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Executive Summary:
Hybrid Analysis

This document summarises deliverable D3.4 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eul

During Envisage a wide range of formal analyses for the ABS language have been realized, including dead-
lock detection, deductive verification, resource bound computation, test case generation, type systems. Many
of these approaches only unfold their full impact in combination with each other, as well as in combination
with the ABS simulation tool. In this report we describe a number of such hybrid approaches that were
explored in Envisage Task T3.4 Hybrid Analysis. The results go beyond the state-of-art of what is possible
in each individual method.
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Chapter 1

Introduction

According to the Envisage Description of Work, Deliverable 3.4 is concerned with combining different—and
complementary—analysis techniques developed during Envisage. This might involve static as well as dynamic
(runtime) approaches.

In Chapter [2| we study the application of session type systems [31] to compositional verification of actor-
based systems using futures [34]. Session types are extended to specify the communication order between
ABS objects. We developed a function to translate session types to history-based contracts, which are class
invariants for ABS programs and can be verified by the deductive verification tool KeY-ABS [20].

In Chapter (3| we report the latest developments on a type-based approach for deadlock analysis which
combines a number of different techniques. This updates the report given in [16, Chapter 5]. One of the
strongest points of the presented tool is the flexibility provided by its modular design, although the tool has
been initially implemented to target ABS we have been able to adapt it to other languages. A very successful
example is the deadlock analysis for JVLM (the Java Bytecode), which is currently under development. The
inference process in this case is highly complex, for this reason we intend to combine it with KeY to produce
more precise behavioural types.

In Chapter [4] we extend the invariant-based approach to deductive verification of ABS programs with
unbounded size of input data reported first in [16, Chapters 2—4|. While the latter is situated at the class
level, i.e. invariants are proven class-wise, for practical purposes it is often necessary to specify the behavior of
each method separately. To this end we generalize the contract-based approach established for verification of
sequential program [3] to the ABS setting. To the best of our knowledge, this is the first modular verification
method for contract-based verification of concurrent programs. A publication based on the chapter is in
preparation.

In Chapter [5| we propose a seamless combination of static analysis and testing for effective deadlock
detection as follows: first, from the deadlock analysis of SACO [24] one obtains abstract descriptions of
potential deadlock cycles. These are subsequently used to guide the SYCO [7] testing tool (described in
deliverable D3.5 [18]) to find associated deadlock traces (or discard them). In this chapter, we use the
analysis of SACO rather than the one in Chapter 3] mainly because of the easiest integration with the SYCO
tool. However, it should be feasible to use the analysis results provided by the deadlock analyzer in Chapter 3|
as well.

In Chapter [0 we describe the integration of SACO and the ABS Erlang simulator. To facilitate the
inclusion and usage of upper bounds during the simulation of ABS programs, we realized an extension of
the SACO analyzer [4] that generates upper bound functions for each ABS method. These functions take
the same parameters as the method and return the evaluation of the upper bound with respect to those
parameters. Here, we describe how these two techniques can be used in combination in practice.

An overview of the various combinations of analyses described here, together with some that were already
realized in previous deliverables, is provided in Fig. [I.1]

Together, the work described here, as well as in the D4.z.3 (where x € {1,2,3}) and the D4.5 deliverables,
gives evidence for the claims that were merely conjectured in the DoW:
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Figure 1.1: Combinations of analysis techniques mentioned in this deliverable. Double lines indicate that
the approach is implemented in the Envisage tool suite, dashed lines indicate future work.

1. To formally specify and successfully analyse concurrent, resource-aware industrial systems, it is neces-
sary to combine different analysis methods in a concerted manner.

2. The combination yields tools of sufficient strength to analyse industrial systems.

In fact, the theme of combining different approaches to software analysis has since the start of Envisage
been identified as a major trend in formal verification [8]. The research reported here, therefore, demonstrates
that Envisage is situated at the forefront of the state-of-art in formal verification.

List of Papers Comprising Deliverable D3.4

This section lists all the papers that this deliverable comprises, indicates where they were published, and
explains how each paper is related to the main text of this deliverable. The deliverable contains either
extended abstracts of the papers or the parts that are relevant for the Envisage project. The full papers
are made available in the appendix of this deliverable and on the Envisage web site at the url http://www.
envisage-project.eu/ (select “Dissemination”). Direct links are also provided for each paper listed below.

Paper 1: Session-Based Compositional Analysis for Actor-Based Languages Using Futures
This paper presents a session type system for ABS which is used to verify an ABS system against a specified
global communication pattern. The session type system considers the distinguishing features of ABS, such as
future-based communication and cooperative scheduling. To capture constraints on scheduling, an automata-
based approach to represent and annotate scheduling strategies is proposed.

The paper was written by Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen and will be
published in the International Conference on Formal Engineering Methods (ICFEM) 2016.

Paper 2: Combining Static Analysis and Testing for Deadlock Detection This paper introduces a
new methodology to find effectively deadlock traces during the systematic testing. The output of the deadlock
analysis of SACO is used to generate deadlock constraints which must be satisfied during the testing process.
Otherwise, the execution is stopped as soon as we are able to prove the trace is deadlock-free. The paper was
written by Elvira Albert, Miguel Gémez-Zamalloa, and Miguel Isabel and is published in the International
Conference on Integrated Formal Methods (iFM) 2016.
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Chapter 2

Session Types for ABS

2.1 Introduction

ABS can verify the behavior of methods and objects with the help of object invariants with KeY-ABS.
These invariants only specify the state of a single object. When specifing the behavior of a whole system,
the global specification needs to be transformed into local specifications for each involved object manually.
This is error-prone as there is neither tool support nor a formal foundation for this transformation. This
challenge motivates our compositional analysis framework, which models and locally verifies the behaviors
of distributed endpoints (i.e. components) from the specification of their global interactions. While our
approach does not take concrete values into account, the verified communication pattern can serve as a
connecting backbone for the local invariants.

We establish a hybrid analysis, which statically type checks local objects’ behaviors and, at the same
time ensures that local schedulers obey to specified policies during runtime. Our analysis is based on sesston
types [31 [43], a static syntax-driven framework which specifies the communication pattern of a system but
verifies only the local code of the participants. Session types are an established tool for channel-based
communication, mainly 7-calculus based systems or languages implementing a similar concurrency model.

To adapt session types for ABS, the distinguishing features of the core ABS concurrency model must
be considered: (1) cooperative scheduling, where methods explicitly control internal interleavings by explicit
scheduling points, and (2) the usage of futures, which decouple the process invoking a method, the process
executing the method and the process reading the returned value. We have two kinds of communications
with future: Caller invoking a method at a remote callee, and callee returning values via a future to those
who know that future. The later is non-trivial since several endpoints can read more than once from the same
resolved future at any time. As ABS does not use channels, communication between processes is restricted
to these two possibilities.

Our approach is to use a two-fold notion of local types: Object types define behaviors, including scheduling
behavior, among class instances, while method types define behaviors that single processes should follow.

A global specification is projected to several local specification in two step: (1) for each endpoint occurring
in it, an object-local type is generated, (2) for each method in an object local type, a method type is generated
(3) for each object local type, a scheduling policy is generated.

A method type describes the communication of a process (executing a given method) by specifying a
set of local communication histories. Our analysis succeeds if every execution is guaranteed to generate a
history that is an element of this set.

An object local type describes the communication of an object by specifying a set of sequences of global
communication histories. Our analysis succeeds if every execution is guaranteed to generate a history that
is a permutation of an element of this set, such that for each object its local history within the permutation
are indistinguishable from local history in the specified sequence. This expresses that while the system may
execute events in a different order than specified, the difference is not visible to any object.

Scheduling policies are represented as session automata [10], which specify the correct order of process
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activations and reactivations. A policy is added as an annotation when creating an object and is statically
checked against the policy derived from the global specification. This approach to scheduling is not related
to the real-time scheduling for ABS introduced in [9]. The automata are able to store futures to decide on
reactivations, as processes can be identified by the future they are computing, and are able to reject any
(re-)activation and let the object wait for a call to arrive.

2.2 Example

Consider a service, called grading system, which offers an expensive computation on sensitive data, e.g.
automatic evaluation of exams. This service consists of three endpoints: A computation server, denoted by
¢, and a service desk, denoted by d, where a student, denoted by s, can request his grades. The protocol is
as follows: Once c finishes calculating the grades, it sends a publish message containing the grades to d and
an announcement, announce message, to a student. It is not desirable that d starts a new communication
with ¢ because ¢ may be already computing the next exams; it is also not desirable that d communicates to
s without any request from s. As a last restriction, it is not desirable that d synchronizes its two processes
via a field. The service desk has only limited capacity and can not keep track of all wrongly timed requests
of students and check after each publishing whether some students waits for these grades - all its processes
must be atomic.

If a student requests his/her grades before the service desk receives

the grades from c by publish, the scheduler of d must postpone the > announce
process of request until publish has been executed and terminated. c /\‘
This is not possible for core ABS, because a scheduler in core ABS

cannot be idle while waiting for a specific message when the process 1. publish S
queue is non-empty. Thus we propose an extension of core ABS to

ensure that the endpoints and their local schedulers behave well to d $_/request

the specified communication order.
Figure 2.1: A grading system

2.3 Session Types

Global Types

Global types, denoted by G, define global communication specifications within a closed system of objects.
Contrary to session types for the w-calculus [43], BI], we do not specify the datatype of a message since the
message is a method call or a method return and every method in ABS has a fixed signature. The syntax of
G is defined as follows:

Definition 2.3.1 Let p, q range over objects, denoted by Ob, f over futures, m over method names and C
over all constructors of all abstract datatypes.

f
RPN g u= p=>aqmg|plf:(C)g|ptf:(C)g]
G i 05 am|Ge Rel(p, f).g | p{gj}jes | end | g*

Initialization 0 i) q:m starts interactions from the main block invoking object q. We use . for sequential

composition and write G.g to mean interaction(s) g follows G. Interaction p i> q:m models a remote call,
where object p asynchronously calls method m at object q via future f, and then q creates a new process
for this method call. The resolving type p{ f:(C) models object p resolving the future f. If the method has
an algebraic datatype as its return type, then the return value has C as its outermost constructor; otherwise
we simply write p| f. The fetching type p1 f:(C) models object p reading the future f. The usage of C
here is similar to the one in p| f:(C). The releasing type Rel(p, f) models p which releases the control until
future f has been resolved. This type corresponds to await f7 statement in ABS.
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The branching type p{g;};jes expresses that as p selects the jth branch, g; guides the continuing inter-
actions. The type end means termination. The type g* describes repetition. Note that only a self-contained
g can be repeatedly used. We say g is self-contained if (1) wherever there is a remote call or releasing, there
is a corresponding resolving and visa versa; and (2) it contains no end, and (3) every repeated type within
it is also self-contained. In other words, we need to keep linearity of futures for every iteration.

Example 1 The global type grades specifies the grading system discussed in Section [2.3:

grades= 0 f—0> c:pubGrd.c i> d:publish.d] f.c i—) S:announce.

s I d:request.d ] " st f".s| f'.cl fo.end

The session is started by a call on c.pubGrd, while other objects are inactive at the moment. After the call
c i> d:publish, the service desk d is active at computing f in a process running publish. We position d | f
there to specify that d must resolve f after it is called by c and before it is called by s (i.e. s f—> d:request).

For c, it can have a second remote call ¢ f—> s:announce after its first call. As d is called by s, d can start
computing " in a process running request only after d | f, which means the process computing publish has
terminated. s will fetch the result by st f” after d resolves f”, i.e. the students reads its grades. The end is
there to ensure all processes in the session terminate. The valid use of futures is examined during generating
object types from a global type. E.g.: if s f" is specified before d | f”, the projection procedure will return
undefined since f” can not be read before being resolved.

Local Types

Local types describe the communication from the point of view of a single endpoint. We differ between
object types, which describes the communication visible to an object, and method types, which describe the
communication visible to a single process. The distinction is necessary, as processes have no information
about their interleaving. As the order of process invocations is an important part of a protocol, it does not
suffice to describe all method types. The order of process invocations is visible at object-level describe how
to compose method types. Both local types share the following syntax:

Definition 2.3.2

L == plymL|p?ym.L | Put f:(C).L| Get f:(C).L | await(f, f').L
| React(f).L | ®{L;}jes | &{L;j}jes | L*.L | skip.L | end

We use . to denote sequential composition. The type p!sm denotes a sending action of the described endpoint
via an asynchronous remote call on method m at endpoint p. The type p?ym denotes a receiving action of
the describes object which starts a new process computing f by executing method m after a call from p. The
resolving Put f:(C) and fetching Get f:(C) have the same intuitive meaning as their global counterparts. The
suspension await(f, f’) means that the process computing f suspends its action until future f’ is resolved.
The reactivation React(f) means the process continues the execution with f. The choice operator @ in
®{L;}jes denotes that the currently active process selects a branch to continue. The offer operator & in
&{L;}jcs denotes that the object offers branches {L;};c; when f is resolved. The type skip denotes no
action and we say L.skip = L = skip.L.

e A method type describes the execution of a single process on a particular future f. It has the following
attributes: (1) Its first action is p?sm for some p, m, f, and (2) if it has a branching type, the final
action in every branch is Put f:(C) for some C, f, and (3) it contains no further resolving action or
receiving action, and (4) it contains no end.

e An object type is a type which is not a method type.
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e A condensed type, denoted by L, where L is an object type, replaces every action, except receiving and
reactivation actions, in L with skip.

Example 2 Consider object d in the grading system in Section [2.2 Its method type on future f, which is
used for calling method publish, is c? ypublish.Put f.
Its object type is L = c?spublish.Put f.s?tnrequest.Put f”.end, and its condensed type is

A

L = c?ypublish.skip.s? prrequest.skip.skip = c?gpublish.s? ynrequest

2.4 Verification

To ensure that the scheduler’s behavior follows L, we propose a verification mechanism where a scheduler
uses a session automaton [I0], as a scheduling policy, to model the possible sequence of events.

In this model, whenever the object is idle, the object’s scheduler inputs the processes which can be
(re-)activated according to the session automaton, which is automatically generated by L. If a labelled
transition, which corresponds to an event, can fire in the automaton, the object (re)activates this event. If
there are several processes which can run such transition, the scheduler randomly selects one of them. This
mechanism is a variant of typestate [42].

We use session automata [10] as our automata model. Session automata work on words over infinite
alphabets of the form X x D, where X is finite and D is infinite. In our model D is the set of all futures
and ¥ = {reactEv, invecREv} the set of labels, which denote whether a process is started or reactivated. A
configuration of a k-Register Session Automaton has, additionally to a state, k registers which may store one
element from D. Upon transition, the automata may check whether the future of the next letter is equal to
any of its registers and store it in one of the registers if it is fresh. Session automata only store fresh futures;
a future is only stored if it is the first time it occurs in a word. It is decideable whether two session automata
accept the same language [10]. Given an object type, we can build a session automaton:

Definition 2.4.1 Let L be an object type. Let k be number of futures in L. We assume the futures are
ordered and pos(f) refers to the number of f in the ordering. The k-register session automaton Ar, is defined
ductively as follows:

e p’ym is mapped to a 2-state automaton which reads (invocREv,m) and stores the future f in the
pos(f)-th register on its sole transition.

e React (f) is mapped to a 2-state automaton which reads reactEV and tests for equality with the pos(f)-
th register on its sole transition.

e (Concatenation, branching, and repetition using the standard construction for concatenation, union, and
repetition for NFAs.

When a process is activated, the automaton stores the process’s corresponding futures; when a process is
reactivated, the automaton compares the process’s corresponding futures with the specified register. As all
repetitions in types projected from a global type are self-contained, after the repetition, the futures used
there are resolved and thus the automaton can overwrite it safely. The example below shows how a session
automaton works based on an object type:

Example 3 Consider the example from Section[2.9 A simple automaton describing the sequence for the d

(Service Desk) is
(invocREv, publish) (invocREv, request)
start 1 /2\ @
) U d—m

Where d — r; describes that the infinite part of the read letter is copied into register r; The scheduler above
does not need to read registers because it does not have reactivations.

10
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We give a type system that checks ABS systems (including Main Block) against a global type G. Methods
are checked against the corresponding method type with rather standard typing rules, while on object
creations we check whether the annotated scheduler describes the same language as the session automata
derived from G. Our main theorem can be phrased as:

Theorem 2.4.2 Let S be an ABS system and G an admissable global type. If h is a sequence and O an
object, then h | O is the subsequence of h which contains only the events visible to O. If S can be typed with
G, then every history h that S may generate is a permutation of a history h' described by G and

YOe€Ob. h[O=h 10

2.5 Conclusion

Our work shows that session types, despite being studied for concurrency based on the w-calculus, are flexible
enough to be used for more complex concurrency models. For future work, we are interested in transferring
other results on m-calculus to ABS, e.g. the composition of local types to global types [19] and implementing
our proposed verification algorithm. The proposed scheduler is not implemented in the ABS runtime yet, as
it does not complement the existing scheduler for full ABS which uses time for its policy.

The paper “Session-Based Compositional Analysis for Actor-Based Languages Using Futures” is based
on a technical report [33], which has two major differences:

e Instead of deriving a session automata, the global type is considered verifiable if all permutations are
guaranteed to preserve the indistinguishability from a local view

e Instead of a type system, method types are checked by translating them into a class invariant. These
can be verified by KeY-ABS.

11



Chapter 3

Deadlock Analysis for ABS

3.1 Introduction

Modern systems are designed to support a high degree of parallelism by letting as many system components
as possible operate concurrently. When such systems also exhibit a high degree of resource and data sharing
then deadlocks represent an insidious and recurring threat. In particular, deadlocks arise as a consequence of
exclusive resource access and circular wait for accessing resources. A standard example is when two processes
are exclusively holding a different resource and are requesting access to the resource held by the other. That
is, the correct termination of each of the two process activities depends on the termination of the other. The
presence of a circular dependency makes termination impossible.

Deadlocks may be particularly hard to detect in systems with unbounded (mutual) recursion and dynamic
resource creation. A paradigmatic case is an adaptive system that creates an unbounded number of processes
such as server applications. In these systems, the interaction protocols are extremely complex and state-of-
the-art solutions either give imprecise answers or do not scale.

In order to augment precision and scalability we propose a modular framework that allows several tech-
niques to be combined. We meet the scalability requirement by designing a front-end inference system that
automatically extracts abstract behavioral descriptions pertinent to deadlock analysis, called behavioural
types, from code. The inference system is modular because it (partially) supports separate inference of
modules. To meet precision of behavioural types’ analysis, over the year we defined and implemented dif-
ferent techniques: (i) an evaluator that computes a fixpoint semantics and (ii) an evaluator using abstract
model checking (both described in [29]) and (iii) a more powerful fixpoint technique described in Deliverable
D2.1 [14]. This technique was a later improvement of our approach. But the theory has been completely
investigated [28] and its implementation is part of the new release of the tool available in the collaboratory.

Our framework targets ABS. Because of the presence of explicit synchronisation operations, the analysis
of deadlocks in ABS is more fine-grained than in thread-based languages (such as Java). However, as usual
with (concurrent) programming languages, analyses are hard and time-consuming because most parts of the
code are irrelevant for the properties one intends to derive. For this reason, we design an inference system
that automatically extracts behavioural types from ABS code. These behavioural types are similar to those
ranging from languages for session types [26] to process behavioural types [35] and to calculi of processes
as Milner’s CCS or pi-calculus [38, [39]. The inference system mostly collects method behaviours and uses
constraints to enforce consistencies among behaviors. Then a standard semi-unification technique is used for
solving the set of generated constraints.

Since our inference system addresses a language with asynchronous method invocations, it is possible
that a method triggers behaviours that will last after the execution of the method has been completed (and
therefore will contribute to future deadlocks). In order to support a more precise analysis, we split behavioural
types of methods in synchronised and unsynchronised behavioural types, with the intended meaning that
the former collect the invocations that are explicitly synchronised in the method body (namely there is a
blocking operation that waits for the result of the asynchronous invocation) and the latter ones collect the

12
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other invocations (those that are not synchronised within the caller’s method and keep executing even after
the caller’s method execution terminates).

Our behavioural types feature recursion and resource creation; therefore their underlying models are
infinite state and we developed a powerful technique wich is able to decide the presence of deadlock in a
infinite state model.

3.2 The DF4ABS Tool

We extended the ABS suite [45] with an implementation of our deadlock analysis framework (at the time
of writing the suite has only the fixpoint analyser, the full framework is integrated in the collaboratory.
The DF4ABS tool is built upon the abstract syntax tree (AST) of the ABS type checker, which allows us to
exploit the type information stored in every node of the tree. This simplifies the implementation of several
behavioural type inference rules. There are three main modules that comprise DF4ABS:

1. Behavioural Type and Constraint Generation. This is performed in three steps: (i) the tool first
parses the classes of the program and generates a map between interfaces and classes, required for
the behavioural type inference of method calls; (ii) then it visits again all classes of the program to
generate the initial environment that maps methods to the corresponding method signatures; and (iii)
it finally revisits the AST and, at each node, it applies the behavioural type inference rules defined in
the paper.

2. Constraint Solving is done by a generic semi-unification solver implemented in Java, following the
algorithm defined in [30]. When the solver terminates (and no error is found), it produces a substitution
that satisfies the input constraints. Applying this substitution to the generated behavioural types
produces the abstract class table and the behavioural type of the main function of the program.

3. Fizpoint Analysis uses dynamic structures to store the lam (the abstract models of programs in term
of their synchronisation dependencies) of every method behavioural type (because lams become larger
and larger as the analysis progresses). At each iteration of the analysis: i) a number of fresh Cog
names is created, ii) the states are updated according to what is prescribed by the behavioural type,
and iii) the tool checks whether a fixpoint has been reached. Saturation starts when the number of
iterations reaches a maximum value (that may be customised by the user). In this case, since the
precision of the algorithm degrades, the tool signals that the answer may be imprecise. To detect
whether a relation in the fixpoint lam contains a circular dependency, we run Tarjan’s algorithm [44]
for connected components of graphs and we stop the algorithm when a circularity is found.

Regarding the computational complexity, the behavioural type inference system runs in polynomial time
with respect to the length of the program in most of the cases [30]. The fixpoint analysis is exponential
in the number of cog names in a behavioural type class table (because lams may double their size at every
iteration). However, this exponential effect actually bites in practice.

3.3 Assessments

We tested DF4ABS on a number of medium-sized programs as well as on the case studies of Envisage. In all
the three case studies analysed (Deliverable D4.1 [I5]) there were no deadlock presences. In the ATB case
study, the tool did not find any of the necessary conditions for a dependency cycle, namely blocking get
operations nor pure await cycles. In the case of the ENG case study, the tool was able to run after resolving
some minor bugs related to the presence of futures in generic arguments. The FRH was throughly analysed
in collaboration with the industrial counterpart, we finally concluded that the tool was able to correctly infer
the program behavior in regards to concurrent operations and to successfully verify the deadlock freedom.
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3.4 Conclusion

DF4ABS, being modular, may be integrated with other analysis techniques, as we discussed before more than
one technique has been implemented. On the other hand the inference module can be modified for reusing
the same techniques for other languages. In fact, we have recently applied our deadlock detection algorithm
to the analysis of Java Bytecode programs. In order to do this we had to design and implement the inference
of the behavioural types from a Java Bytecode program and use these inferred types as input to the core
analysis technique. Theoretically we just need to prove a standard subject reduction theorem, which states
the soundness of our inference system, leaving the correctness of the algorithm unaffected.
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Chapter 4

Contract-based Verification of Asynchronous
Method Calls with Cooperative Scheduling

4.1 Invariant-based Verification with Cooperative Scheduling

The ABS language design makes invariant-based verification of ABS concurrent programs [21) [16] modular.
Let us briefly recall why:

The invariant-based verification framework for ABS assumes formal specification at the class level, i.e.
for each object implemented in a class C we aim to establish its invariant Ic. In ABS it is sufficient to show
that each method establishes and maintains its class invariant, hence, reasoning is modular in the following
way: it is broken down into proof obligations for one method at a time and it is sufficient to establish the
local class invariant of a given method, without the need to look at the global system. The soundness of this
approach rests on three properties of the ABS language.

First, in ABS at most one process is active on an object at any time. Together with strong encapsulation,
this means that, as long as the execution of a method on object o is not suspended, nobody else can modify
0’s heap. Strong encapsulation means that the heap of an object o can only be modified by itself. Any other
object o’ # o, even if it has the same class as o, must use a setter method of o. Hence, the restriction to
one active process per object plus strong encapsulation together guarantee that the invariant of an object
running a process can only be broken by that process itself, as long as it doesn’t suspend execution.

Thus it is sufficient that all methods of a class establish the class invariant whenever they suspend or
terminate execution. In ABS programs the suspension points of processes are explicit in the form of await and
suspend statements. As argued above, by strong encapsulation and absence of multi-processing, execution
between two scheduling points can be viewed as atomic or sequential.

Assume now we want to prove that a class C maintains an invariant Ic. Clearly, we need to prove that C’s
initialization block establishes Ic. After class initialization, any method m of C might be executed. Hence, for
each m we must show that it maintains Ic. We can assume that the invariant I¢ holds when m’s execution is
started, either, because of class initialization or because it has been re-established by the previously executed
process. To ensure that I¢ is re-established at the beginning of any execution, it is sufficient to show that it
is re-established whenever a method finishes a sequential piece of code. In ABS this happens exactly in two
places: whenever an await or suspend statement is reached and when a method terminates. Hence, we need
to guarantee, i.e. to prove, that before each await and suspend statement, as well as when a method returns,
its class invariant holds. Finally, what happens when a method resumes execution after an await or suspend
statement? Well, just like at method invocation time, it can rely on the fact that, whichever method has
previously suspended execution, it re-established the class invariant.

To summarize, in order to establish a class invariant Ic, we need to prove the following facts:

Definition 4.1.1 (Proof Obligations for Invariants in ABS)

1. The initalization code of C establishes Ic.
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2. For each method m in C, assuming that Ic holds at the beginning of its execution and after each await
and suspend statement:

(a) Ic holds before each await and suspend statement.

(b) Ic holds when m terminates.

Provided that such a proof is done for each class C in an ABS program P, it can be concluded that the
invariant Ac¢p Ic holds for P [2T]. Obviously, this is a specific form of rely-guarantee reasoning [32]. It rests
on the following properties of the ABS language:

1. Strong encapsulation, i.e. objects can only directly modify their own heap. To modify the heap of
another object, a setter function must be used.

2. No multi-processing, i.e. at most one process per object can be active at any time.

3. Explicit scheduling points, i.e. it is syntactically recognizable when a method suspends its execution.

The invariant-based verification framework sketched above was implemented in the deductive verification
system KeY-ABS [20] [16], a variant for ABS of the state-of-art verification system KeY [3]. In contrast to
model checking, deductive verification, permits to prove invariants for systems with an unbounded number
of objects, messages, and data size |22, [17]

4.2 Contract-based Verification

The invariant-based verification framework described above and implemented in the ABS tool suite |20, [16]
has a serious limitation. It assumes that all methods of a class maintain the same invariant. In other words,
the granularity of specifications is situated at the class level. In many applications this is too coarse, because
it is necessary to capture the different behaviours embodied by different methods in a single invariant. This
results in invariants that are unwieldy, hard to come up with, and unnecessarily difficult to prove.

When verifying sequential programs it is, therefore, common to specify separately the behaviour of each
method with the help of a method contract. This approach was first explored by Meyer [37] as a general design
principle and in the context of runtime monitoring. It is currently the de-facto standard for specification
of sequential OO-imperative programs [II]. It is also implemented in the KeY verification system [3] for
sequential JAVA programs.

Let us look at the example in Figure which features several methods that are specified by a contract.
A contract consists of three components:

1. A precondition, also termed requires clause, that specifies the condition under which the called method
promises the behaviour specified in the second and third component.

2. A postcondition, also termed ensures clause, that specifies the condition the called method promises to
establish after it terminated.

3. A modifies clause, also termed assignable clause, that specifies all heap locations whose values the
called method might have changed.

We use the notation R, for the requires clause of a method m and similar for the other specification
elements. Each method in Figure has a contract. In addition, a class invariant is given. In a sequential
setting there is a single processor, and the only points when a method suspends execution are when it calls
another method and when it terminates. This leads to a form of rely-guarantee reasoning where we need to
prove the following facts:

Definition 4.2.1 (Proof Obligations for Contracts of Sequential Programs)
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Example:

interface Bankl {
Unit deposit(Int amount);
Unit withdraw(Int amount);

class Bank implements Bankl {
/+@ invariant balance >= 0; x@/
Int balance = 0;

/+@ requires amount > 0;
@ ensures balance == \old(balance) + amount;
@ assignable balance;
O/
Unit deposit(Int amount) { balance = balance + amount; return; }

/+@ requires amount > 0 && balance — amount >= 0;
@ ensures balance == \old(balance) — amount;
@ assignable balance;
Ox/
Unit withdraw(Int amount) { if (balance — amount >= 0) {balance = balance — amount;} return;}

/+@ requires i > 0;

@ ensures balance > 0;
@ assignable balance;
O/

Unit process(Int i) {
this.deposit(2xi);
this.withdraw(i);
return;

}

}

Figure 4.1: Specification with contracts

1. The initialization code of C establishes Ic.

2. For each method m in C, assuming that Ic A Ry holds at the beginning of its execution and also Ic A\ E,
holds after each call to any method n called inside m:

(a) Ic A Ry holds before each call to a method n inside m.
(b) Ic N\ Ex holds when m terminates.

Requires clauses of the callee must be proven on the caller side and can be assumed by the callee. Vice versa,
ensures clauses are proven on the caller side and the callee’s ensures clauses can be assumed by the caller. If
we are able to prove this for all classes of a program, then we know that:

1. Each method m respects its contract, i.e. if m is called in state that satisfies R, then m terminates
and in the final state E\, holds.

2. Each class invariant holds at the beginning and after termination of each of its methods.

For the example, we can easily establish the proof obligations stated above. Let us look at the process|()
method. At its start we assume its requires clause i > 0 and the class invariant balance >= 0. Assume the
current value of the field balance is b. First we prove the requires clause of the callee deposit() (obviously,
the class invariant still holds). This follows, because i > 0 implies 2xi > 0. After the call we again assume
the class invariant plus the callee’s ensures clause: balance == b + 2«i. We also still know that i > 0, be-
cause ABS has call-by-value semantics. Now we need to prove the requires clause of the callee withdraw()
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(again, the class invariant continues to hold). Considering renaming of formal parameters, we must establish
i > 0&& b+ 2xi — i >=0 which, using the class invariant, obviously holds. After the call we again assume
the class invariant plus the callee’s ensures clause: balance == b + 2« —i which clearly implies the ensures
clause of process().

So far, the reasoning makes no use of assignable clauses. They can make verification more modular.
Assume that the parameter i in the example were declared as a field. Then, after the call to deposit()
we loose the information that i > 0, because deposit() could have overwritten i. The assignable clause of
deposit () tells us that this is not the case, hence we can still make use of i > 0.

The proof obligations for contract-based verification with assignable clauses are as follows, where the
additional items compared to Def. are highlighted:

Definition 4.2.2 (Proof Obligations for Contracts with Assignable Clauses, Sequential)

1. The initalization code of C establishes Ic.

2. For each method m in C, assuming that Ic A\ Ry holds at the beginning of its execution and also Ic A Ey,
holds after each call to any method n called inside m:

(a) Ic A Ry holds at each call to a method n inside m.
(b) Ic A Exy holds when m terminates.

(c) When m terminates at most values of heap locations listed in A,, have changed their
value.

In addition we may assume that any condition J that holds before a call to a method n
inside m, and that does not depend on A,, still holds after n returns.

4.3 Contract-based Verification with Cooperative Scheduling

Assume that we want to prove the example in Figure in an ABS setting with asynchronous method calls
as in Figure

Example:

/+@ requires i > 0;
© ensures balance > 0;
@ assignable balance;
©x/
Unit process(Int i) {
Fut<Unit> f; = this!deposit(2:xi);
await f,7;
Unit d = f;.get;
Fut<Unit> f> = thislwithdraw(i);
await f>7?;
Unit w = f5.get;
return;

Figure 4.2: Specification of asynchronous method calls with contracts

The await statements in the code above ensure that deposit() is executed before withdraw() which should
be sufficient to establish the same postcondition as above. But it is not obvious how the contracts can be
reformulated as invariants. And even if we manage to do so, the resulting specification would be not very
readable. Therefore, it seems a natural idea to combine invariant-based verification with asynchronous calls
with contract-based verification as known from sequential programming, see the diagram in Figure
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asynchronous calls synchronous calls
invariant-based verification contract-based verification
(supported by KeY-ABS) (supported by KeY)

I —

asynchronous calls
invariant-based verification
(our current work)

Figure 4.3: Combination of two approaches

Such a combination seems reasonable, because we can already treat ABS code between suspension points
as essentially sequential, see Section [{.I] Indeed, Defs [{.1.]] and [£.2.1] have exactly the same structure.
We can combine both to obtain proof obligations for programs with asynchronous calls. For the sake of
simplicity, we leave out suspend statements, whose treatment is unchanged compared to Def. We also
assume without loss of generality that each await statement relates to exactly one future which resolves a
call to a method n. Finally, only asynchronous calls are dealt with: synchronous calls still create the same

proof obligations as in Def.

Definition 4.3.1 (Proof Obligations for Contracts with Asynchronous Calls —Unsound—)

1. The initalization code of C establishes I¢.

2. For each method m in C, assuming that Ic A Ry holds at the beginning of its execution and also Ic A Ey,
holds after each await statement resolving an asynchronous call to method n inside m:

(a) Rn holds before each asynchronous call to a method n inside m.
(b) Ic N\ En, holds when m terminates.

With this definition, it is possible to prove the contract in Figure [f.2] in the same manner as before.
Unfortunately, Def. is unsound. The problem is illustrated in Figure .4} process() makes the asyn-
chronous call to deposit (). According to Def. . it has to establish the precondition Ry of deposit() at
call time. But in an asynchronous setting there can be a time gap between the call and the actual execution.
During this time, any other active process of the object o, where deposit() executes, for example, withdraw()
could change the execution state (the values of heap locations) of o. In this particular example, we happen
to know that withdraw() cannot possibly be executed before deposit () starts, but Def. does not use this
information.

To achieve soundness, therefore, it is necessary to add a condition which prevents inadvertent changes
to the state of an object between call time and execution time. The same has to be done for the return of
deposit () when there is a potential time gap until its result (described by Ey) is used.

Definition 4.3.2 (Proof Obligations for Contracts with Asynchronous Calls)

1. The initialization code of C establishes Ic.

2. For each method m in C, assuming that Ic A\ Ry holds at the beginning of its execution and also Ic A Ey,
holds after each await statement resolving an asynchronous call to method n inside m, where E, does
not depend on the values of fields of the object where it is executed:

(a) Ry holds before each asynchronous call to a method n inside m, where R, does not depend on the
values of fields of the object where it is executed.
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process || deposit [|withdraw
(Bp, Ep) || (R4, Eq) || (Ruw, Ew)

(assume Ic A Rp)
Fut<Unit> f; = this!deposit(2*i) (prove R;)

® @

®cxecution (assume Io A Ry)
/otermination (prove I A Ey)

await f17; (assume Io A Eg)®

Fut<Unit> fy = thislwithdraw(i) (prove R,)

\

®cxecution (assume Io A Ry,)

/otermination (prove Io A Ey,)

await f2?; (assume Ic A E,,)®

(prove Ic A Ej)

O

Figure 4.4: Time gap around asynchronous method calls and their execution on an instance of class Bank

(b) Ic N Eq holds when m terminates.

Unfortunately, this sound verification framework allows no longer to prove the example, because the
balance field could have been changed after F4 was proven and before it is assumed. As mentioned above, if
our example has no other methods than the ones given above, then the await in Line [7] of Figure prevents
the call to withdraw() to be issued before Fy; is used.

At this point, different strategies can be taken. We can liberalize the soundness condition by taking
assignable clauses into account:

Definition 4.3.3 (Proof Obligations for Contracts with Asynchronous Calls and Assignable)
1. The initalization code of C establishes Ic.

2. For each method m in C, assuming that Ic A Ry holds at the beginning of its execution and also Ic A E,
holds after each await statement resolving an asynchronous call to method n inside m, where E, does
not depend on the values of fields mentioned in assignable clauses of any method in the class of m:

(a) Ry holds before each asynchronous call to a method n inside m, where Ry, does not depend on the
values of fields mentioned in assignable clauses of any method in the class of m.

(b) Ic A Eq holds when m terminates.

This does not help in the example, because balance occurs in the assignable clause of all methods of
class Bank. We need to make use of the information that is implicit in the scheduling points of a program.
In ABS we have available a May-Happen-in-Parallel (MHP) analysis [6] which provides exactly what is
required. Specifically, for each code location [ and method m in a class C we can efficiently compute an over-
approximation of the set of methods that can possibly be executed in parallel with I, denoted MHP(l, m).
In practice, the obtained bounds tend to be rather precise. For example MHP process) = (). Hence we
define for code location I and method m:

Alm) = |J 4,

ne MHP(l,m)
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This serves as the basis of an improved definition of proof obligations in a contract-based setting:
Definition 4.3.4 (Proof Obligations for Contracts with Asynchronous Calls and MHP)

1. The initalization code of C establishes Ic.

2. For each method m in C, assuming that Ic A\ Ry holds at the beginning of its execution and also Ic A Ey,
holds after each await statement at code location | resolving an asynchronous call to method n inside m,
where E, does not depend on the values of fields in A(l,m):

(a) Rn holds before each asynchronous call to a method n at code location I inside m, where R, does
not depend on the values of fields that are potentially modified before method n is scheduled.

(b) Ic A Eq holds when m terminates.

Now A process) = (), therefore E; is “safe”. The same analysis is used to establish R, at execution
time and E,, after resolution.

4.4 Open and Closed World Verification

Let us extend our example by adding a setter method:

Example:

Unit setBalance (Int b) { this.balance = b; }

As long as setBalance() is never called, or only called outside the context of process, the verification goes
through exactly as before. But in general some new code might well affect the set MHP(l,m) at a critical
code location, thus stopping a verification argument from being provable. This phenomenon is an instance
of the well-known open vs. closed world assumption in concurrent programming.

closed world

open world i
! sequential program
cooperative concurrency MHP = 0

. S

closed world
cooperative concurrency
) # MHP C M
task queue + scheduler

method stack

Figure 4.5: Open and closed world analysis

Purely invariant-based verification, as sketched in Sect. is suitable for open world verification, because
it does not need to consider any MHP information. Another way to state it is that invariant-based verification
works even if we assume MHP(l,m) = M, where M is the set of all methods in the class of m. On the other
hand, in a sequential setting, by definition MHP(I,m) = (): methods are strictly executed in the sequence
fixed by the call stack. The situation is illustrated in Figure

For contract-based verification we need to move to closed world, where the program under analysis is
considered to be fized. This allows us to exploit non-trivial analyses, such as MHP, to enlarge the set of
verifiable programs.
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4.5 A Calculus for Contract-Based Verification of Asynchronous Calls

We develop a contract-based deductive verification system for constructing formal proofs about ABS pro-
grams. ABSDL, i.e., first-order dynamic logic for ABS [16], 20], specifies ABS programs together with their
intended behaviour in a single logic language. For a sequence of executable ABS statements S and ABSDL
formulas P and @, the formula P — [S]Q expresses: If the execution of S starts in a state where the
assertion P holds and the program terminates normally, then the assertion  holds in the final state. In
sequent notation P — [S]Q is written P F [S]Q. The following sequent below shows the proof obligation
for the contract of an ABS method m implemented in class C:

(Ic A Rm) F [method Frame(source <— m,return < (var : ret, fut : u)) : S|(Ic A Em)

The program rules of the sequent calculus realized in ABSDL constitute a symbolic interpreter for ABS.
For example, the assignment rule is

F{u}{l := e}[r]¥
F{u}l[l=e; r]¥

assign

where £ is a local program variable and e is a pure (side effect-free) expression. This rule rewrites the formula
by moving the assignment from the program into a so-called update [3]. Updates are expressions of the form
{¢ := e} which captures state changes. Symbolic execution continues with the remaining program r. Updates
can be viewed as explicit substitutions that accumulate in front of the modality during symbolic program
execution. Updates can only be applied to formulas or terms. Once the program to be verified has been
completely symbolically executed and the modality is empty, the accumulated updates are applied to the
formula after the modality, resulting in a pure first-order formula. The rule for the conditional statement is

F{ul(b— [s1;7]¥)  F {u}(=b— [s2;7]P)
F {u}[if (b) then {s1} else {sa2}; r]¥

where the proof tree is split into two cases, one for each possible value of the boolean guard b.
We discuss now the rules needed to support contract-based verification. We start with the symbolic
execution of an asynchronous method invocation on the current object:

ifElse

F{u}{Z :=e}Rn
F{u}{h := h oinvocEv(this, this, f',m,€)}{q :=qo f'}H [ := f'}(isFresh(f") — [r]¥)
F {u}[f = this!m(e); r]¥

async

The first premiss proves the precondition of method m. The declaration of method m is “T m(T T)”.
The second premiss introduces a constant f’ which represents the future generated for the result of this
method invocation. This premiss verifies the remaining program based on the assumption that f’ is fresh.
The execution of this statement extends the current execution history h with an invocation event [2I] and
appends future f’ to the sequence of active futures q.

Before we discuss the next rule we introduce the helper function mod, which over-approximates the set
of all fields that are possibly modified by tasks executed in parallel to a task running at a given program
location. The function mod : PrgLocation x PrgElement x Future — Set(Field) is defined as

od(le, skip,z) = ()
od(le,v = exp, z) = () where v is a local variable
od(lc,this.a = exp, z) = {a}
od(le, (lcp = p)i(leq = q), 2) = mod(lcy, p, z) Umod(lcq, q, 2)
od(le,if (b) then (lcp, : p1) else (lep, : p2), 2) = mod(ley,, p1, 2) Umod(lcp,, p2, 2)
od(lc,while (b) {lcpody : body}, z) = mod(Icpoqy, body, z)
(

od(lc,await f7,z) = U Ap
n € project(MHP (lc,method(lc)),this)\sub(lc, f,z)

3333333
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The first two lines are the base cases for skips and local variable assignments. Neither modifies the heap,
hence, the empty set of fields is returned. In case of a field assignment the modified field a is added. Except
for the last case the other lines are just the homomorphic extension of the function to composed statements
(in ABS the heap is object-local, so it is sufficient to look at the loop body once without the need for a
fixed-point computation).

The last case applies MHP analysis to estimate all the possible methods that may run in parallel with the
await statement. Function project(s, o) projects the set of methods s to object o. Function mtd(f) returns
the method of the future f. We need to take the method to which the future f belongs into account, but the
current code is part of a method m executed by a future different from f. This method cannot be parallel
to itself and is subtracted only if the analysis yields that the method may not be executed at the await by a
task which resolves a different future. Formally, we define the function

sub(le, f,z) = {m | m=mtd(z) A z= f A m not executed by another task while waiting at lc}

The rule for an await statement on an unresolved future is:

F{u}(f €q)
F{u}lc
FVz e {ulq. (Dep(Rmtd(z)) n U mod(z,prgAt(zx), z)) =0
le,<xz<le
F {ul{ua}(Ic AM{uaH{uarg} Em — [r]V)
F {u}[le : await f?7; r]¥

awaitRelease

where
e Dep(¢) returns the set of all heap locations (fields) that occur syntactically in formula ¢.
e m is the method which will resolve future f

e The notation [ : ¢ denotes that the location of program element g is [, for instance, the await statement
in the conclus/ign is located at lc. The location lc, is the closest location before lc such that the
statement at lc, is either a release point or the asynchronous call creating future z. Not every await
statement is a release statement (in case the await is on an already resolved future). To distinguish
these cases our calculus maintains an implicit list awaitS of awaits it knows to be no release points.
This list is updated by rule awaitSkip and used here to distinguish “real” awaits from disguised skips.

e The update gy is defined as arg, := getArgument(hist, f,1)| ... |larg; := getArgument(hist, f, j),
where m is declared as T' m(Tyargy, ..., T} argj) and function getArgument extracts the values of the
arguments at invocation time of the method resolving future f from the history.

e u, is the anonymizing update assigning all heap locations possibly changed during the await statement
a fresh value, i.e., all locations in the set mod(lc,awaitf?, f) U A,,. The update 4, is a similar with
other fresh constants, but merely for locations in mod(lc, await f7, f).

The first premiss shows that future f is in the active future set. The second premiss shows that the class
invariant should hold before the current process is released. The third premiss proves that none of the
preconditions of active futures is violated by any of the method executions between lc, and now and will not
be violated by any possible parallel execution at this await statement. The dependency function Dep(Rp)
simply returns the set of fields contained in the precondition R,. The final premiss

= {uH{ua}(Ic A {uat{varg} Em — [r]V)

requires more explanation. It is concerned with the situation when we resume control after the await state-
ment. The execution state at resume time is described by the updates {u}{u,}, where u, anonymizes all
fields (of this object) which might have been changed after release and before resuming control. At any
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release point the class invariant must be re-established (second premiss), so we know that Ic holds in the
state {u}{uq}.

In addition we know that the task executing method m to resolve future f finished at some point between
release and resume. At that point the postcondition F,, of m was satisfied. But from this we cannot simply
deduce that {u}{uq}{targ}Em holds (uqrq evaluates the method arguments mentioned in En, to their correct
values).

The reason is that after execution of m finished other tasks might have been scheduled that changed the
value of fields occurring in E,. These changes are reflected in {u}{u,}. Consequently, we have to anonymize
all fields in Ey, again. This is achieved by update u,, but why do we use a different update than u,?

In many cases u, will anonymize the same fields as u,. But the definition of @, does not add the locations
from Ap,, hence, if some of these locations are not in the set returned by mod(lc, await f?, f), they will not
be anonymized. Intuitively, this is because those fields may only be modified by the task resolving f and not
by any other currently active task. Their values are identical at the point when execution of m is finished
and when the execution is resumed. We can regain some precision here by using .

For example, assume that at the await statement, we have two tasks running, one resolving future f by
executing method m and one resolving a different future g by executing method n. Let Ap = {a,b} be
the assignable clause for m and A, = {a} be the assignable clause for n. In that case mod(lc,awaitf?, f)
returns the set {a}. The update u, is {a := ¢ || b := d}, anonymizing the location in the union of the sets
mod(lc,await f?, f) U Am = {a,b} as both locations might have been changed upon resume.

We know the ensures clause of m holds at some point in time, but we do not know in which order m
and n were scheduled (or whether n was scheduled at all). But in any case n changes at most location a
and not b and that knowledge is reflected in the update u, which anonymizes only the location returned by
mod(lc,await f?, f) = {a}. Hence, it only overrides the value of a when evaluating En, but not of b.

The rule for an await statement on a resolved future is:

awaitSkip i OO D 1 awaitS := awaitS o lc

F{u}[lc : await f7; r]¥

This await statement is located at lc. The rule also records that this await statement is equivalent to a
skip statement: awaitS := awaitS o lc. As explained above, this information is required to calculate lc, in
rule awaitRelease. The rule for the return statement is:

F{u}{h := hocompEv(this, f,m,e)}{q:=q\ f}¥
F {u}[return e]¥

return

This rule removes the modality box, extends the history with a completion event [21], and subtracts the
current future from the active future set. The postcondition ¥ should hold at this final state captured by
the updates.

Discussion of the Banking Example Consider the process() method listed in Figure The precon-
dition of method deposit() does not contain fields, and it is the only method which can be executed at the
await f17 statement in process(). So the precondition of deposit() will not be violated when it is scheduled
for execution. The precondition of withdraw() contains field balance. Since the withdraw() method is the only
one that can be executed at the await f»? statement in process(), its precondition will not be violated when
it is scheduled for execution. The process() method listed in Figure can, therefore, be proven by our
verification framework.

Now we change process() such that the synchronization of futures f; and fo, i.e. awaitf17; awaitf2?, occurs
after the asynchronous call to withdraw and we add “balance > ¢” to the requires clause of the process() method,
see Figure [4.6]

In this case our calculus is too strict to prove the specification of process(). The reason is that we require
when withdraw() is scheduled that field balance was not modified after withdraw() was invoked or after the most
recent scheduling point. But deposit may be scheduled before withdraw and modify balance.
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Example:

/+@ requires i > 0 && balance > i;
© ensures balance > 0;
@ assignable balance;
©x/
Unit process(Int i) {
Fut<Unit> f; = thisldeposit(2xi);
Fut<Unit> f5 = thislwithdraw(i);
await f17;
await f>7;
Unit d = f;.get;
Unit w = f5.get;
return;

Figure 4.6: Unprovable variant of the example.

4.6 Related and Future Work

4.6.1 Related Work

The work of [25] implemented a rely-guarantee proof system [I, 32] on top of the Frama-C framework
and demonstrated modular proofs of partial correctness on asynchronous programs written in C using the
Libevent library. However, it only works for restricted C programs that use this specific library.

4.6.2 Tracking of Active Futures

It turns out that MHP is not precise enough to enable verifiability of some classes of programs. We illustrate
this with the tail recursive example in Figure [£.7] Method m calls recursively itself until the field c is equal
to n. The execution order between the processes is fixed, because there is no statement after the await, and
field ¢ can only be modified by the recursive calls. But an MHP analysis is not sufficient, because it cannot
resolve the order in which the futures are resolved. Specifically, the rules in the previous section do not
distinguish between active futures that wait on the current future (and, therefore, cannot be executed in
parallel to it), the active futures that have been resolved (and also cannot be executed in parallel), and the
remaining active futures that could actually interfere at a given code location.
To make the calculus in Section [£.5] work for the code in Figure [£.7, we need to do the following:

1. Introduce functions Blocked and Resolved that for each code location approximate the active futures
whose execution is blocked, because it depends on the currently executed future and the active futures
that have been already resolved, respectively.

2. Enhance the calculus rules so that the Blocked and Resolved functions are updated.

3. Enhance the method contracts with requirements and guarantees about blocked and resolved futures.
For example method m in Figure [4.7] should ensure that all the futures it creates have been resolved
when it terminates.

4.6.3 Block Contracts

Block contracts [3, Chapter 3| can be used to refine the analysis even further: the idea is to introduce
a contract for each “atomic” piece of ABS code, i.e. the code between two synchronisation points. This
contract then specifies the information that is preserved in that block. In many cases, block contracts might
be approximated automatically to a certain extent. For example, the mod function in Section [4.5] computes
a specific form of a block contract.
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Example:

interface Cl { m(); }

/*@ invariant 0 <= c && c <= n; Ox/
class C(Int n) implements C| {
Intc=0;

/+Q requires true;
@ ensures ¢ == n;
@ assignable c;
O/
Unit m() {
if (c<n){
Fut<Unit> f = this!m();
c=c+ 1
await f7;
}
return;
}
}

Figure 4.7: A tail recursive example

4.6.4 Assumptions on the Scheduler

To address situations such as the one stated at the end of Section we plan to investigate how far the
constraints on the assignable clauses can be relaxed without sacrificing soundness. We also consider to
state assumptions about the scheduler. For example, the scheduler at runtime may only select methods for
execution whose preconditions can be satisfied. This opens an interesting direction of research that explores
the trade-offs between provability and deadlocks. ABS is ideally suited as a target language, because powerful
deductive verification as well as deadlock detection methods are available.
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Chapter 5

Combining Static Analysis and Testing for
Deadlock Detection

5.1 Introduction

Static analysis and testing are two different ways of detecting deadlocks that often complement each other
and thus it seems quite natural to combine them. As static analysis examines all possible execution paths and
variable values, it can reveal deadlocks that could not manifest until weeks, months or years after releasing
the application. However, due to the use of approximations, most static analyses can only verify the absence
of deadlock but not its presence, i.e., they can produce false positives.

In contrast, testing consists in executing the application for concrete input values. Since a deadlock can
manifest only on specific sequences of task interleavings, in order to apply testing for deadlock detection, the
testing process must systematically explore all task interleavings. This is known as systematic testing [12), [41]
in the context of concurrent programs. The primary advantage of systematic testing for deadlock detection
is that it can provide the deadlock trace with all information that the user needs in order to fix the problem.
There are two shortcomings though: (1) Although recent research tries to avoid redundant exploration as
much as possible [2, B, 12} 23], the search space of systematic testing (even without redundancies) can be
huge. This is a threat to the application of testing in concurrent programming; (2) Since not all inputs can
be tried, there is no guarantee of deadlock freedom.

In this line of work, we propose a seamless combination of static analysis and testing for effective deadlock
detection as follows: the deadlock analysis of SACO [24] is first used to obtain abstract descriptions of
potential deadlock cycles which are then used to guide the SYCO testing tool (described in Deliverable
D3.5) in order to find associated deadlock traces (or discard them).

5.2 Motivating Example

Our running example is a simple version of the classical sleeping barber problem where a barber sleeps until
a client arrives and takes a chair, and the client wakes up the barber to get a haircut. Our implementation
in ABS of Figure has a main method shown on the left and three classes Ba, Ch and Cl implementing the
barber, chair and client, respectively. Method main creates three objects barber, client and chair and spawns
two asynchronous tasks to start the wakeup task in the client and sleeps in the barber, both tasks can run in
parallel. The execution of sleeps spawns an asynchronous task on the chair to represent the fact that the
client takes the chair, and then blocks at line [12] (IJ12] for short) until the chair is taken. The task taken
first adds the task sits on the client, and then awaits on its termination at without blocking, so that
another task on the object chair can execute. On the other hand, the execution of wakeup in the client spawns
an asynchronous task cuts on the barber and one on the chair, isClean, to check if the chair is clean. The
execution of the client blocks until cuts has finished.

Fig. summarizes the systematic testing tree of the main method. Edges correspond to execution
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1 main() { 17 class Ch{
2 Ba barber = new Ba(); 15 Unit taken(Cl c){
s Cl client = new CI(); o Fut<Unit> f = cllsits();
4 Ch chair = new Ch(); 20 await f_L,J -
5 client!wakeup(barber,chair); | *' _re_tlé:rln nit; }
6 barberlsleeps(client,chair); 22 Unit is ean().{.
7} 23 return Unit;}
24}
s class Baf 25 class CI{

9o Unit sleeps(Cl cl, Ch ch){
10 Fut<Unit> f;

11 f = chltaken(cl);

12 f.get;

26 Unit wakeup(Ba b, Ch ch){
27 Fut f = blcuts();
28 chlisClean();

13 return Unit; } 22 iftej’m Unit; }
1 Unit cuts(){ 31 Unit sits(){ v
0 return Unit; } 32 return Unit;}
16 } 51 '

Figure 5.1: Classical Sleeping Barber Problem (left) and Execution Tree (right)

(macro-)steps!. Derivations that contain a gray node are deadlocks whereas derivations with a dotted node
are complete (non-deadlock) derivations. The main goal of this work is to detect as early as possible that
derivations with a dotted node will not lead to deadlock, pruning them as early as possible. Let us observe
two selected derivations in detail. In the derivation ending at node 5, the first macro-step executes cl.wakeup
and then ba.cuts. At this point, it is clear that object cl will not deadlock, since the get at will succeed
and the other two objects will be also able to complete their tasks, namely the await at of object ch
can finish because the client is certainly not blocked, and also the get at will succeed because the task
in taken will eventually finish as its object is not blocked. However, in the branch of node 4, we first select
wakeup (and block client), then we select sleeps (and block barber), and then select taken that will remain in
the await at and will never succeed since it is awaiting for the termination of a task of a blocked object.
Thus, we have a deadlock.

5.3 Enhanced Semantics with Interleavings Table

We need to extend the standard ABS semantics with information about the task interleavings and the
paths taken. This allows us to easily detect dependencies among tasks, i.e., when a task is awaiting for the
termination of another one. These dependencies are necessary to detect in a second step deadlock states, in
which there are several concurrent objects involved in a deadlock. Then, we define the interleavings table
which is a mapping with entries of the form ¢, 4, — (1, p), Where:

® to 1k pp 1S @ macro-step identifier, or time identifier, that includes: the identifiers of the object o and
task tk that have been selected in the macro-step, and the program point pp of the first instruction
that will be executed;

e 1 is an integer representing the time when the macro-step starts executing;

e p is the status of the task after the macro-step and it can take three values: get or await when executing
these instructions on a future variable that is not ready; return that allows us to know that the task
finished.

! A macro-step execution corresponds to the sequencial execution of the instructions in the selected task of the selected object
until the next release point (i.e., an await/get instruction or the return).
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Example 4 The interleavings table below (left) is computed for the derivation related to the branch of node
4 in Figure[5.1. It has as many entries as macro-steps in the derivation. We can observe that subsequent
time values are assigned to each time identifier so that we can then know the order of execution. The right
column shows the future variables in the state that store the object and task they are bound to.

Sty tinimain[l] = (0, return;) 0

St telwakeupPg = (1£9kf0.get) fut(fo,ba, cuts,| 1&
Sts tha,sleeps] — <%,L1—2Ff1.get> fut(fi,ch, ta/ce@jSD
Sty tch,taken — <3,|2_6Fawait f27> fUt(f2, cl, Sits@

The role of this interleavings table is twofold: (1) It stores a time identifier and all decisions about task
interleavings made during such time. This way, at the end of a concrete execution, the exact ordering of the
performed macro-steps can be observed. (2) It will be used to detect deadlocks as early as possible, and, also
to detect states from which a deadlock cannot occur, therefore allowing to prune the execution tree when we
are looking for deadlocks.

Now, we present the notion of a deadlock state which characterizes states that contain a call chain in
which one or more tasks are waiting for each other’s termination and none of them can make any progress.
Thanks to the information store by the interleavings table, we can easily detect these states.

Example 5 Following Fx. |, Sty is a deadlock state since there exists a call chain {tcl,wakeup, tba,sleeps P

tch,taken}- For the first element tei wakeup, the task wakeup is blocking the object cl and we have task cuts
waiting on an answer that b must provide. At the same time, for the second element of the chain, tha,sleepsP)
the task sleeps is waiting that the object ch is taken and, finally, the task taken is blocking ch until cl sits. But
this one can never sit, as it is blocked and, thus, we got a deadlock. .

Note that, from a deadlock state, there might be tasks that keep on progressing until the deadlock is
finally made explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock will not be
captured using this naive extension. The early detection of deadlocks is crucial to reduce state exploration
as our experiments show in Section

5.4 Combining Static Deadlock Analysis and Testing

We propose a deadlock detection methodology that combines static analysis and systematic testing as follows.
First, the result of a deadlock analysis of SACO of [24] is a run, which provides a set of abstractions of
potential deadlock cycles. The nodes of these cycles are abstract objects and tasks and the edges, the
different relations that could arise among them. They are abstractions since there could be many objects
created at the same program point and all of them are represented by the same abstract object and many
tasks executing the same method represented by the same abstract task. If the set is empty, then the program
is deadlock-free. Otherwise, using the inferred set of deadlock cycles, we systematically test the program
using a novel technique to guide the exploration towards paths that might lead to deadlock cycles. The goals
of this process are: (1) finding concrete deadlock traces associated to the feasible cycles, and, (2) discarding
unfeasible deadlock cycles, and in case all cycles are discarded, ensure deadlock freedom for the considered
input or, in our case, for the main method under test. As our experiments show in Section [5.5], our technique
allows reducing significantly the search space compared to the full systematic exploration.

Example 6 In our working example there are three abstract objects, g, ag and ag, corresponding to objects
barber, client and chair, created at lines 2, 3 and 4; and siz abstract tasks, sleeps, cuts, wakeup, sits, taken

and isClean. The following cycle is inferred by the deadlock analysis: oy EBslecrs, o o Bioken, ;o BDsits

o Bwakeup, ;s Dleuts qg. The first arrow captures that the object created at [@ is blocked waiting for the
termination of task taken because of the synchronization at II13 of task sleeps. Observe that cycles contain
dependencies also between tasks, like the second arrow, where we capture that taken is waiting for sits. Also,
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a dependency between a task (e.g., sits) and a object (e.g., qg) captures that the task is trying to execute on
that (possibly) blocked object. Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies arise, and in particular the
interleavings scheduled to lead to this situation.

Given an abstract deadlock cycle, we guide the systematic execution towards paths that might contain a
representative of that abstract deadlock cycle, by discarding paths that are guaranteed not to contain such a
representative. The main idea is as follows: (1) From the abstract deadlock cycle, we generate deadlock-cycle
constraints, which must hold in all states of derivations leading to the given deadlock cycle. (2) We extend
the execution semantics to support deadlock-cycle constraints, with the aim of stopping derivations as soon
as cycle-constraints are not satisfied.

Example 7 The following deadlock-cycle constraints are computed for the cycle in Ex. |6

{ Htothh_ — (*Fl.get>, = fut(Fl, 02, Tkg, 3t027Tk27_l—><* await F2?>, = fut(Fg, 03, Tk3,
pending(Tk3), 3to, Tk, +{_ Fg.get>, Afut(F3, Oy, Tk5, pending(Tks)}. The first four constraints re-
quire the interleavings table to contain a concrete time in which some barber sleeps waiting at for a
certain chair to be taken at II8| and, during another concrete time, this one waits at I20] for a certain client
to sit at 131 The client is not allowed to sit by the constraint pending(Tks). Furthermore, the last three
constraints require a concrete time in which this client waits at I29] to get a haircut by some barber at I14]
and that haircut is never performed, because of the constraint pending(Tks).

Finally, our semantics is extended to check if at least a deadlock cycle constraint does not hold. Intuitively,
a deadlock cycle constraint does not hold if: (i) the program point which generates the contraint is not
reachable anymore, and, (ii) in the case that the interleavings table contains entries matching it, for each
one, there is an associated future variable in the state and a pending constraint for its associated task which
is violated, i.e., the associated task has finished. The first condition (i) implies that there cannot be more
representatives of the given abstract cycle in subsequent states, therefore if there are potential deadlock
cycles, the associated time identifiers must be in the interleavings table. The second condition (ii) implies
that, for each potential cycle in the state, there is no call chain leading to deadlock since at least one of
the blocking tasks has finished. This means there cannot be derivations from this state leading to the given
cycle, hence the derivation can be stopped.

Example 8 Let us consider the deadlock-guided testing of our working example with the deadlock-cycle
of Ex. [6, and hence with the constraints of Ex. []. The interleavings table at Sts contains the entries
{tini;main—> (0, return), tcl,wakeup@'_)<1f0‘get> and tpa,cuts[i@— (2, return) }. One of the constraints does
not hold since t o, Tk, 9] is not reachable (L25 is not reachable anymore) from Sts and constraint pending(Tks)
is violated (task cuts of the last entry has already finished at this point). The derivation is hence pruned.
Similarly, the rightmost derivation is stopped at St11. Also, derivations at Sty, Stg and Stig are stopped by
the semantics, as all of them are deadlock states. Our methodology therefore explores 19 states instead of
the 181 explored by the full systematic execution.

5.5 Experimental Evaluation

We have implemented our approach within the SYCO tool which is integrated in the ABS collaboratory
(see Deliverable D3.5). This section summarizes our experimental results which aim at demonstrating the
effectiveness and impact of the proposed techniques. The benchmarks we have used include: (i) classical
concurrency patterns containing deadlocks, namely, SB is an extension of the sleeping barber, UL is a loop
that creates asynchronous tasks and concurrent objects, PA is the pairing problem, FA is a distributed
factorial, WM is the water molecule making problem, HB the hungry birds problem; and, (ii) deadlock free
versions of some of the above, named fX for the X problem, for which deadlock analyzers give false positives.
We also include here a peer-to-peer system P2P.
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Systematic DGT (deadlock-per-cycle) Speedup
Bm. Ans T S D/U/C T Tmaa: S Smaw Tgain Sgai'n T;Zﬁf ;2?:,

HB 35k 32k 114k 2/3/5 44k 15k 103k 34k 0.73 0.9 2.15 3.33
FA 11k 11k 41k 2/1/3 2k 759 3k 2k 5.5 13.7 151 222
UL >90k >150k >489k 1/0/1 133 133 5 5 >1.1k >2.5k >2.5k >98k
SB >103k >150k >584k 1/0/1 59 59 23 23  >2.5k >25k >2.5k >25k
PA >121k >150k >329k 2/0/2 42 4 12 6 >3.6k >27k >38k >55k
WM >82k >150k >380k 1/0/2 >150k >150k >258k >258k 1* 1.47* 1% 147"
fFA 5k 7k 25k 0/1/1 5k 5k 11k 11k 1.61 2.35 1.61 2.35
fP2P 25k 66k 118k 0/1/1 34k 34k 52k 52k 1.96 2.28 1.96 2.28
fPA Tk 7k 30k 0/2/2 4k 2k 9k 4k 1.75 3.33 3.73 6.98
fUL >102k >150k >527k 0/1/1 410 410 236 236 >1k >2k >1k >2k

Table 5.1: Experimental results: Deadlock-guided testing vs. systematic testing

Table 5.1 shows, for each benchmark, the results of our deadlock-guided testing (DGT) methodology
for finding a representative trace for each deadlock compared to those of the standard systematic testing.
Partial-order reduction techniques are not applied since they are orthogonal. This way so we focus on the
reductions obtained due to our technique per se. For the systematic testing setting we measure: the number
of solutions or complete derivations (column Ans), the total time taken (column 7') and the number of
states generated (column S). For the DGT setting, besides the time and number of states (columns 7" and
S), we measure the “number of deadlock executions”’/“number of unfeasible cycles”/“number of abstract cycles
inferred by the deadlock analysis” (column D/U/C), and, since the DCGTs for each cycle are independent
and can be performed in parallel, we show the maximum time and maximum number of states measured
among the different DCGTs (columns T)q, and Spue.). For instance, in the DGT for HB the analysis has
found five abstract cycles, we only found a deadlock execution for two of them (therefore 3 of them were
unfeasible), 44s being the total time of the process, and 15s the time of the longest DCGT (including the
time of the deadlock analysis) and hence the total time assuming an ideal parallel setting with 5 processors.
Columns in the group Speedup show the gains of DGT over systematic testing both assuming a sequential
setting, hence considering values T" and S of DGT (column Tyq;, for time and Sgqipn for number of states),
and an ideal parallel setting, therefore considering T4, and Sy (columns T;Zf,f and ;’Zl% ). The gains are
computed as X/Y, X being the measure of systematic testing and Y that of DGT. Times are in milliseconds
and are obtained on an Intel(R) Core(TM) i7 CPU at 2.3GHz with 8GB of RAM, running Mac OS X 10.8.5.
A timeout of 150s is used. When the timeout is reached, we write >X to indicate that for the corresponding
measure we have got X units in the timeout. In the case of the speedups, >X indicates that the speedup
would be X if the process finishes right in the timeout, and hence it is guaranteed to be greater than X.
Also, we write X* when DGT times out.

Our experiments support our claim that testing complements static analysis in the context of deadlock
detection. In the case of programs with deadlock, we have been able to provide concrete traces for feasible
deadlock cycles and to discard unfeasible cycles. For deadlock-free programs, we have been able to discard
all potential cycles and therefore prove deadlock freedom. More importantly, the experiments demonstrate
that our DGT methodology achieves a notable reduction of the search space over systematic testing in most
cases. Except for benchmarks HB and WM which are explained below, the gains of DGT both in time and
number of states are enormous (more than three orders of magnitude in many cases). E.g., by just exploring
23 states in SB we found one representative per cycle in just 59ms, whereas systematic testing times out.
It can be observed that the gains are much larger in the examples in which the deadlock analysis does not
give false positives (namely, in SB, UL and PA). In general, the generated constraints for unfeasible cycles
are often not able to guide the exploration effectively, and therefore can degrade the overall process as it
happens with benchmarks HB and WM. Even in these cases, DGT outperforms systematic testing in terms of
scalability and flexibility. Let us also observe that the gains are less notable in deadlock-free examples. That
is because, each DCGT cannot stop until all potential deadlock paths have been considered. As expected,
when we consider a parallel setting, the gains are in general much larger.
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All in all, we argue that our experiments show that our methodology complements static analysis in
the context of deadlock detection, finding deadlock traces for the potential deadlock cycles and discarding
unfeasible ones, with a significant reduction of the state exploration compared to systematic testing.

5.6 Conclusions

There is a large body of work on deadlock detection including both dynamic and static approaches. Much
of the existing work, both for asynchronous programs [I3] 24, 27| and thread-based programs [306], [40], is
based on static analysis techniques. Static analysis can ensure the absence of errors, however it works on
approximations (especially for handling iteration and pointer aliasing) which might lead to a “don’t know”
answer. Our work complements static analysis techniques and can be used to look for deadlock paths when
static analysis is not able to prove the absence of deadlock. Using our method, if there might be a deadlock,
we try to find it by exploring the paths given by our deadlock detection algorithm that relies on the static
information.

Finally, although we have presented our technique in the context of dynamic testing, our approach would
be applicable also in static testing where the execution is performed on constraints variables rather than on
concrete values. This remains as subject for future research.
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Chapter 6

Combination of Resource Analysis and
Profiling

Resource Analysis and Simulation

As explained in deliverable D1.2.2, the static analyses integrated in the resource analyzer SACO [4] infer
upper bounds on the resource consumption of the different methods, using different cost models such as
number of executed instructions, size of transmitted data, number of objects created, number of methods
invoked, etc. These upper bounds are usually complex (mathematical) cost expressions that involve the size
of the method parameters. Consider the following iterative method sum that takes a list of integer numbers
and sums all its elements:

Example:

Int sum(List<Int> list) {
Int result = 0;
while (list != Nil) {
Int h = head(list);
result = result + h;
list = tail(list);

return result;

© 0 N O U W N =

}

Analyzing the above code using SACO, we obtain the following upper bound on the number of executed
instructions:

10|UB for sum(list) = 6+11xnat(list)

As expected, the upper bound of method sum depends only on the parameter list, which represents the
length of the list, since it determines the iterations of the loop. Note that nat(v) is interpreted as max
(0,v). Although computing upper bounds for concrete data is simple in the specific case above, for more
complex data-structures with nesting it is more complicated as the definition of the corresponding sizes is
more elaborated: number of nodes in a tree, maximum key size in a map, etc. In order to facilitate the usage
of SACO results during simulation, SACO generates ABS functions that compute the corresponding upper
bounds of a method from concrete data. These functions take the same parameters as the corresponding
methods and return the evaluation of the upper bound with respect to those parameters. For the pow
method, SACO would generate the following code:

11/def Int nat(Int n) = max(0, n) ;

12|

13/def Int ub_sum(List<Int> list) = 6+11xnat(size list(list)—1);
14
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1s|def Int size list(List<Int> x) =

16| case x {

17| Nil => 1;

18] Cons(x1,x2) => 1 + size_list(x2);
19| +

Note that in addition to the functions that define the upper bound of method sum, called ub_sum,; SACO
generates a function size list that computes the size of a list of type List<Int> (in this case its length plus
1, as it counts the Nil constructor). If we had more types in the program, corresponding size functions will
be generated. These upper bound functions can be easily integrated into the simulation process by means of
annotations. For example, consider the following main method that invokes sum and note the Cost annotation

at Line P2}

20|Unit main() {

21| List<Int> | = Cons(1, Cons(2, Nil));
22| [Cost: ub_sum(l)] this ! sum(l);

23}

Now when reaching Line , if the simulator needs (an upper bound on) the cost of the corresponding call
to sum it can simply execute the call given in the corresponding Cost annotation, namely ub_sum(l).
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Abstract. This paper proposes a simple yet concise framework to stat-
ically verify communication correctness in a concurrency model using
futures. We consider the concurrency model of the core ABS language,
which supports actor-style asynchronous communication using futures
and cooperative scheduling. We provide a type discipline based on session
types, which gives a high-level abstraction for structured interactions.
By using it we statically verify if the local implementations comply with
the communication correctness. We extend core ABS with sessions and
annotations to express scheduling policies based on required communi-
cation ordering. The annotation is statically checked against the session
automata derived from the session types.

1 Introduction

While distributed and concurrent systems are the pillars of modern IT in-
frastructures, it is non-trivial to model asynchronous interactions and statically
guarantee communication correctness of such systems. This challenge motivates
us to bring a compositional analysis framework, which models and locally verifies
the behaviors of each distributed endpoints (i.e. components) from the specifica-
tion of their global interactions. For modeling, we focus on core ABS [10,15], an
object-oriented actor-based language designed to model distributed and concur-
rent systems with asynchronous communications. For verification, we establish a
hybrid analysis, which statically type checks local objects’ behaviors and, at the
same time ensures that local schedulers obey to specified policies during runtime.
We apply session types [12,21] to type interactions by abstracting structured
communications as a global specification, and then automatically generating lo-
cal specifications from the global one to locally type check endpoint behaviors.

The distinguishing features of the core ABS concurrency model are (1) co-
operative scheduling, where methods explicitly control internal interleavings by
explicit scheduling points, and (2) the usage of futures [11], which decouple the
process invoking a method and the process reading the returned value. By shar-
ing future identities, the caller enables other objects to wait for the same method

* Every author contributed to this paper equally.



results. Note that core ABS does not use channels. Communication between pro-
cesses is restricted to method calls and return values.

The order of operations on futures is fixed: First a fresh future identity is
created upon the caller invoking a method on the callee, then the callee starts the
method execution. After method termination, the callee sends the result to the
future, i.e. future is resolved. Finally, any object which can access the future can
read the value from this future. Our session-based type system ensures that the
specification respects this order. We have two kinds of communications: Caller
invoking a method at a remote callee, and callee returning values via a future
to those who know that future. The later is non-trivial since several endpoints
can read more than once from the same resolved future at any time.

To the best of our knowledge, it is the first time that session types are consid-
ered for typing the concurrency model of core ABS. Our contributions include:
(1) extending core ABS with sessions (SABS for short) by giving special anno-
tations to specify the order of interactions among concurrent class instances, (2)
establishing a session-based type system, and (3) generating session automata [2]
from session types to represent scheduling policies and typestate [20]. To cap-
ture the interactions among objects, which are running several processes, we
introduce a two-fold notion of local types: Object types defining behaviors (i.e.
including scheduling behavior) among class instances, while method types defin-
ing behaviors that processes should follow.

Outline: Section 2 gives a motivating example which is used in the rest of the
paper. Section 3 introduces the concurrency model of SABS. Section 4 defines
session types for SABS (ABS-ST for short), while Section 5 gives a type system.
Section 6 introduces session automata which are used to verify behaviors of
schedulers. Section 7 gives the related works, while section 8 concludes our work.

2 Motivating Example: A Grading System
Consider a service, called grading system, which
. . e 2. announce
offers an expensive computation on sensitive data, C
e.g. automatic evaluation of exams. This service
consists of three endpoints: A computation server, s
denoted by ¢, and a service desk, denoted by d, 1. publish
where a student, denoted by s, can request their
grades. The protocol is as follows: Once c finishes d 5
; . ; . request
calculating the grades, it sends a publish message
containing the grades to d and an announcement,
announce message, to a student. It is not desirable that d starts a new commu-

nication with ¢ because ¢ may be already computing the next exams; it is also
not desirable that d communicates to s without any request from s.

Fig. 1. A grading system

If a student requests his/her grades before the service desk receives the grades
from c by publish, the scheduler of d must postpone the process of request until
publish has been executed and terminated. This is not possible for core ABS,
because a scheduler in core ABS cannot be idle while waiting for a specific
message when the process queue is non-empty. Thus we propose an extension of



core ABS to ensure that the endpoints and their local schedulers behave well to
the specified communication order.

3 The Session-based ABS Language (SABS)

This section introduces the concept of session to core ABS [10, 15]. The
extended language is called session-based ABS, SABS in short. The goal of this
extension is to equip the language’s compiler with the ability to statically ensure
communication correctness for applications written in core ABS.

3.1 Syntax and the concurrency model of core ABS

The SABS language provides a combination of algebraic datatype, functional
sublanguage, and a simple imperative object-oriented language. The former two
kinds are kept the same in SABS as in core ABS. The imperative object-oriented
layer is extended. The syntax of SABS can be found in Fig. 2, in which the new
language extension is highlighted and will be explained in Section 3.2.

Syntactic categories Definitions

T in Ground Type T:=B|I|D|D(T) B :=Bool|lInt]|String|Unit]---

B in Basic Type A= N|T|D(A)

Ain Genetic Type  Dd ::= data D[(A)] = Cons[| Cons; Cons ::= Co[(A)]

N in Names F ::=def A fn[(A)](AT) =¢;

e in Expression e:=0b|x|t|this|destiny | Co[(€)] | fn(€) | case e {br}
z in Variable t = Co[(?)] |null bru=p=ve pu=_J|z|t| Col(D)]
t in Ground Term Pu:=Dd F IF CL {T z; s}

br. in Branch IF ::= interface I {Sg} Sg:=T m (TT)

p in Pattern CL ::= [[a]]class C [(T z)] [implements I| { T z; M}

EJ,T lnll\_lrames M= Sg{Tm s}
I Local lypes a = Scheduler: L pic:= Protocol: G  join ::= Ses: String
S in Session IDs o -
G in Global T hs == e | elm(e) | e.get
'mS obal lypes s u=s;s |z =rhs | skip | return e
Z m Btatlergent . | await e? | if b{s} [else {s}]| | while b{s} | case e{p = 5;}
11 Bool Expression | [ptc] x = new Session(e) | [join] =z = new C[(€)]

Fig. 2. SABS syntax. Terms - denote possibly empty lists over corresponding syntactic
categories, and [] optional elements. The highlighted ones are the new syntax added
to core ABS.

A SABS model, denoted by P, defines datatypes Dd, functions F, inter-
faces IF, classes CL, and main block {T T; s} to configure the initial state. In
datatype declarations Dd, an abstract datatype D has at least one constructor
Cons, which has a name Co and a list of generic types A for its arguments. A
future of built-in type Fut(T) expresses that the value stored in the future is
of type T. Function declarations F' consist of a return type A, a function name
fn, an optional list of parameters of types A, a list of variable declarations Z of
types A, and an expression e. Expressions e include boolean expressions b, vari-
ables z, (ground) terms ¢, the self-identifier this, the return address destiny
of the method activation, constructor expressions Co(e), function expressions
fn(€), and case expressions case e {br} where br is a branch. An interface IF




has a name I and method signatures Sg. A method signature Sg declares the
return type T of a method with name m and formal parameters T of types T.
A class CL has a name C, the fields T of type T for formal parameters and state
variables, implemented interfaces I and methods M. The right-hand side expres-
sions rhs include (pure) expressions e, asynchronous remote method invocation
elm(e), and future fetching expression e.get. Statements s include sequential
composition, assignment, session creation, object creation, guarding statement
await e?, if, while, branching, skip and return statement.

The concurrency model In SABS each object has one scheduler and one pro-
cessor. It is possible to have more than one processes on an object, but at most
one process is executed by the processor on an object at a time. For a method
call, a fresh future identity, say f, is generated by the caller upon sending an
asynchronous remote method invocation to the callee. A future can be seen as
a placeholder for the method result. The callee creates a new process for the re-
ceiving call. If the processor of the callee is busy while the new message arrives,
the created process will be put into the process pool and can later be chosen
for execution by the scheduler. Upon method termination, the callee returns
the result to f, i.e. f is resolved. Any object sharing the identity f can read
the value from f by executing f.get. This statement blocks the current process
until f is resolved and then returns the value. Since execution control is not
transferred between objects and there is no direct access from one object to the
fields of other objects, each object can be analyzed individually. SABS supports
cooperative scheduling. Each object relies on its scheduler to select a process for
execution at the explicit scheduling points, which can be upon termination of
object initialization, at await statement, and upon method termination. When
a process execution encounters statement await f7, if the future f is not re-
solved yet, the processor is released and the current process is suspended and
put into the process pool. Then the processor is idle and the scheduler chooses
a process from the pool for execution based on a scheduling policy (i.e. specified
by a local specification). We say the chosen process from the pool is reactivated.

3.2 New language extension

SABS provides a set of new features in order to guide the scheduler to select
the intended process for execution according to the required interaction order-
ing. In Fig. 2, the statement [Protocol : G] x = new Session(e) creates a new
session with a fresh session id stored in x. The parameter e is the session name
of type String. The annotation [Protocol : G| describes the global communi-
cation specification G, which will be formalized in Section. 4.1, that the newly
created session should obey. The statement [Ses : S] * = new C|(€)] creates a
new object with a fresh object id stored in x. The annotation [Ses : S]specifies
that the newly created object belongs to session S. Each object can belong to
at most one session. The annotation [Scheduler : L] is optional and can be
added in front of the class declarations. It provides the local communication
specification L to guide the scheduler of the current object.

The SABS implementation for the grading example in Section 2 is in Fig. 3,
in which we create a new session ses named Service. Type gradingSystem de-



1 || interface ServiceDesk{ Unit publish(Int g); Int request(); }
2 || interface CompServer{ Unit pubGrd(ServiceDesk d, Student s, Int g); }
3 || interface Student{ Unit announce(ServiceDesk d); }
4
5 ||[ Scheduler: c?;publish.s? ¢ request] // local protocol for SD
6 || class SD(CompServer ¢, Student s) implements ServiceDesk{
7 Int grade = 0;
8 Unit publish(Int g){grade = g;}
9 Int request(){return grade;}}
10
11 || elass CS implements CompServer{
12 Unit pubGrd(ServiceDesk d, Student s, Int g){
13 Fut<Unit> f = dlpublish(g,this);
14 Fut<Unit> f’ = slannounce(d,this);
15 1
16
17 || elass S implements Student{
18 Int grade = 0;
19 Unit announce(ServiceDesk d){
20 Fut<Int> f” = dlrequest(this);
21 grade = f".get;
22 1
23
24 || { [ Protocol: gradingSystem ] Ses ses = new Session("Service");
25 [ Ses: ses ] CompServer ¢ = new CS;
26 [ Ses: ses ] Students = new S;
27 [ Ses: ses ] ServiceDesk d = new SD(c,s);
28 Fut<Unit> fo = c!pubGrd(d,s,85); }

Fig. 3. The ABS implementation for the example in Section. 2.

fines this session’s global communication specification (introduced later in Sec-
tion 4.1). Computer server c, student s and service desk d all belong to the same
session ses. The scheduling policy for the service desk is represented by a local
specification c? ¢ publish.s? prrequest (introduced later in Section 4.2), which spec-
ifies the method request invoked by the student s can only be executed after the
execution of method publish invoked by the computer server c.

4 Compositional Analysis Based on Session Types

Based on the approach of compositional analysis and the theory of ses-
sion types [12], we introduce the ABS-ST (ABS Session Types) framework:
Each object (i.e. component) is statically checked against its local specification,
which are projected from a global specification, specifying the overall interac-
tions among objects (i.e. composes objects). As multiparty session types type
interactions consisting of simple sending and receiving actions among multiple
processes, ABS-ST type interactions consisting of asynchronous remote method
calls, scheduling, and futures among objects. This work extends [16], which con-
tains proofs, full examples and definitions.



4.1 Global Types

Global types, denoted by G, define global communication specifications within
a closed system of objects. Contrary to session types [12,21], we do not specify
the datatype of a message since the message is a method call or a method return
and every method in SABS has a fixed signature. The syntax of G is defined:

Definition 1. Let p, q range over objects, denoted by Ob, f over futures, m
over method names and C over all constructors of all abstract datatypes.

!
o gu=p o aqmg|plf:(C)g|ptf:(C)g|
G:=02aim|Ge Rel(p, f).g | p{g;j}jcs | end | g

Initialization 0 ER q:m starts interactions from the main block invoking object q,

e.g. we write 0 Jo, ¢ :pubGrd to specify the code in the main block in Fig. 3. We
use . for sequential composition and write G.g to mean interaction(s) g follows

G. Interaction p i> q:m models a remote call, where object p asynchronously
calls method m at object q via future f, and then q creates a new process for this
method call. The resolving type p{ f:(C) models object p resolving the future
f- If the method has an algebraic datatype as its return type, then the return
value has C as its outermost constructor; otherwise we simply write p | f. The
fetching type p7 f:(C) models object p reading the future f. The usage of C here
is similar to the one in pJ f:(C). The releasing type Rel(p, f) models p which
releases the control until future f has been resolved. This type corresponds to
await f7 statement in SABS. The example below shows how Rel(p, f) works:

Example 1. Consider G ejease = 0 &> a:mp.a L> b:m;.b £> a:msy.g. It does
not specify the usage of futures correctly: At the moment b makes a remote call
on mso at a, the process computing f, is still active at a. We shall revise it to

1
release

—oy a:mg.a ELN b:m;.Rel(a, f1).b EEN a:meo.g

Here a suspends its first process computing fo until f; has been resolved; during
this period, a can execute the call on ms.

The branching type p{g;};cs expresses that as p selects the jth branch, g;
guides the continuing interactions. The type end means termination.

Note that only a self-contained g can be repeatedly used. We say g is self-
contained if (1) wherever there is a remote call or releasing, there is a correspond-
ing resolving and visa versa; and (2) it contains no end, and (3) every repeated
type within it is also self-contained. We say A € g if A appears in g and A € G
if A € g for some g € G. E.g., we have q ER p:meo Jo, q:m.q ER p:m
and q{g2} € q{g;};ecf1,2,3) and its negation means the inverse. A future f is
introduced in g (or G) if p EN qeg(or G).

Now we define type g* = fresh(g).g* (in case fresh(g) is a branching, we ap-
pend g* to the end of every branch), meaning finite repetition of a self-contained



g by giving every repetition fresh future names:

g{fi/fi}-Afrn/fn} if fu,..., fn are introduced in g and fi, .., f, fresh
fresh(g) = { p{fresh(g;)}jes  if p{gj}jes
Undefined otherwise

In other words, we need to keep linearity of futures for every iterations.

Example 2. We show how the global type gradingSystem, used in the code of
Fig. 3, represents the grading system discussed in Section 2:

gradingSystem = 0 Jo, c:pubGrd.c ER d:publish.d] f.c I s:announce.

s I d:request.d ) f" st f" 51 f'.cl fo.end

The session is started by a call on c.pubGrd, while other objects are inactive

at the moment. After the call ¢ L5 d: publish, the service desk d is active at
computing f in a process running publish. We position d | f there to specify
that d must resolve f after it is called by ¢ and before it is called by s (i.e.

s f—) d : request). For c, it can have a second remote call c f—> S : announce
after its first call. Thus in this case it is no harm to move d | f right after

’

¢ Ls s:announce. As d is called by s, d can start computing f” in a process
running request only after dJ. f, which means the process computing publish has
terminated. s will fetch the result by s1 f” after d resolves f”; then s resolves
f'. Note that, since ¢ does not need to get any response from d nor s, ¢ simply
finishes the session by c | fo. The end is there to ensure all processes in the
session terminate. The valid use of futures is examined during generating object
types from a global type, a procedure introduced in Section 4.3. If s 1 f” is
specified before d | f”, the projection procedure will return undefined since f”
can not be read before being resolved.

4.2 Local Types

Besides global types, to statically check code, we define local types, which
describe local specifications at object level. The syntax of local types is defined:

Definition 2.

L == plymL|p?smL|Put f:(C).L | Get f:(C).L | Await(f, f').L
| React(f).L | ®{L;}jes | &s{L;}jes | L*.L | skip.L | end

We use . to denote sequential composition. The type p!sm denotes a sending
action via an asynchronous remote call on method m at endpoint p. The type
p?sm denotes a receiving action which starts a new process computing f by
executing method m after a call from p. The resolving Put f:(C) and fetching
Get f:(C) have the same intuitive meaning as their global counterparts. The
suspension Await(f, /') means that the process computing f suspends its action



until future f’ is resolved. The reactivation React(f) means the process contin-
ues the execution with f. The choice operator & in &{L;},c; denotes that the
currently active process selects a branch to continue. The offer operator &y in
& {L;};cs denotes that the object offers branches {L;};c; when f is resolved.
The type skip denotes no action and we say L.skip = L = skip.L.

In ABS-ST the communication happens among processes in different objects.
We list three kinds of local types:

— A method type describes the execution of a single process on a particular
future f. It has the following attributes: (1) Its first action is p?sm for some
p, m, f, and (2) if it has a branching type, the final action in every branch
is Put f:(C) for some C, f, and (3) it contains no further resolving action or
receiving action, and (4) it contains no end.

— An object type is a type which is not a method type.

— A condensed type, denoted by L, where L is an object type, replaces every
action, except receiving and reactivation actions, in L with skip.

FEzxzample 3. Consider object d in the grading system in Section 2. Its method
type on future f, which is used for calling method publish, is c? ;publish.Put f. Its
object type is L = c?¢publish.Put f.s?¢nrequest.Put f”.end, and its condensed
type is L= c? ypublish.skip.s? yn request.skip.skip = c? ypublish.s? y1request.

4.3 Projection

Projection is the procedure to derive local types of endpoints from a global
type. Since in SABS data is sent between different objects by active processes,
the projection rules have two levels: (1) Projecting a global type on objects and
resulting object types and (2) projecting object types on a future and resulting
method types, which type the behavior of process for computing the target future.

4.4 Projecting a Global Type to Local Types

We say a global type is projectable if every projection on every of its partic-
ipants is defined and every future is introduced exactly once (i.e. linearity). A
projectable global type implies that the futures appear in it are located correctly
across multiple objects; thus the object types gained from it ensure the correct
usage of futures.

We define pre(G, G') as the set of prefixes of G:

pre(G,G’) = {G" | G € G’ implies G".G € G’}
and that a future f introduced in G’ is active on object o in G iff (if and only if):
(P o€ pre(G.G)) A (0L f:(C) & pre(G, G)
A ((Rel(p,f’) € pre(G,G') A f active in Rel(p,f/)) —olf € pre(G,G/))
The first conjunct captures that after p ER o, f becomes active on o, while after
ol f:(C), f becomes inactive on o; the second conjunct captures that if f has

been suspended on f (i.e. Rel(p, f') € pre(G, G')A f active in Rel(p, f')), then
f must have been reactivated by resolving f’ (i.e. ol f’ € pre(G, G")).



Projection from global types to object types

qlym if (o =p) A (f is fresh)

p?ym if (o = q) A (f is fresh) A (q is inactive)
skip if (0 # g Ao # p)A(f is fresh)

pi(p L q:m,0)a=

if (0 # p) A (Rel(o, f) € pre(pl f:(C), G))
React f’ A( f' is active on o in Rel(o, f))
skip otherwise

pj(pl f:(C),0)a=

Get f:(C) if ( Ofp)A(qif (C) € pre(p1f:(C), G))
pj(pTf:(C),0)a= skip (o 2 A (AL (0) € relit F1(0). O
if (o = p) A (f' is active on p)

Awalt f f) /\(/le. p,if c pre(ReI(p, f),G))

skip if(o # p)

pj(Rel(p, f),

{ Put f:(C) if (o = p) A (f is active on p)

{pi(gs,0)ctjes if (0=p)
pj(P{gi}ies,0)a=4 &s{pj(g;,0)c}jcs if (0 # p) A (f is active on o)
L if (0 #p) A (Vj e J pj(g;,0)e =L)

pj(end, 0)c=end pj(g",0)e = (pj(g,0)c)” if g is self-contained

. (G, 0 if (pj(G',0)g = ski
pi((G'g),0)a= VG 0)e (P (&', 0)e = skip)
pj(G’,0)c.pj(g,0)c otherwise

Projection from object types to method types
SIMPLE = {p!;m,p?sm,Put f:(C),Get f":(C), Await(f, f')}

L if (L € SIMPLE) A (f is active)

skip if (L € SIMPLE) A (some other future is active)
skip if (L = React(f)) V (L = end)

pjm(Ll, pjT?’L(LQ7 ) if (L = L1.L2)

1)
pim(L’, f) if (L=L))A(pLqel)
pim(L, )" itL=1))APLHagl)
P if (L= &f’{Lj}j?}) V(L ={L;}jeu))
ANf#T)AN (P =o€l
&{psm(L;, f)}jes if (L =&{L;}jes)
& {pim(Lyj, f)}jes if (L =& {L;}jes) A (L; are distinct)

pjm(L, f)=

p]m(LJ 7

Fig. 4. Projection rules

Fig. 4 defines the projection rules as a function pj(g,0)c projecting g to
object o, where g € G. We write pj(G,0)e = G | 0. The side-conditions verify
the defined cases, where the futures are used correctly; others are undefined.



The interaction type projects a sending action on the caller side and a re-
ceiving action on the callee side. A resolving type gives an action for resolving f
on the corresponding object, and generates a reactivation for every objects who
are waiting for f; for others, it gives skip. A fetching type gives an action for
fetching the result from f on the corresponding object and gives skip for others.
Its side-condition ensures that a future is resolved before fetching it. This must
be checked at a global level because resolving and fetching take place in different
objects. A releasing type gives suspension for the corresponding object and gives
skip for others. Its side-condition ensures that the releasing object does not have
any other future waiting for the same resolving. A branching type gives a choice
type for the active side and an offer for every one that either receives one of the
calls invoked by the object making the choice or reads from the active future. For
other objects, each branch should have the same behavior so that those objects
always know how to proceed no matter which branch was selected. Termination
type gives end, which means every future has been resolved and all objects are
inactive. The repetition and concatenation are propagated down.

4.5 Projecting Object Types to Method Types

Fig. 4 also defines the projection of an object type L to a method type on
a future f, denoted by pjm(L, f). Since the correct usage of futures has been
checked when we do G [ o, pjm(G | o, f) has ensured the valid usage of futures.

For a sending, receiving, resolving, fetching, suspending, or repetition object
type which is active on future f, the projected method type is itself; otherwise
the projection gives skip. A choice object type gives a choice method type when
it projects on an active future used by the target object, while gives a unique
L when it projects on a future which only appears in one branch. Similarly for
the case of offer object type. A reactivation object type gives a method type
skip when it projects on any future because the next action after a suspension
will always be a reactivation inside a method type. Termination object type also
always gives skip for any future because it is not visible. A concatenation object
type gives a concatenation method type on any future.

5 Type System

We say the objects involving in a sequence of communications, i.e. a session,
satisfy communication correctness iff, during the interactions, they always com-
ply with some pre-defined global type. To locally check endpoint implementations
and statically ensure communication safety, which is currently not supported by
core ABS, we here introduce a type system, which is defined in Fig. 5.

We use © as session environments, which contain sessions associating to
global types that they follow, with information about the types of participants;
we use I as shared environments mapping expressions to ground types, and A
as channel environments mapping channels (composed by a session name and
an object) to local types. Note that, channel environments only exist in the type
system. When we write ©,0’, we mean domain(©) N domain(6') = (), so as for
@, I'and A. © and I together store the shared information. For convenience, we
define role(G) returning the set of participants in G, ptypes(C) returning the



O(Session Environments) := 0 | 0, {p}s.c pu=0]¢,I:p|e,Any:0
I'(Shared Environments) == 0| Ie: T
A(Channel Environments) == 0 | A, s[p] : L

(T-New-Session)
G is projectable s fresh © = {Any:0}s.g 't e: String
O,I' F|Protocol: G | Ses s = new Session(e)> A,s[0]: G [0
(T-New-Join)
O+ {¢}s.q for some G I'+e€: ptypes(C) I'Fc: 1
O,I'H[ses: s] c=new C[(e)] > A,s[c]: 0
B (T-Scheduler) L
VI € I.implements(C,I) ©,I'[this — C, fields(C)] - M > A, s[obj(C)] : 0
0=0"{¢o}s.c Iperle(G)st.G|p=L 0 =0"{p,I:p}s.c
©', I -[Scheduler: L |class C [(T 7)| [implements [| {T 7; M} > A, s[p] : L

(T-Send)
60=0"{p,l:q}ts.g I'te:I I'tz:f I'ts>As[p]:L
O, 'k z=elm(e);s> A, s[p]: qlym.L

(T-Method)
B ©=06"{p,T:a}s.c) N(T'=1)V (T = Any))
TeT I'=Tz—T,2’—T'] I'[destiny — f'|F s> A, pim(L, f')
6, I'=T" m (T ){T" «;s} > A, s[p] : pjm(q?ym.L, f')
(T-Offer)
I'te:T J={l.n} VjeJI'Fp;:T I'ks;>A,s[p]:L; factiveon pin L;j
I't case e{p1 = $1,....,0n = sn} D> A, s[p] : &s{L; }jcs

(T-Choice)
I'te:T I'kp:T J={1l.n} keJ I'ks> A, s[p]: L
I'casee {p=s}t> A s[p] : AL, }iecs
(T-Await)
L = React(f).L’ f' inactiveon pin L’ I' s> A, s[p]:L
't await e?;s> A, s[p] : Await(f, f).L

(T-Skip) (T-Return)
I's> A sp]:L I'te:T I'(destiny)=f I'Fs> A,s[p]:L
I' - skip;s > A, s[p] : skip.L I'+ return e;s > A, s[p] : Put f:(C).L
(T-While) (T-Get)
I'-b:Bool I's> A, slp]: L I'+ s{e.get/z} > A,s[p]: L

I'-while b{s} > A,s[p]: L T Fz=ecget;s>A,s[p]: Get f:(C).L

Fig. 5. The type system for the concurrent object level of ABS (Parts: Session-related)

types of parameters of C, implements(C, I) returning true if C' can implement
interface I, obj(C) returning an instance of class C, and fields(C') returning a
shared environment containing attributes of C. We only list the session-related
typing rules related. Others are as same as those in core ABS [15].



Rule (T-New-Session) types a session creation by checking if G in the annotation
is projectable (see Section 4.4), the session id s is fresh, and the type of e is String.
If all conditions are satisfied, we create © = {Any : O}s.¢ to record mappings
of types to the participants in G. The first mapping is Any : 0, in which Any
types the session initializer. Also, a channel s[0] and its type G [ 0 is created in
shared environments to specify this object playing 0 in G. Rule (T-New-Join) types
an object creation, which joins session s, which is a name (with type String) of
a session. The object creation is valid if s has been created (i.e. © F {¢}s.c)
and the type of € is ptypes(C).

Rule (T-Scheduler) is the key rule to activate session-based typing. A class with
annotation [Scheduler: L ]is well-typed if its methods are well-typed (this part
is as same as the rule (T-Class) in [15]) and, by given the fact that the instance of
C has joined session s (i.e. s[obj(C)] : 0), the local scheduler who specifies the
behavior of 0bj(C') against L should find L = G | p where p € role(G), which
implies that 0bj(C), typed by I, plays as p in G when it joins s. Then we extend
O to @' by adding I : p into {¢}s.q to claim that p associates to interface I,
and replacing s[obj(C)] : § with s[p] : L in the channel environment.

Rule (T-send) types an asynchronous remote method call. The object is allowed
to have such a call, specified by s[p] : q!ym, when the object calls a method m
using f (by checking z : f) at an object playing q in G (i.e. © has {¢,I : q}s.c
and I" has e : I) and its next statement s is also well-typed.

Rule (T-Method) types a method execution. It is valid to do so if the method
body is well-typed and the caller is an object playing q in G, known by @ =
O {p,T : q}s.q where T is either equal to I or Any. We use f’ for returning the
computation result as long as f' = f (i.e. pym(q?ym.L, f') = q?ym.pjm(L, f').)

Rule (T-offer) types case e{p1 = s1,...,pn = $p} With &¢{L;},;c; by check-
ing if every branch p; = s; is well-typed by L; and checking if f is active in
L; on the object p in session s. Rule (T-Choice) is the counterpart of (T-Offer).
Rule (T-Await) types the await statement with Await(f, /). It checks if the next
statament is well-typed by React(f).L’, which specifies the next action is to re-
activate the usage of f and, since f’ has been resolved, in L’ we have f’ inactive
on p. Other rules are straightforward.

After locally type checking every objects’ implementations in a session based
on their corresponding local types, which are projected from a global type that
the session follows, our system ensures overall interactions among those objects
comply with communication correctness:

Theorem 1 (Communication Correctness). Let G be a projectable global
type and S a closed system in which a session s obeys to G. Let pi,...,p, are
objects in s and respectively act as pi,...,Pn n G. If the objects’ implemen-
tations are all well-typed by rules in Fig. 5, the interactions among pi, ..., ph
comply with communication correctness against G.

6 Session Automata

As we type check a SABS program via rules in Fig.5, by rule (T-Scheduler),
a local type L is assigned as a scheduling policy to the scheduler of object



[Scheduler: L | class C{...}; the scheduler can (re)activate processes (i.e. by
executing methods) based on L. To ensure that the scheduler’s behavior fol-
lows L, we propose a verification mechanism where a scheduler uses a session
automaton [2], as a scheduling policy, to model the possible sequence of events.

In this model, when the object is idle, the object’s scheduler inputs the
processes which can be (re)activated according to the session automaton, which
is automatically generated by L. If a labelled transition, which corresponds to an
event, can fire in the automaton, the object (re)activates this event. If there are
several processes which can run such transition, the scheduler randomly selects
one of them. This mechanism is a variant of typestate [20].

Session automata, a subclass of register automata [17], only store fresh fu-
tures; it is decideable whether two session automata accept the same language [2]:

Definition 3. [k-Register Session Automata] Let X be a finite set of labels,
D be an infinite set of data equipped with equality, and k € N. A k-Register
Session Automaton is a tuple (@, qo, @, F)) where @ is the finite set of states,
qo € @ is the initial state, F' C @ is the set of accepting states and & C
(Qx QYU (Q x X x2llokt 5 {1k} x Q) is the transition relation.

Data words are words over an alphabet X' x D. A data word automata has a data
store, which can save k data values. A transition fires for a letter (a,d) € ¥ x D
if a set of equalities of the form d = r; are satisfied, where r; refers to the ith
stored data value. After a transition fires, the data store records d.

Let o : {1,...,k} = D be the store. We define (q,a,I,i,q’) as a transition
in automaton from state g to state ¢’ upon reading (a,d) if o[i] = d for all
i €1, I ={l1..n} by updating o[i] to d, and define (q,¢’) as an e-transition that
switches the state without reading the next letter:

Definition 4. [Ruuns of Session Automata] A run of a k-register session automa-
ton A = (Q,qo,®, F) on a data word w = (ay,d1),. .., (ax,dp) € (¥ x D)* is a
sequence s € (Q xNx ({1,...,k} — D))* An element (g, j, o) of the sequence
denotes that A is at state ¢ with store ¢ and reads (aj,d;). To be a run of A,
the sequence s = (qo, j0,00); - - - » (qn, Jn, on) must satisfy the following:

((Qi7Qi+1) EDPA(Ji = Jit1) N (o: = 0'i+1))\/
((qu (aj;,dj; ), 1,k qip1) € DA (Jirr = Ji + 1) A (oiy1 = ou[k/dy;]) AVILE L oi(l) = dg)

where I = {1..n} and o;[k/d;,] is a function mapping the kth stored data to
dj,. Now we revise X to X' = (({invocREv} x Met) U {reactEv}) and D = Fut,
where invocREv labels process activation and reactEv labels process reactiva-
tion. Given an object type, we can build a session automaton:

Definition 5. Let L be an object type. Let k be number of futures in L. We
assume the futures are ordered and pos(f) refers to the number of f in the
ordering. The k-register session automaton Aj, is defined inductively as follows:

— p?sm is mapped to a 2-state automaton which reads (invocREv,m) and
stores the future f in the pos(f)-th register on its sole transition.



— React f is mapped to a 2-state automaton which reads reactEV and tests
for equality with the pos(f)-th register on its sole transition.

— Concatenation, branching, and repetition using the standard construction
for concatenation, union, and repetition for NFAs.

When a process is activated, the automaton stores the process’s corresponding
futures; when a process is reactivated, the automaton compares the process’s
corresponding futures with the specified register. As all repetitions in types pro-
jected from a global type are self-contained, after the repetition, the futures used
there are resolved and thus the automaton can overwrite it safely. The example
below shows how a session automaton works based on an object type:

Ezample 4. Consider the example from Section 2. A simple automaton describ-
ing the sequence for the d (Service Desk) is

(invocREv, publish) (invocREv, request)
start 1 G\ @
d— 1o U d—ry

The scheduler above does not need to use registers because it does not have
reactivations. The following one must read the registers to schedule reactivations:

L = (p?ym1.Await(f, f').p? j#mz.Put f”.React(f).Put f)*

The generated 2-register session automaton is:

(invocREv, mq) (invocREv, m3) reactEv
start @ G\ /3\
d—srg d—ry \/ d=rg

invocREv, my

d— 1o

The following theorem states that the objects involving in a session are faithful
to the session’s protocol if their processes can be verified by the corresponding
schedulers, whose behaviors follow the session automata:

Theorem 2 (Fidelity). Let G be a projectable global type and S a closed system
in which a session s obeys to G. Let pi,...,pL, are objects interacting in s and
respectively act as participants p1,...,Pn i G. Let A; be a session automaton
generated from G | pj. If every scheduler for p;, j € {1..n} accepts the same
language as A; does, the implementations on objects are faithful to G.

7 Related and Future Work

The compositional approach introduced in [5,6] proposed a four event se-
mantics for core ABS. Their verification approach was bottom-up, i.e., class
invariants are verified and composed into system property based on history well-
formedness; while our approach is top-down, i.e., system property is specified
in session types and projected into class invariants. We verify class invariants
based on the scheduling policy type-checked by local session types. Besides, we
introduce session types for process suspension and process reactivation.

Session types for object-oriented languages have been studied in [3, 8] and
implemented for libraries/extensions of mainstream languages like Java [13].



Also, lightweight session programming in Scala [19] was proposed by introducing
a representation of session types as Scala types. However, they do not explore
the valid usage of futures for modeling channel-based concurrency, neither verify
cooperative scheduling against specified execution orders.

Schedulers with automata for actor-based models were studied by Jaghoori et
al. [14], while user-defined schedulers for ABS were introduced by Bjgrk et al. [1].
Our use of automata is similar to the drivers of [14], where drivers can not reject
any process if the process queue is non-empty and do not consider reactivations.
Our schedulers enable the object to wait for a method call to arrive.

Field et al. [7] used finite state automata (without registers) to encode type-
state, Gay et al. [8] used typestate to guide session types with non-uniform
objects, while Grigore et al. [9] established register automata for runtime verifi-
cation. In their approach the automata monitor the order of method invocations
in a sequential setting. The registers are used to store an unbounded amount of
object identities. Our automata are extended to be able to check the specified
orders of method calls. The schedulers thus can apply these automta to schedule
specified activations and reactivations in a concurrent setting.

Neykova and Yoshida [18] also consider an actor model with channels, where
processes are monitored by automata. Deniélou and Yoshida [4] used commu-
nicating automata to approximate processes and local types. However, their
approaches do not consider scheduling and validating the usage of futures.

We plan to prove that our type system ensures that interactions among ob-
jects are deadlock-free and always progresses, and then implement a session-
based extension for the core ABS language.

8 Conclusion

We establish a hybrid framework for compositional analysis. The system
property is guaranteed by type checking each objects’ behaviors against local
session types, which are gained by projecting global types on endpoints. In sum-
mary, we statically ensure communication correctness for concurrent processing
and, at the same time, ensure local schedulers’ behaviors will follow the specified
execution order among asynchronous communications at runtime.
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Abstract. Static deadlock analyzers might be able to verify the absence
of deadlock. However, they are usually not able to detect its presence.
Also, when they detect a potential deadlock cycle, they provide little
(or even no) information on their output. Due to the complex flow of
concurrent programs, the user might not be able to find the source of
the anomalous behaviour from the abstract information computed by
static analysis. This paper proposes the combined use of static analysis
and testing for effective deadlock detection in asynchronous programs.
When the program features a deadlock, our combined use of analysis and
testing provides an effective technique to catch deadlock traces. While
if the program does not have deadlock, but the analyzer inaccurately
spotted it, we might prove deadlock freedom.

1 Introduction

In concurrent programs, deadlocks are one of the most common programming
errors and, thus, a main goal of verification and testing tools is, respectively,
proving deadlock freedom and deadlock detection. We consider an asynchronous
language which allows spawning asynchronous tasks at distributed locations,
with no shared memory among them, and which has two operations for blocking
and non-blocking synchronization with the termination of asynchronous tasks.
In this setting, in order to detect deadlocks, all possible interleavings among
tasks executing at the distributed locations must be considered. Basically, each
time that the processor can be released, any of the available tasks can start its
execution, and all combinations among the tasks must be tried, as any of them
might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks. As
static analysis examines all possible execution paths and variable values, it can
reveal deadlocks that could not manifest until weeks or months after releasing
the application. This aspect of static analysis is especially important in security
assurance — security attacks try to exercise an application in unpredictable and
untested ways. However, due to the use of approximations, most static analyses
can only verify the absence of deadlock but not its presence, i.e., they can produce
false positives. Moreover, when a deadlock is found, state-of-the-art analysis tools

* This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the Span-
ish MINECO projects TIN2012-38137 and TIN2015-69175-C4-2-R, and by the CM
project S2013/ICE-3006.



[6,7,12] provide little (and often no) information on the source of the deadlock.
In particular, for deadlocks that are complex (involve many tasks and locations),
it is essential to know the task interleavings that have occurred and the locations
involved in the deadlock, i.e., provide a concrete deadlock trace that allows the
programmer to identify and fix the problem.

In contrast, testing consists of executing the application for concrete input
values. Since a deadlock can manifest only on specific sequences of task inter-
leavings, in order to apply testing for deadlock detection, the testing process
must systematically explore all task interleavings. The primary advantage of
systematic testing [4,14] for deadlock detection is that it can provide the de-
tailed deadlock trace. There are two shortcomings though: (1) Although recent
research tries to avoid redundant exploration as much as possible [1,3-5], the
search space of systematic testing (even without redundancies) can be huge. This
is a threat to the application of testing in concurrent programming. (2) There is
only guarantee of deadlock freedom for finite-state terminating programs (ter-
minating executions with concrete inputs).

This paper proposes a seamless combination of static analysis and testing for
effective deadlock detection as follows: an existing static deadlock analysis [6] is
first used to obtain abstract descriptions of potential deadlock cycles which are
then used to guide a testing tool in order to find associated deadlock traces (or
discard them). In summary, the main contributions of this paper are:

1. We extend a standard semantics for asynchronous programs with information
about the task interleavings made and the status of tasks.

2. We provide a formal characterization of deadlock state which can be checked
along the execution and allows us to early detect deadlocks.

3. We present a new methodology to detect deadlocks which combines testing
and static analysis as follows: the deadlock cycles inferred by static analysis
are used to guide the testing process towards paths that might lead to a
deadlock cycle while discarding deadlock-free paths.

4. We have implemented our methodology in the SYCO system (see Sect. 6) and
performed a thorough experimental evaluation on some classical examples.

2 Asynchronous Programs: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered buffer
of pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its
own processor’s global storage, each task can post tasks to the buffers of any
processor, including its own, and synchronize with the termination of tasks. The
language uses future variables to check if the execution of an asynchronous task
has finished. An asynchronous call m(z) spawned at location x is associated with
a future variable f as follows f = x | m(z). Instructions f.block and f.await allow,
respectively, blocking and non-blocking synchronization with the termination of
m. When a task completes, or when it is awaiting with a non-blocking await



(MSTEP) selectLoc(S) = loc(¢, L, h, Q), Q # 0, selectTask(£) = tsk(tk,m,l,s),
btk
Sopp~*Sop
Tk

S — s
(NEWLOC) tk = tsk(tk, m,l, pp:x = new Djs), fresh(¢'), b’ = newheap(D),l' =[x — ']

loc(¢, th, h, QU {tk}) o po ~ loc(€, tk, h, Q U {tsk(tk,m,l',s)}) - loc({’, L,h',{}) ¢ po
(AsyYNC) tk = tsk(tk,m,l, ppry=z!lm1(Z); s),(z)=(1, fresh(tk1), l1=buildLocals(z,m1,1)

loc(€, th,h, QU {tk}) - loc(f1, -, -, Q") © po ~ loc(£, th, h, Q U {tsk(tk,m,l, s)})-
loc(tv, , -, Q" U {tsk(tk1, m1,l1,body(m1))}) - fut(y, o1, tki, ini(mi)) © po
tk = tsk(tk,m, 1, pp:return; s), p1 = return
loc(€, tk,h, QU {tk}) o po ~ loc(£, L, h, QU {tsk(tk,m,l,€)}) < p1
tk = tsk(tk, m,l, pp:y.await; s), tsk(tk1, -, -, s1) € Loc,s1 = €
(AWAITI1) loc(€, tk,h, QU {tk}) - fut(y, -, tk1,-) © po ~
loc(€, tk, h, Q U {tsk(tk,m,l,s)}) - fut(y, , th1, ) © po

(RETURN)

tk = tsk(tk,m,l, pp:y.await; s), tsk(tki, -, -, $1) € Loc, s1 # €, p1 = pp:y.await
(AWAIT2) loc(€, tk,h, QU {tk}) - fut(y, -, th1,-) © po ~
loc(€, L, h, QU {tk}) - fut(y, -, tk1,-) o p1
tk = tsk(tk, m,l, pp:y.block; s), tsk(tk1, -, -, s1) € Loc,s1 = €
(BLOCK1) loc(€, tk,h, QU {tk}) - fut(y, -, tk1,-) © po ~
loc(l, tk,h, QU {tsk(tk,m,l,s)}) - fut(y, -, tki,-) © po

(BLOCK2) th=tsk(tk,m,l, pp:y.block;s), tsk(tk1,, -, s1) € Loc, s1 # €, p1 = pp:y.block
loc(€, thk,h, QU {tk}) - fut(y, -, th1,-) © po ~ loc({, tk,h, QU {tk}) - fut(y, , th1,-) © p1

Fig. 1. Macro-Step Semantics of Asynchronous Programs

for a task that has not finished yet, its processor becomes idle again, chooses
the next pending task, and so on. The number of distributed locations need
not be known a priori (e.g., locations may be virtual). Syntactically, a location
will therefore be similar to a concurrent object and can be dynamically cre-
ated using the instruction new. The program consists of a set of methods of
the form M::=T m(T z){s}, where statements s take the form s::=s;s | r=e¢ |
if e then s else s | while e do s | return | b=new | f = x ! m(z) | f.await | f.block.
For the sake of generality, the syntax of expressions e and types T is left open.

Fig. 1 presents the semantics of the language. The information about p
in bold font is part of the extensions for testing in Sec. 4 and should be ig-
nored for now. A state or configuration is a set of locations and future variables
locg -+ - locy, - futy - - - fut,,. A location is a term loc(¢, tk, h, Q) where ¢ is the loca-
tion identifier, ¢tk is the identifier of the active task that holds the location’s lock
or L if the location’s lock is free, h is its local heap, and Q is the set of tasks
in the location. A future variable is a term fut(id, ¢, tk,m) where id is a unique
future variable identifier, ¢ is the location identifier that executes the task tk
awaiting for the future, and m is the initial program point of tk. A task is a
term tsk(tk,m,l,s) where tk is a unique task identifier, m is the method name
executing in the task, [ is a mapping from local variables to their values, and s is
the sequence of instructions to be executed or € if the task has terminated. We



assume that the execution starts from a main method without parameters. The
initial state is St={loc(0,0, L, {tsk(0, main,l, body(main))} with an initial loca-
tion with identifier 0 executing task 0. Here, [ maps local variables to their initial
values (null in case of reference variables) and L is the empty heap. body(m) is
the sequence of instructions in method m, and we can know the program point
pp where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
macro-step semantics [14] (defined by means of the transition “—") in which
the evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it gets to an await or return instruction. In this case, we
apply rule MSTEP to select an available task from a location, namely we apply the
function selectLoc(S) to select non-deterministically one active location in the
state (i.e., a location with a non-empty queue) and selectTask({) to select non-
deterministically one task of ¢’s queue. The transition ~» defines the evaluation
within a given location. NEWLOC creates a new location without tasks, with a
fresh identifier and heap. ASYNC spawns a new task (the initial state is created
by buildLocals) with a fresh task identifier tk1, and it adds a new future to the
state. ini(m) refers to the first program point of method m. We assume £ # ¢1,
but the case £ = /¢y is analogous, the new task tk; is added to Q of ¢. The
rules for sequential execution are standard and are thus omitted. Awarr1: If the
future variable we are awaiting for points to a finished task, the await can be
completed. The finished task ¢; is only looked up but it does not disappear from
the state as its status may be needed later on. Awair2: Otherwise, the task yields
the lock so that any other task of the same location can take it. RETURN: When
return is executed, the lock is released and will never be taken again by that
task. Consequently, that task is finished (marked by adding the instruction e).
BLock2: A y.block instruction waits for the future variable but without yielding
the lock. Then, when the future is ready, BLock1 allows continuing the execution.

In what follows, a derivation or execution £ = Sto — --- — St, is a
sequence of macro-steps (applications of rule MSTEP). The derivation is complete
if Stg is the initial state and Stp+1 # Sty such that St,, — St,,+1. Since the
execution is non-deterministic, multiple derivations are possible from a state.
Given a state St, exec(St) denotes the set of all possible derivations starting at
St. We sometimes label transitions with £-tk, the name of the location ¢ and task
tk selected (in rule MSTEP) or evaluated in the step (in the transition ~+). The
systematic exploration of exec(St) thus corresponds to the standard systematic
testing setting with no reduction of any kind.

3 Motivating Example

Our running example is a simple version of the classical sleeping barber problem
where a barber sleeps until a client arrives and takes a chair, and the client wakes
up the barber to get a haircut. Our implementation in Fig. 2 has a main method
shown on the left and three classes Ba, Ch and Cl implementing the barber, chair
and client, respectively. The main creates three locations barber, client and chair
and spawns two asynchronous tasks to start the wakeup task in the client and



1 main () { 14 class Ch{

2 Ba barber = new Ba(); 15 Unit taken(Cl cl){
3 Cl client = new CI(); 16 Fut f=cllsits();
4 Ch chair = new Ch(); 17 f.await;}

5 client!wakeup(barber,chair);is  Unit isClean(){}

¢ barber!sleeps(client,chair); |0 }

7} ko class CI{

s class Ba{ b1 Unit wakeup(Ba b, Ch ch){
9 Unit sleeps(Cl cl, Ch ch){ f= Fut f=blcuts();
10 Fut f=ch!taken(cl); b3 chlisClean();

11 f.block;} ba f.block;}

12 Unit cuts(){} es  Unit sits(){}

13} 26}

Fig. 2. Classical Sleeping Barber Problem (left) and Execution Tree (right)

sleeps in the barber, both tasks can run in parallel. The execution of sleeps spawns
an asynchronous task on the chair to represent the fact that the client takes the
chair, and then blocks at line 11 (L11 for short) until the chair is taken. The task
taken first adds the task sits on the client, and then awaits on its termination at
L17 without blocking, so that another task on the location chair can execute. On
the other hand, the execution of wakeup in the client spawns an asynchronous
task cuts on the barber and one on the chair, isClean, to check if the chair is
clean. The execution of the client blocks until cuts has finished. We assume that
all methods have an implicit return at the end.

Fig. 2 summarizes the systematic testing tree of the main method by showing
some of the macro-steps taken. Derivations that contain a dotted node are not
deadlock, while those with a gray node are deadlock. A main motivation of our
work is to detect as early as possible that the dotted derivations will not lead
us to deadlock and prune them. Let us see two selected derivations in detail. In
the derivation ending at node 5, the first macro-step executes cl.wakeup and then
ba.cuts. Now, it is clear that the location cl will not deadlock, since the block
at L24 will succeed and the other two locations will be also able to complete
their tasks, namely the await at L17 of location ch can finish because the client is
certainly not blocked, and also the block at L11 will succeed because the task in
taken will eventually finish as its location is not blocked. However, in the branch
of node 4, we first select wakeup (and block client), then we select sleeps (and
block barber), and then select taken that will remain in the await at L17 and
will never succeed since it is awaiting for the termination of a task of a blocked
location. Thus, we have a deadlock. Let us outline five states of this derivation:

Sty = loc(ini, ..)-loc(cl, .., {tsk(1,wk,..)})-loc(ba, .., {tsk(2, sp, ..)})-loc(ch, ..) bl

Sta = loc(cl, .., {tsk(1, wk, fo.block)})-loc(ba, .., {tsk(3, cut,..),..})-fut( fo, ba, 3,12)-.. be 3
Sts = loc(ba, .., {tsk(2, sp, fi.block)})-loc(ch, .., {tsk(5,tk,..),..})-fut(f1,ch, 5, 15)-.. h3
Stq = loc(ch, .., {tsk(5, tk, fo.await),..})-loc(cl, .., {tsk(6, st,..), ..} ) fut(f2, cl, 6, 25)-..

ch,4

— Sty = loc(ch, .. {tsk(4,isClean,€), ..})-..



selectLoc(S) = loc(¢, L, h, Q), Q # 0, selectTask(£) = tsk(tk,m,l,pp: s),

etk
checke (S, table), S o po ~* S ¢ p, S # S, not(deadlock(S’))
clock(n), table’ = table U te 1, pp — (n, p)

(S, table) £5 (S, table’)

Fig. 3. MSTEP2 rule for combined testing and analysis

(MSTEP2)

The first state is obtained after executing the main where we have the initial
location ini, three locations created at L2, L3 and L4, and two tasks at LLb and
L6 added to the queues. Note that each location and task is assigned a unique
identifier (we use numbers as identifiers for tasks and short names as identifiers
for locations). In the next state, the task wakeup has been selected and fully
executed (we have shortened the name of the methods, e.g., wk for wakeup).
Observe at Sty the addition of the future variable created at L22. In St3 we
have executed task sleeps in the barber and added a new future term. In St; we
execute task taken in the chair (this state is already deadlock as we will see in
Sec. 4.2), however location chair can keep on executing an available task isClean
generating St;. From now on, we use the location and task names instead of
numeric identifiers for clarity.

4 Testing for Deadlock Detection

The goal of this section is to present a framework for early detection of deadlocks
during systematic testing. This is done by enhancing our standard semantics with
information which allows us to easily detect dependencies among tasks, i.e., when
a task is awaiting for the termination of another one. These dependencies are
necessary to detect in a second step deadlock states.

4.1 An Enhanced Semantics for Deadlock Detection

In the following we define the interleavings table whose role is twofold: (1) It
stores all decisions about task interleavings made during the execution. This
way, at the end of a concrete execution, the exact ordering of the performed
macro-steps can be observed. (2) It will be used to detect deadlocks as early as
possible, and, also to detect states from which a deadlock cannot occur, therefore
allowing to prune the execution tree when we are looking for deadlocks. The
interleavings table is a mapping with entries of the form ¢, 4 pp — (1, p), where:

— to,uk,pp is @ macro-step identifier, or time identifier, that includes: the identi-
fiers of the location ¢ and task tk that have been selected in the macro-step,
and the program point pp of the first instruction that will be executed;

— n is an integer representing the time when the macro-step starts executing;

— p is the status of the task after the macro-step and it can take three values
as it can be seen in Fig. 1: block or await when executing these instructions on
a future variable that is not ready (we also annotate in p the information on
the associated future); return that allows us to know that the task finished.

We use a function clock(n) to represent a clock that starts at 0, is increased
by one in every execution of clock, and returns the current value n. The initial
entry is t9,0,1 + (0, po), 0 being the identifier for the initial location and task,



and 1 the first program point of main. The clock also assigns the value 0 as the
first element in the tuple and a fresh variable in the the second element py. The
next macro-step will be assigned clock value 1, next 2, and so on. As notation,
we define the relation ¢ € table if there exists an entry ¢ — (n, p) € table, and the
function status(t, table) which returns the status p; such that t — (n, p;) € table.
The semantics is extended by changing rule MSTEP as in Fig. 3. The function
deadlock will be defined in Thm. 1 to stop derivations as soon as deadlock is
detected. Function checke should be ignored for now, it will be defined in Sec. 5.2.
Essentially, there are two new aspects: (1) The state is extended with the status
p, namely all rules include a status p attached to the state using the symbol
©. The status is showed in bold font in Fig. 1 and can get a value in rules
block2, await2 and return. The initial value pg is a fresh variable. (2) The state
for the macrostep is extended with the interleavings table table, and a new entry
towepp — (n,p) is added to table in every macrostep if there has been progress
in the execution, i.e., S’ # S, n being the current clock time.

Ezample 1. The interleavings table below (left) is computed for the derivation
in Sec. 3. It has as many entries as macro-steps in the derivation. We can observe
that subsequent time values are assigned to each time identifier so that we can
then know the order of execution. The right column shows the future variables
in the state that store the location and task they are bound to.

St1 tini.main,1 — (0, Teturn) 0

Stz tcl,wakeup,Zl — (1, 242f0.blOCk‘> fut(fo, ba, cuts, 12)
Sta|| toa,siceps,0 — (2, 11:f1.block) || fut(fi,ch,taken,15)
Stal|ten taken,15 = (3, 17: fo.await) || fut(fa,cl, sits,25)

4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-
tion selectLoc so that only locations that can proceed are selected. If, at a given
state, no location is selected but there is at least a location with a non-empty
queue then there is a deadlock. However, deadlocks can be detected earlier. We
present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other’s termina-
tion and none of them can make any progress. Note that, from a deadlock state,
there might be tasks that keep on progressing until the deadlock is finally made
explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock
will not be captured using this naive extension. The early detection of deadlocks
is crucial to reduce state exploration as our experiments show in Sec. 6.

We first introduce the auxiliary notion of waiting interval which captures the
period in which a task is waiting for another one to terminate. In particular, it
is defined as a tuple (tstop, tasynes tresume) Where tg10p is the macro-step at which
the location stops executing a task due to some block/await instruction, tgsync is
the macro-step at which the task that is being awaited is selected for execution,
and, tresume is the macro-step at which the task will resume its execution. tg0p,
tasync and tresume are time identifiers as defined in Sec. 4.1. tesume Will also be
written as next(tstop). When the task stops at ts:0p due to a block instruction,



we call it blocking interval, as the location remains blocked between g, and
next(tsiop) until the awaited task, selected in tusyne, has already finished. The
execution of a task can have several points at which macro-steps are performed
(e.g., if it contains several await or block the processor may be lost several times).
For this reason, we define the set of successor macro-steps of the same task from a
macro-step: suc(te,tk,ppo table) = {te tkpp; : te,th.pp; € table,te e pp: > o th ppo I

Definition 1 (Waiting/Blocking Intervals). Let St = (.5, table) be a state,
I = (tstops tasync, tresume) 1S @ waiting interval of St, written as I € St, iff:

1. I tstop = to,the,ppo € table, psiop = status(tsiop) € {pp1 : T.await, ppy:x.block},
2. tresume = t@,tko,ppla fUt(*TvZazv tk:fcapp(M)) €S,

3. tosyne = tgl’tkmpp(M),ﬂ t € suc(tasync, table) with status(t) = return.

If pstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at ¢qsyn. has finished, then
it is not a waiting interval. This is known by checking that this task has not
reached return, i.e., 3 ¢t € suc(tusync,table) such that status(t) = return. In
condition 1, we see that in pg, we have the name of the future we are awaiting
(whose corresponding information is stored in fut, condition 2). In order to
define t,.csume in condition 2, we search for the same task tky and same location
¢ that executes the task starting at program point pp; of the await/block, since
this is the point that the macro-step rule uses to define the macro-step identifier
to,tko,ppy associated to the resumption of the waiting task.

Ezample 2. Let us consider again the derivation in Sec. 3. We have the fol-
IOWiIlg blOCking interval (tcl,wakeup,217tba,cuts,127tcl,wakeup,24) S St2 with St2 =
(S2, tables), since tey wakeup,21 € tables, status(ter wakeup,21, tables) = [24: f.block],
(f,ba, cuts, 12) € Sty and tpq, cuts,12 € tables. This blocking interval captures the
fact that the task at t.; wakeup,21 15 blocked waiting for task cuts to terminate.
Similarly, we have the following two intervals in Sts: (tpa,siceps,9s teh taken,15,
tba,sleeps,ll) and (tch,taken,157 tcl,sit5,257 tch,taken,l’?)-

The following notion of deadlock chain relies on the waiting/blocking intervals
of Def. 1 in order to characterize chains of calls in which intuitively each task is
waiting for the next one to terminate until the last one which is waiting on the
termination of a task executing on the initial location (that is blocked). Given
a time identifier ¢, we use loc(t) to obtain its associated location identifier.

Definition 2 (Deadlock Chain). Let St = (S, table) be a state. A chain of
time identifiers to, ..., t,, s a deadlock chain in St, written as dc(to, ..., tn) iff Vt; €
{to,....tn—1} s.t. (i, t; 1, next(t;))€St one of the following conditions holds:

1. tiy1 € suc(ti,,table), or

2. loc(t; ) = loc(tiy1) and (tit1, -, next(tir1)) is blocking.

and for t,, we have that t,11 = to, and condition 2 holds.

Let us explain the two conditions in the above definition: In condition (1), we
check that when a task ¢; is waiting for another task to terminate, the waiting

interval contains the initial time ¢, ; in which the task will be selected. However,
we look for any waiting interval for this task ;11 (thus we check that ;11 is a



successor of time #; ;). As in Def. 2, this is because such task may have started
its execution and then suspended due to a subsequent await/block instruction.
Abusing terminology, we use the time identifier to refer to the task executing. In
condition (2), we capture deadlock chains which occur when a task ¢; is waiting
on the termination of another task #;,, which executes on a location loc(t], )
which is blocked. The fact that is blocked is captured by checking that there is
a blocking interval from a task ¢;1; executing on this location. Finally, note the
circularity of the chain, since we require that ¢,41 = to.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if
and only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations. We
prove that our definition of deadlock is equivalent to the standard definition of
deadlock in [6] (proof can be found in [16]).

Ezample 3. Following Ex. 1, St is a deadlock state since there exists a deadlock
chain dc(ter wakeup,21, toa,sleeps,9; teh taken,15)- For the second element in the chain
tba,sleeps797 condition 1 holds as (tba7sleeps,9>tch,taken,157 tbmsleeps,ll) € St4 and
ten,taken,15 € SUC(tch, taken,15, tableq). For the first element te; wakeup,21, condition

2 holds since (tcl,wakeup,Zla tba,cuts,127 tcl,wakeup,24)65t4 and (tba,sleeps,Qa tch,taken,lSa
tba,sieeps,11) is blocking. Condition 2 holds analogously for t.p, taken,15-

5 Combining Static Deadlock Analysis and Testing

This section proposes a deadlock detection methodology that combines static
analysis and systematic testing as follows. First, a state-of-the-art deadlock anal-
ysis is run, in particular that of [6], which provides a set of abstractions of po-
tential deadlock cycles. If the set is empty, then the program is deadlock-free.
Otherwise, using the inferred set of deadlock cycles, we systematically test the
program using a novel technique to guide the exploration towards paths that
might lead to deadlock cycles. The goals of this process are: (1) finding concrete
deadlock traces associated to the feasible cycles, and, (2) discarding unfeasible
deadlock cycles, and in case all cycles are discarded, ensure deadlock freedom
for the considered input or, in our case, for the main method under test. As our
experiments show in Section 6, our technique allows reducing significantly the
search space compared to the full systematic exploration.

5.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [6] returns a set of abstract deadlock cycles of the

p1:tky p2:tha Pnithn .
form ey € e1, where p1,...,p, are program points,

tkq, ..., tk, are task abstractions, and nodes eq, . . ., e, are either location abstrac-
tions or task abstractions. Three kinds of arrows can be distinguished, namely,
task-task (a task is awaiting for the termination of another one), task-location
(a task is awaiting for a location to be idle) and location-task (the location is
blocked due the task). Location-location arrows cannot happen. The abstrac-
tions for tasks and locations can be performed at different levels of accuracy




during the analysis: the simple abstraction that we will use for our formalization
abstracts each concrete location ¢ by the program point at which it is created
Lpp, and each task by the method name executing. They are abstractions since
there could be many locations created at the same program point and many
tasks executing the same method. Both the analysis and the semantics can be
made object-sensitive by keeping the k ancestor abstract locations (where k is
a parameter of the analysis). For the sake of simplicity of the presentation, we
assume k = 0 in the formalization (our implementation uses k = 1).

Ezample 4. In our working example there are three abstract locations, ¢, £3 and
44, corresponding to locations barber, client and chair, created at lines 2, 3 and
4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean. The

following cycle is inferred by the deadlock analysis: £y ~22°P% tqken LTtaken,

. s rwak : .
sits 223Ms, g, 2Lwakeun o pg 12€Ws, ) The first arrow captures that the location

created at L2 is blocked waiting for the termination of task taken because of the
synchronization at L11 of task sleeps. Observe that cycles contain dependencies
also between tasks, like the second arrow, where we capture that taken is waiting
for sits. Also, a dependency between a task (e.g., sits) and a location (e.g., £3)
captures that the task is trying to execute on that (possibly) blocked location.
Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies
arise, and in particular the interleavings scheduled to lead to this situation.

5.2 Guiding Testing towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the
systematic execution towards paths that might contain a representative of that
abstract deadlock cycle, by discarding paths that are guaranteed not to contain
such a representative. The main idea is as follows: (1) From the abstract dead-
lock cycle, we generate deadlock-cycle constraints, which must hold in all states
of derivations leading to the given deadlock cycle. (2) We extend the execu-
tion semantics to support deadlock-cycle constraints, with the aim of stopping
derivations as soon as cycle-constraints are not satisfied. Uppercase letters in
constraints denote variables to allow representing incomplete information.

Definition 3 (Deadlock-cycle constraints). Given a state St = (S, table),
a deadlock-cycle constraint takes one of the following three forms:

1. 3ty r.pp — (N,p), which means that there exists or will exist an entry of
this form in table (time constraint)

2. Afut(F, L, Tk,p), which means that there exists or will exist a future variable
of this form in S (fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function ¢ computes the set of deadlock-cycle constraints associ-
ated to a given abstract deadlock cycle.
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Definition 4 (Generation of deadlock-cycle constraints). Given an ab-

stract deadlock cycle ey Puiter €s P2tk Pnithn e1, and two fresh variables
itk itk
L;, Tk;, ¢ is defined as ¢(e; pithi, e; B L, Thy) =

{3tss, 00, (o sync(pi, F2)), 3fut (Fiy Ly, Thyy py)y U dle; 2205 L Ly Thy) if eg=th;
pending(Tk;)} U ¢e-%.,.,Li,Tkv if ej=14
J J J

Notation sync(p;, F;) is a shortcut for p;:F;.block or p;:F;.await. Uppercase let-
ters appearing for the first time in the constraints are fresh variables. The first
case handles location-task and task-task arrows (since e; is a task abstraction),
whereas the second case handles task-location arrows (e; is an abstract location).
Let us observe the following: (1) The abstract location and task identifiers of
the abstract cycle are not used to produce the constraints. This is because con-
straints refer to concrete identifiers. Even if the cycle contains the same identifier
on two different nodes or arrows, the corresponding variables in the constraints
cannot be bound (i.e., we cannot use the same variables) since they could refer
to different concrete identifiers. (2) The program points of the cycle (p; and p;)
are used in time and fut constraints. (3) Location and task identifier variables of
fut constraints and subsequent time or pending constraints are bound (i.e., the
same variables are used). This is done using the 2nd and 3rd parameters of func-
tion ¢. (4) In the second case, Tk; is a fresh variable since the location executing
Tk; can be blocked due to a (possibly) different task. Intuitively, deadlock-cycle
constraints characterize all possible deadlock chains representing the given cycle.

Ezample 5. The following deadlock-cycle constraints are computed for the cycle
in Ex. 4: { 3tp, 1, — (o, 11:Fy.block), 3 fut(Fy, Lo, Tko,15), 3tr, 1k, —{-,
17:Fy.await), 3 fut(Fy, Ls, Tks,25), pending(Tks), 3tr, 1k, (-, 24:F5.block),
fut(Fs, Ly, Tks,12), pending(Tks)}. They are shown in the order in which they
are computed by ¢. The first four constraints require table to contain a concrete
time in which some barber sleeps waiting at L11 for a certain chair to be taken at
L15 and, during another concrete time, this one waits at L17 for a certain client
to sit at L25. The client is not allowed to sit by the 5th constraint. Furthermore,
the last three constraints require a concrete time in which this client waits at
L24 to get a haircut by some barber at L12 and that haircut is never performed.
Note that, in order to preserve completeness, we are not binding the first and
the second barber. If the example is generalized with several clients and barbers,
there could be a deadlock in which a barber waits for a client which waits for
another barber and client, so that the last one waits to get a haircut by the
first one. This deadlock would not be found if the two barbers are bound in the
constraints (i.e., if we use the same variable name). In other words, we have to
account for deadlocks which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle con-
straints for the given cycle, with the aim of stopping derivations at states that
do not satisfy the constraints. The following boolean function checke checks the
satisfiability of the constraints at a given state.
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Definition 5. Given a set of deadlock-cycle constraints €, and a state St =
(S, table), check holds, written checke(St), if Vtr, Tk, pp — (N,sync(p;, F;)) €
¢, fut(F;, L;, Tk;,p;) € €, one of the following conditions holds:

1. reachable(tr, 1%, p;sS)
2. Htfi,tki,pp — (msync(p,—, fz)> € table /\fut(fu(j, tkj,pj) €S A
(pending(Tk;) € € = getTskSeq(tk;,S) # €)

Function reachable checks whether a given task might arise in subsequent states.
We over-approximate it syntactically by computing the transitive call relations
from all tasks in the queues of all locations in S. Precision could be improved us-
ing more advanced analyses. Function getTskSeq gets from the state the sequence
of instructions to be executed by a task (which is e if the task has terminated).
Intuitively, check does not hold if there is at least a time constraint so that: (i) its
time identifier is not reachable, and, (ii) in the case that the interleavings table
contains entries matching it, for each one, there is an associated future variable
in the state and a pending constraint for its associated task which is violated,
i.e., the associated task has finished. The first condition (i) implies that there
cannot be more representatives of the given abstract cycle in subsequent states,
therefore if there are potential deadlock cycles, the associated time identifiers
must be in the interleavings table. The second condition (ii) implies that, for
each potential cycle in the state, there is no deadlock chain since at least one
of the blocking tasks has finished. This means there cannot be derivations from
this state leading to the given cycle, hence the derivation can be stopped.

Definition 6 (Deadlock-cycle guided-testing (DCGT)). Consider an ab-
stract deadlock cycle ¢, and an initial state Sty. Let € = ¢(c, Linit, Tkinit) with
Linity Tkinit fresh variables. We define DCGT, written exec.(Sto), as the set
{d : d € exec(Sty), deadlock(St,)}, where Sty is the last state in d.

Ezample 6. Let us consider the DCGT of our working example with the deadlock-
cycle of Ex. 4, and hence with the constraints € of Ex. 5. The interleavings table
at Sts contains the entries tini main,1+(0, returny, to wakeup,21—>(1, 24: fo.block)
and tpa cuts,12—>(2, return) }. checke does not hold since ¢z, 7i, 24 is not reach-
able from St; and constraint pending(Tks) is violated (task cuts has already
finished at this point). The derivation is hence pruned. Similarly, the rightmost
derivation is stopped at St1;. Also, derivations at Sty, Stg and Stqg are stopped
by function deadlock of Th. 1. Since there are no more deadlock cycles, the search
for deadlock detection finishes with this DCGT. Our methodology therefore ex-
plores 19 states instead of the 181 explored by the full systematic execution.

Theorem 2 (Soundness). Given a program P, a set of abstract cycles C in P
and an initial state Sto, Vd € exec(Sto) if d is a derivation whose last state is
deadlock, then 3c € C s.t d € exec.(Sto). (The proof can be found in App. A)

6 Experimental Evaluation

We have implemented our approach within the SYCO tool, a testing tool for
concurrent objects which is available at http://costa.ls.fi.upm.es/syco, where most
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of the benchmarks below can also be found. Concurrent objects communicate
via asynchronous method calls and use await and block, resp., as instructions for
non-blocking and blocking synchronization. This section summarizes our exper-
imental results which aim at demonstrating the effectiveness and impact of the
proposed techniques. The benchmarks we have used include: (i) classical concur-
rency patterns containing deadlocks, namely, SB is an extension of the sleeping
barber, UL is a loop that creates asynchronous tasks and locations, PA is the
pairing problem, FA is a distributed factorial, WM is the water molecule making
problem, HB the hungry birds problem; and, (ii) deadlock free versions of some
of the above, named fX for the X problem, for which deadlock analyzers give
false positives. We also include here a peer-to-peer system P2P.

Table 6 shows, for each benchmark, the results of our deadlock guided test-
ing (DGT) methodology for finding a representative trace for each deadlock
compared to those of the standard systematic testing. Partial-order reduction
techniques are not applied since they are orthogonal. This way we focus on the
reductions obtained due to our technique per-se. For the systematic testing set-
ting we measure: the number of solutions or complete derivations (column Ans),
the total time taken (column 7') and the number of states generated (column
S). For the DGT setting, besides the time and number of states (columns T
and S), we measure the “number of deadlock executions” /“number of unfeasible
cycles” /“number of abstract cycles inferred by the deadlock analysis” (column
D/U/C), and, since the DCGTs for each cycle are independent and can be per-
formed in parallel, we show the maximum time and maximum number of states
measured among the different DCGTs (columns T4, and Sp,a.). For instance,
in the DGT for HB the analysis has found five abstract cycles, we only found
a deadlock execution for two of them (therefore 3 of them were unfeasible), 44s
being the total time of the process, and 15s the time of the longest DCGT (in-
cluding the time of the deadlock analysis) and hence the total time assuming an
ideal parallel setting with 5 processors. Columns in the group Speedup show
the gains of DGT over systematic testing both assuming a sequential setting,
hence considering values T' and S of DGT (column Tgqp, for time and Sgqsr for
number of states), and an ideal parallel setting, therefore considering 7,4, and
Smaz (columns T,pe® and S;vdt). The gains are computed as X/Y, X being the
measure of systematic testing and Y that of DGT. Times are in milliseconds
and are obtained on an Intel(R) Core(TM) i7 CPU at 2.3GHz with 8GB of
RAM, running Mac OS X 10.8.5. A timeout of 150s is used. When the timeout
is reached, we write >X to indicate that for the corresponding measure we have
got X units in the timeout. In the case of the speedups, >X indicates that the
speedup would be X if the process finishes right in the timeout, and hence it is
guaranteed to be greater than X. Also, we write X* when DGT times out.

Our experiments support our claim that testing complements deadlock analy-
sis. In the case of programs with deadlock, we have been able to provide concrete
traces for feasible deadlock cycles and to discard unfeasible cycles. For deadlock-
free programs, we have been able to discard all potential cycles and therefore
prove deadlock freedom. More importantly, the experiments demonstrate that
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Systematic DGT (deadlock-per-cycle) Speedup

Bm. Ans T S D/U/C T Tnaz S Swmaz Tgain Sgain Tgaim Sgain

g

HB 35k 32k 114k 2/3/5 44k 15k 103k 34k 0.73 0.9 2.15 3.33
FA 11k 11k 41k 2/1/3 2k 759 3k 2k 5.5 13.7 151 222
UL >90k >150k >489k 1/0/1 133 133 5 5 >1.1k >2.5k >2.5k >98k
SB >103k >150k >584k 1/0/1 59 59 23 23  >2.5k >25k >2.5k >25k
PA >121k >150k >329k 2/0/2 42 4 12 6 >3.6k >27k >38k >55k
WM >82k >150k >380k 1/0/2 >150k >150k >258k >258k 1* 1.47" 1* 147"

fFA 5k Tk 25k 0/1/1 5k 5k 11k 11k 1.61 2.35 1.61 2.35
fP2P 25k 66k 118k 0/1/1 34k 34k 52k 52k 1.96 228 1.96 2.28
fPA 7k Tk 30k 0/2/2 4k 2k 9k 4k 1.75 3.33 3.73 6.98
fUL >102k >150k >527k 0/1/1 410 410 236 236 >1k >2k >1k >2k

Table 1. Experimental results: Deadlock-guided testing vs. systematic testing

our DGT methodology achieves a notable reduction of the search space over
systematic testing in most cases. Except for benchmarks HB and WM which
are explained below, the gains of DGT both in time and number of states are
enormous (more than three orders of magnitude in many cases). It can be ob-
served that the gains are much larger in the examples in which the deadlock
analysis does not give false positives (namely, in SB, UL and PA). In general,
the generated constraints for unfeasible cycles are often not able to guide the
exploration effectively (e.g. in HB and WM). Even in these cases, DGT outper-
forms systematic testing in terms of scalability and flexibility. Let us also observe
that the gains are less notable in deadlock-free examples. That is because, each
DCGT cannot stop until all potential deadlock paths have been considered. As
expected, when we consider a parallel setting, the gains are much larger.

All in all, we argue that our experiments show that our methodology com-
plements deadlock analysis, finding deadlock traces for the potential deadlock
cycles and discarding unfeasible ones, with a significant reduction.

7 Conclusions and Related Work

There is a large body of work on deadlock detection including both dynamic and
static approaches. Much of the existing work, both for asynchronous programs
[6,7] and thread-based programs [11,13], is based on static analysis techniques.
Static analysis can ensure the absence of errors, however it works on approx-
imations (especially for pointer aliasing) which might lead to a “don’t know”
answer. Our work complements static analysis techniques and can be used to
look for deadlock paths when static analysis is not able to prove deadlock free-
dom. Using our method, we try to find a deadlock by exploring the paths given
by our deadlock detection algorithm that relies on the static information.
Deadlock detection has been also studied in the context of dynamic test-
ing and model checking [4,9, 10, 15], where sometimes has been combined with
static information [2,8]. As regards combined approaches, the approach in [8]
first performs a transformation of the program into a trace program that only
keeps the instructions that are relevant for deadlock and then dynamic testing is
performed on such program. The approach is fundamentally different from ours:
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in their case, since model checking is performed on the trace program (that over-
approximates the deadlock behaviour), the method can detect deadlocks that do
not exist in the program, while in our case this is not possible since the testing is
performed on the original program and the analysis information is only used to
drive the execution. In [2], the information inferred from a type system is used to
accelerate the detection of potential cycles. This work shares with our work that
information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for
Java threads captures deadlocks due to the use of locks and cannot handle wait-
notify, while our technique is not developed for specific patterns but works on a
general characterization of deadlock of asynchronous programs; their underlying
static analysis is a type inference algorithm which infers deadlock types and the
checking algorithm needs to understand these types to take advantage of them,
while we base our method on an analysis which infers descriptions of chains of
tasks and a formal semantics is enriched to interpret them.
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