forms for blocking method calls dependent on whether sender
and receiver are located in the same or different COGs (see D4.4.1 [6]) is a major potential source of
run-time errors.
This has been done.

• Earlier versions of ABS required that the results of all function calls should be assigned to variables,
which prevented the use of nested function calls.
This is now supported.

• Numerals in ABS are limited to just integer (Int) and rational (Rat) types. It would be very useful to
also include floating point numbers, even if only at the syntactic level – e.g. the floating point syntax
“0.012” could easily be (pre-)compiled into the rational form “12/1000”.
Floating point numbers introduce complications for analysis that go against the focus of Envisage.

• It would be useful to add syntactic sugar for “for” loops and add list and map subscripts to ABS (e.g.
“a[i]” to access the ‘i’th element of array ‘a’) to ABS.
Although nice to have, adding this kind of syntactic sugar has not been a priority of the Envisage project
to address our research focus.

• ABS per se has only limited support for modularity – in particular: there is no class inheritance
(and hence no calls to code in “super” methods). Inherited methods thus need to be re-implemented
separately in every class that inherits those methods – leading to code redundancy. The add-on ‘delta’
language allows such redundant code to be inserted automatically – but at the cost of developing and
maintaining the additional delta code. Overall, this can easily give rise to ABS models that are bigger
(more verbose) than comparable code written in other OO languages (e.g. Java or Swift).
This has not been a main focus of Envisage, but code reuse for ABS has recently been fully implemented
and documented by TUD in a collaboration with the University of Torino in the form of traits.

• The Java Code Generation tools are not distributed as part of the ABS tool chain, and do not work
with the latest version of the ABS syntax.
Priority has been given to the Haskell back-end.

• The online (http://ei.abs-models.org:8082/clients/web/) and local (virtual machine) versions of the
Collaboratory are not synchronized, and often display functional differences, e.g. giving different
results for the same tools, or missing the ABS examples (content) or Erlang simulator statistics.
This has been dealt with. The Collaboratory is distributed as Vagrant and Docker images, and we use
the same (latest) image for the on-line version. This should keep all instances synchronized.

• In general, throughout the project, there has been a lack of comprehensive and up-to-date documen-
tation. The documentation that does exist has failed to keep pace with the development of the ABS
language and code-base, such that many of the documented details are out-of-date.
This is the nature of a research project about developing and evaluating ongoing developed analysis tools.
For this reason, the tool developers have encouraged direct communication to support the application of
the tools to the industrial cases.

• In the ENG office environment (Windows PCs with proxy mediated internet access) the deployment
of the Collaboratory on a local virtual (Vagrant/VirtualBox) machine proved to be difficult. Indeed,
despite a great deal of effort (over several months), we were unable to install the tools in the office.

34

Envisage Deliverable D4.5 Overall Assessment

Installation was only possible working from home (without a proxy) and on employees personal (non-
Windows) machines.
This has been dealt with. To avoid spending time on compatibility issues between operating systems and
library versions the tool set has been distributed using Vagrant and Docker images.

• Overall there is no planned release schedule for the ABS language and code-base, or for any of the
Envisage tools. Updates are ad-hoc and there are no formal “version” numbers, hence no common
references for benchmarking or test/bug reporting.
For version control we have used Github and open source tool development, which allow referencing
unique versions of the platform. During the project lifetime, the codebase for the Envisage tool chain
has been evolving continuously. There are currently no plans to move towards a formal roadmap, but
release numbers have been addressed since the tool integration meeting in Amsterdam (August 2016).

35

Chapter 5

Language Features and Analysis Tools

5.1 Language Features

We briefly survey key features of ABS from the perspective of modeling services deployed on the cloud. For
more details of the ABS modeling language, we refer to the reference publications (e.g., [20, 22]) and to the
language manual (http://abs-models.org/documentation/manual/). The description below discusses the
main feature categories used in the table.

• Functional Layer. ABS is built around a first-order functional language which supports user-defined
data-types and functions. The functional language allows abstraction from low-level implementation-
oriented data structures in the models. For the sake of modeling time and costs, ABS has been extended
with rational numbers as a built-in data-type.

• Imperative Layer. The imperative layer of ABS is used for synchronization and communication between
concurrent objects executing in parallel. A particular feature of ABS is concurrent object groups
(COGs); i.e., the unit of deployment is not a single object but a group of objects. Groups are created by
creating local objects inside COGs and allows more complex local data models than isolated concurrent
objects.

• Delta Layer. ABS supports the modeling of software product lines by linking a feature model to deltas,
which are flexible program modifiers. Deltas, originally developed in the HATS project, have to a
limited extent been combined with deployment modeling [21] in Envisage, but have to some extent
been used in the case studies.

• Deployment Modeling. To model the deployment of services on the cloud, ABS supports the modeling
abstraction of deployment components which make resources available to COGs. Static deployment
models are obtained by creating all deployment components in the main block of the ABS model,
whereas dynamic (elastic) deployments are expressed by creating deployment components during the
execution of the models. In Envisage, we developed a “CloudProvider API” as an abstraction over
basic deployment components which allowed users to configure virtual machine instances in a high-
level way (using resource profiles) as well as to account for the accumulated cost during the execution
of a deployed model, the start-up time for virtual machines, etc.

• Resource Modeling. Several resources were integrated in the semantics of ABS to support the modeling
of cost of computations and the capacity of virtual machine instances, including the number of CPU
cores, the speed (corresponding to Amazon’s notion of Elastic Compute Unit), and the bandwidth.
The API to the deployment layer allowed models to query the deployment components with respect
their current resource capacity as well as their average load over a given window (a number of time
intervals).

Table 5.1 shows the coverage of the ABS features by the industrial case studies.

36

http://abs-models.org/documentation/manual/

Envisage Deliverable D4.5 Overall Assessment

Feature ATB ENG FRH

Functional layer

User-defined data-types

Rational Numbers

Feature ATB ENG FRH

Imperative Layer

Local objects in COGs

Feature ATB ENG FRH

Delta layer

Deltas

More than one product in product line

Non-trivial feature model

Feature ATB ENG FRH

Deployment modeling

Creating deployment components in main block using “new DeploymentComponent”

Creating deployment components in main block using the CloudProvider class

Creating deployment components dynamically using “new DeploymentComponent”

Creating deployment components dynamically using the CloudProvider class

Feature ATB ENG FRH

Resource modeling

Using static resources (one or more of Cores, Memory)

Using dynamic resources (one or more of Bandwidth, Speed)

Using cost accounting
(PaymentInterval, CostPerInterval; or StartupDuration, ShutdownDuration)

“Cost: ” (CPU) annotations using constants

“Cost: ” (CPU) annotations using non-constant expressions

“DataSize: ” (Bandwidth) annotations using constants

“DataSize: ” (Bandwidth) annotations using non-constant expressions

Using load monitoring (e.g., using the result of “dc.load(. . .)”)

Table 5.1: Usage of ABS language features in the industrial case studies

37

Envisage Deliverable D4.5 Overall Assessment

5.2 Tools

This section provides an overview of the tools developed and delivered during the course of Envisage. Ta-
ble 5.2 shows on which industrial case studies they have been applied. The section concludes with a more
detailed discussion of each tool.

Tool ATB ENG FRH

Erlang Simulator

Deadlock Analysis - SDA

Deadlock Analysis - SACO

Resource Analysis - SRA

Resource Analysis - SACO

Resource Analysis - CoFloCo

Monitoring - SAGA

Systematic Testing - SYCO

Verification - KeY ABS

Deployment - Smart Deployer

Haskell Backend

Java Backend

Table 5.2: Tool usage on industrial cases

5.2.1 Erlang Simulator

Fundamental Approach

The Erlang simulator is the main tool for simulating and visualizing all aspects of an ABS model, including
resource usage and deployment configuration. It relies on the common compiler front-end and type checker,
and generates code in the Erlang language which is subsequently compiled and run on the Erlang BEAM
VM.

Tool Description

The Erlang simulator comprises a compiler back-end to generate Erlang code, compile it and generate an
OTP-compliant Erlang application. Included is the embedded cowboy web server1, which enables data access
to a running model. This is used for implementing visualization and the HTTP API, including inspection
of objects and deployment components and invoking ABS methods from outside the model.

Case Study

The Erlang simulator has been used in all case studies. It supports all features of the ABS language, and is
the only back-end that supports all of resource simulation, visualization and a HTTP API. The case studies
have served to uncover bugs in the Erlang back-end, and to generate and formulate requirements for further
development that has taken place or will take place.

1https://github.com/ninenines/cowboy

38

https://github.com/ninenines/cowboy

Envisage Deliverable D4.5 Overall Assessment

Evaluation

The Erlang simulator has surpassed the Maude back-end in usefulness by providing a significant runtime
speed-up when simulating ABS, better output facilities, visualization support, and a Model API for input. It
has been deployed in all case studies and served for validating functional correctness of the models, gaining
insight into model behavior, and as a stepping stone for other tools.

5.2.2 Deadlock Analysis - SDA

Fundamental Approach

Deadlocks may be particularly insidious to detect in systems where the basic communication operation is
asynchronous (e.g., ABS asynchronous method invocation) and the synchronization explicitly occurs when
the value is strictly needed (e.g., ABS get operation). In this context, when a thread running within the
object group x performs a get operation on a thread within object group y, then it blocks every other thread
that is competing for the lock on x. This blocking situation corresponds to a dependency pair (x, y), meaning
that the progress on x is possible provided the progress of threads on y. A deadlock then corresponds to a
circular dependency in some configuration, such as a collection of pairs of the form (x, x1), (x1, x2), ..., (xn, x).
The goal of the tool [19] is to infer these dependency sets in a fully automatic way, and then to analyze these
sets and detect dependency cycles.

Tool Description

There are three key components in this tool. (i) A type system that abstracts concurrency patterns in the
instructions, (ii) an inference algorithm that allows to automatically extract the type of the program, (iii) a
decision algorithm that analyses the program type and detects deadlock presences. Since deadlock detection
is an undecidable problem, some restrictions apply to the tool. In particular, the inference algorithm is
the component to which restrictions apply. This means that for every well-typed program the tool output
is precise, however not every program can be typed. This happens, for example, in presence of recursive
data types or boolean await operations, in these cases the analysis process can be improved by manually
annotating the program.

Case Study

The tool has been tested against the case studies from the three major partners. In all three cases there
were no deadlocks present. In the ATB case study, the tool did not find any of the necessary conditions
for a dependency cycle, namely blocking get operations nor pure await cycles. In the case of the ENG
case study, the tool was able to run after resolving some minor bugs related to the presence of futures in
generic arguments. The FRH was thoroughly analyzed in collaboration with the industrial partner, we
finally concluded that the tool was able to correctly infer the program behavior in regards to concurrent
operations and to successfully verify the deadlock freedom.

Evaluation

The tool has been evaluated against a large number of programs from different sources. In addition to the
industrial case studies, the tool has been evaluated against several didactic examples created to test specific
patterns and against programs inspired in classical problems like variations of the Philosophers problem.
It is possible to test these examples as well as any other ABS program through the Collaboratory suite.
On top of the practical testing, the correctness of the major theoretical basis of the tool like the inference
system and the detection algorithm have been formally demonstrated.

39

Envisage Deliverable D4.5 Overall Assessment

5.2.3 Deadlock Analysis - SACO

Fundamental Approach

SACO is a static analysis framework that can automatically infer a wide range of properties for ABS models.
The deadlock analysis of SACO can automatically certify the absence of deadlocks in an ABS model. The
analysis builds a dependency graph such that the absence of cycles in the graph ensures the absence of
deadlock in the original ABS model. The analysis uses information from other powerful analyses, such as the
may-happen-in-parallel analysis, which infers the program points of the model that might execute in parallel,
and the points-to analysis, which infers the abstract objects that could be created by model and the objects
that might be referenced by each variable in the model.

Tool Description

The deadlock analysis is part of SACO, an open source static analysis framework written in Prolog. The
deadlock analysis takes an ABS model and a series of options as input. It uses the ABS compiler to generate
an intermediate representation that will be used in the analysis. The options that the deadlock analysis can
receive include: the precision of the points-to analysis and whether the analysis should use the may-happen-
in-parallel information or not. As a result, the analysis outputs a message certifying that the ABS model has
no deadlocks or a list of possible deadlock cycles that could not be discarded. The deadlock cycles include
the objects, methods, and synchronizations points involved in the potential deadlock.

Case Study

The deadlock analysis has been applied to the FRH and ENG case studies.

Evaluation

SACO has been successfully applied to the FRH and ENG case studies and, for both case studies, it has
been able to ensure the absence of deadlocks in the models.

5.2.4 Resource Analysis - SRA

Fundamental Approach

Cloud computing introduces the concept of elasticity, namely the possibility for virtual machines to scale
according to the software needs. In order to support elasticity, cloud providers, including Amazon, Google,
and Microsoft Azure, have pricing models that allow one to hire on demand virtual machine instances and
paying them for the time they are in use, and have APIs that include instructions for requesting and releasing
virtual machine instances dynamically. The theory behind this tool [18] targets precisely this scenario in an
attempt to statically estimate the upper bound of the virtual machines necessary to fulfill the requirements
of an elastic cloud program, by extracting and analyzing behavioral types for the ABS models.

Tool Description

We propose a static analysis technique that computes upper bounds of virtual machine usage in a concurrent
language with explicit acquire and release operations of virtual machines. In our language (a dialect of
ABS) it is possible to delegate other (ad-hoc or third party) concurrent code to release virtual machines
(by passing them as arguments of invocations). Our technique is modular and consists of (i) a type system
associating programs with behavioral types that records relevant information for resource usage (creations,
releases, and concurrent operations), (ii) a translation function that takes behavioral types and return cost
equations, and (iii) an automatic out-the-shelf solver for the cost equations (in our case the solvers used,
CoFloCo and PUBS, are also part of the Collaboratory suite).

40

Envisage Deliverable D4.5 Overall Assessment

Case Study

Given the current state of the tool, it is not possible yet to fully analyze ABS programs. For the moment it
has been only possible to manually test some patterns present in the industrial case studies. It is important
to remark that current case studies do not take full advantage of the dynamic releasing of virtual machines,
making the programs have cumulative resource consumption which is a less difficult problem that can be
targeted almost directly by cost equations solvers.

Evaluation

This tool is the first (to the best of our knowledge) static analysis technique that computes upper bound of
virtual machines usages in concurrent programs that may acquire and, more importantly, may release such
machines. We have compared the results of the tool against others that performs similar analysis either for
concurrent programs or for programs with dynamic releasing obtaining in both cases very good results. More
details on the evaluation as well as on the tool description may be found in the tool paper [18] and in the
Collaboratory suite.

5.2.5 Resource Analysis - SACO

Fundamental Approach

SACO is a static analysis framework that can automatically infer a wide range of properties for ABS models.
The resource analysis of SACO can obtain sound upper bounds on the resource consumption of functions,
methods or complete ABS models. Time (evaluation steps), memory, bandwidth are some of the resources
that can be considered by SACO. SACO also implements more advanced notions of cost such as parallel
cost i.e. the time required to execute an ABS model taking into account the parallelism or cost centers i.e.
consider the cost of each distributed component separately.

Tool Description

SACO is an open source framework written in Prolog. SACO takes an ABS model and a series of options as
input. It uses the ABS compiler to generate an intermediate representation that will be used in the analysis.
These options that SACO can receive include: the names of the functions or methods to be analyzed, the
type of resource that will be considered (time, memory, etc.) and the specific analysis that will be performed
(regular cost analysis, peak cost, parallel cost, etc.). Once selected these options, the analysis is completely
automatic. As a result, SACO generates symbolic expressions in terms of the input parameters that represent
the upper bounds of the analyzed functions or methods. Optionally, users can add annotations to the ABS
model to help the analysis.

Case Study

SACO has been used in the FRH and ENG case studies. It has been applied to obtain the complexity of
the main methods of the corresponding ABS models. We have also applied SACO to the FRH case study
to get all possible states of the queues of tasks for each object. We also used SACO (in combination with
CoFloCo) to obtain upper bounds on the time and memory resource consumption of the generated monitors
for the FRH case study.

Evaluation

SACO has been successfully applied to the FRH and ENG case studies. In combination with CoFloCo it
has been possible to obtain upper bounds for the main methods in the genetic algorithm that comprises the
ENG case study. We have also successfully used SACO to bound the cost of some relevant methods of the
FRH case study and, additionally, we have also obtained the cost of some relevant program points, and the
abstract objects responsible of executing these program points.

41

Envisage Deliverable D4.5 Overall Assessment

5.2.6 Resource Analysis - CoFloCo

Fundamental Approach

CoFloCo is a static analysis tool to infer automatically symbolic complexity upper and lower bounds of
programs. CoFloCo’s analysis is not bound to any specific programming language, instead it takes an
abstract representation of programs as an input. The abstract representation is a set of cost relations (similar
to recurrence relations) that can be generated from ABS models using SACO. CoFloCo uses polyhedral
analysis and linear programming to obtain sound and precise bounds of the cost relations.

Tool Description

CoFloCo is an open source publicly available tool written in Prolog. It has been designed to be used as a
back-end for other resource analysis frameworks and it has been integrated in SACO. SACO provides an
option to use CoFloCo as a back-end solver. This enables the users to apply all the SACO analyses with
additional precision and inference power provided by CoFloCo.

Case Study

CoFloCo has been used together with SACO to obtain time upper bounds of the ENG case study. This case
study makes use of complex data structures. These data structures can be precisely abstracted by SACO but
the resulting cost relations are too complex to be solved by the default SACO cost relation solver (PUBS).
With the help of CoFloCo, we succeed at analyzing most of the challenging methods in the ENG case study
model. Furthermore, we successfully analyzed the resource consumption of generated monitors for the FRH
case study.

Evaluation

CoFloCo has been successfully used to obtain upper bounds in the ENG case study. Its power has proved to
be essential to analyze some of the most challenging methods in the ENG case study. CoFloCo represents a
good alternative to PUBS (SACO’s default cost relation solver) for complex pieces of code.

5.2.7 Monitoring - SAGA

Fundamental Approach

SAGA is a tool that generates executable ABS monitoring add-ons for SLA, SLO and KPI metrics. The
approach is event-based: the events are interactions with endpoints from Service APIs (a common example is
a call or return of a resource method in a REST API). A service metric function is formalized as an attribute
from a declarative attribute grammar, which maps an event traces to a value that indicates the QoS level.

Tool Description

SAGA requires two inputs: a communication view that names the events relevant for the metric to be
formalized, and an attribute grammar where the value of the metric is defined. SAGA then fully automatically
generates ABS code for a parser (an automaton) corresponding to the grammar. An Eclipse-based syntax
highlighting module for views and grammars is available. SAGA is implemented as a meta-program in the
language Rascal [23].

Case Study

Using SAGA we formalized metrics such as Availability and Service Degradation (the percentage of queries
with response time between 200-500ms, and the percentage slower than 500ms, minus the 2% slowest queries)
from the Fredhopper Cloud Services. The corresponding monitors are executable with all back-ends and
simulators supporting core ABS. We also investigated correctness of the generated monitors with KeY-ABS.

42

Envisage Deliverable D4.5 Overall Assessment

Evaluation

SAGA supports regular attribute grammars (all productions have the form S ::= a T , where a is a terminal
and S, T are non-terminals). This allowed generation of resource-efficient, fast monitors: memory usage is
constant and the computation time to calculate the value of the metric is linear in the length of the event
trace. Since the generated monitoring code by SAGA is ordinary ABS, the monitors are amenable to all
Envisage analyses. This enabled for example to successfully verify monitor correctness with KeY ABS.

5.2.8 Systematic Testing - SYCO

Fundamental Approach

The SYCO tool is a dynamic testing tool for ABS concurrent objects which systematically explores all relevant
combinations of task interleavings. It includes state-of-the-art partial-order-reduction (POR) techniques in
order to detect redundant interleaving combinations dynamically during the execution avoiding a considerable
number of redundant explorations.

Tool Description

The user interacts with SYCO through its web interface which is integrated within the ABS collaboratory.
Essentially, it receives an ABS program, and, as a result, it outputs a set of executions. For each one, it
shows the output state and the sequence of tasks/interleavings and concrete instructions of the execution
(highlighting the source code). SYCO also generates sequence diagrams for each execution which provide
graphical and more comprehensive representations of execution traces.

Case Study

SYCO has been successfully applied to perform systematic testing of the core map-reduce algorithm of the
ATB case-study. The application of SYCO’s systematic testing on the case-study with a concrete input allow
observing the output state and trace for each different combination of assignments of map and reduce tasks
to worker objects.

Evaluation

We have experimentally evaluated the impact of the POR techniques available in SYCO using the ATB case-
study as benchmark. The reductions both in the number of explored executions and exploration time due to
the use of POR techniques are huge (up to three orders of magnitude). This demonstrates the effectiveness
of the POR techniques in SYCO and specially that of the most recent and accurate technique based on exact
dependencies.

5.2.9 Verification - KeY ABS

Fundamental Approach

KeY ABS is an interactive (semi-automatic) deductive verification tool that enables one to verify functional
correctness properties for concurrent and distributed ABS models. The specification is provided in terms
of history-based class invariants. It is then proven that the ABS model adheres to its specification. The
approach is symbolic and models the ABS language faithfully, i.e., it does not apply any abstraction and
remains fully precise. The specification language is first-order (dynamic) logic and thus highly expressive.

Tool Description

KeY ABS is an open source software written in Java. It is a variant of the KeY verification system for Java.
As input it requires the ABS model to be verified as well as its specification, or alternatively, a problem file

43

Envisage Deliverable D4.5 Overall Assessment

with the formula to be proven. The specification is provided as a separate file located in the same directory
as the ABS files. The user can then start the verification for each method separately. The proof-obligation
to be proven is then loaded into the theorem prover of KeY ABS. The verification process is semi-automated,
i.e., KeY ABS provides powerful strategies for automation but requires sometimes user interaction.

Case Study

KeY ABS was used on the FRH case study to verify the correctness of generated monitors. This means it
could be proven that the monitors react on critical situations and that they act to divert them by allocating
(or deallocating) computing resources. In addition KeY ABS was used to verify Network-on-Chip (NoC). This
case study presents an approach to scalable verification of unbounded concurrent and distributed systems.
Formal proofs of global properties such as “no packets are lost” and “a packet is never sent in a circle” are
obtained by KeY ABS regardless of the number of routers and packets on a NoC.

Evaluation

KeY ABS was successfully applied to the case studies mentioned above and the desired properties could be
proven. The achieved guarantees are strong and require non-trivial reasoning about state properties as well
as protocols. Non-trivial interaction was required for the NoC case study.

5.2.10 Deployment - Smart Deployer

Fundamental Approach

In order to take into account deployment issues already at the early stages of development, deployment
specific primitives can be added as a first-class citizen in ABS. Smart Deployer allow this by following a
declarative approach: programmers can specify deployment constraints and a solver synthesizes ABS classes
exposing methods like deploy (or undeploy) that execute (or cancel) configuration actions changing the
current deployment towards a new one satisfying the programmer’s desiderata.

Tool Description

SmartDepl is an open source tool written in Python. SmartDepl first processes the original ABS program
to retrieve relevant cost annotation and deploy annotations defined in an ad-hoc domain specific declarative
language. For each annotations, Smart Deployer relies on the Zephyrus2 configuration optimizer to con-
cretely compute the objects that need to be deploy and then it generates a new ABS class that specifies
the deployment steps to reach the desired target. This class can be used to trigger the execution of the
deployment, and to undo it in case the system needs to downscale directly from the ABS code.

Case Study

The ABS annotations introduced by Smart Deployer have been driven by Fredhopper Cloud Services. The
Fredhopper Cloud Services offer search and targeting facilities on a large product database to e-Commerce
companies. Depending on the specific profile of an e-Commerce company, FRH has to decide the most
appropriate customized deployment of the service that can be automatically devise by using Smart Deployer.

Evaluation

We evaluated Smart Deployer on the Fredhopper Cloud Services. By adopting Smart Deployer, we have been
able to realize a new modeling of the Fredhopper Cloud Services in which both the initial deployment and
the subsequent up- and down-scale is expected to be executed automatically. This also allow us to validate
that the current manually defined solution used in production by FRH is optimal (i.e., the cheapest possible
one given the user desiderata).

44

Envisage Deliverable D4.5 Overall Assessment

5.2.11 Haskell Backend

Fundamental Approach

The Haskell back-end is an ABS code generation tool, which focuses on execution speed and support for all
standard ABS features. The choice of Haskell was made, firstly, because the languages (ABS and Haskell)
share the same purely-functional programming paradigm at their core, and secondly because of the Haskell’s
offerings in concurrency, parallelism and distributed computing.

Tool Description

The tool translates ABS code to Haskell and subsequently to native code, which is then linked to our custom-
developed Haskell library to provide the concurrency of an ABS runtime. Compared to other back-ends
(Erlang, Maude) the Haskell back-end relies on an external Haskell type-checker and Garbage Collector.
Besides the standard ABS language, the tool implements the Cloud extension, for real deployment and
distributed execution of ABS models in the Cloud, as well as the HTTP-API extension, for interacting with
running ABS code from the outside. The Haskell back-end is open-source and utilizes BNFC, a Haskell
parser generator, later also adopted by the Java back-end.

Case Study

The Haskell back-end has been applied to large parts of the FRH case study. Compared to the Erlang
simulator, the notion of time in the Haskell back-end refers not to the abstract simulated time but instead to
the real (wall-clock) time. A future consideration for the FRH case study is to utilize also the Cloud extension
for deploying actual Cloud machines so as to gain better insight/confidence of the ABS model’s behavior. The
Haskell back-end has been used for the implementation of a distributed Preferential-Attachment algorithm,
which is a mechanism for generating large social-network-like graphs.

Evaluation

The Haskell back-end has been tested and benchmarked on smaller ABS models. A recent benchmark
comparison2 of ABS back-ends shows that the Haskell back-end generates the fastest overall code in terms
of execution performance and memory.

5.2.12 Java Backend

Fundamental Approach

The ABS Java Code Generation Back-end is developed for running ABS programs in a local or distributed
environment by compiling ABS source into the Java language. The compiled code uses a Java library
called the ABS-API library that provides support for the actor programming model, cooperative scheduling,
distributed communication and remote deployment. The tool is tailored towards case studies that require
real computing resources, memory and bandwidth.

Tool Description

The Java Code Generation Back-end is an open source application written in Java with using an grammar
description written in BNFC. It is made up of three separate components:

• BNFC grammar parser.

• The ABS to Java compiler.

• The ABS-API execution library.
2http://abstools.github.io/abs-bench

45

http://abstools.github.io/abs-bench

Envisage Deliverable D4.5 Overall Assessment

The tool receives as input one or more ABS source files and generates separate Java packages for each of
them containing the corresponding classes translated from ABS to Java including a Main class corresponding
to the main ABS block. These packages then need to then be integrated together with the ABS-API library
in a new Java program and run using the generated main method.

Case Study

The tool is currently tested on the well-known Mapreduce application that is modeled in ABS which tests
the cooperative scheduling feature, as well as parallel and distributed computing. The tool is being applied
to the Engineering Case Study to further test its support for Real-Time applications and remote deployment
and scalability. It is not yet able to handle the full complexity of the Engineering case study, but we expect
to address this complexity in the near future.

Evaluation

We evaluated the tool especially performance-wise, in terms of execution time, memory usage, and possible
overheads introduced with the ABS-API library’s support for ABS features. The evaluation focused on
minimizing these overheads that are introduced by the following:

• Large number of heavyweight Java Threads created by cooperative scheduling.

• Data structures used of distributed future control and propagation.

• Using Java reflection for asynchronous method invocation on remote objects.

46

Chapter 6

Conclusion

6.1 Overall Coverage of Overall Project Objectives

Chapter 3 has explained how all case studies successfully covered aspects of the overall project objectives.

• Objective O1: Foundations of Computation with Virtualized Resources.
The case studies have systematically explored different aspects of virtualized architectures, including
both static and dynamic resource provisioning on virtual machine instances with different resources
such as, e.g., cores, processing speed, and bandwidth.

• Objective O2: Behavioral Specification Language for Virtualized Resources.
All case studies have been developed using the ABS modeling language, and have covered all aspects
of the modeling language that were the focus of the Envisage project, including deployment modeling
with different kinds of resources. Section 6.2 below discusses the usage of the modeling constructs
in more detail. All case studies made use of the executable models in ABS and the simulation tool.
Overall, the case studies covered all the main modeling abstractions and demonstrated their usefulness.

• Objective O3: Design-by-Contract Methodology for Service Contracts.
The analysis of Service Contracts was crucial for all three case studies, albeit in complementary ways.
For ATB, the main concern was related to throughput: the time from data arrived to the system until it
could be leveraged to the handsets. For ENG, the main concern was to efficiently make acceptable SLAs
and the business-level concerns of a cloud provider. For FRH, the main concern was the relationship
between low-level (cloud-side) service contracts and the high-level (customer-side) service contracts.

• Objective O4: Model Conformance Demonstrator. The case studies used different approaches
to ensure conformance between the ABS models and the actual, modeled systems. Whereas ENG
experimented with code generation as a way to bridge the gap between models and code, FRH focused
on recreating the APIs of their production system in the ABS model, together with the resource profiles
of the virtual machines and Services used in production. Furthermore, FRH plugged in real-world data
from the production system through the HTTP API. ATB carried out a careful validation of the
throughput in the model by comparisons with the real system.

• Objective O5: Model Analysis Demonstrator. All case studies made comprehensive use of
analysis tools to assess the non-functional properties of the ABS models. Section 6.3 below discusses
the usage of the modeling constructs in more detail. Overall, the case studies covered all the main
analysis techniques and demonstrated their usefulness.

6.2 Modeling Capabilities

For the modeling of virtualized services, ABS provides essential features which are not currently available in
other modeling languages. Of particular importance is the support for deployment modeling and for resource

47

Envisage Deliverable D4.5 Overall Assessment

modeling. The relevance and usefulness of these features were clearly demonstrated in all case studies. The
non-functional aspects of the case studies could not, to the best of our knowledge, be modeled in any other
modeling language available today.

In addition, the separation between a functional layer, an imperative layer, and a deployment layer proved
very useful. For the development of the case studies, more conventional support for structuring could have
been useful. ABS proposes delta-modeling as a way to define a family of models, but case study developers
would have liked support for reuse inside the models. This was not given priority within the scope of Envisage,
but we observe that support for code reuse in the form of traits has been integrated in the ABS tool chain
recently in a collaboration between TUD and the University of Torino.

Table 5.1 (page 37) provides a detailed overview of the language features explored in the three case
studies. As we see, all important features of the resource modeling and the deployment modeling parts of
ABS were explored in the case studies.

6.3 Analysis Capabilities

Exploring the foundations of virtualized computation (Objective O1), ABS has a formally defined semantics
amenable to a range of analysis techniques. The carefully selected feature combinations of ABS enable
compositional analysis based on the concurrent object abstraction, which was crucial for many of the analysis
techniques developed in the project. The suite of available analysis tools for ABS is unique, and particularly
well-suited for virtualized services as targeted by Envisage, including the smart deployer, deadlock analysis,
cost analysis, and simulation with visualization of deployment component loads and service metrics.

The coverage of the analysis techniques by the case studies is shown in Table 5.2 (page 38). Unsurprisingly,
we see that whereas the fully automated tools for simulation and deadlock analysis were successfully used in
all case studies, the tools which required more user interaction (or were developed late in the project lifetime)
were not fully covered by all case studies. The selection of tools for each particular case study also reflects the
identified needs of the stakeholders for that case study. As the table shows, all tools were successfully applied
to at least one case study, guaranteeing that they were evaluated. Section 5.2 summarizes the evaluation
process for all the tools.

6.4 Integration in Working Practices

We investigated in D5.3 [4] how the approach pursued in Envisage relates to, and can be integrated in
industrial working practices. One of the main software development processes used in Cloud computing
is the DevOps methodology. Figure 6.1 shows a diagram for a DevOps work-flow. DevOps emphasizes

Figure 6.1: A DevOps work-flow connects development and operations in a continuous iterative process
(illustration source: Gene Kim, HP, and PwC, 2013).

48

Envisage Deliverable D4.5 Overall Assessment

collaboration between software developers, operations personnel and quality assurance teams, recognizing
interdependencies between software design, quality of service (QoS) and quality assurance. This is achieved
by a recurring flow of rapid releases facilitated by automated configuration and continuous monitoring and
formal analyses (for example, testing). Envisage puts the above DevOps work-flow on a rigorous basis as
follows:

• Automated Configuration: Envisage allows configuration and deployment choices already at the
modeling level for even very abstract models, and can automatically synthesize deployment configura-
tions from high-level requirements. This allows early exploration and analysis of different alternative
deployments, thereby supporting operations and development teams.

• Continuous monitoring and feedback is lifted by Envisage from low-level metrics to high-level
metrics directly related to fully formalized SLAs and KPIs. Feedback is given in two directions: non-
intrusively by visualizing and querying monitored data, or more intrusive, by automatic execution of
corrective actions (such as auto-scaling while respecting high-level deployment requirements) based on
the monitored data.

• The Envisage approach was shown to be amenable to Continuous Integration by the adoption of
Jenkins, a widely used continuous integration system. This approach was successfully applied on the
ATB case study.

• Collaborative development is supported by Envisage through the novel ABS collaboratory, and
integration into widely used existing IDEs (Eclipse and Emacs plug-ins).

• Formal Analyses. Envisage offers a wide range of powerful tool-supported (semi-) automated anal-
yses, including automated tests: in addition to testing, there is support for functional verification,
resource analysis and deadlock freedom.

6.5 Follow-up on Industrial Case Studies

The industry partners of Envisage will make use of the lessons learned in the project after the project period.
Whereas the concrete exploitation planes are discussed in D5.8 [17], we here briefly summarize the main
messages retained by the industry partners from their participation in the Envisage project and the work on
their case studies.

• ATB. Bugs we experience are typically related to resource overuse (e.g. out-of-memory) and concur-
rency (in particular within mobile apps). The use of model-based simulation, deadlock analysis, and
resource analysis in ABS directly addresses these issues. Using ABS for modeling critical concurrency-
related code will make us more productive and provide higher quality to our customers. ATB is already
testing out ABS to develop scalable cloud solutions in collaboration with UIO.

• FRH. At FRH, we will continue working with a model-based approach using ABS and the SAGA
monitoring system developed in Envisage to further automate the deployment of Fredhopper Cloud
Services and in particular to the automated generation of monitors for service metrics. We hope to
gradually move this work from research to production.

• ENG. Improving SLA management through formalization, analysis and test techniques as done in the
Envisage project, will enable ENG to better satisfy customers’ demand and to mitigate the risk of
SLA violation. This directly impacts on reducing penalty costs from ENG cloud services. Indirectly
it also impacts the quality of service perceived by ENG customers, empowering ENG to attract more
customers.

49

Bibliography

[1] Initial Modeling of the ATB Case Study, July 2014. Deliverable D4.2.1 of project FP7-610582 (ENVIS-
AGE), available at http://www.envisage-project.eu.

[2] Initial Modeling of the FRH Case Study, July 2014. Deliverable D4.3.1 of project FP7-610582 (ENVIS-
AGE), available at http://www.envisage-project.eu.

[3] Initial User Requirements, January 2014. Deliverable D4.1 of project FP7-610582 (ENVISAGE), avail-
able at http://www.envisage-project.eu.

[4] Envisage Work Flow, September 2015. Deliverable D5.3 of project FP7-610582 (ENVISAGE), available
at http://www.envisage-project.eu.

[5] Formalization of Service Contracts and SLAs (Initial Report), March 2015. Deliverable D2.2.1 of project
FP7-610582 (ENVISAGE), available at http://www.envisage-project.eu.

[6] Initial Modeling of the ENG Case Study (Resubmitted), January 2015. Deliverable D4.4.1 of project
FP7-610582 (ENVISAGE), available at http://www.envisage-project.eu.

[7] Modeling of Deployment (Initial Report), March 2015. Deliverable D1.3.1 of project FP7-610582 (EN-
VISAGE), available at http://www.envisage-project.eu.

[8] Monitoring Add-Ons and Visualization (Initial Report), September 2015. Deliverable D2.3.1 of project
FP7-610582 (ENVISAGE), available at http://www.envisage-project.eu.

[9] Resource-aware Modeling of the ATB Case Study, July 2015. Deliverable D4.2.2 of project FP7-610582
(ENVISAGE), available at http://www.envisage-project.eu.

[10] Resource-aware Modeling of the ENG Case Study, July 2015. Deliverable D4.4.2 of project FP7-610582
(ENVISAGE), available at http://www.envisage-project.eu.

[11] Resource-aware Modeling of the FRH Case Study, July 2015. Deliverable D4.3.2 of project FP7-610582
(ENVISAGE), available at http://www.envisage-project.eu.

[12] Assurance of the ATB Case Study, September 2016. Deliverable D4.2.3 of project FP7-610582 (ENVIS-
AGE), available at http://www.envisage-project.eu.

[13] Assurance of the FRH Case Study, September 2016. Deliverable D4.3.3 of project FP7-610582 (ENVIS-
AGE), available at http://www.envisage-project.eu.

[14] Formalization of Service Contracts and SLAs (Final Report), March 2016. Deliverable D2.2.2 of project
FP7-610582 (ENVISAGE), available at http://www.envisage-project.eu.

[15] Modeling of Deployment (Final Report), March 2016. Deliverable D1.3.2 of project FP7-610582 (EN-
VISAGE), available at http://www.envisage-project.eu.

[16] Monitoring Add-Ons and Visualization (Final Report), September 2016. Deliverable D2.3.2 of project
FP7-610582 (ENVISAGE), available at http://www.envisage-project.eu.

50

http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu

Envisage Deliverable D4.5 Overall Assessment

[17] Standardization Activities & Final Exploitation Plan, September 2016. Deliverable D5.8 of project
FP7-610582 (ENVISAGE), available at http://www.envisage-project.eu.

[18] Abel Garcia, Cosimo Laneve, and Michael Lienhardt. Static analysis of cloud elasticity. In Proceedings
of the 17th International Symposium on Principles and Practice of Declarative Programming, Siena,
Italy, July 14-16, 2015, pages 125–136. ACM, 2015.

[19] Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for deadlock detection in core
ABS. Software and System Modeling, 15(4):1013–1048, 2016.

[20] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer, and Marcello M.
Bonsangue, editors, Proc. 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), volume 6957 of Lecture Notes in Computer Science, pages 142–164. Springer-Verlag, 2011.

[21] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Deployment variability in delta-
oriented models. In Tiziana Margaria and Bernhard Steffen, editors, 6th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation (ISOLA’14), volume 8803 of
Lecture Notes in Computer Science, pages 286–301. Springer-Verlag, 2014.

[22] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Integrating deployment architectures
and resource consumption in timed object-oriented models. Journal of Logical and Algebraic Methods
in Programming, 84(1):67–91, 2015.

[23] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. EASY meta-programming with rascal. In Gen-
erative and Transformational Techniques in Software Engineering III - International Summer School,
GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers, pages 222–289, 2009.

[24] Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch Johnsen, and Ming-Chang Lee. ABS-YARN: A formal
framework for modeling Hadoop YARN clusters. In Perdita Stevens and Andrzej Wasowski, editors, 19th
International Conference on Fundamental Approaches to Software Engineering (FASE 2016), volume
9633 of Lecture Notes in Computer Science, pages 49–65. Springer-Verlag, 2016.

51

http://www.envisage-project.eu

Glossary

Terms and Abbreviations

Atbrox Cloud and App Services A set of services and a mobile app managed by ATB through cloud
computing that allows offline search for mobile customers through a subscription service.

Continuous Deployment is a software engineering practice that enables software products to be released
to production at any time. This practice extends continuous integration with the constant feedback
loop from production environments.

Continuous Integration is a software engineering practice of merging all developer working copies with a
shared mainline several times a day. This practice is usually adopted in combination with automated
testing.

DevOps DevOps is a software development method that stresses communication, collaboration and inte-
gration between software developers and IT professionals. DevOps is a response to the interdependence
of software development and IT operations. It aims to help an organization rapidly produce software
products and services.

Enterprise Resource Planning A business management software - usually a suite of applications - that a
company can use to store and manage data from every stage of business including: product planning,
cost & development; manufacturing; marketing & sales; inventory management; shipping & payment.

ERP Enterprise Resource Planning

Fredhopper Cloud Services A set of services managed by FRH through cloud computing that allows the
offering of search and targeting facilities on a large product database to e-Commerce companies.

Hadoop Apache Hadoop is an open-source software framework for storage and large scale processing of
data-sets on clusters of commodity hardware. Hadoop is an Apache top-level project being built and
used by a global community of contributors and users. It is licensed under the Apache License 2.0.
Source: Wikipedia, http://en.wikipedia.org/wiki/Hadoop.

IaaS Infrastructure as a Service

Information Technology The application of computers and telecommunications equipment to store, re-
trieve, transmit and manipulate data, often in the context of a business or other enterprise. The term
is commonly used as a synonym for computers and computer networks, but it also encompasses other
information distribution techniques such as television and telephones.

Infrastructure as a Service A provision model in which an organisation outsources the equipment used
to support IT operations, including storage, hardware, servers and networking components. The service
provider owns the equipment and is responsible for housing, running and maintaining it. The client
typically pays on a per-use basis.

IT Information Technology

52

http://en.wikipedia.org/wiki/Hadoop

Envisage Deliverable D4.5 Overall Assessment

IT Outsourcing The practice of seeking resources, or subcontracting, outside of an organisational structure
for all or part of an IT function (including: infrastructure, software development, maintenance &
support).

Key Performance Indicator A performance measurement to assess the success of an organization or of
a particular activity.

KPI Key Performance Indicator

MapReduce MapReduce is a programming model for processing large data sets with a parallel, distributed
algorithm on a cluster.

QoS Quality of Service

Quality of Service Generic term encapsulating all the non-functional aspects of a service delivery.

PaaS Platform as a Service

Platform as a Service A category of cloud service offerings that facilitates the deployment of applications
without the cost and complexity of buying and managing the underlying hardware and software and
provisioning hosting capabilities.

Private Cloud A cloud infrastructure operated solely for a single organisation, whether managed internally
or by a third-party and hosted internally or externally.

REST Representational state transfer

Representational state transfer An architectural style for distributed hypermedia systems.

SaaS Software as a Service

Service Level Agreement A legal contract between a service provider and his customer. It records a
common understanding about services, priorities, responsibilities, guarantees, and warranties.

Service Level Objective A measurable characteristics of an SLA, such as Availability or Response Time.

Service Provisioning The process of preparing, equipping and/or configuring a service delivery system in
order to make it ready to deliver services.

SLA Service Level Agreement

SLO Service Level Objective

Software as a Service A software delivery model in which software and associated data are centrally
hosted on the cloud. SaaS is typically accessed by users using a thin client via a web browser.

Sprite Sheet Sprite Sheet is a way of combining several images as a matrix of images into one file. The
purpose is to reduce the number of files, and in some cases also to improve the compression of images.
See http://en.wikipedia.org/wiki/Sprite_(computer_graphics) for more about sprite sheets.

53

http://en.wikipedia.org/wiki/Sprite_(computer_graphics)

	1 Introduction
	2 Expectations
	2.1 Initial Industrial Requirements
	2.1.1 Requirements from ATB
	2.1.2 Requirements from ENG
	2.1.3 Requirements from FRH

	2.2 Envisage KPIs

	3 Coverage of Project Objectives by Industrial Cases
	3.1 Objective O1: Foundations of Computation with Virtualized Resources
	3.2 Objective O2: Behavioral Specification Language for Virtualized Resources
	3.3 Objective O3: Design-by-Contract Methodology for Service Contracts
	3.4 Objective O4: Model Conformance Demonstrator
	3.5 Objective O5: Model Analysis Demonstrator

	4 Feedback to Technical Tasks in Year 2
	4.1 Formal Feedback
	4.2 Other Feedback (Year 3)

	5 Language Features and Analysis Tools
	5.1 Language Features
	5.2 Tools
	5.2.1 Erlang Simulator
	5.2.2 Deadlock Analysis - SDA
	5.2.3 Deadlock Analysis - SACO
	5.2.4 Resource Analysis - SRA
	5.2.5 Resource Analysis - SACO
	5.2.6 Resource Analysis - CoFloCo
	5.2.7 Monitoring - SAGA
	5.2.8 Systematic Testing - SYCO
	5.2.9 Verification - KeY ABS
	5.2.10 Deployment - Smart Deployer
	5.2.11 Haskell Backend
	5.2.12 Java Backend

	6 Conclusion
	6.1 Overall Coverage of Overall Project Objectives
	6.2 Modeling Capabilities
	6.3 Analysis Capabilities
	6.4 Integration in Working Practices
	6.5 Follow-up on Industrial Case Studies

	Bibliography
	Glossary

