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Executive Summary:
Assurance of the FRH Case Study

This document summarises deliverable D4.3.3 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable showcases the final version of the FRH case study. We show how the ABS language
and its extensions (developed in WP1 and WP2) were able to successfully capture the Fredhopper Cloud
Services. New material in D4.3.3 focuses on quality assurance for the FRH model through the application
of the analysis techniques developed in WP3 as well as simulation, the modeling of FRH SLAs, dynamic
deployment, monitoring and visualization.
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Chapter 1

Introduction

FRH develops the Fredhopper Cloud Services to offer search and targeting facilities on a large product
database to e-Commerce companies as services (SaaS) over the cloud computing infrastructure (IaaS). In
Task 4.3 we conduct a case study on the Fredhopper Cloud Services, in which we aim to investigate the
correspondence between user-level SLAs and lower level performance metrics. In particular, to fulfill user-
level SLAs, our service deployment may offer SLA-aware services, evolve service implementation and configure
cloud resource usage autonomously.

Fredhopper uses the DevOps methodology. Figure 1.1 shows a simple diagram for a corresponding
workflow. DevOps emphasizes collaboration between software developers, operations personnel and quality

Figure 1.1: A DevOps work flow connects development and operations in a continuous iterative process
(illustration source: Gene Kim, HP, and PwC, 2013).

assurance teams, recognizing interdependencies between software design, quality of service (QoS) and quality
assurance. This is achieved by a recurring flow of rapid releases facilitated by automated configuration and
continuous monitoring and testing (or more generally, formal analyses). Below we discuss how the Envisage
approach provides a rigorous basis for and improves the existing DevOps work-flow as used in Fredhopper.

• Automated Configuration. Envisage supports automated configuration by allowing the mod-
eling at the development level and the deployment at the operations level go hand in hand; in par-
ticular, the Envisage approach allows configuration and deployment choices already at the modeling
level for even very abstract models. This allows early exploration and analysis of different alternative
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deployments, thereby supporting the operations team to make informative choices, and supporting
developers to quickly detect the possible need for further development iterations, in case the results
are not satisfactory. The application to the case study of these techniques are discussed in Chapter 4
and Section 5.3.

• Continuous monitoring is lifted by Envisage from low-level metrics such as CPU usage, to high-level
metrics directly related to (formalized) SLAs and KPIs (Section 5.2).

• Collaborative development is supported through the ABS collaboratory and integration into widely
used existing IDEs (Eclipse and Emacs plug-ins).

• Automated tests. Envisage offers a wide range of powerful tool-supported (semi-) automated anal-
yses, including automated tests: in addition to testing, there is support for functional verification,
resource analysis and deadlock freedom. The application of these techniques is described in Chapter 5.

Relation to previous Deliverables Deliverable D4.3.1 provided an initial model in the Abstract Behav-
ioral Specification language (ABS) [2, 6] of the structural and functional aspects of the Fredhopper Cloud
Services. But support for deployment of services that allow autonomous management of cloud resource usage
- based on formalizations of SLA’s - requires a resource-aware model of the Fredhopper Cloud Services. The
resource-aware version, which included the modeling on initial static deployment scenarios was described in
deliverable D4.3.2. This deliverable contains the following new contributions:

• We discuss how the case study has realized coverage of the (and verification of the) overall project
objectives (Section 1.1).

• We improved the structure of Chapter 2 and 3.

• We show the ABS language features in the case study that were needed to accurately model the
Fredhopper Cloud Services (Section 3.4).

• We show how we managed to model real-world dynamic deployment scenarios, and extend the static
initial deployment modeling to take different regions and availability zones into account (Chapter 4).

• We show how we formalized and monitor FRH SLAs (Section 5.2).

• We combine and apply the SAGA (monitoring) and SmartDeploy (deployment) tools to deploy services
with autonomous management of cloud resource usage based on the SLA (Section 5.2 and 5.3).

• We discuss our experience with the ABS back-ends (Section 5.1) and successfully analyzed the resource
analysis of the Fredhopper Cloud Services (Section 5.5), established its deadlock freedom (Section 5.4),
and verified the correctness of monitors (Section 5.6).

1.1 Realized Coverage of Project Objectives

This section shows how the FRH case study has realized coverage of the overall project objectives.

Objective O1: Foundations of Computation with Virtualized Resources

The outcome of this objective is a semantic framework for scalable architectures, infrastructures, and virtu-
alized resources. The framework provides the means to model and to specify resource-related non-functional
requirements that arise in the context of virtualized resources. Specifically, using the ABS language, we were
able to model the Fredhopper Cloud Services (Chapter 3).
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Objective O2: Behavioral Specification Language for Virtualized Resources

The initial model of the Fredhopper Cloud Services (reported in D4.3.1) was successfully extended with
resource-awareness based on the (tool supported) language extensions to ABS developed in T1.2 and T1.3.
We modeled the different kinds of virtual machines used in the Fredhopper Cloud Services as deployment
components (allocated through the infrastructure service as offered by the CloudProvider API), we added cost
annotations based on measurements from real-world log files, and were able to capture real-world deployment
scenarios. This work is reported in Chapter 3 and Chapter 4.

Objective O3: Design-by-Contract Methodology for Service Contracts

Using the technical contributions developed in T2.2 and T2.3, we were able to bridge the gap from the FRH
SLAs formulated in natural-language, to formal SLAs and Service Contracts amenable to static and dynamic
analysis.

Specifically, SLAs and Service Contracts are modeled as properties of service metric functions. A service
metric function maps a trace of events from the Service APIs to a value that indicates a QoS property or
the value of a Service Level Objective. The service metric functions themselves have been formalized in a
declarative manner with attribute grammars (which are synthesized to ordinary ABS code, amenable to the
Envisage analyses). The theory underling our approach is described in D2.2.2, D2.3.2 and D4.3.3. How the
techniques are applied to capture and monitor FRH SLAs is described in Section 3.3.2.

Objective O4: Model Conformance Demonstrator

We took various steps to ensure a close relation between the in-production Fredhopper Cloud Services and its
ABS model. The resources (i.e. kinds of virtual machines, and their properties) and resource consumption
of Service instances modeled in ABS were based directly on data from the in-production Fredhopper Cloud
Services. Furthermore, at the API level, the ABS model is almost identical to the in-production system.
This allowed us to:

1. Faithfully formalize the FRH SLAs, as the SLAs between FRH and its customers concern QoS properties
of the Service APIs exposed to the customers (Section 3.3.2 and see D2.2.2 and D2.3.2 for the theory).

2. Plug in data from the in-production system in real-time (such as externally defined monitors), through
the ABS HTTP API (see D2.3.2).

Objective O5: Model Analysis Demonstrator

The outcome of this objective is the runtime support for the resource analysis and for the validation with
the SLA. This was successfully accomplished through the application of a combination of Envisage analyses
on the Fredhopper Cloud Services, as reported in Chapter 5.
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Chapter 2

SaaS Architecture

Figure 2.1 shows a block diagram of the Fredhopper Cloud Services, where the arrows indicate service
consumption and service provision.

Service EndpointService Endpoint

Infrastructure

Platform Service

Service 
Instance

Load Balancing Service

Monitoring/
Alerting
Service

Service Endpoint

Service 
Instance

Service 
Instance

Service 
Instance

Deployment Service

Service APIs

Fredhopper 
Cloud 
Service

Cloud 
Provider

Consumes Provides

CustomersCustomers

Figure 2.1: Block diagram of the Fredhopper Cloud Services

2.1 Service Endpoints

Fredhopper Cloud Services provides several SaaS offerings on the cloud. These services are exposed via
endpoints. In practice these endpoints typically are implemented to be RESTful and accept communications
over HTTP. For example, one of the services offered by these endpoints is the Fredhopper query service,
which allows users to query over their product catalog via full text search1 and faceted navigation2. Service
endpoints are exposed via the Load Balancing Service that distributes requests over multiple service instances.

2.2 Service Instances

The advantages of offering software as a service on the cloud over on-premise deployment include the following:
1en.wikipedia.org/wiki/Full_text_search
2en.wikipedia.org/wiki/Faceted_navigation
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• to increase fault tolerance;

• to handle dynamic throughputs;

• to provide seamless service update;

• to increase service testability; and

• to improve the management of infrastructure.

To fully utilize the cloud computing paradigm, software must be designed to be horizontally scalable3.
Typically, software services are deployed as service instances. Each instance offers the same service and
is exposed via the Load Balancing Service, which in turn offers a service endpoint (Figure 2.1). Requests
through the endpoint are then distributed over the instances. In the event of varying throughput, a different
number of instances may be deployed and be exposed through the same endpoint. Moreover, at any time, if
an instance stops accepting requests, a new instance may be deployed in place.

2.3 Load Balancing Service

The Load Balancing Service is responsible for distributing requests from service endpoints to their cor-
responding instances. Currently at FRH, this service is implemented by HAProxy (www.haproxy.org), a
TCP/HTTP load balancer.

2.4 Platform Service

The Platform Service provides an interface to the Cloud Engineers [5, Table 3.1] to deploy and manage
service instances and to expose them through service endpoints. The Platform Service takes a service
specification, which includes a resource configuration for the service [5, Section 3.1], and creates and deploys
the specified service. A service specification from a customer determines which type of service is being
offered, the number of service instances to be deployed initially and the amount of virtualized resources to
be consumed by instance.

2.5 Deployment Service

The Deployment Service provides an API to the Platform Service to deploy service instances (using a ded-
icated Deloyment Agent) onto specified virtualized resources provided by the Infrastructure Service. The
API also offers operations to control the life-cycle of the deployed service instances. The Deployment Service
allows the Fredhopper Cloud Services to be independent of the specific infrastructure that underlies the
service instances.

2.6 Infrastructure Service

The Infrastructure Service offers an API to the Deployment Service to acquire and release virtualized re-
sources. At the time of writing the Fredhopper Cloud Services utilizes virtualized resources from the Amazon
Web Services (aws.amazon.com), where processing and memory resources are exposed through Elastic Com-
pute Cloud instances (https://aws.amazon.com/ec2/instance-types/).

3en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
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2.7 Monitoring and Alerting Service

The Monitoring and Alerting Service provides 24/7 monitoring services on the functional and non-functional
properties of the services offered by the Fredhopper Cloud Services, the service instances deployed by the
Platform Service, and the healthiness of the acquired virtualized resources.

If a monitored property is not satisfied, Cloud Engineers are alerted via emails and SMS messages
and Cloud Engineers can react accordingly. For example, if the query throughput of a service instance is
below a certain threshold, Cloud Engineers increase the amount of resources allocated to that service. For
broken functional properties, such as a runtime error during service uptime, Cloud Engineers notify Software
Engineers for further analysis.
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Chapter 3

Object Oriented Design

In order to apply the Envisage framework, to provide feedback to its ongoing development and to evaluate its
effectiveness, we develop an ABS model of the Fredhopper Cloud Services that faithfully captures the SaaS
architecture described informally in Chapter 2. Support for deployment of services that allow autonomous
management of cloud resource usage - based on formalizations of SLAs - requires a resource-aware model of
the Fredhopper Cloud Services.

In this chapter, we apply the Envisage framework to obtain a resource-aware ABS model of the Fredhopper
Cloud Services. We show how resources are integrated through virtual machines and cost annotations that
specify resource consumption.

The chapter concludes with an overview of the ABS language features that proved to be needed (and
in some cases were added specifically due to the continuous feedback from the case study to the technical
tasks) to accurately model the resource-aware Fredhopper Cloud Services.

3.1 Resources and Virtual machines

To support a fine-grained management of resource usage, we first model the kinds of virtual machines that
are available, together with their associated resource properties and cost. Capturing the detailed resource
properties of a virtual machine is a prerequisite to be able to make an informed decision which kind of virtual
machine is appropriate to use for each service instance, and when scaling. For instance, if the bandwidth is
identified as a bottleneck using the monitoring framework, prefer virtual machines with enhanced networking.

As noted above, the Fredhopper Cloud Services currently utilizes Amazon AWS instances. Figure 3.1
shows a JSON file with several kinds of AWS instances, and their associated resources. “Cores” denotes the
number of cores, “Memory” is the size of the memory (in MiB) and “IO” specifies the capacity of the storage
device in GB.

The JSON file is processed and converted automatically into a representation of the virtual machines in
the ABS. Figure 3.2 defines an ABS data type that enumerates the types of virtual machines.

The capacity of the resources associated to each type of virtual machine is stored in a map of type
Map<Resourcetype, Rat>. Figure 3.3 shows the map with the properties of each kind of virtual machine.
The “CostPerInterval” property indicates the pricing of an instance per hour. The prices used are for on-
demand instances: instances paid for by the hour, rather than “reserved” instances. Using a combination of
on-demand instances and reserved instances for the same kind of virtual machine is possible by distinguish-
ing two different virtual machine types (i.e., C3_LARGE_RESERVED and C3_LARGE_ONDEMAND) with the same
resources but different cost per interval.

3.2 Service Configuration

Figure 3.4 shows the basic data types involved in a service configuration. A service configuration is modeled
as a Config value that consists of the service type (ServiceType), the number of service instances and its re-

11



Envisage Deliverable D4.3.3 Assurance of the FRH Case Study

"DC_description":

[ {

"name" : "c3.large",

"provide_resources" : {"IO" : 32, "Cores" : 2, "Memory" : 3750},

"cost" : 105

},

{

"name" : "c3.xlarge",

"provide_resources" : {"IO" : 80, "Cores" : 4, "Memory" : 7500},

"cost" : 210

},

{

"name" : "c3.2xlarge",

"provide_resources" : {"IO" : 160, "Cores" : 8, "Memory" : 15000},

"cost" : 420

},

{

"name" : "m3.medium",

"provide_resources" : {"IO" : 4, "Cores" : 1, "Memory" : 3750},

"cost" : 70

},

...

]

Figure 3.1: JSON file with virtual machine types

data VMType =

C3_LARGE

| C3_XLARGE

| C3_2XLARGE

| M3_MEDIUM

| ...

;

Figure 3.2: Enumeration of virtual machine types for Amazon infrastructure provider

source requirement (List< Map<Resourcetype, Rat> >). Given a configuration c, the value instances(c)
is a list of resource descriptions l such that the length(l) is the number of service instances to be deployed
and the n-th map in the list denotes the minimal amount of resources required for the n-th instance. The
resource requirements are used to identify a suitable virtual machine. For instance, if the map for the n-th
instance contains the pair Pair(Memory, 3750), then the virtual machine on which the n-th service will be
deployed should have at least 3750 MiB of memory.

3.3 Service Endpoints and Instances

Figure 3.5 shows the static structure of an endpoint and its implementation and Figure 3.6 presents the
corresponding ABS interface definition. The interface EndPoint models a service endpoint. It can be invoked
(invoke(Request)) with a request of type Request. Currently Request is a type synonym to Integer to
denote the size of the request. The method returns Response value to denote the corresponding response.
Currently Response is a type synonym to Boolean to denote whether the request is successful. It is True
if the invocation is successful, and False otherwise. In the production system of the Fredhopper Cloud
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/∗data Resourcetype = Cores
| Memory
| Bandwidth
| CostPerInterval
| ...; // Defined in ABS.DC

∗/

def Map<Resourcetype, Rat> vmResources(VMType v) =

case v {

C3_LARGE => map[Pair(Memory,3750), Pair(Cores,2),

Pair(CostPerInterval, 105/1000)];

C3_XLARGE => map[Pair(Memory,7500), Pair(Cores,4),

Pair(CostPerInterval, 210/1000)];

C3_2XLARGE => map[Pair(Memory,15000), Pair(Cores,8),

Pair(CostPerInterval, 420/1000)];

M3_MEDIUM => map[Pair(Memory,3750), Pair(Cores,1),

Pair(CostPerInterval, 67/1000)];

...

};

Figure 3.3: Properties of virtual machine types

data ServiceType = ..;

data Config = Config(ServiceType serviceType, List< Map<Resourcetype, Rat> > instances);

Figure 3.4: Service specification

+invoke() 

-services
-state 

LoadBalancerEndPointImpl

+invoke() 
+setStatus() 
+getStatus() 

«interface» 
EndPoint 

+getServiceId() 
+getServiceType() 
+getCustomer() 
+getLatency() 
+getQueryCount() 
+getCPU()
+getBandwidth
+getMemory

Iterate over services 

*..1
+invoke()

-cost
-service 

ServiceImpl

+remove()
+add() 

«interface» 
LoadBalancerEndPoint 

«interface» 
Service 

Figure 3.5: UML class diagram of the Fredhopper Cloud Services (1)

Services, the resource utilization, may be dependent on the following two factors:

• the amount of data over which a request queries1; and

• the size of the corresponding (HTTP) response.

1In the context of the Query API, this is the size of the underlying product catalog
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type Id = Int; def Id init() = 1; def Id incr(Id id) = id + 1;

type Request = Int; def Int cost(Request r) = r;

type Response = Bool; def Response success() = True; def Bool isSuccess(Response r) = r;

interface EndPoint {

Response invoke(Request req);

Unit setStatus(State status);

State getStatus();

}

interface LoadBalancerEndPoint extends EndPoint {

Bool remove(Service service);

Bool add(Service service);

}

interface Service extends EndPoint {

Id getServiceId();

ServiceType getServiceType();

Customer getCustomer();

Int getLatency();

Int getRequestCount();

Rat getCPU();

Rat getBandwidth();

Rat getMemory();

}

Figure 3.6: ABS interface of the Fredhopper Cloud Services (1)

We use a type synonym to Integer as an argument to invoke(Request) for modeling these factors. The
interface EndPoint is extended by Service and LoadBalancerEndPoint.

The interface Service models a service instance that performs the actual computation for the request
received by its service endpoint.

type Customer = String;

class ServiceImpl(Id id, ServiceType st, Customer c, Int cost) {

Int latency = 0; Int log = 0;

..

Int cost(Request request) {

return max(1, cost(request)) * cost;

}

Response invoke(Request request) {

Int cost = this.cost(request);
Int time = currentms();

[Cost: cost] this.log = this.log + 1;

time = currentms() - time;

this.latency = max(this.latency, time);

return success();

}

..

}

Figure 3.7: Implementation of ServiceImpl.invoke(Int)
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Figure 3.7 shows the implementation of ServiceImpl.invoke(Int). The class implementation takes as
arguments at construction its Integer id, its service type st, the name of the customer to which the service
is provided c, and the cost value, which denotes the amount of CPU resources consumed by the request
when the size of the request is 1. Besides these two parameters, the exact latency of a request depends on
the amount of resources available when performing the request: latency decreases if the virtual machine that
processes the request has more CPU speed resources, and latency increases if cost and Request increase.

We use the type synonym Customer to model the customer’s name. The function currentms() is a
built-in ABS function that returns the current clock cycle, and function max(a, b) returns the larger value
of a and b. The method invoke uses the cost annotation [Cost: cost] to denote the required number of
CPU speed units to execute the annotated statement.

class LoadBalancerEndPointImpl(List<Service> services) implements LoadBalancerEndPoint {

List<Service> current = services;

{ assert this.services != Nil; }

Response invoke(Request request) {

if (this.current == Nil) {

this.current = this.services;
}

Service ser = head(this.current);
this.current = tail(this.current);
return await ser!invoke(request);

}

..

}

Figure 3.8: Implementation of LoadBalancerEndPointImpl.invoke(Request)

class LoadBalanceCPU(List<Service> services) implements LoadBalancerEndPoint {

{ assert this.services != Nil; }

Response invoke(Request request) {

List<Service> remaining = services;

Service best = head(remaining);

Fut<Rat> fMostCPU = ser!getCPU();

Rat mostCPU = fMostCPU.get;

while(remaining != Nil) {

remaining = tail(remaining);

Service ser = head(remaining);

Fut<Rat> fCPU = ser!getCPU();

Rat cpu = fCPU.get;
if(cpu < mostCPU) {

best = ser;

mostCPU = cpu;

}

}

return await best!invoke(request);

}

..

}

Figure 3.9: Implementation of LoadBalancerEndPointImpl.invoke(Request)

The interface LoadBalancerEndPoint extends interface EndPoint with the ability to dynamically as-
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sociate service instances to a service endpoint, thereby allowing requests to the endpoint to be dis-
tributed. The class LoadBalancerEndPointImpl implements LoadBalancerEndPoint and its implemen-
tation of invoke(Request) is shown in Figure 3.9. This method implements a simple round-robin load
balancing strategy to distribute requests. The class implementation LoadBalancerEndPointImpl is para-
metric to a non-empty list of unique Service references. The class LoadBalancerOptimizeCPU implements a
resource-aware load balancer to distribute requests. Specifically, a request is directed to the service instance
that currently has the most CPU speed resources available.

3.3.1 Service Architecture

Figure 3.10 shows the static structure of the Fredhopper Cloud Services, and Figure 3.11 shows the corre-
sponding interfaces in ABS. We present the modeling of the Monitoring and Alerting Service in Section 3.3.2.
The static structure shown in Figure 3.10 models dependencies between various services in the Fredhopper
Cloud Services.

ABS models virtualized resources as a DeploymentComponent. A DeploymentComponent takes a value
of the data type Map<Resourcetype, Rat> as the resource specification. The abbreviation DC is a type
synonym for DeploymentComponent.

The interface InfrastructureService is responsible for providing/managing virtual machines in the
form of DeploymentComponents. This interface is implemented by the class InfrastructureServiceImpl
shown in Figure 3.12. The figure shows the class’s implementation of acquire(Id, VMType). The method
takes as input an id of the virtual machine to be acquired and its type, and returns an instance of the
specified kind of machine. The method acquire either creates a new DeploymentComponent of the specified
type, or reuses an existing DeploymentComponent if the id already exists. The capacity of the resources
associated to the virtual machine are retrieved through the Map<Resourcetypes, Rat> vmResources given
in Figure 3.3.

The interface LoadBalancerService in Figure 3.11 is responsible for binding requests to service endpoints
to their constituent service instances. DeploymentService is responsible for allocating virtualized resources
to service instances. This is implemented by the class DeploymentServiceImpl. Figure 3.13 shows the
implementation of method DeploymentServiceImpl.install(Customer, ServiceType, Id, VMType).
This method instantiates a service of the specified type on a machine of the given type. The
allocation of the virtualized resources to the new service instance is realized by the statement
[DC: vm] Service service = new ServiceImpl(serviceId, st, customer, 2);, which indicates that
the new service instance executes on the virtual machine vm.

PlatformService provides the interface to Cloud Engineers to add and to remove services. The interface
also provides operations to the Monitoring and Alerting Service for adding and removing service instances to
an endpoint and for adding and removing resources from a service instance. PlatformService is implemented
by class PlatformServiceImpl, whose definition of method Int createService(Config, Customer) is
shown in Figure 3.14. The method createService takes a service configuration and a customer identifier,
deploys a corresponding service for that customer and returns the identifier of the service endpoint. Figure
3.16 shows how the services in the Fredhopper Cloud Services interact to deploy a service. Specifically,
the method first iteratively creates the specified number of service instances, allocating each with a virtual
machine that satisfies the resource requirements. Figure 3.16 shows the following:

1. the PlatformService interacts with the DeploymentService to install
(install(Customer c, ServiceType st, Id serviceId, VMType v)) and start service instances
(start(Id));

2. the DeploymentService interacts with the InfrastructureService to allocate
(acquire(Id id, VMType vmType)) the required resources (DeploymentComponent) to the ser-
vice instances;

3. after all service instances are deployed, the PlatformService interacts with the LoadBalancerService
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Fut<DC> fd = r!acquire(r);
DC dc = fd.get;
[DC: dc] ser = new ServiceImpl();

Figure 3.10: UML class diagram of the Fredhopper Cloud Services (2)

to bind (add(List<Service>, Id)) the instances to its service endpoint and to enable the endpoint
(enable(Id)).

Figure 3.10 shows how the model of the Fredhopper Cloud Services respects the above dependencies.
Specifically, PlatformService depends on DeploymentService and LoadBalancerService via the imple-
mentation PlatformServiceImpl, while DeploymentService depends on InfrastructureService via the
implementation DeploymentServiceImpl. Dependencies are provided via dependency injection (i.e., passing
the object that provides the service to the object that depends on it).
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interface InfrastructureService {

DeploymentComponent acquire(Id id, VMType vmType);

Unit release(DeploymentComponent component);

}

interface DeploymentService {

Unit install(Customer c, ServiceType st, Id serviceId, VMType v);

Unit uninstall(Id serviceId);

Unit start(Id serviceId);

Unit stop(Id serviceId);

}

interface LoadBalancerService {

Bool enable(Id endPointId);

Bool disable(Id endPointId);

Bool add(List<Service> services, Id endPointId);

Bool remove(Id endPointId);

Maybe<EndPoint> getServiceEndPoint(Id endPointId);

Bool decrease(Id endPointId, List<Service> services);

Bool increase(Id endPointId, List<Service> services);

}

interface PlatformService {

Unit incrService(Id endPoint, List< Map<Resourcetype, Rat> > instances);

Unit decrService(Id endPoint, List<Id> serviceIds);

List<Id> getEndPoints();

Maybe<Service> getService(Id serviceId);

List<Id> getServiceIds(Id endPoint);

Unit alterResource(Id serviceId, Map<Resourcetype, Rat> r);

Id createService(Config config, Customer customer);

Unit removeService(Id endPoint);

}

Figure 3.11: ABS interface of the Fredhopper Cloud Services (2)

3.3.2 Monitoring

The static structure diagram of the Fredhopper Cloud Services shown in Figure 3.10 includes the Monitoring
and Alerting Service. This service is modeled by the interface MonitoringService, which is implemented
by the class MonitoringServiceImpl in ABS. The class MonitoringServiceImpl, shown in Figure 3.15,
has a run method that iteratively checks which monitors in the list of scheduled monitors (monitorMap) are
ready in every clock cycle (await duration(1, 1)).

The list of scheduled monitors are recorded as a two level map, where the first level key records the
number of clock cycles between each execution of the lists of Monitors in the second level map, and the
second level key records the number of remaining clock cycles until the next execution.

Given a Monitor m, the method invocation m!monitor() executes a corrective action to improve the
quality of service.

Figures 3.17 – 3.19 depict the interactions between services to scale up the underlying resources of service
instances suffering from high latency.

Figure 3.17 shows a sequence diagram of the MonitoringServiceImpl invoking a Monitor object
to check the average latency of requests being served by all service instances (monitor()). The dia-
gram shows that the Monitor collects latency reading (Service.getLatency()) from all service instances
(PlatformService.getServiceIds(Int)) of all end points (PlatformService.getEndPoints()). If the
latency of one or more service instances is too high, the Monitor executes an action for scaling up the
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class InfrastructureServiceImpl implements InfrastructureService {

...

Map<Id, DeploymentComponent> inUse = EmptyMap;

DC acquire(Id id, VMType vmType) {

DC vm = null;
Map<Resourcetype, Rat> resourceConfig = vmResources(vmType);

Maybe<DC> md = lookup(inUse, id);

case md {

Nothing => {

//Allocate new instance of type vmType
vm = new DeploymentComponent(intToString(id), resourceConfig);

inUse = InsertAssoc(Pair(id, vm), inUse);

}

Just(d) => {

//Use existing instance with the specified id
vm = d;

}

}

return vm;

}

}

Figure 3.12: Definition of InfrastructureServiceImpl.acquire(Id, VMType)

class DeploymentServiceImpl(InfrastructureService rp) implements DeploymentService {

Map<Service, DC> allocations = EmptyMap;

Map<Id, Service> services = EmptyMap;

Service install(Customer customer, ServiceType st, Id serviceId, VMType v) {

assert lookup(services, serviceId) == Nothing;

//acquire resource
DC vm = await rp!acquire(serviceId, v);

//instantiate service on vm
[DC: vm] Service service = new ServiceImpl(serviceId, st, customer, 2);

//update maps with resources (allocations) and service instances (services)
allocations = InsertAssoc(Pair(service, dc), allocations);

services = InsertAssoc(Pair(serviceId, service), services);

return service;

}

Figure 3.13: Definition of DeploymentServiceImpl.install

virtualized resources underlying the service instances.
Figure 3.18 shows a sequence diagram of scaling up the virtualized resources (CPU unit per clock cycle)

of a service instance. The diagram shows that said instance must be first removed from the load bal-
ancer (LoadBalancerService.decrease(Int, List<Service>)), and uninstalled (uninstall(Int)) from
the existing resource via the DeploymentService. Note that the said service instance must no longer
be serving requests before its removal from the load balancer. The instance is then installed onto a
new virtual machine with the specified resource requirements and then added back to the load balancer
(LoadBalancerService.increase(Int, List<Service>)).

Figure 3.19 shows a sequence diagram of scaling up the virtualized resources of a service instance when
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class PlatformServiceImpl(DeploymentService ds, LoadBalancerService ls) .. {

Map<Id, ResourceService> services = EmptyMap;

Map<Id, Id> serToEndPoint = EmptyMap; Map<Id, List<Id>> endPoints = EmptyMap;

Map<Customer, Map<Config, Id>> customers = EmptyMap; Id serviceId = init();

Id createService(Config config, Customer customer) {

//this customer cannot already have the same service deployed
ServiceType st = serviceType(config);

assert lookupCustomerService(customers, customer, st) == Nothing;

List<Int> instances = instances(config);

//number of instances must be positive
assert instances != Nil;

//endpoint id
Int endPoint = serviceId + 1;

//create service instances
List<Service> currentServices = Nil;

List<Id> ids = Nil;

while (instances != Nil) {

Int res = head(instances);

Service service = this.createServiceInstance(customer, st, res);

Fut<Id> idf = service!getServiceId();

Id id = idf.get;
ids = Cons(id, ids);

serviceToEndPoints = InsertAssoc(Pair(id, endPoint), serviceToEndPoints);

currentServices = Cons(service, currentServices);

instances = tail(instances);

}

//associate endpoint with service instances
endPoints = InsertAssoc(Pair(endPoint, ids), endPoints);

//update customer record
customers = put(customers, customer,

put(lookupDefault(customers, customer, EmptyMap), config, endPoint));

//add services to load balancer
await ls!add(currentServices, endPoint);

//enable service
await ls!enable(endPoint);

return endPoint;

}

}

Figure 3.14: Definition of PlatformServiceImpl.createService()
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class MonitoringServiceImpl implements MonitoringService {

Map<Int, Map<Int, List<Monitor>>> monitorMap = EmptyMap;

..

Unit run() {

while (True) {

await duration(1, 1); // advance the clock
this.monitorMap = decr(this.monitorMap); //decrement
List<Monitor> toBeRun = lookupAllSecond(this.monitorMap, 0); //find all to be run
this.monitorMap = reset(this.monitorMap); //reset
//execute monitors
while (toBeRun != Nil) {

this!execute(head(toBeRun));
toBeRun = tail(toBeRun);

}

}

}

Unit execute(Monitor m) {

await m!monitor();

}

..

}

Figure 3.15: Definition of MonitoringServiceImpl.run()

it is the only instance to its service endpoint. In order to keep the service running, before removing the
instance from the load balancer, a new service instance must first be installed onto the required resource and
added to the load balancer. The old instance may then be removed and uninstalled.

3.4 ABS Feature usage

The matrix below shows the ABS language features that were needed to accurately model the resource-aware
Fredhopper Cloud Services. All major categories (i.e., functional layer, deployment modeling, etc) were used.
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Feature Used?

Functional layer

User-defined data-types

Rational Numbers

Imperative Layer

Local objects in COGs

Delta layer

Deltas

More than one product in product line

Non-trivial feature model

Deployment modeling

Creating deployment components in main block using “new DeploymentComponent”

Creating deployment components in main block using the CloudProvider class

Creating deployment components dynamically using “new DeploymentComponent”

Creating deployment components dynamically using the CloudProvider class

Resource modeling

Using static resources (one or more of Cores, Memory)

Using dynamic resources (one or more of Bandwidth, Speed)

Using cost accounting (PaymentInterval, CostPerInterval; or StartupDuration, Shut-
downDuration)

“Cost: ” (CPU) annotations using constants

“Cost: ” (CPU) annotations using non-constant expressions

“DataSize: ” (Bandwidth) annotations using constants

“DataSize: ” (Bandwidth) annotations using non-constant expressions

Using load monitoring (e.g., using the result of “dc.load(. . .)”)

Table 3.1: Usage of ABS language features in the Fredhopper Cloud Services
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Figure 3.16: UML sequence diagram of creating a service using the Fredhopper Cloud Services
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Figure 3.17: UML sequence diagram of monitoring service latency
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Figure 3.18: UML sequence diagram of scaling a service with more than one service instance
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Figure 3.19: UML sequence diagram of scaling a service with only one service instance
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Chapter 4

Modeling Deployment Scenarios

To offer services with a high QoS level, it is crucial to find an optimal deployment configuration: the number
and kind of virtual machines used in a deployment must be sufficiently powerful and the cost of the virtual
machines must be maintained at an acceptable level. The deployment configuration must also take into
account several requirements. For example, some services should be co-located with other services: deploying
an instance of the Query Service to a machine requires the presence of the Deployment Service on that same
machine. Other service instances should be deployed on different machines, for example to increase fault
tolerance (a resource failure will then not affect both service instances) or for security or business reasons,
such as allocating a dedicated (per-customer) machine to services that manipulate sensitive private customer
data (Figure 4.1).

Figure 4.1: High-level view of a deployment

Finding an optimal deployment configuration that satisfies all requirements is a complex task that is
currently done manually by an operations team. This requires domain-specific knowledge and is prone to
human-error. Furthermore, the operations team takes conservative precautions to ensure customer quality,
by overspending on the deployment configuration.

In collaboration with T1.3 (Deployment Modeling) and T2.3 (monitoring), and in publications [3, 4], a
tool-supported rigorous formal approach was developed that helps evaluating and automatically synthesizes
better initial deployment configurations in an early phase (statically, in the design phase). Since the synthe-
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sized deployment configuration are known at an early stage, reserved instances of the virtual machines can
be used, which are typically cheaper than on-demand instances. In Section 4.1 we show here how we have
used these techniques to declaratively model the initial deployment in the Fredhopper Cloud Services, and
in Section 4.2 we model dynamic deployment scenarios using the following ingredients.

• Annotations on ABS classes that specify:
(a) the amount of resource consumed by instances of the class, and
(b) dependencies to other classes.

• A high-level declarative specification that captures requirements that should be satisfied of the desired
deployment.

• The number of available virtual machines of each kind. The types of virtual machines are provided
in a JSON file along the lines of Figure 3.1. An example JSON file showing the number of available
instances of each type is given in Figure 4.2.

{

"m1.large": 3,

"m1.xlarge": 3,

"c3.medium": 10,

"c3.large": 5,

"c3.2xlarge": 3

}

Figure 4.2: JSON file with the number of available instances of each type

Cost annotations specify the amount of resources that the annotated identity consumes, such as memory
consumption, bandwidth, or CPU cycles. We have annotated the ABS model of the Fredhopper Cloud
Services with cost annotations. The costs used in the annotations were extracted based on real-world log
files of the in-production system. The resource consumption varies over time, and scenarios can be used to
capture peaks and lows in the corresponding resource consumption. Figure 4.3 is a graph representation of
one of these log files showing the number of Query requests per second and the round trip time (the total
time of the HTTP request performing a Query Request as reported by the HTTP client handler). Figure 4.4
shows the size of the Query response over time (for the same customer, on the same date).

4.1 Static Deployment

In Section 4.1.1 we show the modeling of the initial deployment configuration and Section 4.1.2 discusses the
outcome: the deployment configuration automatically synthesized.

4.1.1 Modeling

Figures 4.5 and 4.6 show annotations for the Query and Deployment services. The ABS annotation
Param("c", User) indicates that the automated deployer leaves the parameter unspecified, and the user is
expected to manually enter the right parameter instantiation. The annotation Param("ds", Req) means
that the parameter is required to be defined by the automated deployer (by first creating an appropriate
object of the desired type, and passing that as a parameter). Different scenarios (such as “DefaultUsage” and
“HeavyUsage”) can be defined to capture variations in deployment requirements (for example, for different
customers), and variations in resource consumption.

When a system deployment is automatically computed, a user expects to reach specific goals and could
have some desiderata. For instance, in the considered Fredhopper Cloud Services use case, the goal is to
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Figure 4.3: The number of queries per second (QPS) and roundtrip time (proctime) in seconds over time

Figure 4.4: The response size (in kiB) of the Query Response over time

deploy a given number of Query Services and a Platform Service, possibly located on different machines (e.g.,
to improve fault tolerance).
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[Deploy: scenario[Name("DefaultUsage"), MaxUse(1), Cost("CPU", 1), Cost("Memory", 3000),

Param("c", User), Param("ds", Req)] ]

[Deploy: scenario[Name("HeavyUsage"), MaxUse(1), Cost("CPU", 2), Cost("Memory", 4500),

Param("c", User), Param("ds", Req)] ]

class QueryServiceImpl(DeploymentService ds, Customer c) implements Service

Figure 4.5: Cost annotation of Query service

[Deploy: scenario[MaxUse(2),Cost("CPU", 1), Cost("Memory", 800),

Param("rp", Req)]]

class DeploymentServiceImpl(InfrastructureService rp) implements DeploymentService

Figure 4.6: Cost annotation of the Deployment service

These goals and requirements are expressed in a Declarative Deployment Language: a language for stating
the constraints that the final configuration should satisfy. For instance, the following constraint states that at
least two QueryService instances and exactly one object of class PlatformServiceImpl should be deployed.

INTERFACE[IQueryService] >= 2 and CLASS[PlatformServiceImpl] = 1

More complex quantities involve constraints on the virtual machines used in deploying. For example, we
can specify that no virtual machine with less than two CPUs should contain more than one object of class
QueryServiceImpl as follows.

DC[ CPU <= 2 | CLASS[QueryServiceImpl] >= 2 ] = 0

Using such constraints it is also possible to express co-location or distribution requirements. For instance, for
efficiency reasons it could be convenient to co-locate highly interacting objects or, for security or fault toler-
ance reasons, two objects should be required to be deployed separately. We can require that an object of class
QueryServiceImpl must be always co-installed together with an object of class DeploymentServiceImpl

with the following constraint.

DC[CLASS[QueryServiceImpl] > 0 and CLASS[DeploymentServiceImpl] = 0 ] = 0

4.1.2 Result

Based on the above deployment requirements, the ABS class annotations specifying resource consumption
and inter-class dependencies, and the available virtual machines in the JSON file, the SmartDeploy tool
automatically sythesizes a deployment configuration with the least cost. See Section 5.3 for a brief tool
description of SmartDeploy. Figure 4.7 shows part of the generated code by SmartDeploy.

A graphical representation of this deployment configuration is shown in Figure 4.8. The external black
and white boxes represent the deployment components used while the small boxes represent the object
deployed. Every object has a name represented by its class prefix by its deployed scenario 1. The red boxes
belonging to an object o represent the objects that are required to invoke the creation of o or the addition of
object reference to o such that later it can use them. The red boxes are connected to green boxed by arrows.
The green boxes represent the object that are passed as arguments of the constructor of o or as argument of
the methods to add their references to o.

The deployment configuration synthesized fully automatically by SmartDeploy is close to the production
deployment manually configured by the Cloud operations team.

1“Def” is used to represent the default deployment scenario when only one deployment scenario is available for that object.
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Unit deploy() {

DeploymentComponent c4_xlarge_us_1 =

cloudProvider.prelaunchInstanceNamed("c4_xlarge_us");

ls_DeploymentComponent = Cons(c4_xlarge_us_1,ls_DeploymentComponent);

DeploymentComponent c4_xlarge_us_0 =

cloudProvider.prelaunchInstanceNamed("c4_xlarge_us");

ls_DeploymentComponent = Cons(c4_xlarge_us_0,ls_DeploymentComponent);

DeploymentComponent c4_2xlarge_eu_0 =

cloudProvider.prelaunchInstanceNamed("c4_2xlarge_eu");

ls_DeploymentComponent = Cons(c4_2xlarge_eu_0,ls_DeploymentComponent);

DeploymentComponent m4_large_eu_0 =

cloudProvider.prelaunchInstanceNamed("m4_large_eu");

...

[DC: c4_xlarge_us_0] LoadBalancerEndPoint

oDef___LoadBalancerEndPointImpl_0_c4_xlarge_us_0 = new LoadBalancerEndPointImpl();

ls_LoadBalancerEndPoint =

Cons(Pair(oDef___LoadBalancerEndPointImpl_0_c4_xlarge_us_0,c4_xlarge_us_0),

ls_LoadBalancerEndPoint);

ls_EndPoint =

Cons(Pair(oDef___LoadBalancerEndPointImpl_0_c4_xlarge_us_0,c4_xlarge_us_0),

ls_EndPoint);

[DC: c4_2xlarge_us_0] DeploymentService oDef___DeploymentServiceImpl_0_c4_2xlarge_us_0 =

new DeploymentServiceImpl();

ls_DeploymentService =

Cons(Pair(oDef___DeploymentServiceImpl_0_c4_2xlarge_us_0,c4_2xlarge_us_0),

ls_DeploymentService);

[DC: c4_2xlarge_eu_0] DeploymentService oDef___DeploymentServiceImpl_0_c4_2xlarge_eu_0 =

new DeploymentServiceImpl();

ls_DeploymentService =

Cons(Pair(oDef___DeploymentServiceImpl_0_c4_2xlarge_eu_0,c4_2xlarge_eu_0),

ls_DeploymentService);

[DC: m4_xlarge_us_0] IQueryService ostaging___QueryServiceImpl_0_m4_xlarge_us_0 =

new QueryServiceImpl(oDef___DeploymentAgentImpl_0_m4_xlarge_us_0, "CustX", True);

...

}

Figure 4.7: Initial optimal deployment configuration by SmartDeploy

4.2 Dynamic Deployment

The previous section showed how we can synthesize an initial deployment configuration with optimal cost.
The question arises how to support elasticity to scale the deployment configuration dynamically (at run-
time). This required an extension of the deployment synthesis reported in D1.3.1 and applied in D4.3.2,
to produce fully executable ABS code. In contrast to the static initial deployment scenarios described in
the previous section, where deployment actions are applied at the very beginning of the execution, dynamic
deployment actions are invoked at user-specified points during execution. The extension to support dynamic
deployment actions was developed and implemented in a new tool SmartDeploy, reported in D1.3.2.

With the extension at hand, in collaboration with T1.3 and T2.3, in Deliverable D2.3.2 (Section Auto-
Scaling) we developed a technique that fully supports elastic application, by integrating the SmartDeploy
into the monitoring framework. The basic idea is to invoke deployment actions inside the monitors. Since
the monitors formalize high-level metrics used in the SLAs (rather than lower-level metrics such as CPU
usage), this approach provides a rigorous basis for auto-scaling based directly on the SLA.

In this section we report on the application of the dynamic deployment techniques described above to
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Figure 4.8: Initial Static Deployment Configuration Synthesized by SmartDeploy

the Fredhopper case study. The cost annotations for the dynamic deployment and JSON specification for
the machine types remain unchanged from Section 4.1. We focus here on the aspects that differ.

4.2.1 Modeling

With domain-specific knowledge provided by the Cloud operation team, we first identified the deployment
requirements that should be satisfied at run-time. We focus on the most interesting ones below. The main
kind of service instances that should be scaled up or down at run-time is the QueryService. A QueryService

can run in one of two modes:

• Live: a QueryService instance running in this mode, the instance is responsible for evaluating and
responding to queries.

• Staging: in this mode, the instance additionally offers the capability to customers (webshops) to update
the product catalog and update the product indices accordingly.
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Dynamic Deployment Requirements

We require the presence of at least one instance in staging mode. This is formalized as follows:

QueryServiceImpl[staging] > 0

Furthermore, whenever a new QueryService should be deployed, we require a DeploymentServiceImpl

present on the same virtual machine. This requirement was also needed for the static initial deployment
(Section 4.1) and should be preserved at run-time. It can be expressed more concisely through the use of
quantified expressions and matching based on regular expressions, which were newly introduced in D1.3.2
based on the experiences with the case study:

forall ?x in DC: (

?x.QueryServiceImpl[’.*’] > 0 impl

?x.DeploymentServiceImpl > 0 )

Here impl stands for logical implication. The regular expression ’.*’ allows us to match with both
deployment modalities for the Query Service (staging and live).

An important requirement for performance reasons and robustness is that load balancers must be installed
on a dedicated virtual machine (without other Service instances). It is formalized as follows.

forall ?x in DC: (

?x.LoadBalancerServiceImpl > 0 impl

(sum ?y in obj: ?x.?y) = ?x.LoadBalancerServiceImpl )

To increase fault tolerance, the Infrastructure provider currently used in the Fredhopper Cloud Services,
Amazon, introduced the concept of regions and Availability Zones. Each region is a separate geographic area
(such as US). Each region has multiple isolated locations known as Availability Zones. Amazon provides the
ability to place resources, such as instances, and data in multiple locations. In everyday practice, this means
that the Cloud operators scale the number of QueryService in two availability zones simultaneously, so that
a failure in one zone does not affect the availability. This policy is captured with quantified expressions as
follows:

(sum ?x in ’.*_us1’: ?x.QueryServiceImpl[’.*’]) =

(sum ?x in ’.*_us2’: ?x.QueryServiceImpl[’.*’])

The left-hand side denotes the number of query service instances in the us1 availability zone, and the
right-hand side denotes the number of instances in the us2 zone.

Binding preferences

In order to allow the connection of components with components located in the same availability zone or
region, SmartDeploy introduced the notion of binding preferences. SmartDeploy first computes the com-
ponents for the optimal configuration and then it uses these preferences to compute the final configuration
establish the component connections that maximize the binding preferences.

As an example, the QueryService in the US region must be connected to the LoadBalancerEndPoint

deployed in the same region. SmartDeploy enforces this with the following preference.

"sum ?x of type QueryServiceImpl[’.*’] in ’.*_us.’ :

forall ?y of type LoadBalancerEndPointImpl in ’.*_us.’ :

?x used by ?y",

This preference requires to maximize the number of connections between every QueryService deployed in
US region and every LoadBalancerEndPoint in that same region. As a consequence all the QueryService

in the US region will be connected to all the LoadBalancerEndPoint in the same region.
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Binding preferences also make it possible to avoid establishing connections between certain objects, or
add connections to existing objects instead of newly created instances.

Installation actions

To successfully deploy new service instances, certain installation actions should be executed. For example,
whenever a new QueryService is added, it should be added to the appropriate load balancers (all load
balancers in the same region as the new query service) through an add(Service) method. It should then
be announced to the platform through an addServiceInstance method. The last step is to finalize the
deployment of the new query service, by calling the install method on the deployment service.

The order of these actions are important and can be specified as follows:

"add_method_priorities":[

{

"class":"LoadBalancerEndPointImpl",

"method":"add"

},

{

"class":"PlatformServiceImpl",

"method":"addServiceInstance"

},

{

"class":"DeploymentAgentImpl",

"method":"install"

}

]

4.2.2 Result

SmartDeploy was able to automatically synthesize a dynamic deployment configuration an appropriate de-
ployment configuration with optimal cost. It satisfies all the dynamic requirements, respects the specified
binding preferences and generates fully executable ABS code that execute the installation actions arising
from dynamic scaling actions in the desired order.

Figure 4.9 shows the resulting dynamic deployment configuration (modifying the current deployment
configuration at run-time) synthesized automatically by the SmartDeploy. This picture depicts the addition
of 2 QueryService in the US region with the requirement that their addition should be balanced between the
two availability zones. The external black and white boxes represent the used deployment components and
the small boxes represent the object deployed. Every object has a name represented by its class prefixed by its
deployed scenario 2. The red boxes belonging to an object o represent the objects that were required to create
o, or are needed by o as references. The red boxes are connected to green boxed by arrows. The green boxes
represent the objects that are passed as arguments of the constructor of o, or as argument of the installation
methods of o. The deployment component on the right, denoted as “___initial_DC”, is a fictional location
used to contain all the already available objects that can provide resources for the objects that need to be
created. In this case the initial objects represent two Platform Services (one deployed in the US and one
in the EU region), two LoadBalancerService, two DeploymentService, and three LoadBalancerEndPoint
(one in Europe and two in US, one for every availability zone). As expected, SmartDeploy decided to require
two new machines of type m4-large, one in the us1 availability zone and one in the us2 availability zone. In
each machine, SmartDeploy installs both a QueryService and a DeploymentAgent.

2“Def” is used to represent the default deployment scenario when only one deployment scenario is available for that object.
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m4_large_us2_0

m4_large_us1_0

___initial_DC_0

live___QueryServiceImpl

Service

DeploymentAgent

Def___DeploymentAgentImpl

DeploymentAgent

Service

live___QueryServiceImpl

Service

DeploymentAgent

Def___DeploymentAgentImpl

DeploymentAgent

Service

___d02d9ef70f6443e68ec1d7d0ca74eb79

___8e79377a93b04b40be30fd91a3218912

Service

___906ae69abb0442a09b93323469291676

DeploymentAgent

___cee6b978ef4e4029a6880746cd1be133

Service

___9822e2a09feb458585982a29dd1de479

Service

___9062bb68850443b39a056b2be64352bd

___b8bd1a17d71840f1ba4ec862884a5710

Figure 4.9: Dynamically scaling the deployment with new Query Service using SmartDeploy
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Chapter 5

Application of Envisage Analyses

Analysis Name
Simulator
Deadlock Analysis
Resource Analysis
Monitoring
Verification
Deployment

Table 5.1: Overview of analyses used on the case study

5.1 Simulator

Throughout the project, the case study has used multiple back-ends. Initial focus was on the Maude back-
end, subsequently (and currently) the Erlang back-end, and recently work on the Haskell back-end has been
initiated. The Fredhopper Cloud Services exploits a wide-range of ABS features (see Section 3.4) and libraries
(including the recently delivered HTTP API from D2.3.2), making it a challenging case for the back-ends.

The case study has been used to uncover many subtle problems (which subsequently led to fixes, see
the bug tracker1) and triggered improvements to i.e., Deployment Modeling (the CloudProvider as well
as DeploymentComponent), Timed-ABS and the ABS libraries (some of the feedback has been reported
formally in Chapter 3 of D4.3.2, D4.5 details how it was addressed). The improvements led to corresponding
extensions in the back-ends.

5.2 Monitoring SLAs

To ensure a high quality of service, web shops negotiate an aggressive Service Level Agreement (SLA) with
FRH. QoS attributes of interest include query latency (response time) and throughput (queries per second).
At FRH, the following SLA negotiated with a customer expresses service degradation requirements (the exact
percentages are negotiable):

“Services must maintain 100 queries per second with less than 200 milliseconds respectively 500
ms according to the target percentages in Table 5.2, ignoring the 2% slowest queries.”

1https://github.com/abstools
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Customer ≤ 200ms ≤ 500ms
cust1 99.5% 99.9%
cust2 95% 99%

Table 5.2: Target query proctimes for Service Degradation SLA per Customer

An SLA specifies properties of service metric functions. In general, a service metric function maps an
event trace of interactions of customers with the Service APIs to a value, which indicates the corresponding
QoS level of the metric. In this case, the service metric function is defined in terms of the percentage of
client requests which are processed in a “slow” manner. For the example SLA, the service degradation is
concerned with the percentage of queries slower than 200 (500) milliseconds. The two percent slowest queries
are subtracted for the following reason. When a new query service is instantiated, certain initialization steps
must be executed. During initialization, the processing time is much higher and would immediately result
in violations of the SLA.

In this section we formalize the above service metric function using a service view and an attribute
grammar. From these two ingredients, an executable ABS monitor with optimal performance is synthesized
fully automatically. The theory underlying the formalization of service metrics with grammars is described
in D2.3.2, Chapter 3.

5.2.1 Service View

A service view names the events in the Service APIs relevant for the service metric. The service view for the
degradation metric is shown in Figure 5.1.

view Degradation {

invoke(Time t, Customer customer, Rat procTime) query

}

Figure 5.1: Service View for Degradation

It identifies the invoke event as the only relevant event for Service Degradation and associates the name
query. The attribute Time t indicates the time the event was issued, Customer customer identifies the
customer, i.e. web-shop that issued it (the type Customer is an alias for String), and Rat procTime indicates
the processing time of the event.

5.2.2 Grammar

Grammars map event traces to QoS values. In our running example of Service Degradation, we map a trace
of events named query from the service view to the degradation percentages per customer for queries slower
than 200ms respectively 500ms. The Service Degradation grammar declares 5 attributes (line 3 - 17):

• slowQpct: this is the main attribute formalizing the Service Degradation percentage per customer.
As an example, if the percentage of queries slower than 200ms for a customer named “cust1” is 1.3%,
slowQpct maps the string “cust1.fas.live.200ms” to the value 1.3.

• degradationSLA: this mapping formalizes the SLA requirements per customer: for each metric it yields
the agreed (with the customer) target value of that metric.

• cnt is a helper attribute indicating the total number of events per customer.

• slow200Cnt is a helper attribute storing the total number of queries slower than 200ms per customer.

• slow500cnt is a helper attribute storing the total number of queries slower than 500ms per customer.
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Figure 5.2 shows how these attributes are updated with actions in the grammar. The local variables new200
and new500 store the new value of the number of queries slower than 200ms respectively 500ms, and they
are updated (line 22 and 23) based on the procTime (see the service view in Figure 5.1) of the query.

1 type Customer = String;

2

3 // main metric attribute
4 Map<String, Rat> slowQpct = EmptyMap;

5

6 // SLA requirements
7 Map<String, Rat> degradationSLA =

8 map[Pair("cust1.fas.live.200ms", 5/1000),

9 Pair("cust1.fas.live.500ms", 1/1000),

10 Pair("cust2.fas.live.200ms", 5/100),

11 Pair("cust2.fas.live.500ms", 1/100)

12 ];

13

14 // auxiliary attributes
15 Map<Customer, Int> cnt = EmptyMap;

16 Map<Customer, Int> slow200Cnt = EmptyMap;

17 Map<Customer, Int> slow500Cnt = EmptyMap;

18

19 S ::= query

20 { Int old200 = lookup(slow200Cnt, customer);

21 Int old500 = lookup(slow500Cnt, customer);

22 Int new200 = old200 + case(procTime>200) { True => 1; False => 0;};

23 Int new500 = old500 + case(procTime>500) { True => 1; False => 0;};

24 slow200Cnt = put(slow200Cnt, Pair(customer, new200));

25 slow500Cnt = put(slow500Cnt, Pair(customer, new500));

26

27 cnt=cnt+1;

28 Int twoPct = 2*cnt/100;

29 slowQpct = insert(slowQpct, Pair(customer + ".fas.live.200ms",

30 100*max(0,new200-twoPct)/cnt),

31 Pair(customer + ".fas.live.500ms",

32 100*max(0,new500-twoPct)/cnt)];

33 }

34 S

Figure 5.2: Grammar for Service Degradation

5.2.3 Monitor

From the grammar, the monitoring framework automatically synthesizes executable ABS code. The gener-
ated monitor is resource efficient: CPU and memory consumption is constant per event. The values of the
metrics over time are visualized with Grafana. Figure 5.3 and Figure 5.4 show the percentage of queries
slower than 200ms, respectively 500ms (minus the 2% lowest queries) based on feeding the Fredhopper Cloud
Services in ABS with input data from a real-world log file, by invoking a LoadBalancerEndPointImpl end-
point. The figures are screenshots of the Service Degradation monitor defined in the previous subsections,
visualized using the ABS monitoring visualization framework (see D2.3.2).

After a short initialization time (beginning of Figure 5.3), the target values for the Service Degradation
in Table 5.2 are met (Figure 5.4).
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Figure 5.3: Degradation Visualization Overview

Figure 5.4: Degradation Visualization Zoomed

5.3 Deployment

SmartDeploy is a tool that automatically synthesizes an appropriate deployment configuration with minimal
cost. It takes into account the declarative deployment requirements, an ABS model with cost annotations for
the services to deploy, the kinds and number of available virtual machines, and optionally binding preferences
and installation action priorities (Chapter 4).

SmartDeploy relies on Zephyrus2 [1], i.e., a configuration optimizer that allows to compute the optimal
configuration to deploy on different computational resources. Zephyrus2 uses constraint programming tech-
niques to solve in sequence several NP-hard minimization problems. Thus, these problems being NP-hard,
there are no polynomial time guarantees on the performances of SmartDeploy. However, in practice Smart-
Deploy can address and compute the optimal allocation of a hundred of ABS objects in dozens of different
deployment component types in matter of seconds. A detailed evaluation of the scalability of SmartDeploy
is left as a future work.

SmartDeploy generates as output a delta module (≈ 300 lines of code). This allows the definition of
classes needed to trigger the creation of the deployment components and the object creation. The added
classes may be freely used inside the ABS program.

In the end, after a close collaboration between the case study owners and the SmartDeploy tool developers,
SmartDeploy was able to faithfully capture all the different aspects of the case study. The case study has
driven support for many of the new features reported in D1.3.2, such as the ability to execute dynamic
deployment actions, use quantified expressions and regular expression matching. Some of the extensions go
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beyond even what was reported in D1.3.2, specifically, the binding preferences and the ordering of installation
actions. (see Section 4.2).

In the existing system, the Cloud operations team manually decides to scale, and since FRH has very
aggressive SLAs, the team is typically conservative with downscaling, leading to potential over-spending. The
ability of SmartDeploy to deploy in the programming language (ABS) itself allows to leverage the extensive
tool-supported analyses available for ABS. This enabled us to integrate deployment/undeployment actions
inside monitors that track the quality of services, thereby providing a rigorous basis (the formalized SLA
agreed with the customer) for auto-scaling. For example, the monitor in Figure 5.5 for Service Degradation
(see Section 5.2.3) shows a simple example how we can scale up or down based on the current QoS vs. the
SLA.

1 Unit monitor() {

2 Set<String> slaMetrics = keys(degradationSLA);

3

4 while(!emptySet(slaMetrics)) {

5 String metricName = take(slaMetrics);

6 Rat latestMeasurement = snd(head(lookup(metricHist, metricName)));

7 if(latestMeasurement > lookup(degradationSLA, metricName)) {

8 deployer.scaleUp();

9 } else if(2*latestMeasurement < lookup(degradationSLA, metricName)) {

10 deployer.scaleDown();

11 }

12 }

13 }

Figure 5.5: Corrective Actions for Service Degradation

Furthermore, while the operations team currently uses ad-hoc scripts to configure newly added or removed
service instances, and these scripts are specific to the infrastructure provider, SmartDeploy automatically
generates code that accomplishes this. SmartDeploy is flexible in the sense that it is infrastructure indepen-
dent, allowing to seamlessly switch between different infrastructure providers: virtual machines are launched
and terminated through a generic Cloud API offered by ABS for managing virtual resources. Executable
code is automatically generated from ABS for any of the infrastructures for which an implementation of the
Cloud API exists (e.g., Amazon, Docker, OpenStack).

5.4 Deadlock Analysis

We used the SACO deadlock analysis to check whether the model is deadlock free. The application of the
deadlock analysis took less than one second and returns that the program is deadlock free. In particular,
this ensures that the asynchronous communication between different services (see Chapter 2 and chapter 3)
do not introduce deadlocks. The output of the tool shows:

Abs program loaded in 25 ms.

Rule based representation generated in 73 ms.

Points-to analysis: Fixpoint reached in 281 iterations

Points-to analysis performed in 71 ms.

LMhp analysis performed in 84 ms.

Mhp graph created in 12 ms.

Closure time 186 ms.

Deadlock analysis 9 ms.

Discarded 0 cycles with freshness analysis.

The program is deadlock free
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Complete analysis performed in 408 ms.

5.5 Resource Analysis

The resource analysis of the model has been done by using SACO, which is integrated in the collaboratory
tool suite published in http://abs-models.org/. We used SACO to identify potential bottlenecks in the
Fredhopper Cloud Services and analyze the resource consumption of various services. To perform the analysis,
some modifications on the original model were required to properly handle the model:

• Some rational numbers were removed to properly maximize expressions.

• We replaced sets by lists, because it is needed by SACO to guarantee that the loops that traverse the
data structure terminate.

• Some annotations were added to the model to incorporate to the source code some information about
the “size relations” of certain variables of the model.

• Due to a “possible” inheritance, the analysis identifies a possible recursion which could imply the non-
termination of the method. Thus, we have changed the type of one variable to allow SACO to prove
termination of the method.

• In the model, there are two intentional while(True) loops: these concern methods in Services that
should keep running indefinitely, such as MonitoringService. The termination analysis has identified
them and indicates that these methods will not terminate. However, to obtain the cost associated to
the cost «annotations», we have changed those loops (introducing a fresh variable that bounds the
number of iterations) in order to obtain the total cost of the program starting from the main method.

5.5.1 Termination

We used SACO’s Resource Analysis to evaluate the termination of the methods contained in the model. We
applied the termination cost model to all methods in the model and obtained the following results:

Method InfrastructureServiceImpl.cpu terminates?: YES

Method InfrastructureServiceImpl.cpu terminates?: YES

Method InfrastructureServiceImpl.acquireInstance terminates?: YES

Method InfrastructureServiceImpl.release terminates?: YES

Method LoadBalancerEndPointImpl.remove terminates?: YES

Method LoadBalancerEndPointImpl.add terminates?: YES

Method LoadBalancerEndPointImpl.invoke terminates?: YES

Method LoadBalancerEndPointImpl.setStatus terminates?: YES

Method LoadBalancerEndPointImpl.getStatus terminates?: YES

Method ServiceImpl.getCPU terminates?: YES

Method ServiceImpl.getResource terminates?: YES

Method ServiceImpl.cost terminates?: YES

Method ServiceImpl.getLatency terminates?: YES

Method ServiceImpl.getStatus terminates?: YES

Method ServiceImpl.setStatus terminates?: YES

Method ServiceImpl.getServiceId terminates?: YES

Method ServiceImpl.getServiceType terminates?: YES

Method ServiceImpl.getCustomer terminates?: YES

Method DeploymentServiceImpl.install terminates?: YES

Method DeploymentServiceImpl.lookup terminates?: YES

Method DeploymentServiceImpl.uninstall terminates?: YES

Method DeploymentServiceImpl.invoke terminates?: YES
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Method DeploymentServiceImpl.start terminates?: YES

Method DeploymentServiceImpl.stop terminates?: YES

Method LoadBalancerServiceImpl.change terminates?: YES

Method LoadBalancerServiceImpl.decrease terminates?: YES

Method LoadBalancerServiceImpl.increase terminates?: YES

Method LoadBalancerServiceImpl.status terminates?: YES

Method LoadBalancerServiceImpl.enable terminates?: YES

Method LoadBalancerServiceImpl.add terminates?: YES

Method LoadBalancerServiceImpl.getServiceEndPoint terminates?: YES

Method PlatformServiceImpl.createService terminates?: YES

Method PlatformServiceImpl.createServiceInstance terminates?: YES

Method PlatformServiceImpl.uninstallInstance terminates?: YES

Method PlatformServiceImpl.alterResource terminates?: YES

Method PlatformServiceImpl.getEndPoints terminates?: YES

Method PlatformServiceImpl.getServiceIds terminates?: YES

Method PlatformServiceImpl.getService terminates?: YES

Method PlatformServiceImpl.findVM terminates?: YES

Method PlatformServiceImpl.matchResources terminates?: YES

Method RepeatUserImpl.use terminates?: UNKOWN

Method RepeatUserImpl.invoke terminates?: YES

Method RepeatUserImpl.invokeWithSize terminates?: YES

Method RepeatUserImpl.getState terminates?: YES

Method MonitoringServiceImpl.add terminates?: YES

Method MonitoringServiceImpl.run terminates?: UNKOWN

Method MonitoringServiceImpl.execute terminates?: YES

Method LatencyMonitor.scaling terminates?: YES

Method LatencyMonitor.getLatencies terminates?: YES

Method LatencyMonitor.monitor terminates?: YES

Method ScaleResourceAction.action terminates?: YES

Method ServiceProviderImpl.addCustomer terminates?: YES

Method QueryServiceImpl.invoke terminates?: YES

Method QueryServiceImpl.setStatus terminates?: YES

Method QueryServiceImpl.getStatus terminates?: YES

Method QueryServiceImpl.getServiceId terminates?: YES

Method QueryServiceImpl.getServiceType terminates?: YES

Method QueryServiceImpl.getCustomer terminates?: YES

Method QueryServiceImpl.getLatency terminates?: YES

Method QueryServiceImpl.cost terminates?: YES

Method QueryServiceImpl.getCPU terminates?: YES

Method QueryServiceImpl.getResource terminates?: YES

Method ExampleSetup.getConfigs terminates?: YES

Method ExampleSetup.main terminates?: UNKOWN

Method DeploymentComponent.total terminates?: YES

SACO guarantees the termination of all methods except those methods with the while(True) loops.
These methods (also emphasized in the listing) are: (1) MonitoringServiceImpl.run, which is responsible
for monitoring the behavior of the model, and (2) RepeatUserImpl.use, which simulates a simple example
user that repeatedly invokes requests to ServiceImpl. Since the main invokes these methods, SACO also
(correctly) does not prove that main terminates.

5.5.2 Analysis of Relevant Methods

The next step of the work aims to infer the complexity of some particular methods of interest. This exposes
potential bottlenecks. The resource analysis has been performed on the number of steps and the results are
summarized in the following table:
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Method Complexity
LoadBalancerServiceImpl::change n2

QueryServiceImpl::invoke 1

LoadBalancerEndPointImpl::invoke 1

ServiceImpl::invoke 1

DeploymentServiceImpl::invoke n

PlatformServiceImpl::createService n2

PlatformServiceImpl::incrService n3

5.5.3 Objects

The number of object creations are an important measure for memory consumption. SACO was able to
successfully obtain the following upper-bound:

c(object(’ExampleSetup’))

+ c(object(’CloudProvider’))

+ c(object(’InfrastructureServiceImpl’))

+ c(object(’DeploymentServiceImpl’))

+ c(object(’LoadBalancerServiceImpl’))

+ c(object(’PlatformServiceImpl’))

+ c(object(’MonitoringServiceImpl’))

+ c(object(’ServiceProviderImpl’))

+ c(object(’LatencyMonitor’))

+ 2*c(object(’DeploymentComponent’))

+ nat(max(monitorIterations))*nat(max(monitorsToBeRun)) * (

c(object(’ScaleResourceAction’))

+nat(max(latencyMonitor_scalings))*(c(object(’ServiceImpl’))+c(object(’DeploymentComponent’))))

+ nat(max(exampleSetup_configs))*nat(max(exampleSetup_instancesConfigs)) * (

nat(max(num_instancesInConfig))*(c(object(’ServiceImpl’))+c(object(’DeploymentComponent’)))

+c(object(’LoadBalancerEndPointImpl’))

+nat(max(exampleSetup_usersInConfig))*c(object(’RepeatUserImpl’)))

From the upper-bound expression we can compute the information of the following table, which shows
the number of objects of each type created by the model:
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Class Upper-bound on the number of instances
ExampleSetup 1

CloudProvider 1

InfrastructureServiceImpl 1

DeploymentServiceImpl 1

LoadBalancerServiceImpl 1

PlatformServiceImpl 1

MonitoringServiceImpl 1

ServiceProviderImpl 1

LatencyMonitor 1

DeploymentComponent 2 * nat(max(monitorIterations))*nat(max(monitorsToBeRun)) +

nat(max(setup_configs))*nat(max(setup_instancesConfigs))

ScaleResourceAction nat(max(monitorIterations))*nat(max(monitorsToBeRun))

ServiceImpl nat(max(monitorIterations))*nat(max(monitorsToBeRun))

nat(max(latencyMonitor_scalings)) +

nat(max(setup_configs))*nat(max(setup_instancesConfigs))

nat(max(num_instancesInConfig))

LoadBalancerEndPointImpl nat(max(setup_configs))*nat(max(setup_instancesConfigs))

RepeatUserImpl nat(max(setup_configs))*nat(max(setup_instancesConfigs))

nat(max(setup_usersInConfig))

By means of a points-to analysis, SACO deduces that the object creations are captured by the following
graph, where edges indicates the object responsible of creating each instance:

5.5.4 Cost Annotations

In addition to the complexity analysis discussed above, the model also contains some program points of
interest which contain annotations of the form [Cost: x], where x represents the cost of executing this
program point. The use of cost annotations allowed to abstract away from detailed low-level implementations.
By using the user cost model SACO was able to infer the cost of all annotated program points.

• Method ServiceImpl::invoke: [Cost: 1]

This annotation is used to represent the cost of executing one service invocation and this cost is accu-
mulated in the field cost. By means of SACO we can determine that the maximum cost accumulated
in cost depends on the expression:

nat(max(exSetup_configs))*nat(max(exSetup_configs))*nat(max(exSetup_usersInConfig))

*nat(max(nUses))

where exSetup_configs represents of configurations to test in the object ExampleSetup,
exSetup_usersInConfig the number of users which will try each configuration and the number of
requests performed by each user (nUses).

• Method LoadBalancerServiceImpl::add: [Cost: length(services)]
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This annotation captures the cost of creating a new LoadBalancerEndPointImpl, which depends on
the number of services used by the balancer. The following expression bounds this cost:

nat(max(exSetup_configs))*nat(max(exSetup_configs))*nat(max(exSetup_configs))

As before, exSetup_configs represents the configurations created in ExampleSetup.

• Method PlatformServiceImpl::createServiceInstance: [Cost: 20]

This annotation models the cost of creating a new service. With this annotation we can bound the cost
of creating service instances within the model, with respect to the initial configuration of ExampleSetup

20*nat(max(monitorIterations))*nat(max(monitServiceImpl_monitorMap))

*nat(max(latencyMonitor_scalings))+

20*nat(max(exSetup_configs))*nat(max(exSetup_configs))

*nat(max(exSetup_configs))

In this expression we see that there are two ways of creating new service instances, one which only
depends on exSetup_configs (the initial configuration), and another way that depends on the moni-
toring service and the amount of scales needed during execution of the model.

5.5.5 Object Sensitive Analysis

We used the object sensitive analysis to find out which objects are responsible for executing the cost-annotated
statements. We obtained the following results:

UB for ([14,main],ExampleSetup): 0

UB for ([6,14],CloudProvider): 0

UB for ([7,14],InfrastructureServiceImpl): 0

UB for ([8,14],DeploymentServiceImpl): 0

UB for ([9,14],LoadBalancerServiceImpl):

nat(max(exSetup_configs))*nat(max(exSetup_configs)) * nat(max(exSetup_configs))

UB for ([10,14],PlatformServiceImpl):

20*nat(max(exSetup_configs))*nat(max(exSetup_configs))*nat(max(exSetup_configs))+

20*nat(max(monitorIterations))*nat(max(monitoringServiceImpl_monitorMap))*

nat(max(latencyMonitor_scalings))

UB for ([11,14],MonitoringServiceImpl): 0

UB for ([12,14],ServiceProviderImpl): 0

UB for ([13,14],LatencyMonitor): 0

UB for ([1,7],DeploymentComponent): 0

UB for ([5,14],RepeatUserImpl): 0

UB for ([4,13],ScaleResourceAction): 0

UB for ([3,9],LoadBalancerEndPointImpl):

nat(max(exSetup_configs))*nat(max(exSetup_configs))*nat(max(exSetup_usersInConfig))*

nat(max(nUses))

UB for object ([2,8],ServiceImpl):

nat(max(exSetup_configs))*nat(max(exSetup_configs))*

nat(max(exSetup_usersInConfig))*nat(max(nUses))

UB for object ([main],main): 0

These results confirm that the objects responsible of executing the cost annotations are the instances of the
classes LoadBalancerServiceImpl, PlatformServiceImpl, LoadBalancerEndPointImpl and ServiceImpl.
Due to a loss of precision in the analysis, the cost that should be attributed to ServiceImpl is also attributed
to the instance of LoadBalancerEndPointImpl. This loss of precision happens because the method invoke

is implemented by both classes and the dynamic dispatching is over-approximated by the analysis.
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5.5.6 SACO improvements

The use of SACO to analyze the resource consumption of the industrial case study has lead to various
improvements in SACO, needed to obtain relevant information of the model.

• The possibility to add program variables into the cost annotations was added to SACO. In the beginning
of the project, cost annotations could only handle constant values. The cost expressions are maximized
with respect to the context of the program point where the annotation is placed, giving the worst case
cost of such cost expression.

• To upper-bound expressions, the possibility of adding cost centers with program points was added,
allowing SACO users the possibility to obtain the cost of all program points, or restrict upper bounds
to the program points of interest. This option was crucial in the analysis of monitors.

• New kinds of annotations to include «size relations» between variables which cannot be inferred with
enough precision with the automatic size analysis.

• The case study uncovered a bug in SACO’s points-to analysis, which is now fixed.

In conclusion, the application of SACO to the Fredhopper Cloud Services successfully allowed to infer
the resource consumption of services and exposed potential bottlenecks. In the other direction, the SACO
developers reported that the application helped them to find the requirements of a real world case study and
the kind of resource information that could be useful for business purposes. As future work for SACO, to-
gether with SACO developers we are exploring the possibility of adding “user-defined” cost centers to the cost
annotations, allowing the programmers to “group” the cost annotations and the possibility of identifying the
program point where a «size» annotation would be needed to get a properly maximized upper-bound. Cur-
rently, the expertise of the programmer is needed to add them at concrete program points where maximizing
the expressions is problematic for SACO.

5.6 Verification

We used KeY ABS to verify correctness of generated monitors. In particular, we verified that a monitor
for the Service Degradation metric takes appropriate corrective scaling actions whenever the SLA for the
Fredhopper Query Service is threatened. This work is discussed in detail in Deliverable D2.3.2.
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Chapter 6

Conclusion

This deliverable reported on the final version of the FRH case study. We discussed how Envisage improves the
existing work-flow in Fredhopper, and, vice versa, how the case study covers the project objectives. Before
Envisage, the status at Fredhopper was as follows:

• SLAs were a natural language document.

• There is no formalized model to derive suitable deployment configurations from the SLA automatically.

• SLAs were not amenable to formal, automated analyses. For example, there was no means to auto-
matically generate monitors for SLAs.

• Low-level implementation details present in the in-production version of the Fredhopper Cloud Services
complicated the application of formal analyses.

Our approach was model-based. We developed a resource-aware model of the Fredhopper Cloud Services
in ABS, which proved to be a powerful language able to capture all relevant aspects of the case study
(see Chapter 3, the main Code statistics are summarized in Table 6.1), we modeled real-world deployment
scenarios (Chapter 4) and applied the Envisage Analyses (Chapter 5).

Code Metric Year 1 Year 2 Final
Lines of code 1230 1410 2666
Functions 30 30 41
Classes 13 16 21

Interfaces 15 15 21
Data types and type synonyms 8 8 9

Table 6.1: Statistics

This allowed us to achieve the following improvements:

• SLAs are formalized in a declarative formalism.

• Optimal (in cost) deployment configurations that take the SLA into account are synthesized automat-
ically.

• SLAs and the Fredhopper Cloud Services in general are amenable to formal, (semi-) automated analyses.
For example, verifiable correct executable monitors with optimal resource consumption are generated
fully automatically from SLAs.

• The model-based approach allowed us to abstract away irrelevant implementation details enabling us
to successfully analyze various formal properties of the Fredhopper Cloud Services.
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Summarizing, this provides a promising basis for industrial take-up of systematic development, configuration
and deployment, and analysis of SLA-aware services. Beyond Envisage, we intend to explore a further
integration of the ABS monitors for SLAs into the in-production Fredhopper Cloud Services.
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Glossary

Terms and Abbreviations

Cloud Engineer A Cloud Engineer handles the day-to-day operation of the Fredhopper Cloud Services.
She deploys/updates services through PaaS and IaaS according to incomplete service requirements
from Consultants, diagnoses issues at service-level and either resolves them at real time or informs the
Support Engineers and/or the Software Engineers. She manages the up and down scaling of service
resources according to alerts and metric visualizations provided by the monitoring system. She also
performs any necessary infrastructural changes to the Fredhopper Cloud Services

Consultant A Consultant manages the technical setting that enables Customer to use the APIs offered by
the Fredhopper Cloud Services. She provides service requirements to Cloud Engineers

Customer A Customer is a business entity that powers her on-line shop using the APIs provided by the
Fredhopper Cloud Services

Faceted Navigation Faceted navigation is a technique for accessing information organized according to a
faceted classification system, allowing users to explore a collection of information by applying multiple
filters. Facets correspond to properties of the information elements

Fredhopper Cloud Services A set of services managed by FRH through cloud computing that allows the
offering of search and targeting facilities on a large product database to e-Commerce companies

Full Text Search In text retrieval, full-text search refers to techniques for searching a single computer-
stored document or a collection in a full text database

IaaS Infrastructure as a Service

Infrastructure as a Service A provision model in which an organization outsources the equipment used
to support IT operations, including storage, hardware, servers and networking components. The service
provider owns the equipment and is responsible for housing, running and maintaining it. The client
typically pays on a per-use basis

JSON JavaScript Object Notation. A data format that uses human-readable text to transmit data objects
consisting of attribute-value pairs.

PaaS Platform as a Service

Platform as a Service A category of cloud service offerings that facilitates the deployment of applications
without the cost and complexity of buying and managing the underlying hardware and software and
provisioning hosting capabilities

QoS Quality of Service

Quality of Service Generic term encapsulating all the non-functional aspects of a service delivery

50



Envisage Deliverable D4.3.3 Assurance of the FRH Case Study

Resource Configuration A description of the number of service instances initially required for a service
offered to a Customer and the virtualized resource to be allocated initially to those service instances

SaaS Software as a Service

Service Level Agreement A legal contract between a service provider and his customer. It records a
common understanding about services, priorities, responsibilities, guarantees, and warranties

Service Requirement A service requirement consists of the agreed SLA and the Customer’s specific con-
figuration such as expected query throughput based on historical data in terms of monthly and peak
page views

SLA Service Level Agreement

Software as a Service A software delivery model in which software and associated data are centrally
hosted on the cloud. SaaS is typically accessed by users using a thin client via a web browser

Software Engineer A Software Engineer develops and maintains the Fredhopper Cloud Services. She pro-
vides technical support to Cloud Engineers and Support Engineers. She fixes bugs on the Fredhopper
Cloud Services and continuously improves the Fredhopper Cloud Services by either adding new features
or improving existing ones

Support Engineer A Support Engineer receives and coordinates issues identified either by Customers or
Cloud Engineers. She receives questions from Customer. She interacts with Customer, and either
addresses them directly or informs the Software Engineers
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