
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D2.3.2
Monitoring add-ons (Final Report)

Date of document: T36

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: FRH

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Monitoring add-ons (Final Report)

This document summarises deliverable D2.3.2 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable is a prototype and description of the final outcome of Task T2.3: an event-based, service-
oriented monitoring and visualization framework for observing the performance and detecting the failures
of services.

List of Authors
Stijn de Gouw (FRH)
Behrooz Nobakht (FRH)
Richard Bubel (TUD)
Frank de Boer (CWI)
Antonio Flores-Montoya (TUD)
Rudolf Schlatte (UIO)

2

http://www.envisage-project.eu

Contents

1 Introduction 4

2 Service Level Agreements 5
2.1 Deployment Architecture . 5
2.2 Definitions and Assumptions . 6
2.3 Service Availability α(s, τ, tc) . 7
2.4 Budget Compliance β(s, τ) . 8

3 General Monitoring Framework in ABS 9
3.1 Attribute Grammars . 9
3.2 Monitoring Architecture . 12
3.3 Tooling . 13

4 Use cases 14
4.1 Visualisation . 14
4.2 Auto-scaling . 15
4.3 Formal Analysis . 16

4.3.1 Functional Correctness . 16
4.3.2 Resource Analysis . 18

4.4 Connecting External Systems . 22

Bibliography 22

Glossary 26

A HTTP API 27
A.1 Registering Objects . 27
A.2 Making Methods Callable . 27
A.3 Querying for Objects . 28
A.4 Reading Object State . 28
A.5 Calling Methods . 28

B Formal Verification of Service Level Agreements Through Distributed Monitoring [16] 30

C Run-time Deadlock Detection [5] 46

D Declarative Elasticity in ABS [7] 68

3

Chapter 1

Introduction

The starting point of this deliverable is the formalization of SLA as a property of a service metric function,
as given in [13]. Chapter 2 provides a short summary of the technical details underlying [13] as described in
the initial report D2.3.1. A service metric function is defined by a mapping of event traces to values which
indicate the different levels of the provided quality of service. These events represent client interactions
with an endpoint of an exposed service API. The main new material of this deliverable is reported in the
chapters 3 and 4, which covers the main objective and goals of the corresponding Task T2.3.

In Chapter 3 we give the details of how, in ABS, we can define a layered declarative generic framework
to capture various monitoring concepts – from QoS and SLAs to lower-level metrics, metric policies, and
listenable and billable events. At the heart of this framework is the use of attribute grammars for the
declarative specification of service metric functions. Verifying, at runtime, that a generated event trace
satisfies a corresponding SLA amounts to parsing it according to the attribute grammar. For this purpose
we have developed a tool for the automatic synthesis of parsers by means of executable ABS.

The monitoring framework allows the formal development, and analysis, of monitors as executable ABS.
In Chapter 4 we present the implementation of typical use cases of the framework according to the de-
scription of Task T2.3: unified visualisation and querying framework (Section 4.1), SLA based formal
auto-scaling (Section 4.2), correctness of monitors (Section 4.3.1), analysis of resource consumption of mon-
itors (Section 4.3.2), and connecting external systems in real-time (Section 4.4). Of particular interest is
the development and use of an HTTP API (described in Appendix A) which allows using ABS monitors
as data sources for visualization, and the definition of data sinks in ABS (exposed as HTTP endpoints) to
stream external data.

The material of this deliverable has led to the following articles:

1. Formal Verification of Service Level Agreements Through Distributed Monitoring [16].

2. Run-time Deadlock Detection [5] – this paper studies the use of attribute grammars in ABS for the
specification and run-time verification of event trace properties.

3. Declarative Elasticity in ABS [7]. This is a joint paper with T1.3. The contribution from the paper
for this deliverable is the integration of the deployment synthesis into the monitoring framework.

4

Chapter 2

Service Level Agreements

This chapter provides the formal definition of SLA metrics. An SLA is a contract for a service agreed
between a customer and a service provider. The contract specifies a target quality of service (QoS) value for
certain aspects – metrics – of the service, such as its performance (a typical example is response time), and
determines the circumstances under which a customer is eligible for a compensation, and the corresponding
amounts, in case the targeted value is not achieved.

As services are typically exposed to the customer as endpoints of Service APIs, formally, we consider
the service metrics used in an SLA to be a mapping of an event trace to a QoS value. Events correspond to
a timestamped interaction of a customer with an end-point of an exposed service API.

2.1 Deployment Architecture

Figure 2.1: High-level Deployment Architecture: The diagram presents a logical presentation of a deploy-
ment environment. At the bottom, the deployment environment uses an external IaaS provider to provision
physical resources. Potentially, every customer cm might be allocated multiple resources ri for their services.
The services are delivered to customers through a layer of load balancers. The monitoring platform is a
layer orthogonal to the environment that performs monitoring on resources and services.

Figure 2.1 depicts a high-level deployment architecture. In a deployment environment (e.g., “the cloud”),
every server (e.g., rn) from the IaaS provider is used for one or more service instances of a customer (e.g.,
cm). For example, the Query Service API for a customer of SDL Fredhopper. Typically, multiple servers are
allocated to a single customer. The number of servers allocated to a customer is not visible to the customer.
Customer use a single endpoint – in the load balancer layer – to access their services.

The ultimate goal is to maintain the environment in such a way that customers, and their end users,
experience the delivered services up to their expectations while minimizing the cost of the system. The first
goal can be achieved by adding resources; however, this conflicts with the second goal since it increases the

5

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

cost of the environment for the customer. In the rest if this chapter, we formalize the above intuitive notions
as service availability and service budget compliance.

We present a distributed monitoring platform that aims at optimizing these service characteristics in a
deployment environment. The monitoring platform works in two cyclic phases: observation and reaction.
The observation phase measures different aspects of the services in the deployment environment, which
is then used to calculate the corresponding levels of the service characteristics. In the reaction phase, if
needed, a platform API is used to make the necessary changes to the deployment environment (e.g. adjust
the number of allocated resources) to optimize the service characteristics.

2.2 Definitions and Assumptions
In this section we introduce the necessary notions, definitions and assumptions for the monitoring model.

Time T . In our framework time T is a universally shared clock, based on NTP1, that is used by all
elements of the system in the same way. T is discrete. We fix the unit of time to be milliseconds. This level
of granularity means that between two consecutive milliseconds, the system is not observable. For example,
we use the UTC time for all services, monitors and platform API. We refer to the current time by tc.

Resource r. We denote by r a resource which provides computational power or storage.

Service s. A general abstraction of a service in the deployment environment is denoted by s. A service
exposes an API that is accessible through a delivery layer, such as HTTP. In our example, a service is the
Query API that is accessible through a single HTTP endpoint.

Monitoring Platform P . In our framework, a monitoring platform P is responsible on (de-)allocation
of resources for computation or storage. We abstract from a specific implementation of the monitoring
platform through the following API:

interface Platform {

void allocate(Service s);

void deallocate(Service s);

Number getState(Service s);

boolean verifyα(Service s);

boolean verifyβ(Service s);

}

There is only one instance of P available. P internally uses an external infrastructure provisioning API to
provide resources (e.g. AWS EC2). The platform provides a method getState(Service s) which returns
the number of resources allocated to the given service s at the current time tc.

Basic measurement. We let µ(s, r, t) be a function that produces a real number corresponding to a single
monitoring check on a resource r allocated to service s at time t. For example, for SDL Fredhopper cloud
services, a basic measurement is the number of completed queries up to the current time.

Service Metric. We let fs be a function that aggregates a sequence of basic non-negative measurements
to a single non-negative real value: fs : (⋃nRn) → R. For example, for SDL Fredhopper cloud services,
the service metric function fs calculates the average number of queries per second (qps) given a list of basic
measurements.

1https://tools.ietf.org/html/rfc1305

6

https://tools.ietf.org/html/rfc1305

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Monitoring Window. It is a duration of time τ throughout which basic measurements for a service are
taken.

Monitoring Measurement. It is a function that aggregates the basic measurements for a service over its
resources in the last monitoring window. The last monitoring window is defined as [tc − τ, tc]. To produce
the monitoring measurement, fs is applied. Formally:

µ(s, r, τ) = fs
(〈µi(s, r, t)〉∞i=0

)
where t ∈ [tc − τ, tc]

where µi(s, r, t) is the i-th basic measurement of services s on resource r at time t ∈ [tc − τ, tc].

Unlimited Capacity. We assume that the external infrastructure provider is capable to provision an
unlimited number of resources. In reality, every service provider, such as SDL Fredhopper, has a separate
contract with an IaaS provider such as AWS. In these contracts, there cannot be a guarantee for unlimited
capacity. We simplify this limitation by assuming that the platform API (IaaS layer abstraction) is capable
to provision as many resources as requested.

Single Resource Type. To simplify reasoning, we assume that all resources are of the same type; i.e.,
they have the same computing power, memory, and I/O capacity. For example, if we are using AWS,
we could choose the instance type m1.large for all the services. If a business delivers different types
of services, it cannot avoid the fact that different services may require different capabilities from their
underlying resources; i.e., one service might require high I/O throughput for its process whereas another
might demand high parallelism support from the hardware. Such capability profiles are provisioned through
different types of resources from a IaaS provider. For example, AWS offers2 families of EC2 instance types
each of which exposes different sets of capabilities in terms of computation power, I/O, and network. We
simplify our analysis by assuming that there is a single resource type that is able to provide the necessary
capabilities for all services.

Resource Initialization Time ti. We assume that every resource r that is initialized is ready for use in
at most ti amount of time. The time ti is bounded by a finite constant value. Initialization time can vary
between different resource types. The initialization time is also part of the contract with the IaaS provider.
Based on the resource type, when a resource is launched and initialized, it might take a different amount
of time to be in a state that is operational and ready to be used. We simplify the property of initialization
time of a resource to be a fixed constant for the single resource type.

2.3 Service Availability α(s, τ, tc)
In this section we first define a few auxiliary definitions, and then define the notion of “service availability”.

Service Capacity. We use κσ(s, τ) = ∑
r∈σ(s) µ(s, r, τ) to denote the capability of service s, which is the

aggregated monitoring measurements of its resources σ(s) over the monitoring window τ .

Agreement Expectation. We let E(s, τ, tc) be the minimum number of requests that a customer expects
to complete in a monitoring window τ . The agreement expectation depends on the current time tc since it
may change over time. For example, SDL Fredhopper customers expect a different qps during Christmas.

We define the Availability of a Service α(s, τ, tc) in every monitoring window τ as:

α(s, τ, tc) = κσ(s, τ)
E(s, τ, tc)

2http://aws.amazon.com/ec2/instance-types/

7

http://aws.amazon.com/ec2/instance-types/

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Capacity Tolerance. εα(s, τ) ∈ [0, 1] defines how much the service capacity κσ(s, τ) can deviate from
E(s, τ, tc) in every time span of duration τ .

Service Guarantee Time. We let tG be the duration within which a customer expects the service
availability to reach an acceptable value after a violation. Typically, tG is an input parameter from the
customer’s contract.

Example Intuitively, α(s, τ, tc) represents the actual capability of a service s, over a time period τ , com-
pared to the expectation E(s, τ, tc). For values α(s, τ, tc) � 1 − εα(s, τ) the resource for service s are at
“under-capacity”, while for values α(s, τ, tc)� 1 + εα(s, τ) there is “over-capacity”. The goal is to optimize
α(s, τ, tc) towards 1.

For example, if we expect a query service to be able to complete 10 queries per second, and let the
monitoring window τ be 5 minutes, then E(s, τ, tc) = 10 × 60 × 5 = 3000. Now suppose we allocate only
one resource to the service, and measure the service during a single monitoring window τ and find out that
µ(s, r, τ) = 2900. Then α(s, τ, tc) = 2900

3000 = 0.966. If we have εα(s, τ) = 0.03, this means that service s is
under-capacity because α(s, τ, tc) < 1− εα(s, τ).

2.4 Budget Compliance β(s, τ)
In this section we first provide a few auxiliary definitions, and then present a formal definition for “service
budget compliance”.

Resource Cost. We let AC(r, τ) ∈ R be the cost of resource r in a monitoring window τ , which is determined
by a fixed resource cost per time unit.

Service Cost. We let ACσ(s, τ) ∈ R+ be the cost of a service s in a monitoring window τ , and defined as
ACσ(s, τ) = ∑

r∈σ(s)AC(r, τ).

Service Budget. we let B(s, τ) be an upper bound on the expected cost of a service in the time span τ .
Intuitively, B(s, τ) is the allowed budget that can be spent for service s over the time span τ . The service
budget is typically chosen to be fixed over any time span τ .

We define the Service Budget Compliance β(s, τ) that, intuitively, represents how a service complies
with its allocated budget as:

β(s, τ) = ACσ(s, τ)
B(s, τ)

Budget Tolerance. εβ(s, τ) ∈ [0, 1] defines how much the service cost AC(s, τ) can deviate from B(s, τ)
in every time span of duration τ .

Service Guarantee Time. tG is similar to that defined for service availability.

Example Assume every resource on the environment costs 1 (e.g., in AC) per hour. Suppose we set a budget
to 1.5 per hour for every service, allocate one resource to the service and define a monitoring window τ to be
5 minutes. Every hour has 12 monitoring windows. This means that each resource costs AC(r, τ) = 1

12 ≈ 0.08
per monitoring window. Since there is only one resource, the service cost is AC(s, τ) = ∑

r∈σ(s)AC(s, τ) ≈ 0.08
per monitoring window. On the other hand, if we calculate the budget for one monitoring window, we have
B(s, τ) = 1.5

12 = 0.125 per monitoring window. This yields budget compliance as β(s, τ) = 0.08
0.125 = 0.64.

8

Chapter 3

General Monitoring Framework in ABS

In Chapter 2 we described how an SLA can be formalized as properties of service metric functions. In this
chapter we describe how we monitor such an SLA.

In Chapter 2 we used the notion of service metric functions in an abstract way, i.e., without addressing
how we can define them. In Section 3.1 we show how grammars are a convenient formalism to define service
metric functions, and illustrate our method with a simple running example. Our approach has several
desirable properties:

• It provides a systematic way to define service metric functions at the abstraction level of the Service
APIs, at which SLAs are formulated;

• It ensures that metric functions can be efficiently evaluated;

• The generated monitors are amenable to further analyses, such as correctness or resource analysis.

In Section 3.2 we describe the general architecture of the monitoring framework. In Section 3.3 we discuss
the implementation of the SAGA tool, which automatically generates executable, event-based ABS monitors
from the declarative grammars.

3.1 Attribute Grammars
In [6], we enhanced run-time assertion checking with general attribute grammars [15] for the specification
and verification of properties of histories, e.g., sequences of method calls and returns. Attribute grammars
allow the specification in a declarative manner of both data- and protocol-oriented properties. Checking
whether these properties hold amounts to parsing the given history.

Here we formalize a service metric function, which is a mapping of event traces to values indicating the
different levels of the provided QoS, by (right) regular grammars with inherited attributes. These events
indicate client interactions with an endpoint of an exposed service API. Right regular grammars consist of
production rules of the form N ::= a M , where N and M are non-terminals and a is a terminal. In general,
the event trace is updated and parsed again after each new event. Restricting to (right) regular grammars
with inherited attributes optimizes the parsing of the event trace both with respect to time and memory.
This is because we do not need to store the entire event trace, which in turn allows the automated derivation
of a finite state automaton that can be used for the parsing process.

In what follows, we explain the main concepts of this use of attribute grammars, and the general mon-
itoring framework in ABS, by means of the following example taken from the Fredhopper case study. The
services offered by FRH are exposed at endpoints. In practice, these services are implemented to be REST-
ful and accept connections over HTTP. Software services are deployed as service instances. Each instance
offers the same service, and is exposed via Load Balancer endpoints that distribute requests over the service
instances.

9

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Figure 3.1: Visualization of metrics

The number of requests can vary greatly over time, and typically depends on several factors. For instance,
the time of the day in the time zone where most of the end users are located plays an important role. Typical
lows in demand are observed between 2am and 5am. A visualization of monitored data in Grafana (the
visualization framework used by ABS) is depicted in Figure 3.1.

Peaks in Fredhopper Cloud Services typically occur during promotions of the shop or around Christmas.
To ensure a high QoS, web shops negotiate an aggressive SLA with FRH. QoS attributes of interest include
query latency (response time) and throughput (queries per second). The SLA negotiated with a customer
could express, e.g., service degradation requirements as follows:

“Services must maintain 100 queries per second with less than 200 milliseconds of response time
over 99.5% of the service uptime, and 99.9% with less than 500 milliseconds.”

10

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

An SLA specifies properties of service metric functions. In this case, the service metric function is defined
in terms of the percentage of client requests which are processed in a “slow” manner. For the example SLA,
the service degradation is concerned with the percentage of queries slower than 200 (and 500) milliseconds.

Suppose we want to formalize our service degradation metric. We identify the processing of a client
request, that interacts with an endpoint of an exposed service API, by an event of the form

invoke(Time t, Rat procTime)

This event indicates that the request has been issued at time t, and that it has a processing time procTime.
In our formalization, a service view identifies all events that are relevant for a particular service metric and
associates a name to each such event. A view, which simply identifies the invoke event as the only relevant
event and associates it with the name “query”, is expressed as follows:

view Degradation {

invoke(Time t, Rat procTime) query

}

Figure 3.2 includes the grammar which computes, as the main metric, the percentage of slow queries
degradation. The string fas.live.200ms gives a name to the metric. The parameters of the invoke event,
e.g., procTime, are directly referred to in the grammar by their name and are used to compute degradation.
The grammar makes use of the auxiliary variables cnt and slowCnt as well.

Pair<String, Rat> degradation = Pair("fas.live.200ms", 0);

Int cnt = 0;

Int slowCnt = 0;

S ::= query

{ cnt = cnt+1;

slowCnt = slowCnt + case(procTime > 200) { True => 1;

False => 0;};

degradation = Pair("fas.live.200ms", slowCnt/cnt);

}

S

Figure 3.2: Grammar for Service Degradation

Note that since we restrict to regular grammars with inherited attributes, we do not need to explicitly
state the association between the (non-terminal) attributes and the non-terminals, on the one hand, and
the association between the built-in attributes and the terminal, on the other hand.

A monitor corresponding to the above grammar for service degradation is depicted in Figure 3.3. Here
metricHist contains the time-stamped history of metric values, which is provided by the general monitor-
ing framework. The monitoring framework further integrates a powerful tool (the ABS Smart Deployer)
for the automated deployment of new service instances, that is based on high-level requirements of deploy-
ment configurations. A solver synthesizes an ABS class implementing DeployerIF with appropriate scaling
actions.

The ABS monitor of Figure 3.3 reacts to the metric values (available in metricHist) by asking the
deployer to scale up or down the service instances. Note that running a monitor can be expensive, thus,
great care must be taken so it does not itself degrade performance below the level stipulated in the SLA.
Static analysis and simulation of the ABS model, together with the monitor, allows to analyze the effect of
the monitor on the SLA before the system is deployed. ABS allows monitors to be deployed asynchronously
and decoupled.

11

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Unit monitor (DeployerIF deployer) {

Rat degradation = head(metricHist);

if (degradation > 5/1000) {

deployer.scaleUp();

} else if (degradation < 1/1000) {

deployer.scaleDown();

}

}

Figure 3.3: Monitor for Service Degradation

Static Structure

+monitor() : Unit
+getMetricHistory() : Map<Time, Map<String, Rat>>

«interface»
Monitor

+notify_query(Time, Duration) : Pair<String, Rat>

«interface»
DegradationMonitor

Figure 3.4: Monitor architecture

3.2 Monitoring Architecture
The architecture of the generated monitors consists of a general part shared by all monitors, and a specific
part dedicated to each monitor. The generic part is captured by the Monitor interface depicted in Figure 3.4.
It has two methods:

1. The monitor() method. The implementation of this method is provided by the user, and should take
corrective actions to improve the value of the service metric function. This typically involves upscaling
or downscaling. To determine the appropriate action, the user implementing this method can use the
history of the metric values.

2. The getMetricHistory() method. The implementation of this method is automatically generated by
the tooling (see Section 3.3). It returns the history of metric values over time, i.e., a Map that, given
a time-stamp and metric name, it returns the value of that metric at that point in time.

A simple use case for such monitors is to call the monitor() method periodically with a user-specified delay.
This ensures that appropriate actions, to improve the metric, are taken at well-defined time points.

The specific part of the monitoring architecture defines a method for each event, listed in a service view,
to update the history. For example, for the Service Degradation view, there is only one event (“query”)
which has Time t and Duration procTime as attributes, so the interface of the DegradationMonitor has
one additional method, besides the two general methods described above, notify_query(Time, Duration)

that updates the history whenever it is notified of the “query” event. The implementation of this method
is generated fully automatically from the view and grammar: the view determines its signature, and the
grammar determines its body of (it corresponds to the action in the grammar production in which the event
appears).

12

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

3.3 Tooling
We have implemented a tool SAGA that, given a service view and a grammar that includes the implemen-
tation of the monitor() method, fully automatically generates executable ABS monitors implementing the
architecture discussed in Section 3.2. SAGA offers on the fly syntax highlighting and syntax checking of
service views and grammars (see Figure 3.5). SAGA itself is implemented as a meta-program of ≈ 400 lines
of code in the language Rascal [14].

Figure 3.5: Grammar Syntax Checking and Highlighting

As noted in Section 3.1, SAGA restricts to supporting regular grammars. From a regular grammar,
SAGA synthesizes ABS code for a finite automaton with actions. The non-terminals become states of the
automaton and the grammar terminals correspond to the automaton input symbols. Whenever the monitor
is notified with a new event, it determines the new value of the attributes by taking a single transition in
the automaton and executing the corresponding action given in the grammar. This means that there is no
need to process or store the full event trace: we can calculate the new attribute value incrementally (on
the fly) according to the grammar, by taking the step in the automaton and executing the corresponding
action. No algorithm for incremental parsing in this sense is known for general context-free grammars (and
is unlikely to exist, as this would yield a parsing algorithm with linear time complexity).

The restriction to regular grammars provides a good trade-off between expressiveness and performance:
while such grammars are still Turing-complete in principle – one can use arbitrary ABS code in the actions
if needed – in practice the actions are often simple (no loops, each action taking constant-time) thus giving
linear resource consumption in the size of the trace. Section 4.3.2 provides a formal resource analysis.

13

Chapter 4

Use cases

We have implemented and applied a variety of use cases for the monitoring framework. In addition, an API
that allows interacting with ABS models over HTTP was specified and implemented. This API allows, for
example, invoking methods of an ABS model over HTTP. The API is attached in Appendix A, it forms an
important building block for two of the use cases.

• Visualization (Section 4.1). We implemented a framework for visualizing, configuring and querying
user-defined metrics from monitors on top of the well-established Grafana1 and InfluxDB2 platforms.
Each monitor acts as a data-source by exposing its history of metric values over time as an HTTP
endpoint.

• Auto-scaling (Section 4.2). We developed a rigorous basis for auto-scaling at the level of the SLA.

• Formal analysis (Section 4.3). We applied some ABS analyses on monitors to establish their cor-
rectness and determine their resource consumption.

• Connecting external systems (Section 4.4). We show how to connect external systems, by exposing
methods in the ABS model as HTTP endpoints that act as data-sinks. This allows to replay real-world
log files, or feed in data from external monitors of heterogeneous sources in real-time.

4.1 Visualisation
We implemented a visualization and query framework on top of Grafana (to visualize metrics) and In-
fluxDB (to store and query metric data) for user-defined monitors, generated using the monitoring frame-
work described in Chapter 3. The monitoring framework automatically records the value of the service
metric function over time as a time-series, and exposes the corresponding getMetricHistory method as an
HTTP endpoint using the API described in Appendix A. We implemented a tool that periodically retrieves
new metric values by invoking getMetricHistory at certain (user-specified) time intervals, stores them in
an InfluxDB database and visualizes the metric in real-time using Grafana.

Figures 4.1 shows the Service Degradation metric, formalized in Section 3.1, in Grafana. Colors, time
ranges and zooming are configurable through the interface shown in the figure. The metric data is generated
from (the Service Degradation monitor in) the FRH ABS model, triggered with input data from a real-
world log file (see Section 4.4). At start-up, the query processing is slow due to execution of background
initialization processes. Therefore, the Service degradation, which measures the percentage of queries with
proctime>200 ms, is very high (100% at the very beginning) as shown in Figure 4.1. Once these processes
complete, the metric improves as Figure 4.2 shows.

Our framework allows users to set the starting time for the visualization in order to view metrics (as
a graph) at different dates. Moreover, the user can define how ABS time is mapped to real time, e.g., the

1http://grafana.org/
2https://influxdata.com/

14

http://grafana.org/
https://influxdata.com/

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Figure 4.1: Service Degradation visualization at system start in Grafana

Figure 4.2: Service Degradation progression

user can specify that each clock cycle in the ABS model takes a certain number of milliseconds in real-
time (the appropriate factor to use depends on the design choices for the ABS model). Our approach is
back-end independent, in the sense that it supports all ABS back-ends that implement the API described
in Appendix A.

4.2 Auto-scaling
In Chapter 3 we decribed how to generate executable monitors for user-defined, high-level metrics that are at
the same abstraction level as the SLA. The monitor() method defined inside these generated monitors takes
(if necessary) corrective actions, such as scaling or raising alerts to Cloud operators, aiming at improving
the metric. This approach provides a rigorous basis for auto-scaling which is directly based on the SLA,
instead of predefined lower level metrics such as CPU load which have no direct relation to the SLA.

The question arises in this context are: how to scale? How many new Service instances, and of what kind,
should be deployed? On what virtual machines should they be deployed? How should they be configured?
And how should we connect different service instances? For example, a query server in the US should be
connected to a load balancer in US, and not to one in another region.

The above question are exactly the problems addressed by the SmartDeployer developed in T1.3. There-
fore, the challenge was to find a way to integrate the SmartDeployer into the monitoring framework. In joint
work with T1.3, we successfully developed a systematic approach to achieve this. We identified a simple API
for a generic scaling deployer (see Figure 4.3), which should be used by the monitor() method whenever
there is a need to scale.

With this API at hand, from high-level deployment requirements specifying the dynamic deployment
constraints that should be satisfied, the SmartDeployer synthesizes a Deployer class with methods used to
implement the above interface. It (dis)connects, configures and (un)deploys onto the correct virtual machines
the Service instances to be created (when scaling up) or destroyed (when scaling down) fully automatically.
The integration of the SmartDeployer into the monitors is realized by passing an instance of the deployment

15

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

interface DeployerIF {

Unit scaleUp();

Unit scaleDown();

}

Figure 4.3: API for Scaling Deployer

Proof-Obligation
Generator

1.Class Invariants
2.functions

3.predicates
4.proof rules

m1(){...}
m2(){...}

Int v;
Class

m1(...)
m2(...)

<<Interface>>

Verifier

.abs

.key

Figure 4.4: KeY ABS workflow

class to the monitor. The application of this approach to the FRH case study is described in D4.3.3.

4.3 Formal Analysis

The framework in Chapter 3 generates monitors in ordinary ABS, which makes them amenable to other
formal analyses developed for ABS. In this section we explore the application of two such analyses using the
Service Degradation monitor as a running example: verifying correctness of monitors with KeY-ABS (Sec-
tion 4.3.1); and inferring resource consumption of monitors with CoFloCo and SACO (Section 4.3.2).

4.3.1 Functional Correctness

This section describes the efforts undertaken to ensure that the generated monitors for degradation detection
and aversion are correct. By correctness we mean that i) a monitor detects when an SLA is threatened to
be violated due to a degradation in response time; and ii) a monitor initiates the necessary steps to avert
the violation.

Deductive Verification using KeY ABS

KeY ABS [8] is a deductive verification system that allows the functional and compositional verification of
ABS programs. KeY ABS is a variant of the KeY verification system for Java [4]. We do not give a detailed
description of the system and focus only on those parts, of the specification language and program logic,
that are necessary to understand this section.

16

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

The verification work-flow (depicted in Figure 4.4) is as follows. The program and its specifications are
loaded into KeY ABS. The user then selects the method and correctness guarantee, e.g., preservation of
invariants, that should be verified for the selected method. The proof-obligation generator produces then a
formula in the program logic of KeY ABS (called ABS Dynamic Logic, or short, ABSDL). This formula is
then handed over to the verifier. If the formula can be shown valid, the method is guaranteed to be correct
w.r.t. the chosen correctness guarantee.

Formulas in ABSDL contain programs directly as part of their syntax, for instance, the following formula

[i = 2 * i + 1;]even(i)

states that if the program i = 2 * i + 1 terminates, then in its final state the value of i is even. The
calculus used to verify such formulas is based on the symbolic execution paradigm. The program is first
symbolically executed by applying the appropriate calculus rules until only first-order proof goals remain.
These are then dealt with using classical first-order reasoning.

To be able to verify distributed and concurrent systems, ABSDL implements the concept of histories. His-
tories are sequences of system events created by method invocations and completions or object creation [10].
Concerning asynchronous method execution there are four different events:

1. The invocation event InvocEv(callee, caller, future, methodLabel, arguments) is generated
once an asynchronous method invocation is executed. It records the caller, the callee, the future
in which the method result will be put once computed, the invoked method (methodLabel) and the
passed arguments.

2. While the invocation event marks the time in history when the invocation took place, the invocation
reaction event InvocREv(callee, caller, future, methodLabel, arguments) marks the point in
time, when the method is scheduled and actual execution of its body starts. The arguments of the
event are identical to those of the invocation event.

3. Once an asynchronously called method completes its execution and returns, a completion event
compEv(callee, future, methodLabel, value) is created, which records the object (callee) on
which the method was invoked, the future (which now carries the result of the method invocation),
the name of the method (methodLabel) and the result (value).

4. Finally, when a future gets queried for the result, the history is extended by a newly created completion
reaction event compREv(receiver, future, value). This event records the object (receiver) which
queried the future and the result value carried by the future. As a future might be queried several
times, this event is the only one that can occur repeatedly for the same future.

The future is the common element in all above events, and can be used to match all events related to a
specific asynchronous method invocation during reasoning.

Histories, together with the concurrency model of ABS, allow us to reason about ABS code sequentially by
considering one method at a time. The compositionality of ABSDL guarantees that the achieved correctness
proof holds for any concurrent execution in any environment [1, 9].

Case Study

In the performed case study we verified an implementation of a degradation monitor implementing the
following interface:

interface DegradationMonitorIf extends Monitor {

Unit notify_query(Time t, Rat procTime);

Unit monitor();

}

17

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

The method of interest is monitor(). This method is invoked regularly and checks the system state. In
case it detects an over usage or under usage of resources it takes measures to allocate additional comput-
ing resources or to release existing resources. The generated monitor, which we verified implemented the
following policy:

• If the most recent measurement shows that more than 0.5% of queries had an answer time more than
200ms, then additional resources have to be allocated by requesting them at the Deploy component.

• If the most recent measurement shows that less than 0.1% of queries had an answer time more than
200ms, then the Deploy component is asked to release computing resources.

• In all other case no action must be taken.

In a first step we had to specify the above policy as a class invariant that has to be established when
creating the monitor and maintained by any method execution. Additional invariants were needed to ensure
some properties related to the monitor’s internal state, for instance, that the monitor must have a reference
to an actual Deploy component (i.e., the reference must not be null).

The most important invariant for encoding the policy is shown below in a slightly beautified syntax:
autoScale : DegradationView.DegradationMonitorImpl {

\forall Future fut;

(HistoryLabel::seqGet(history, seqLen(history)-1) =

compEv(self, fut, DegradationMonitorIf::monitor, Unit)

-> \if (head(snd(head(

List::select(heap, self, DegradationMonitorImpl::metricHist))))

> rat(5,1000))

\then (

isInvocationEvFor(HistoryLabel::seqGet(history, seqLen(history)-2), Deploy::scaleUp)

) \else (/∗ cases for scaling down and no action ∗/)

}

It expresses that at any time when there is a completion event in the history that belongs to an invocation
of the monitor method, then, according to the metric, the allocation of additional computing resources (by
calling scaleUp) must have been initiated (if the most recent measurement showed that more than 0.5% of
the queries had a slower respond time than 200ms). Not shown in the excerpt, but deallocation of resources
is specified in a similar manner; and in case that metric is in the green range, the invariant ensures that
no action has been taken between the time when the execution of the method started and its completion.
To match the invocation reaction event with the completed method event, the future identity is used (not
shown in the excerpt).

The ABS model and the above specification were loaded into KeY ABS and the proof obligation Preserves
Class Invariant for method monitor() was chosen. KeY ABS was able to verify successfully the correct
behavior of the monitor w.r.t. to the specified policy. Except for providing the specification, the verification
itself could be completed fully automatically in 2235 proof steps. The resulting proof tree consisted of 13
branches. The closed proof is depicted in Figure 4.5.

To enable verification of the case study, KeY ABS had to be extended with basic support for reasoning
about rational numbers as up-to-then only integers were supported. The case study contributed thus to the
further development of the tool and could successfully be completed.

4.3.2 Resource Analysis
An important aspect of monitors is the amount of overhead that they introduce at runtime. If this overhead
is high, it can affect significantly the performance of the application rendering its use impractical. The
objective of this section is to obtain CPU and memory consumption upper bounds of the generated monitors.

18

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Figure 4.5: Finished correctness proof for the generated monitor

In order to obtain such upper bounds we used the tools SACO and CoFloCo. SACO [2] is a static
analysis framework that can perform resource analysis of ABS programs. CoFloCo [12, 11] is a cost relation
solver that can be used as a back-end by SACO to analyze models where SACO’s default solver is not
powerful enough. We focus our analysis on the CPU and memory consumption of the monitor for service
degradation, in particular of its method notify_query.

CPU Consumption Analysis

The CPU consumption of DegradationMonitorImpl.notify_query is relatively straightforward. Its code
makes a single call to the method DegradationMetricImpl.notify_query and adds the result to the list
metricHist:

Unit notify_query(Time t, Rat procTime) {

Pair<String, Rat> measurement = metric.notify_query(t, procTime);

metricHist = Cons(Pair(t, list[measurement]), metricHist);

}

DegradationMetricImpl.notify_query does not contain loops or recursive functions and thus we can
expect the CPU consumption to be constant.

We applied SACO+CoFloCo and we obtained a constant upper bound of 34. This upper bound refers
to the number of evaluation steps needed to execute the method DegradationMetricImpl.notify_query

and serves as a proxy for the CPU consumption.

Memory Consumption Analysis

The analysis of the memory consumption was considerably more challenging. In this case we were interested
in the monitors’ memory footprint. That is, the amount of memory required by the monitor’s objects
at any given time. Additionally, we wanted to infer how this memory usage is affected by each call to
DegradationMonitorImpl.notify_query.

19

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Unit count_list_size(List<Pair<Time,List<Pair<String,Rat>>>> list){

List< Pair<String, Rat > > inner_list=Nil;

while(list!=Nil){
case list {

Cons(Pair(time,head),tail) => {

list=tail;

[Cost: 1] inner_list=head; //cost of storing Time
while(inner_list != Nil){

[Cost : 2] inner_list=tail(inner_list); //cost of storing Pair<String, Rat >
}

}

Nil => {}

}

}

}

Figure 4.6: Auxiliary method count_list_size to compute the memory consumption of the monitors.

SACO allows the user to select among multiple cost models that determine the resource to be measured.
Unfortunately, none of these pre-defined cost models was adequate for our analysis. Instead we opted to
select the “user” cost model which allows us to specify the cost of each statement through annotations.

A monitor is composed by two objects: DegradationMonitorImpl and DegradationMetricImpl. The
fields in the DegradationMetricImpl object have a constant size (they are integer or pairs of integers and
rationals) and thus we are interested in their size at any given time. Therefore, we annotated each field
update in DegradationMetricImpl.notify_query with a constant cost representing the amount of memory
required by that field.

...

[Cost : 1] curState = S;

{ [Cost : 1]cnt=cnt+1;

{ [Cost: 1]slowCnt = slowCnt + case(procTime>200) { True => 1; False => 0;};

[Cost: 2]slowQpct = Pair("slow", slowCnt/cnt);

...

The case of DegradationMonitorImpl is more elaboraed since it contains a field metricHist of type
List<Pair<Time,List<Pair<String,Rat>>>>. In this case we are interested in knowing how the size of
this data structure varies with each call to notify_query. For this purpose, we create an auxiliary method
notify_query_aux that receives the same arguments as notify_query plus the metricHist and returns
the new metricHist. This way, metricHist becomes an input parameter of the method and we can obtain
upper bounds as a function of its size:

List<Pair<Time,List<Pair<String,Rat>>>> notify_query_aux(Time t, Rat procTime,

List<Pair<Time,List<Pair<String,Rat>>>> metricHistAux) {

Pair<String, Rat> measurement = metric.notify_query(t, procTime);

metricHistAux = Cons(Pair(t, list[measurement]), metricHistAux);

this.count_list_size(metricHistAux);
return metricHistAux;

}

Additionally, after updating metricHistAux, we call the auxiliary method count_list_size. Method
count_list_size (see Figure 4.6) iterates over the data structure metricHist and consumes a constant
amount of resources for each variable of type Time and each pair Pair<String,Rat> inside the data struc-
ture (in order to “simulate” corresponding memory consumption). This way we can set the resource con-

20

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

sumption to the size of metricHist after the execution of one call to notify_query, and then use the
resource analysis to measure such resource consumption in terms of the initial size of metricHist.

We applied SACO+CoFloCo with the following options:

• Option backend is set to cofloco. This allows selecting CoFloCo as a backend.

• Option cost_centers is set to class. This allows us to obtain separate bound for the resources consumed
in each class.

• Option size_abst is set to typed_norms. This option specifies that the data structures are abstracted
(to corresponding size measure) according to the techniques detailed in [3].

According to these options the data structure metricHistAux is abstracted into two numeric variables:

• metricHistAux_1 represents the maximum size of the inner lists of type List<Pair<String,Rat>>.
The size of each list is considered to be the number of constructors used to form the list, including the
constructor Nil at the end of the list. This means that the size of the list is 1 plus the length of the
list.

• metricHistAux_2 represents the size of the outer list (the length of metricHistAux plus 1).

The results of the analysis that we have obtained are as follows:

5 within cost-center ’DegradationMetricImpl’

max(2*metricHistAux_2,2*metricHistAux_2*nat(metricHistAux_1-1)]+metricHistAux_2

within cost-center ’DegradationMonitorImpl’

Where nat(metricHistAux_1-1) represents max(metricHistAux_1-1,0). This gives us a constant memory
cost of 5 units for DegradationMetricImpl which corresponds to the size of the object’s fields. In the result
for DegradationMonitorImpl we can use the fact that the inner lists in metricHistAux always have length
1 (and correspondingly metricHistAux_1=2) to simplify the resulting expression to:

max(2*metricHistAux_2,2*metricHistAux_2*nat(metricHistAux_1-1)]+metricHistAux_2

= max(2*metricHistAux_2,2*metricHistAux_2*nat(2-1)]+metricHistAux_2

= 2*metricHistAux_2+metricHistAux_2

= 3*metricHistAux_2

Furthermore, we know that metricHistAux_2=length(metricHistAux)+1 so we can also express the mem-
ory cost as 3*length(metricHistAux)+3. This result indicates that the memory consumption for object
DegradationMonitorImpl is proportional to the length of the event trace (3*length(metricHistAux)) and
that after each call to notify_query, the memory consumption is incremented by 3 which accounts for the
size of the new element added to metricHistAux.

Analysis of the Extended Service Degradation Monitor

We applied the same analysis to a different monitor called “Extended Service Degradation Monitor”. This
monitor implements the same metric but it is more fine-grained and closer to the real-world. The main
difference between this monitor and the previous one is method DegradationMetricImpl.notify_query

which now returns a list of type List<Rat> with two elements which is added to metricHist as in the pre-
vious case. The type of metricHist also changes to List<Pair<Time,List<Rat>>> instead of the previous
type List<Pair<Time,List<Pair<String,Rat>>>>.

The results are 63 units of CPU usage, 6 memory units for the object DegradationMetricImpl and
the same result, as for the previous monitor, for the memory consumption of DegradationMonitorImpl.
Once simplified, it is 3*length(metricHistAux)+3. This is not surprising as we have substituted a list
of pairs (List<Pair<String,Rat>>) with only one element by a list of rationals (List<Rat>) with two
elements (under the assumption that all basic types such as String and Rat require a single memory unit).

21

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Conclusion and Future Work of Resource Analysis

We have successfully analyzed the CPU and memory consumption of two monitors that implement different
versions of the degradation metric. The conclusion is that the CPU overhead is constant and the memory
overhead grows proportionally to the length of the event trace (metricHist).

During the analysis of monitors we have detected and corrected several bugs both in SACO and CoFloCo.
In addition to that, we have identified several aspects of the tools that could be improved and new oppor-
tunities for research. For instance, we found the ability to define the cost model using cost annotations
very useful. However, at the moment, SACO only supports annotations with constant values. Extending
SACO’s support for cost annotations based on variables and their sizes would simplify the analysis greatly.
We would not need the auxiliary method count_list_size but instead a simple annotation would suffice.

In order to analyze the second monitor, we had to perform a slight modification of the code of method
DegradationMetricImpl.notify_query. This method has a condition that depends on a field and is always
true. That constitutes a class invariants but SACO is unable to detect this. SACO could be extended to
infer this kind of invariants or allow the user to provide them. Furthermore, KeY ABS could be used to
verify the validity of the such invariants before they are fed into SACO.

4.4 Connecting External Systems
The API for interacting with an ABS model over HTTP (see Appendix A) provides a way to connect external
systems: define a method that acts as a data-sink by marking it with a [HTTPCallable] annotation (this
exposes it as an HTTP endpoint, i.e., the method can now be invoked over HTTP), and publish the
desired data from the external system to it. For example, the interface in Figure 4.7 exposes a method
invokeWithSize as a data-sink endpoint that allows to replay a real world log file, taking as inputs the
original processing time of a query (proctime) and the CPU execution capacity (amazonECU) of the machine
that processed it.

interface MonitoringQueryEndpoint extends EndPoint {

[HTTPCallable] Unit invokeWithSize(Int proctime, Int amazonECU);

}

Figure 4.7: Data-sink endpoint

We implemented a general log-replay tool, that replaces logged events from a log-file according to the
original timing by invoking a specified endpoint (see Figure 4.8). It supports abstracting away irrelevant
attributes and applying custom transformation functions on attribute values before generating the request.

Another use-case for connecting external systems is plugging in external monitors. External monitors
can be implemented in an entirely different language and run on external machines controlled by different
organizations. This allows to monitor properties that should not be monitored at the server side, such
as Availability (FRH uses Pingdom3 to monitor Availability) and take infrastructure failures into account
(FRH uses Amazon4, we can simply retrieve the state of a virtual machine). By forwarding the data of
these heterogeneous external systems to ABS data-sinks, all data-sources are available in real-time in the
ABS model. This makes it possible to define monitors for more complex properties that combine different
external monitors, we can leverage the ABS formal analyses, and all monitors are accessible and configurable
through a unified visualization and management interface (Section 4.1).

3https://www.pingdom.com
4https://aws.amazon.com/ec2/

22

https://www.pingdom.com
https://aws.amazon.com/ec2/

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

Figure 4.8: Log replay

23

Bibliography

[1] Wolfgang Ahrendt and Maximilian Dylla. A system for compositional verification of asynchronous
objects. Science of Computer Programming, 77(12):1289–1309, October 2012.

[2] Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel Gómez-Zamalloa, Enrique
Martin-Martin, Germán Puebla, and Guillermo Román-Díez. SACO: Static Analyzer for Concurrent
Objects. In 20th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 8413 of Lecture Notes in Computer Science, pages 562–567. Springer-Verlag,
2014.

[3] Elvira Albert, Samir Genaim, and Raúl Gutiérrez. Towards a Transformational Approach to Resource
Analysis with Typed-Norms (Extended Abstract). In 23rd International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR’13), pages 85–96, September 2013.

[4] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of Object-Oriented Soft-
ware. The KeY Approach, volume 4334 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[5] Frank S. de Boer and Stijn de Gouw. Run-time deadlock detection. In ProCoS Workshop on Provably
Correct Systems, To appear.

[6] Frank S. de Boer, Stijn de Gouw, Einar Broch Johnsen, Andreas Kohn, and Peter Y. H. Wong. Run-
time Assertion Checking of Data- and Protocol-oriented Properties of Java Programs: An Industrial
Case Study. T. Aspect-Oriented Software Development, 11:1–26, 2014.

[7] Stijn de Gouw, Jacopo Mauro, Behrooz Nobakht, and Gianluigi Zavattaro. Declarative elasticity in
ABS. In Service-Oriented and Cloud Computing - 5th IFIP WG 2.14 European Conference, ESOCC
2016, Vienna, Austria, September 5-7, 2016, Proceedings, pages 118–134, 2016.

[8] Crystal Chang Din, Richard Bubel, and Reiner Hähnle. KeY-ABS: A deductive verification tool for
the concurrent modelling language ABS. In Amy P. Felty and Aart Middeldorp, editors, Proceedings
of the 25th International Conference on Automated Deduction (CADE 2015), volume 9195 of Lecture
Notes in Computer Science, pages 517–526. Springer-Verlag, 2015.

[9] Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Observable behavior of
distributed systems: Component reasoning for concurrent objects. Journal of Logic and Algebraic
Programming, 81(3):227–256, 2012.

[10] Crystal Chang Din and Olaf Owe. Compositional reasoning about active objects with shared futures.
Formal Aspects of Computing, 27(3):551–572, 2015.

[11] Antonio Flores-Montoya. Upper and lower amortized cost bounds of programs expressed as cost re-
lations. In 21st International Symposium on Formal Methods (FM’16), Lecture Notes in Computer
Science, 2016. to appear.

[12] Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex programs with cost equa-
tions. In Jacques Garrigue, editor, 12th Asian Symposium on Programming Languages and Systems

24

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

(APLAS’14), volume 8858 of Lecture Notes in Computer Science, pages 275–295. Springer, November
2014.

[13] Elena Giachino, Stijn de Gouw, Cosimo Laneve, and Behrooz Nobakht. Statically and dynamically
verifiable SLA metrics. In Theory and Practice of Formal Methods - Essays Dedicated to Frank de Boer
on the Occasion of His 60th Birthday, pages 211–225, 2016.

[14] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. EASY meta-programming with rascal. In Gen-
erative and Transformational Techniques in Software Engineering III - International Summer School,
GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers, pages 222–289, 2009.

[15] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145,
1968.

[16] Behrooz Nobakht, Stijn de Gouw, and Frank S. de Boer. Formal verification of service level agreements
through distributed monitoring. In Schahram Dustdar, Frank Leymann Schahram, and Massimo Villari,
editors, Service Oriented and Cloud Computing – 4th European Conference, ESOCC 2015, Taormina,
Italy, September 15-17, 2015, Lecture Notes in Computer Science, pages 125–140. Springer-Verlag,
2015.

25

Glossary

AWS Amazon Web Services.

Cloud Engineer A Cloud Engineer handles the day-to-day operation of services. She deploys/updates
services through PaaS and IaaS according to incomplete service requirements from Consultants, diag-
noses issues at service-level and either resolves them at real time or informs the Support Engineers
and/or the Software Engineers. She manages the up and down scaling of service resources according to
alerts and metric visualizations provided by the monitoring system. She also performs any necessary
infrastructural changes

Endpoint Used interchangeably with URL that refers to an HTTP address that a user can reach to invoke
a certain operation

IaaS Infrastructure as a Service

Infrastructure as a Service A provision model in which an organization outsources the equipment used
to support IT operations, including storage, hardware, servers and networking components. The
service provider owns the equipment and is responsible for housing, running and maintaining it. The
client typically pays on a per-use basis

JSON JavaScript Object Notation. A data format that uses human-readable text to transmit data objects
consisting of attribute-value pairs.

PaaS Platform as a Service

Platform as a Service A category of cloud service offerings that facilitates the deployment of applications
without the cost and complexity of buying and managing the underlying hardware and software and
provisioning hosting capabilities

QoS Quality of Service

Quality of Service Generic term encapsulating all the non-functional aspects of a service delivery

Resource Any entity that provides computation power or storage facilities

Resource Configuration A description of the number of service instances initially required for a service
offered to a Customer and the virtualized resource to be allocated initially to those service instances

SaaS Software as a Service

Service Level Agreement A legal contract between a service provider and his customer. It records a
common understanding about services, priorities, responsibilities, guarantees, and warranties

SLA Service Level Agreement

Software as a Service A software delivery model in which software and associated data are centrally
hosted on the cloud. SaaS is typically accessed by users using a thin client via a web browser

26

Appendix A

HTTP API

The HTTP API provides a means of querying and accessing a simulated model from the outside via HTTP
requests. HTTP was chosen for its ubiquity and ease of use. The following features are implemented:

• Objects are registered via an annotation on new expressions;

• Methods are made callable via an annotation in an interface definition;

• Objects are protected from garbage collection as long as they are registered;

• Field values of registered objects can be accessed (read-only);

• Callable methods of registered objects can be called via the API, and the return value can be read;

• Registered objects and their fields and callable methods can be enumerated via the API.

This Appendix presents an interim version of the HTTP API; changes in supported parameter and
return values and other aspects will be documented in the ABS manual.

A.1 Registering Objects
The annotation

[HTTPName: "name"] new C();

registers the new object as name. In case name is already in use, the previous object is unregistered and will
not be accessible via the API anymore.

A.2 Making Methods Callable
In an interface declaration, the following

[HTTPCallable] String method(Int parameter);

declares the method method to be callable via the API on registered objects.

• It is a compile-time error if the method takes parameters whose types are not supported. Currently
supported types are the ABS types Int, String and Bool.

• The method can have an arbitrary return type. Integers, strings and boolean values will be returned as
the equivalent JSON types, other values will be returned as strings via the ABS toString() function.

27

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

A.3 Querying for Objects
The HTTP request

GET http://localhost:8080/o

returns a list of registered object names.

A.4 Reading Object State
The HTTP request

GET http://localhost:8080/o/name

returns a JSONmap of state of the object registered as foo, as { "field": "value", "field2": "value2"}.
Field values are converted in the same way as method return values.

The HTTP request

GET http://localhost:8080/o/foo/field

returns a JSON map with a singleton entry { "field" : "value" }. In addition:

• Unknown object requests result in a 404 response code

• Unknown field names result in a 404 response code

A.5 Calling Methods
For a registered name name, the HTTP request

GET http://localhost:8080/call/name

returns a, JSON array with metadata about callable functions, with each element of the list being a map
with the following entries:

name method name

parameters array with one object per parameter, each with the following entries:

name name of the parameter
type type of the parameter

return return type of the method

The HTTP request

GET http://localhost:8080/call/name/method?param1=value¶m2=50

calls method on the object registered as name, which is equivalent to performing the ABS method call
foo.method("value", 50). The following datatypes can be used for parameters:

Bool given as literal upper- or lowercase “true” / “false”, i.e. ?p=True, ?p=true, ?p=False, ?p=false

String URLEncoded text, e.g., ?p=Hello%20World!

Int Integer, e.g., ?p=42

28

Envisage Deliverable D2.3.2 Monitoring add-ons (Final Report)

• Successful calls produce a 200 response code and a JSON map with a single entry result mapping to
the result value.

• Unknown object requests produce 404 response code

• Unknown method name produces 404 response code

• Invalid parameters produce a 400 response code

• Errors during method invocation produce 500 code

29

Appendix B

Formal Verification of Service Level
Agreements Through Distributed
Monitoring [16]

30

Formal verification of service level agreements
through distributed monitoring?

Behrooz Nobakht1,2, Stijn de Gouw2,3, and Frank S. de Boer1,3

1 Leiden Advanced Institute of Computer Science
Leiden University

bnobakht@liacs.nl
2 SDL Fredhopper

{bnobakht,sgouw}@sdl.com
3 Centrum Wiskunde en Informatica

{frb,cdegouw}@cwi.nl

Abstract. In this paper, we introduce a formal model of the availabil-
ity, budget compliance and sustainability of distributed services, where
service sustainability is a new concept which arises as the composition
of service availability and budget compliance. The model formalizes a
distributed platform for monitoring the above service characteristics in
terms of a parallel composition of task automata, where dynamically gen-
erated tasks model asynchronous events with deadlines. The main result
of this paper is a formal model to optimize and reason about service
characteristics through monitoring. In particular, we use schedulability
analysis of the underlying timed automata to optimize and guarantee
service sustainability.

Keywords: runtime monitoring, service availability, budget compliance, service
sustainability, distributed architecture, cloud computing, service level agreement

1 Introduction

Cloud computing provides the elastic technologies for virtualization. Through
virtualization, software itself can be offered as a service (Software as a Service,
SaaS). One of the aims of SaaS is to allow service providers to offer reliable
software services while scaling up and down allocated resources based on their
availability, budget, service throughput and the Service Level Agreements (SLA).
Thus, it becomes essential that virtualization technologies facilitate elasticity in
a way that enables business owners to rapidly evolve their systems to meet their
customer requirements and expectations.

The fundamental technical challenge to a SaaS offering is maintaining the
quality of service (QoS) promised by its SLA. In SaaS, providers must ensure a
? This paper is funded by the EU project FP7-610582 ENVISAGE: Engineering Vir-
tualized Services, http://www.envisage-project.eu.

2 B. Nobakht, S. de Gouw, F. S. de Boer

consistent QoS in a dynamic virtualized environment with variable usage pat-
terns. Specifically, virtualized environments such as the cloud provide elasticity
in resource allocation, but they often do not offer an SLA that can guarantee
constant resource availability. As a result, SaaS providers are required to react
to resource availability at runtime. Furthermore, by offering a 24/7 software ser-
vice, SaaS providers must be able to react to certain service usage patterns, such
as an increase in throughput to ensure the SLA is maintained.

Runtime monitoring [20,4] is a dynamic analysis approach based on extract-
ing relevant information about the execution. Runtime monitoring may be em-
ployed to collect statistics about the service usage over time, and to detect and
react to service behavior. This latter ability is fundamental in the SaaS approach
to guarantee the SLA of a service and is the focus of this paper.

The monitoring model that is presented in this paper is designed to observe
in real-time certain service characteristics and react to them to ensure the evolu-
tion of the system towards its SLA. Asynchronous communication is an essential
feature of a monitoring model in a distributed context. Asynchronous communi-
cation accomplishes non-intrusive observations of the service runtime. Further,
the monitoring model is expected to operate according to certain real-time con-
straints specified by the SLA of the service. Satisfying the real-time constraints
is the main challenge in a distributed monitoring model.

In this paper, we formalize service availability and budget compliance in a
distributed deployment environment. This formalization is based on high-level
task automata models [1,9,13]. The automata capture the real-time evolution of
the resources provided by a distributed deployment platform and the above two
main service characteristics. These task automata represent the real-time gener-
ation of the asynchronous events extended with deadlines [3,22] by the monitor-
ing platform for managing resources (i.e. allocation or deallocation). The main
result of this paper is a formal model to optimize and reason about the above
service characteristics through monitoring. In particular, the schedulability of the
underlying timed automata implies service availability and budget compliance.
Furthermore, we introduce a composition of service availability and budget com-
pliance which captures service sustainability. We show that service sustainability
presents a multi-objective optimization problem.

2 Related Work

Vast research work present different aspects of runtime monitoring. We focus on
those that present a line of research for distributed deployment of services.

MONINA [12] is a DSL with a monitoring architecture which supports certain
mathematical optimization techniques. A prototype implementation is available.
Accurately capturing the behavior of an in-production legacy system coded in a
conventional language seems challenging: it requires developing MONINA com-
ponents, which generate events at a specified fixed rate, there are no control
structures (if-else, loops), the data types that can be used in events are pre-
defined, and there are no OO-features. We use ABS [15], an executable mod-

Formal verification of SLA via distributed monitoring 3

eling language that supports all of these features and offers a wide range of
tool-supported analyses [5,25]. The mapping from ABS to timed automata [1]
allows to exploit the state-of-the-art tools for timed automata, in particular for
reasoning about real-time properties (and, as we show, SLAs using schedulabil-
ity analysis [9]). MONINA offers two pre-defined parameters that can be used in
monitoring to adapt the system: cost and capacity. Our service metric function
generalizes this to arbitrary user-defined parameters, including cost and capacity.

Hogben and Pannetrat examine in [11] the challenges of defining and measur-
ing availability to support real-world service comparison and dispute resolution
through SLAs. They show how two examples of real-world SLAs would lead one
service provider to report 0% availability while another would report 100% for
the same system state history but using a different period of time. The trans-
parency that the authors attempt to reach is addressed in our work by the
concept of monitoring window and expectation tolerance in Section 4. Addition-
ally, the authors take a continuous time approach contrasted with ours that uses
discrete time advancements. Similarly, they model the property of availability
using a two-state model.

The following research works provide a language or a framework that al-
lows to formalize service level agreements (SLA). However, they do not study
how such SLAs can be used to monitor the service and evolve it as necessary.
WSLA [18] introduces a framework to define and break down customer agree-
ments into a technical description of SLAs and terms to be monitored. In [21],
a method is proposed to translate the specification of SLA into a technical do-
main directed in SLA@SOI EU project. In the same project, [8] defines terms
such as availability, accessibility and throughput as notions of SLA, however,
the formal semantics and properties of the notions are not investigated. In [6],
authors describe how they introduce a function how to decompose SLA terms
into measurable factors and how to profile them. Timed automata is used in [24]
to detect violations of SLA and formalize them.

Johnsen [16] introduce “deployment components” using Real-Time ABS [3].
A deployment component enables an application to acquire and release resources
on-demand based on a QoS specification of the application. A deployment com-
ponent is a high level abstraction of a resource that promotes an application to a
resource-aware level of programming. Our work is distinguished by the fact that
we separate the monitors from the application (service) themselves. We argue
that we aim to design the monitoring model to be as non-intrusive as possible
to the service runtime. Thus, we do not deploy the monitors inside the service
runtime.

In Quanticol EU project4, authors in [7] and [10] use statistical approaches to
observe and guarantee service level agreements for public transportation. We also
present that service characteristics can be composed together. This means that
evolving a system based on SLAs turns into a multi-object optimization problem.
In addition, in COMPASS EU project5, CML [26] defines a formal language to

4 Quanticol EU project with no. 600708: http://quanticol.eu/
5 COMPASS EU project with no. 287829: http://www.compass-research.eu/

4 B. Nobakht, S. de Gouw, F. S. de Boer

model systems of systems and the contracts between them. CML studies certain
properties of the model and their applications. CML is used in the context of a
Robotics technology to model and ensure how emergency sensors should react
and behave according to the SLAs defined for them. Our approach is similar to
provide a generic model for service characteristics definition, however, we utilize
timed and task automata.

3 SDL Fredhopper Cloud Services

In this section, we introduce a running example in the context of SDL Fred-
hopper. We use the example in different parts of the paper and also in the
experiments.

SDL Fredhopper develops the Fredhopper Cloud Services to offer search and
targeting facilities on a large product database to e-Commerce companies as ser-
vices (SaaS) over the cloud computing infrastructure (IaaS). Fredhopper Cloud
Services provides several SaaS offerings on the cloud. These services are exposed
at endpoints. In practice these endpoints typically are implemented to accept
connections over HTTP. For example, one of the services offered by these end-
points is the Fredhopper Query API, which allows users to query over their
product catalog via full text search6 and faceted navigation7.

A customer of SDL Fredhopper using Query API owns a single HTTP end-
point to use for search and other operations. However, internally, a number of
resources (virtual machines) are used to deliver Query API for the customer. The
resources used for a customer are managed by a load balancer. In this model of
deployment, each resource is launched to serve one instance of Query API; i.e.
resources are not shared among customers.

When a customer signs a contract with SDL Fredhopper, there is a clause
in the contract that describes the minimal QoS levels of the Query API. For
example, we have a notion of query per second (QPS) that defines the number
of completed queries per second for a customer. An agreement is a bound on the
expected QPS and forms the basis of many decisions (technical or legal) there-
after. The agreement is used by the operations team to set up an environment
for the customer which includes the necessary resources described above. The
agreement is additionally used by the support team to manage communications
with the customer during the lifetime of the service for the customer.

Maintaining the services for more than 250 customers on more than 1000
servers is not an easy operation task 8. Thus, to ensure the agreements in a
customer’s contract:

– The operation team maintains a monitoring platform to get notifications on
the current metrics.

6 http://en.wikipedia.org/wiki/Full_text_search
7 http://en.wikipedia.org/wiki/Faceted_navigation
8 Figures are indication of complexity and scale. Detailed confidential information may
be shared upon official request.

Formal verification of SLA via distributed monitoring 5

– The operation team performs manual intervention to ensure that sufficient
resources are available for a customer (launching or terminating).

– The monitoring platform depends on human reaction.
– The cost that is spent for a customer on the basis of safety can be optimized.

In this paper, we use the notion of QPS as an example in the concepts
that are presented in this research. We use the example here to demonstrate
how the model that is proposed in this research can address the issues above
and alleviate the manual work with automation. The manual life cycle depends
on the domain-specific and contextual knowledge of the operations team for
every customer service that is maintained in the deployment environment. This
is labor-intensive as the operations team stands by 24 × 7. In such a manual
approach, the business is forced to over-spend to ensure service level agreements
for customers.

4 Distributed Monitoring Model

We introduce a distributed monitoring platform and its components and discuss
some underlying assumptions and definitions. Further, we define the notion of
service availability and service budget compliance. In the deployment environ-
ment (e.g., “the cloud”), every server from the IaaS provider is used for a single
service of a customer, such as the Query Service API for a customer of SDL
Fredhopper (c.f. Section 3). Typically, multiple servers are allocated to a single
customer. The number of servers allocated for a customer is not visible to the
customer. The customer uses a single endpoint - in the load balancer layer - to
access all their services.

The ultimate goal is to maintain the environment in such a way that cus-
tomers and their end users experience the delivered services up to their ex-
pectations while minimizing the cost of the system. The first objective can be
addressed by adding resources; however, this conflicts with the second goal since
it increases the cost of the environment for the customer. In this section, we
formalize the above intuitive notions as service availability and service budget
compliance.

We then develop a distributed monitoring platform that aims to optimize
these service characteristics in a deployment environment. The monitoring plat-
form works in two cyclic phases: observation and reaction. The observation phase
takes measurements on services in the deployment environment. Subsequently,
the corresponding levels of the service characteristics are calculated. In the reac-
tion phase, if needed, a platform API is utilized to make the necessary changes
to the deployment environment (e.g. adjust the number of allocated resources)
to optimize the service characteristics. The monitoring platform builds on top
of a real-time extension of the actor-based language ABS [15]. To ensure non-
intrusiveness of the monitor with the running service, each monitor is an active
object (actor) running on a separate resource from that which runs the service
itself, and the components of the monitoring platform communicate through
asynchronous messages with deadlines [16].

6 B. Nobakht, S. de Gouw, F. S. de Boer

Below, we discuss assumptions and basic oncepts that will be used in the
analysis of the formal properties of the monitoring platform and corresponding
theorems. We assume that the external infrastructure provider has an unlimited
number of resources. Further, we assume that all resources are of the same type;
i.e. they have the same computing power, memory, and IO capacity. Finally, we
assume that every resource is initialized within at most ti amount of time.

In our framework time T is a universally shared clock based on the NTP 9

that is used by all elements of the system in the same way. T is discrete. We fix
that the unit of time is milliseconds. This level of granularity of time unit means
that between two consecutive milliseconds, the system is not observable. For
example, we use the UTC time standard for all services, monitors and platform
API. We refer to the current time by tc.

We denote by r a resource which provides computational power and storage
and by s a general abstraction of a service in the deployment environment. A
service exposes an API that is accessible through a delivery layer, such as HTTP.
In our example, a service is the Query API (c.f. Section 3) that is accessible
through a single HTTP endpoint.

In our framework, monitoring platform P is responsible for (de-)allocation of
resources for computation or storage. We abstract from a specific implementation
of the monitoring platform P through an API in Listing 1.

Listing 1: Platform API
1 interface Platform {
2 void allocate(Service s);
3 void deallocate(Service s);
4 Number getState(Service s);
5 boolean verifyα(Service s);
6 boolean verifyβ(Service s);
7 }

There is only one instance of P avail-
able. In this paper, P internally uses
an external infrastructure provision-
ing API to provide resources (e.g.
AWS EC2). The term “platform” is
interchangeably used for monitoring
in this paper. The platform provides a
method getState(Service s) which re-
turns the number of resources allocated to the given service s at time tc.

We use monitoring to observe the external behavior of a service. We formalize
the external behavior of a service with its service-level agreement (SLA). An
SLA is a contract between the customer (service consumer) and the service
provider which defines (among other things) the minimal quality of the offered
service, and the compensation if this minimal level is not reached. To formally
analyze an SLA, we introduce the notion of a service metric function. We make
basic measurements of the service externally in a given monitoring window (a
duration). The service metric function aggregates the basic measurements into a
single number that indicates the quality of a certain service characteristic (higher
numbers are better).

Basic measurement µ(s, r, t) is a function that produces a real number of a
single monitoring check on a resource r allocated to service s at some time t. For
example, for SDL Fredhopper cloud services, a basic measurement is the number
of completed queries at the current time.

9 https://tools.ietf.org/html/rfc1305

Formal verification of SLA via distributed monitoring 7

Service Metric fs is a function that aggregates a sequence of basic non-
negative measurements to a single non-negative real value: fs :

⋃
nRn → R.

For example, for SDL Fredhopper cloud services, the service metric function fs
calculates the average number of queries per second (QPS) given a list of basic
measurements.

Monitoring Window is a duration of time τ throughout which basic measure-
ments for a service are taken.

Monitoring Measurement is a function that aggregates the basic measure-
ments for a service over its resources in the last monitoring window. The last
monitoring window is defined as [tc− τ, tc]. To produce the monitoring measure-
ment, fs is applied. Formally:

µ(s, r, τ) = fs
(
〈µi(s, r, t)〉∞i=0

)
where t ∈ [tc − τ, tc]

in which µi(s, r, t) is the i-th basic measurement of services s on resource r at
time t where t ∈ [tc − τ, tc].
Definition 1 (Service Availability α(s, τ, tc)). First, we need a few auxiliary
definitions before we can define service availability.

Service Capacity κσ(s, τ) =
∑
r∈σ(s) µ(s, r, τ) denotes the capability of ser-

vice s that is the aggregated monitoring measurements of its resources over the
monitoring window τ and σ(s) is the number of allocated resources to service s.

Agreement Expectation E(s, τ, tc) is the minimum number of requests that a
customer expects to complete in a monitoring window τ . The agreement expec-
tation depends on the current time tc because the expectation may change over
time. For example, SDL Fredhopper customers expect a different QPS during
Christmas.

We define the availability of a service α(s, τ, tc) in every monitoring window
τ as:

α(s, τ, tc) = κσ(s, τ)
E(s, τ, tc)

Capacity Tolerance εα(s, τ)) ∈ [0, 1] defines how much κσ(s, τ) can deviate
from E(s, τ, tc) in every time span of duration τ .

Service Guarantee Time tG is the duration within which a customer expects
service availability reaches an acceptable value after a violation. Typically, tG is
an input parameter from the customer’s contract.

Example 1. Intuitively, α(s, τ, tc) presents the actual capability of a service
s over a time period τ compared to the expectation on the service E(s, τ). For
values α(s, τ, tc)� 1−εα(s, τ)), the resource for service s are at “under-capacity”
while for values α(s, τ, tc) � 1 + εα(s, τ)), there is “over-capacity”. The goal is
optimize α(s, τ, tc) towards a value of 1.

For example, we expect a query service to be able to complete 10 queries
per second. We define the monitoring window τ = 5 minutes; thus, E(s, τ, tc) =
10×60×5 = 3000. Suppose we allocate only one resource to the service, measure
the service during a single monitoring window τ and find µ(s, r, τ) = 2900. Then
α(s, τ, tc) = 2900

3000 = 0.966. If we have εα(s, τ)) = 0.03, this means that service s
is under-capacity because α(s, τ, tc) < 1− εα.

8 B. Nobakht, S. de Gouw, F. S. de Boer

Definition 2 (Budget Compliance β(s, τ)). We first provide a few auxiliary
definitions.

Resource Cost AC(r, τ) ∈ R+ is the cost of resource r in a monitoring window
τ which is determined by a fixed resource cost per time unit.

Service Cost ACσ(s, τ) ∈ R+ is the cost of a service s in a monitoring window
τ and defined as ACσ(s, τ) =

∑
r∈σ(s)AC(r, τ).

Service Budget B(s, τ) specifies an upper bound of the expected cost of a
service in the time span τ . Intuitively B(s, τ) is the allowed budget that can be
spent for service s over the time span τ . The service budget is typically chosen
to be fixed over any time span τ .

We are now ready to define service budget compliance β(s, τ) that, intuitively,
represents how a service complies with its allocated budget:

β(s, τ) = ACσ(s, τ)
B(s, τ)

Budget Tolerance εβ(s, τ) ∈ [0, 1] specifies how much the service cost AC(s, τ)
can deviate from B(s, τ) in every time span of duration τ .

Service Guarantee Time tG is similar to that defined for service availability.

Example 2. Assume every resource on the environment costs 1 (e.g. AC) per
hour. Suppose we set a budget of 1.5 per hour for every service, allocate one
resource to the service and define a monitoring window of τ = 5 minutes. Every
hour has 12 monitoring windows. This means that each resource costs AC(r, τ) =
1

12 ≈ 0.08 per monitoring window. Since there is only one resource, the service
cost is AC(s, τ) =

∑
r∈σ(s)AC(s, τ) ≈ 0.08 per monitoring window. On the other

hand, if we calculate the budget for one monitoring window, we have B(s, τ) =
1.5
12 = 0.125 per monitoring window. This yields budget compliance as β(s, τ) =
0.08

0.125 = 0.64.

The formal definitions of service availability and budget compliance provide
a rigorous basis for automatic deployment of resource-aware services with an ap-
propriate quality of service, taking costs into account. This in particular includes
automated scaling up or down of the service with the help of monitoring checks
that are installed for the service. The fundamental challenge in ensuring service
availability and budget compliance is that they have conflicting objectives:

α(s, τ, tc) ↑ ⇐⇒ β(s, τ) ↓

Intuitively, if more resources are used to ensure the availability of a service;
then α(s, τ, tc) increases. However, at the same time, the service costs more; i.e.
budget compliance β(s, τ) decreases.

5 Service Characteristics Verification

In this section, we use timed automata and task automata to model the behavior
of a monitoring platform P , the deployment environment E, and the monitoring

Formal verification of SLA via distributed monitoring 9

components for service availability α(s, τ, tc) and budget compliance β(s, τ). [13]
defines a task automata as an extension of timed automata in which each task
is a piece of executable program with (b, w, d): best/worst time and deadline of
the task. A task automata uses a scheduler for the tasks to schedule each task
with a location on a queue.

Modeling the elements of the monitoring platform is necessary to be able to
study certain properties of the system. The most important goal of a monitoring
platform is to enable the autonomous operation of a set of services according
to their SLA. Thus, it is essential how to analyze that the monitoring platform
can provide certain guarantees about the service and its SLA. In addition, it
is important be able to verify the monitoring platform through model check-
ing and schedulability analysis. Using timed automata and task automata fa-
cilitates model checking and verification through formal method tools such as
UPPAAL [2] supporting advanced methods such as state-space reduction [19].

We use task automata as defined in [9,14,13]. Task automata are an extension
of timed automata [1]. In addition, we design the automata for the monitoring
platform using the real-time extension of task automata presented in [13] p. 92 in
which the author presents a mapping from Real-Time ABS [16] to the equivalent
task automata.

A task type is a piece of executable program/code represented by a tuple
(b, w, d), where b and w respectively are the best-case and worst-case execution
times and d is the deadline. In a task automata, there are two types of transitions:
delay and discrete. A delay transition models the execution of a running task
by idling for other tasks. A discrete transition corresponds to the arrival of a
new task. When a new task is triggered, it is placed into a certain position in
the queue based on a scheduling policy [23,22]. Examples of a scheduling policy
are FIFO or EDF (earliest deadline first). The scheduling policy is modeled as
a timed automaton Sch. Every task has its own stop watch. The scheduler also
maintains a separate stop watch for each task to determine if a task misses its
deadline. All stop watches work at the same clock speed specified by T .

We design separate automata for each service s characteristic: service avail-
ability α(s, τ, tc) by an automataMαs and service budget compliance β(s, τ), by
an automata Mβs . Each automaton is responsible for one goal: to optimize the
service characteristic. Mαs aims to improve α(s, τ, tc) whereas Mβs aims to im-
prove β(s, τ).Mαs uses allocate to launch a new resource in the environment and
improve the service s. In contrast, Mβs uses deallocate to terminate a resource
to decrease the cost of the service.

We use task automata to design Mαs . Periodically, Mαs checks whether the
service availability is within the thresholds, taking tolerance into account (Def-
inition 1). If the condition fails, Mαs generates a task for monitoring platform
P to allocate a new resource to service s with a deadline of τ . We define the
period to be τ . We use the semantics of a task automata in [13] p. 92 in the
transitions of the task automata. Figure Fig. 1a and Fig. 1b present Mαs and Mβs .
BothMαs andMβs share state with the monitoring platform P . The state keeps
the current number of resources for a service s that is denoted by σ(s). All timed

10 B. Nobakht, S. de Gouw, F. S. de Boer

automata and task automata in the monitoring platform have shared access to
σ(s). In the automata, we use a conditional statement to check the service char-
acteristics α(s, τ, tc) or β(s, τ). If the condition fails, Mαs requests P to allocate

a new resource to s and Mβs requests P to deallocate a resource. In addition,
Mαs triggers a new task verifyα with deadline tG. Intuitively, this means the
service characteristic α(s, τ, tc) is verified to be within the expected thresholds
after at most tG time.

start
duration(τ, τ)

if
(
(1− εα(s, τ, tc)) > α(s, τ, tc)

)

{ P ! allocate(s, τ) ; P ! verifyα(s, tG) }

Fig. 1a: Mαs task automata for α(s, τ, tc)

start
duration(τ, τ)

if
(
(1− εβ(s, τ)) > β(s, τ)

)

{ P ! deallocate(s, τ) ; P ! verifyβ(s, tG) }

Fig. 1b: Mβs task automata for β(s, τ)

We use a separate task automaton for each service characteristic to verify
the SLA of the service after tG time. Respectively, Mα

V and Mβ
V execute tasks

verifyα and verifyβ (Figures Fig. 2a and Fig. 2b). Mα
V uses await to ensure the

condition of the SLA. In addition, the task is controlled by the scheduler using a
deadline that is specified as tG in the generated task verifyα(s, tG) in Mαs . If tG
passes before the guard statement in await statement holds, it leads to a missed
deadline.

start
await α(s, τ, tc) ≥ 1− εα(s, τ, tc)

Fig. 2a: Mα
V to execute verifyα

start
await β(s, τ) ≥ 1− εβ(s, τ)

Fig. 2b: Mβ

V
to execute verifyβ

Both Mαs and Mβs are specific to one particular service s. A generalized
automaton for all services is obtained as their parallel composition:Mα = (‖s
Mαs) and Mβ = (‖s Mβs). The tasks generated by Mα and Mβ (triggered
by the calls to allocate and deallocate) are executed by the task automata for
platform MP .

We model monitoring platform P by a task automataMP . The task types are
{A(allocate), D(deallocate)}. For task type A in MP , we use (b, w, d) = (ti, τ, τ);
i.e. the best-case execution time of a task is the resource initialization time, the
worst-case is the length of the monitoring window, and the deadline is the length
of the monitoring window. For task type D inMP , we use (b, w, d) = (0, τ, τ). We
do not fix the scheduling policy Sch. The error state qerr in MP is defined when
either a deadline is missed or when the platform fails to provision a resource.
Thus the monitoring platform P contains the following ingredients:

MP = 〈MA ‖MD ‖Mα
V ‖Mβ

V ,Sch, τ〉
We define MAs as the timed automata to execute the tasks of type allocate in
MP . We use the model semantics presented in [13] p. 92 to design MAs . The
resulting automata is presented in Figure 3.

start
duration(ti, τ) σ(s)← σ(s) + 1

Fig. 3: MAs : Timed Automaton to execute task type allocate in MP

Then, we defineMA inMP as:MA = ‖s MAs ; i.e. the composition of all timed
automata to execute a task allocate for some service s. Similarly, we design MDs

Formal verification of SLA via distributed monitoring 11

to execute task type deallocate in Figure 4. Therefore, we also have MD in MP

as: MD = ‖s MDs .

start
duration(ti, τ) σ(s)← σ(s)− 1

Fig. 4: MDs : Timed Automaton to execute task type deallocate in MP

For a particular service s, its automaton Mαs regularly measures the service
characteristics and calculates α(s, τ, tc). When s is under-capacity,Mαs requests
to allocate a new resource for s through monitoring platform P . This generates a
new task in MP that is executed by MAs . When the task completes, the state of
the service σ(s) is updated; strictly increased. Thus, in isolation, the combination
of Mαs and MAs increase the value of service availability α(s, τ, tc) for service s
over time. Similarly, in isolation, the combination of Mβs and MDs increase the
value of service budget compliance β(s, τ) for service s over time. Because in the
latter, deallocate is used to decrease the cost of the service and as such increases
β(s, τ).

In reality, resources might fail in the environment. The failure of a resource
is not and cannot be controlled by the monitoring platform P . However, the
failure of a resource affects the state of a service and its characteristics. Thus,
we model the environment, including failures, as an additional timed automata,
ME . In ME , in every monitoring window, there is a probability that some re-
sources fail. For example, we present a particular instance of ME in Figure 5.
In this environment, in every monitoring, an unspecified constant (c) number of
resources fail.

start
duration(0, τ) σ(s)← σ(s)− c

Fig. 5: An example behavior for ME

We define system automata [13] (p. 33, Definition 3.2.7) for each service
characteristic; Sα for α(s, τ, tc) and Sβ for β(s, τ):

Sα = Mα ‖ME ‖MP and Sβ = Mβ ‖ME ‖MP

With the above automata that we designed for α(s, τ, tc) and β(s, τ), we are
now ready to present the main results.
Theorem 1. If the SLA for service s on α(s, τ, tc) is violated, either:
– Sα re-establishes the condition α(s, τ, tc) ≥ 1 − εα(s, τ) (thereby satisfying

the SLA) within tG time, or,
– there exists at least one task verifyα in Mα

V with a missed deadline.
Proof. At any given time in T :
– If α(s, τ, tc) ≥ 1−εα(s, τ), then the SLA for service availability α is satisfied.
– If the above condition does not hold, on every monitoring window τ , Mα

generates a new task allocate in MA. In addition, a new task verifyα is
generated with a deadline tG. After a duration of tG, the await statement
allows Mα

V to complete the task verifyα only if the condition α(s, τ, tc) ≥
1− εα(s, τ) holds. If this is not the case, since tG has passed, the scheduler
generates a missed deadline (moving to its error state).

12 B. Nobakht, S. de Gouw, F. S. de Boer

Theorem 2. If the SLA for service s on β(s, τ) is violated, either:

– Sβ re-establishes the condition β(s, τ) ≥ 1− εβ(s, τ) (thereby satisfying the
SLA) within tG time, or,

– there exists at least one task verifyβ in Mβ
V with a missed deadline.

Proof. Similar to the proof of Theorem 1.

In practice, the guarantee of Sα and Sβ in isolation to eventually evolve the
system to satisfy the SLA is not enough. In reality, a service provider tries ensure
both simultaneously to reduce their cost of service delivery while ensuring the
delivered service is of the expectations agreed upon with the customer. However,
these goals conflict. When α(s, τ, tc) increases because of adding a new resource,
it means that service s costs more, hence β(s, τ) decreases. The same applies in
the other direction: increasing β(s, τ) negatively affects α(s, τ, tc).

To capture the combined behavior of service availability and budget compli-
ance, we compose them. We define service sustainability γ(s, τ) as the composi-
tion of α(s, τ, tc) and β(s, τ). We present the composition by system automata
Sγ as:

Sγ = Sα ‖ Sβ

Authors in [9] define that a task automata is schedulable if there exists no task
on the queue that misses its deadline. The next theorem presents the relationship
between schedulability analysis of service sustainability and satisfying its SLA.

Theorem 3. If Sγ is schedulable given input parameters (τ, ti, tG), then the
SLA for both service characteristics α(s, τ, tc) and β(s, τ) is satisfied within tG
time after a violation.

Proof. When a violation of the SLA occurs in Sγ , either Sα or Sβ (or both) start
to evolve the service based on Theorems 1 and 2. Therefore, there exists at least
one task of verifyα or verifyβ with a deadline tG. Hence, if Sγ is schedulable,
then neither verifyα nor verifyβ miss their deadline. Thus, both Sα and Sβ are
schedulable. This means that both verifyα and verifyβ complete successfully.
Therefore, the SLA of the service is guaranteed within tG after a violation in
Sγ .

Using the algorithm presented in Chapter 6 [13], we translate the above
task automata into traditional timed automata. This allows to leverage well-
established model checking techniques such as UPPAAL [2] to determine the
schedulability of Sγ . Moreover, the results of the schedulability analysis serves
as a method to optimize the input parameters of the monitoring model including
τ and tG.

Formal verification of SLA via distributed monitoring 13

6 Evaluation of the monitoring model

In this section, we evaluate the implementation of the monitoring model.
We set up an environment to evaluate how the monitoring evolves a service

according to its SLA. In the environment, a single instance of monitoring plat-
form is present to provide new resources as necessary. Every resource hosts only
one service. We define two customers in the environment. For both customers, we
deploy the same service, Fredhopper Query API. For every resource that hosts a
service, we set up a monitor that measures QPS and reports it to the platform.
Both customers run with the same SLA: the QPS expectation is E(s, τ, tc) = 10
and εα(s, τ, tc) = 0.1. We launch every customer service with only one resource.
Monitors observe the customer service and calculate the service availability of
every customer service α(s, τ, tc).

We run the environment setup for different monitoring windows τ ∈ {1, 5, 10}
(seconds). We fix the initialization time of a resource to ti = 2.5 seconds. We set
tG = 300 seconds; i.e. we verify the service after this time and evaluate if the
service is guaranteed based on its SLA.

Figure 6 plots the service availability α(s, τ, tc) over time with the different
monitoring windows. The following summarizes the behavior:

– As the monitoring window τ increases, the system converges with a slower
pace towards the expected α(s, τ, tc).

– When the monitoring window is chosen such that τ < ti, the evolution of
the system becomes non-deterministic.

– The setting τ < ti causes a missed deadline in verifyα because after a dura-
tion of tG the service availability has not yet reached the expected value.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

α

Time (seconds after system start)

τ=1s - α(c1)

τ=1s - α(c2)

τ=5s - α(c1)

τ=5s - α(c2)

τ=10s - α(c1)

τ=10s - α(c2)

Fig. 6: Evolving α(s, τ, tc) with different τ

Every monitoring mea-
surement is performed in a
monitoring window τ . Moni-
toring measurements are ag-
gregated and calculated in ev-
ery window and form the ba-
sis of reactions necessary to
evolve the service to meet
their SLA. Thus, selection
of an appropriate monitoring
window length τ is crucial, as
we also discussed how schedu-
lability analysis can be used
to optimize it. The authors in
[11] present that for the same setup and deployment of services, measurements
using different monitoring windows yield to very different understanding of ser-
vice properties such as service availability. Therefore, it is essential to choose
the value of τ such that monitoring measurements do not lead to unrealistic
understanding and inappropriate reactions.

14 B. Nobakht, S. de Gouw, F. S. de Boer

If τ < ti, Theorem 1 does not hold because every task allocate in MA misses
its deadline. Thus, it is essential that τ ≥ ti. Analogously, choosing monitoring
window as τ � 2× ti also has a counter-productive effect on the service deploy-
ments. In a real setting, different services may use different types of resources.
In such a setting, the monitoring window should be chosen as the largest ti of
any resource type that is available in the platform: τ ≥ max(ti) ∀r ∈ P .

7 Future work

We continue to generalize the notion of the distributed service characteristics and
investigate how the composition of an arbitrary number of such properties can
be formalized and reasoned about. In the context of the ENVISAGE project, in-
dustry partners define their service characteristics in this framework and monitor
the service evolution. Moreover, the work will be extended to generate parts of
the monitoring platform based on an input of different SLA formalizations such
as SLA? [17]. Currently, we are integrating our automated monitoring infras-
tructure into the in-production SDL Fredhopper cloud services (cf. Section 3).

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

2. G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In Formal
methods for the design of real-time systems, pages 200–236. Springer, 2004.

3. J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering, 9(1):29–43, 2013.

4. K. Bratanis, D. Dranidis, and A. J. H. Simons. Towards Run-Time Monitoring
of Web Services Conformance to Business-Level Agreements. volume 6303, pages
203–206. Springer, 2010.

5. R. Bubel, A. Flores-Montoya, and R. Hähnle. Analysis of executable software
models. In SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures,
pages 1–25, 2014.

6. Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai. SLA decomposition: Translat-
ing service level objectives to system level thresholds. In Autonomic Computing,
2007. ICAC’07. Fourth International Conference on, pages 3–3. IEEE, 2007.

7. A. Coles, A. J. Coles, A. Clark, and S. Gilmore. Cost-sensitive concurrent planning
under duration uncertainty for service-level agreements. In ICAPS, 2011.

8. M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establishing and
monitoring SLAs in complex service based systems. In Web Services, 2009. ICWS
2009. IEEE International Conference on, pages 783–790. IEEE, 2009.

9. E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Information and Computation, 205(8):1149–1172,
2007.

10. S. Gilmore, L. Gönczy, N. Koch, P. Mayer, M. Tribastone, and D. Varró. Non-
functional properties in the model-driven development of service-oriented systems.
Software & Systems Modeling, 10(3):287–311, 2011.

Formal verification of SLA via distributed monitoring 15

11. G. Hogben and A. Pannetrat. Mutant Apples: A Critical Examination of Cloud
SLA Availability Definitions. In Cloud Computing Technology and Science (Cloud-
Com), 2013 IEEE 5th International Conference on, volume 1, pages 379–386.
IEEE, 2013.

12. Inzinger, Christian and Hummer, Waldemar and Satzger, Benjamin and Leitner,
Philipp and Dustdar, Shahram. Generic event-based monitoring and adaptation
methodology for heterogeneous distributed systems. Software – Practice and Ex-
perience, 2014.

13. M. M. Jaghoori. Time at your service: schedulability analysis of real-time and
distributed services. PhD thesis, Leiden University, 2010.

14. M. M. Jaghoori. Composing real-time concurrent objects refinement, compatibil-
ity and schedulability. In Fundamentals of Software Engineering, pages 96–111.
Springer Berlin Heidelberg, 2012.

15. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, pages 142–164. Springer, 2012.

16. E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. Modeling resource-aware virtualized
applications for the cloud in Real-Time ABS. In Formal Methods and Software
Engineering, pages 71–86. Springer, 2012.

17. K. T. Kearney, F. Torelli, and C. Kotsokalis. SLA?: An abstract syntax for Service
Level Agreements. In Grid Computing (GRID), 2010 11th IEEE/ACM Interna-
tional Conference on, pages 217–224. IEEE, 2010.

18. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management,
11(1):57–81, 2003.

19. K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: compact data structure and state-space reduction. In Real-Time
Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 14–24. IEEE, 1997.

20. X. Logean, F. Dietrich, H. Karamyan, and S. Koppenhöfer. Run-time monitoring
of distributed applications. In Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Middleware ’98,
pages 459–474, 1998.

21. K. Mahbub, G. Spanoudakis, and T. Tsigkritis. Translation of SLAs into mon-
itoring specifications. In Service Level Agreements for Cloud Computing, pages
79–101. Springer, 2011.

22. B. Nobakht, F. S. de Boer, and M. M. Jaghoori. The future of a missed deadline.
In Coordination Models and Languages, pages 181–195. Springer, 2013.

23. B. Nobakht, F. S. de Boer, M. M. Jaghoori, and R. Schlatte. Programming and
deployment of active objects with application-level scheduling. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1883–
1888. ACM, 2012.

24. F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-
service SLAs. In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, pages 170–180. ACM, 2008.

25. P. Y. H. Wong, R. Bubel, F. S. de Boer, M. Gómez-Zamalloa, S. de Gouw,
R. Hähnle, K. Meinke, and M. A. Sindhu. Testing abstract behavioral specifi-
cations. STTT, 17(1):107–119, 2015.

26. J. Woodcock, A. Cavalcanti, J. Fitzgerald, S. Foster, and P. G. Larsen. Contracts in
CML. In Leveraging Applications of Formal Methods, Verification and Validation.
Specialized Techniques and Applications, pages 54–73. Springer, 2014.

Appendix C

Run-time Deadlock Detection [5]

46

Run-time Deadlock Detection

Frank S. de Boer1,3 and Stijn de Gouw1,2

1 CWI, Amsterdam, The Netherlands
2 SDL, Amsterdam, The Netherlands
3 Leiden University, The Netherlands

Abstract. This paper reports research that is partly funded by the
EU project FP7-610582 Envisage. It describes a method for detecting
at run-time deadlock in both multi-threaded Java programs and sys-
tems of concurrent objects. The method is based on attribute grammars
for specifying properties of message sequences. For multi-threaded Java
programs we focus on the actual tool-development which extends the
run-time checking of assertions. For concurrent objects which communi-
cate via asynchronous message passing and synchronize on futures which
store the return values, we present the underlying theory and sketch its
implementation.

1 Introduction

As early as in 1949, Alan Turing suggested the use of assertions in a talk “Check-
ing a Large Routine” at Cambridge, for specifying and proving program cor-
rectness. This use of assertions in the logical specification of the mathematical
relations between the values of the program variables was further developed by
Floyd in inductive assertion networks and by Hoare in a programming logic.
Furthermore, checking assertions at run-time is an important practical method
for finding bugs.

In [5] we enhanced run-time assertion checking with attribute grammars [11]
for describing properties of histories, e.g., sequences of method calls and returns.
This supports strict programming to interfaces because it allows for interface
specifications abstracting from the state as represented by the program vari-
ables. In [4] we extended this approach to multi-threaded Java programs which
avoids interference problems in a natural manner. In this paper we show how we
can express, and detect at run-time, deadlock in both multi-threaded Java pro-
grams and Actor-based programs (as for example introduced in [10]) by means
of attribute grammars.

Related Work In [4] we showed how our approach to run-time assertion checking
can be extended to multi-threaded Java programs while avoiding in a natural
manner interference problems. As an example of the generality of our approach,
we showed in [4] how to express deadlocks in multi-threaded Java programs. In
this paper we detail the actual implementation of this application to deadlock
detection in multi-threaded Java programs. We further show how to express and

2

detect deadlock arising in systems of concurrent objects which communicate via
asynchronous method calls and so-called futures which store the return values
(as described in [3]).

One of the main related works [1] describes how to detect deadlock poten-
tials in multi-threaded programs which may give rise to false positives and false
negatives. We however focus on detecting actual deadlocks at run-time.

There exist a variety of static techniques for deadlock analysis. Such tech-
niques analyze the source code without executing it and aim at establishing
absence of deadlock in all executions or finding a counter-example, i.e., a dead-
locking computation. In general the computational complexity of the algorithms
underlying these techniques is a major obstacle to their application to large
software systems. Furthermore, their application in general requires certain ab-
stractions which give rise to imprecision. For example, in [6] a CFL-reachability
analysis4 for deadlock in multi-threaded Java programs is introduced which is
based on a finite abstraction provided by the underlying call-graphs. As another
example, in [7] Dynamic Push down Networks (DPNs) are introduced as an
abstract model for parallel programs with (recursive) procedures and dynamic
process creation. Further, in [9], [2], and [8] different techniques for the deadlock
analysis of systems of concurrent objects are introduced based on a variety of
abstractions, e.g., abstract descriptions of methods behaviours.

4 Here CFL stands for “Context Free Language”.

3

2 The Framework

This section briefly summarizes the use of attribute grammars in run-time ver-
ification as presented in [5]. We use the interface of the Java BufferedReader

(Figure 1) as a running example to explain the basic modeling concepts.

interface BufferedReader {

void close();

void mark(int readAheadLimit);

boolean markSupported();

int read();

int read(char[] cbuf, int off, int len);

String readLine();

boolean ready();

void reset();

long skip(long n);

}

Fig. 1. Methods of the BufferedReader Interface

Communication View A communication view is a (possibly partial) mapping
which associates a name to each event. Partiality makes it possible to filter out
irrelevant events and event names are convenient in referring to events.

Suppose we wish to formalize the following property of the BufferedReader:

The BufferedReader may only be closed by the same object which cre-
ated it, and reads may only occur between the creation and closing of
the BufferedReader.

This property must hold for the local history of all instances. The intuitive idea
behind this property is that the object that opened (created) the buffer “owns”
it, and is as such responsible for closing it, but it may pass the buffer on to
clients that can read from it (so in particular, reads are allowed by multiple
other objects). The communication view in Figure 2 selects the relevant events
and associates them with intuitive names: open, read and close.

All return and call events not listed in the view are filtered. Note how the view
identifies two different events (calls to the overloaded read methods) by giving
them the same name read. Though the above communication view contains
only provided methods (those listed in the BufferedReader interface), required
methods (e.g. methods of other interfaces or classes) are also supported. Since
messages to such methods are sent to objects of a different class (or interface),
one must include the appropriate type explicitly in the method signature. For
example, if we additionally include the following event in the view:

4

local view BReaderView grammar BReader.g

specifies java.util.BufferedReader {

BufferedReader(Reader in) open,

BufferedReader(Reader in, int sz) open,

call void close() close,

call int read() read,

call int read(char[] cbuf, int off, int len) read

}

Fig. 2. Communication view of a BufferedReader

call void C.m() out

then all call-messages to the method m of class C sent by a BufferedReader

are selected and named out. In general, incoming messages received by an ob-
ject correspond to calls of provided methods and returns of required methods.
Outgoing messages sent by an object correspond to calls of required methods
and returns of provided methods. Incoming call-messages of local histories never
involve static methods, as such methods do not have a callee.

Local communication views, such as the one in Figure 2, select messages
sent and received by a single object of a particular class, indicated by ‘specifies
java.util.BufferedReader’. In contrast, global communication views select mes-
sages sent and received by any object during the execution of the Java program.
This is useful to specify global properties of a program. In addition to instance
methods, calls and returns of static methods can also be selected in global views.

In contrast to interfaces of the programming language, communication views
can contain constructors, required methods, static methods (in global views)
and can distinguish methods based on return type or method modifiers such
as ‘static’, or ‘public’. The following features are supported: constructors, in-
heritance, dynamic binding, overloading, static methods, access modifiers. In
addition to these features, in Section 4 we add support for multi-threading. We
associate a grammar to each view. The grammar keyword, followed by a file
name indicates the file containing the grammar associated to the view (i.e. Fig-
ure 2 refers to the grammar in the file BReader.g). The next section discusses
grammars in detail.

Grammars The context-free grammar underlying the attribute grammar in Fig-
ure 3 generates the valid histories for BufferedReader, describing the prefix
closure of sequences of the terminals ‘open’, ‘read’ and ‘close’ as given by the
regular expression (open read* close). In general, the event names form the ter-
minal symbols of the grammar, whereas the non-terminal symbols specify the
structure of valid sequences of events. In our approach, a communication history
is valid if and only if it and all its prefixes are generated by the grammar.

We extend the grammar with attributes for specification of the data-flow of
the valid histories. Each terminal symbol has built-in attributes named caller,

5

callee and the parameter names for respectively the object identities of the
caller, callee and actual parameters. Terminals corresponding to method returns
additionally have an attribute result containing the return value. Non-terminals
have user-defined attributes to define data properties of sequences of termi-
nals. We extend the attribute grammar with assertions to specify properties of
attributes. For example, in the attribute grammar in Figure 3 a user-defined
synthesized attribute ‘c’ for the non-terminal ‘C’ is defined to store the iden-
tity of the object which closed the BufferedReader (and is null if the reader
was not closed yet). Synthesized attributes define the attribute values of the
non-terminals on the left-hand side of each grammar production, thus the ‘c’
attribute is not set in the productions of the start symbol ‘S’.

The assertion allows only those histories in which the object that opened
(created) the reader is also the object that closed it. Throughout the paper the
start symbol in any grammar is named ‘S’. For clarity, attribute definitions are
written between parentheses ‘(’ and ‘)’ whereas assertions over these attributes
are surrounded by braces ‘{’ and ‘}’. We use subscripts to distinguish different
occurrences of the same non-terminal, i.e., in the grammar below C and C1 are
different occurrences of the non-terminal C.

S ::= open R {assert (open.caller == null || open.caller == R.c ||
R.c == null);}

| ε
R ::= read R1 (R.c = R1.c;)

| C (R.c = C.c;)
C ::= close C1 (C.c = C1.caller;)

| close (C.c = close.caller;)
| ε (C.c = null;)

Fig. 3. Attribute Grammar which specifies that ‘read’ may only be called in between
‘open’ and ‘close’, and the reader may only be closed by the object which opened it.

Assertions can be placed at any position in a production rule and are evalu-
ated at the position they were written. Note that assertions appearing directly
before a terminal can be seen as a precondition of the terminal, whereas post-
conditions are placed directly after the terminal. This is in fact a generalization
of traditional pre- and post-conditions for methods as used in design-by-contract:
a single terminal ‘call-m’ can appear in multiple productions, each of which is fol-
lowed by a different assertion. Hence different preconditions (or post-conditions)
can be used for the same method, depending on the context (grammar produc-
tion) in which the event corresponding to the method call/return appears.

Figure 4 shows a parse tree of the sequence of terminals ‘open read read
close’, where the caller of open and close is the same object o1, but the second
read operation is triggered by another object o2. Terminals - corresponding read,
open or close events - are shown as rectangles in the parse tree with a built-in
attribute ‘caller’. A circle denotes a non-terminal, with a user-defined attribute
‘c’ for the non-terminals C and R to store the object that last closed it.

6

Fig. 4. Parse tree of ‘open read read close’

3 Deadlock Detection for Concurrent Objects

In this section we discuss the run-time detection of deadlock in systems of con-
current objects as described in [3]. Such systems consist of objects which commu-
nicate via asynchronous method calls and so-called futures which store the return
values. An asynchronous method call v = e!m(ē) (where ē denotes the sequence
of actual parameters of the call of method m of the called object denoted by e,
and where v denotes a future), generates a corresponding closure which is stored
in the process queue of the callee. A closure consists of a (sequential) statement,
e.g., the body of a method, and a local environment specifying the values of the
local variables (including the formal parameters). The future variable v stores a
reference to the return value (as such it can be passed around). The operation
v.get blocks the current active closure till the return value has been generated.
On the other hand, the operation v.await suspends the current active closure
by storing it in the process queue till the return value has been generated. This
allows so-called cooperative scheduling of another closure for execution. All ob-
jects are executing their active closures concurrently and fully encapsulate their
local data. See Fig. 5 for the formal syntax with the following non-terminals: T
for types, P for programs, L for classes, M for methods, sr for statements which
return a value, s for any other statement, v for fields and local variables, f for
fields, and, finally, x for local variables. By X, where X denotes a sequence of
symbols, we denote a sequence of X’s. Types include class names C and types
↑ T of a future reference to a return value of type T . A program P consists of a
sequence of class definitions L which supports class inheritance. A class defini-
tion consists of a sequence of method definitions M . A method is defined by its

7

T ::= C | !T | . . . P ::= L {Tx; sr}
L ::= class C extends C {Tf ;M} M ::= T m (Tx){Tx; sr}
sr ::= s; return e s ::= v = e |

v = new C() | v = v!m(ē) | v = v.get
v.await | . . .

v ::= f | x

Fig. 5. The language syntax. Variables v are fields (f) or local variables (x), and C is
a class name.

return type, the types of the formal parameters, and its body which terminates
in a return statement. We abstract from the syntax of the side-effect free expres-
sions e. The main statements of interest are side-effect free assignments v = e to
either a field f or a local variable x, object creation v = new C(), asynchronous
method calls v = v!m(ē) and statements v = v.get and v.await which involve
polling a future, as described informally above. We assume distinguished local
variables this and dest which denote the executing object and the future dest

uniquely identifying the corresponding method invocation.

Figure 6 presents a publisher-subscriber pattern which is taken from [3] and
(quoting [3]) “wherein an event observed by a sensor is published to objects
subscribed to a service. To avoid bottlenecks when publishing an event, the
service delegates to a chain of proxy objects, where each proxy object informs
both the next proxy and up to a specified limit of subscribing clients. We assume
these classes exist: Sensor with method detectEvent, Client with method signal,
and a list parametric in type T, with method add.”

The operational semantics is defined by a transition relation between global
configurations (γ, δ, θ), where γ is the set of active closures, δ the set of suspended
closures, and θ represents the (global) heap. A global heap assigns a local state
to both the existing objects and futures. The local state θ(o) of an object o is
an assignment of values to its fields, whereas the local state θ(r) of a future
(reference) r is simply a value of the corresponding type or the value ⊥ which
stands for ”undefined” (or ”uninitialized”). A closure c is a pair (τ, sr), where τ
is an assignment of values to the local variables.

Fig. 7 gives the main operational rules. Here θτ (e) denotes the value of the
(side-effect free) expression e in the global heap θ and local environment τ ,
e.g., θτ (x) = τ(this), for every local variable x (including this) , and θτ (f) =
θ(τ(this))(f), for every field f . For any sequence of expressions ē, we denote by
θτ (ē) the corresponding sequence of values. Further, by θ[o.f 7→ d] we denote the
update of θ resulting from assigning the value d to the field f of object o, e,g.,
θ[o.f 7→ d](o)(f) = d. Similarly, by θ[r 7→ d] we denote the update of θ resulting
from assigning the return value d to the future reference r. The above notation is
extended in the obvious manner to simultaneous updates. The rule call describes
an asynchronous method call. It generates a fresh future reference r and a closure
cl(C,m, o, r, θτ (e)) which consists the body of the method (as defined in class

8

class Service {

Sensor sensor; Proxy proxy;

Service(int val) {

sensor = new Sensor; proxy = new Proxy(val);

}

void subscribe(Client cl) { proxy!add(cl) }

void process() {

while (true) {

!Event fut = sensor!detectEvent();

proxy!publish(fut);

await fut?;}

}

}

class Proxy {

List<Clients> myClients; Proxy nextProxy;

Event ev; int limit;

Proxy(int k) {

limit = k; myClients = new List(); nextProxy = null;

}

void add(Client cl) {

if myClients.length < limit { myClients.add(cl); }

else { if nextProxy == null nextProxy = new Proxy(limit);

nextProxy.add(cl); }

}

void publish(!Event fut) {

await fut?;

if nextProxy != null { nextProxy!publish(fut); }

ev = fut.get();

for Client client : myClients { client!signal(ev); }

}

}

Fig. 6. Publisher-Subscriber Pattern

9

(Call)

r 6∈ dom(θ) θτ (v) = o c = cl(C,m, o, r, θτ (e))

(γ ∪ {(τ, u = v!m(ē); sr)}, δ, θ) → (γ ∪ {(τ, u = r; sr)}, δ ∪ {c}, θ[r 7→⊥])
(await1)

θτ (v) 6=⊥
(γ ∪ {(τ, v.await; sr)}, δ, θ) → (γ ∪ {(τ, sr)}, δ, θ)

(await2)

θτ (v) =⊥
(γ ∪ {(τ, v.await; sr)}, δ ∪ {c}, θ) → (γ, δ ∪ {(τ, v.await; sr)}, θ)

(sched)

c = (τ, sr) ∀(τ ′, sr′) ∈ γ : τ ′(this) 6= τ(this)

(γ, δ ∪ {c}, θ) → (γ ∪ {c}, δ, θ)
return

(γ ∪ {(τ, return e)}, δ, θ) → (γ, δ, θ[τ(dest) 7→ θτ (e)])

Fig. 7. The operational semantics.

C) and a local environment τ ′ such that τ ′(this) = o, τ(dest) = r, and τ ′(x̄) =
θτ (e), where x̄ are the formal parameters. This closure is added to the set of
suspended closures and the value of r is set to ⊥. The rule await1 describes the
continuation of the flow of control in case the polled future stores a returned
value, whereas rule await2 describes suspending the active closure, in case the
polled future is still undefined. The rule sched allows to schedule a suspended
closure in case the object is idle, i.e., it has no active closure. This rule abstracts
from the particular scheduling policy used and possible optimizations avoiding
busy waiting, i.e., scheduling blocked await/get statements. The last rule return

describes the effect of the return statement in terms of the initialization of the
corresponding future dest.

Polling futures gives rise to a dependency relation between method invoca-
tions, e.g., a method invocation executing an await statement v.await depends
on the execution of the method invocation uniquely identified by the future v to
return a value. A cycle in this dependency relation between method invocations
implies that we have a deadlock in the set of involved method invocations.

Definition 1 (Deadlock). Deadlock arises in a global configuration (γ, δ, θ)
when there exist closures ci = (τi, si; sri) ∈ γ∪δ, where si either denotes an await
statement vi.await or a get operation v = vi.get, such that τi(vi) = τi⊕1(dest),
i = 1, . . . , n (⊕ here denotes addition modulo n).

In order to detect deadlock, the built-in attributes of events generated by
asynchronous method calls denote, besides the caller, callee and the parameters,
the generated future uniquely identifying the corresponding method invocation,
which is denoted by the attribute name dest. The built-in attributes of events
generated by return statements consist of the executing object (denoted by the
attribute name this), the value returned (denoted by the name val) and the
corresponding future (denoted by dest). The built-in attributes of events gen-
erated by await statements and assignments involving the get operation consist

10

of the polled future (denoted by fut) and the future uniquely identifying the ex-
ecuting (“polling”) method invocation (denoted by dest). In a (asynchronous)
communication view we then can specify which synchronization events, i.e., ,
await/get operations on futures which refer to the return value of a certain
method, we want to observe by means of the specifications await C.m (and
get C.m). By await any (get any) we refer to any await (get) operation.

Surprisingly, we can detect deadlock by only observing await and get op-
erations, by means of the built-in attributes fut and dest, which denote the
future which is polled and the future uniquely identifying the polling method in-
vocation, respectively. This results in the following (global) communication view
which maps every await/get operation on the same grammar token poll.

global view DeadlockMyProgram grammar deadlock.g {

await any poll

get any poll

}

Fig. 8. Global asynchronous communication view

The following grammar then generates, for each sequence of poll tokens, a
corresponding graph of futures and checks absence of cycles.

S ::= poll { g.addEdge(poll.dest,poll.fut); }
| ε {assert g.noCycle();}

Fig. 9. Attribute Grammar for Deadlock Detection

At run-time a given program instrumented with history updates which con-
sist of adding a poll token just before every execution of an await/get operation
then can be checked for absence of deadlock by simply parsing the history ac-
cording to the above attribute grammar. Clearly, a deadlock will generate an
assertion failure. It is less obvious that an assertion failure indeed corresponds
with a deadlock. Note for example that edges are not removed when a future is
initialized. However, because futures are assigned to only once we can argue as
follows. Let (γ, δ, θ) result from the execution of an active closure which gener-
ates an assertion failure caused by the addition of an edge (r, r′) in the graph
denoted by g. Let r′ = r0, . . . , rn−1 = r be the nodes in g such that between ri
and ri⊕1 (⊕ here denotes addition modulo n) there exists an edge. We have to
show that for i = 0, . . . , n− 1 there exist closures ci = (τi, sri) ∈ γ ∪ δ such that
τi(dest) = ri and the initial statement of sri involves an await or get operation
on the future ri⊕1. We show by induction that there exists such a closure ci. For
i = n − 1 let cn−1 = (τ, sr) be the closure in γ such that τ(dest) = r and the

11

initial statement of sr involves an await or get operation on the future r′. Next
let 0 < i < n−1 and ci = (τi, sri) be the closure in γ ∪ δ such that τi(dest) = ri
and the initial statement of sri involves an await or get operation on the future
ri⊕1. Let ci−1 = (τi−1, sri−1) be the closure that resulted from the generation of
the edge (ri−1, ri), i.e., τi−1(dest) = ri−1. Since τi(dest) = ri and ci ∈ γ ∪ δ it
follows from the operational semantics that θ(ri) 6=⊥. Therefore ci−1 ∈ γ∪δ and
the initial statement of sri−1 involves an await or get operation on the future
ri.

4 Deadlock Detection for Multi-threaded Java Programs

Deadlocks in multi-threaded Java programs can arise from Lock objects, or from
synchronized methods and statements. Deadlocks caused through using Lock

objects can be detected in a straightforward manner by tracking calls to the
lock() and unlock() methods, and do not require an extension to the frame-
work introduced in the previous section. Thus we focus on deadlocks arising
from synchronized methods. The program in Figure 10 will be used as a run-
ning example. Depending on the scheduling, it can contain a deadlock: if the
first thread starts executing alphonse.bow(gaston) but does not execute the
call to bowBack before the second thread executes gaston.bow(alphonse), the
program deadlocks.

We specify different aspects of a multi-threaded program with the help of
the following three perspectives:
Thread view : here we specify the behavior of each thread in isolation.
Object view : here we specify the behavior of objects individually.
Global view : here we specify global properties of a program.
All of the above views can be supported by a single formalism: attribute gram-
mars extended with assertions, but the underlying history on which the gram-
mar is evaluated differs between the various perspectives. The next subsection
discusses multi-threaded events, and the required extensions to communication
views to support the perspectives.

All grammars in this section are given in ANTLR [12] syntax: the input for-
mat of the underlying tool implementation (all grammars have been fully imple-
mented and were used for run-time checking). The syntax of ANTLR grammars
is close to Java: comments start with ‘//’, and the actions (attribute definitions
or assertions) in the grammar are ordinary Java statements, surrounded by the
braces ‘’ and ‘’. The left-hand side and right-hand side of a production are sep-
arated by a colon. ANTLR supports Extended BNF (EBNF): operators from
regular expressions can be used in productions, such as the ‘*’ (zero or more
repetitions) and ‘?’ (an optional symbol). Figure 12 shows an example grammar
(the figure is discussed in more detailed in Section 4.2).

4.1 Multi-threaded Events

In a multi-threaded environment, events occur in different threads. Thus the first
new ingredient compared to Section 2 is to keep track of the thread identity for

12

1 package nl.cwi.saga.deadlock;

2

3 import java.io.*;

4

5 public class Deadlock {

6 public static class Friend {

7 private final String name;

8 public Friend(String name) {

9 this.name = name;

10 }

11 public String getName() {

12 return this.name;

13 }

14 public synchronized void bow(Friend bower) {

15 System.out.format("%s: %s"

16 + " has bowed to me!%n",

17 this.name, bower.getName());

18 bower.bowBack(this);

19 }

20 public synchronized void bowBack(Friend bower) {

21 System.out.format("%s: %s"

22 + " has bowed back to me!%n",

23 this.name, bower.getName());

24 }

25 }

26

27 public static void main(String[] args) {

28 final Friend alphonse = new Friend("Alphonse");

29 final Friend gaston = new Friend("Gaston");

30 new Thread(new Runnable() {

31 public void run() { alphonse.bow(gaston); }

32 }).start();

33 new Thread(new Runnable() {

34 public void run() { gaston.bow(alphonse); }

35 }).start();

36 }

37 }

Fig. 10. Example program with a potential deadlock. Source: https://docs.oracle.
com/javase/tutorial/essential/concurrency/deadlock.html

13

each event. This is achieved with a new built-in attribute Long threadId. This
attribute will be used in the deadlock detector to determine the events that wait
on the completion of other events in a different thread.

In multi-threaded programs, due to scheduling and locking, there can be a
delay between when a method is called, and when its body starts executing.
For synchronized methods, a method call indicates that a lock was requested,
whereas the start of the execution of a method body indicates that the lock was
acquired successfully. To distinguish these two events, we introduce an ‘exec’
event, that indicates the start of execution of a method body (and thus implies
acquisition of the lock). Returns of synchronized methods indicate the release of
the lock.

4.2 Multi-threaded Perspectives

Thread View In the thread perspective, we specify the behavior of each thread
in isolation. Each thread has its own dedicated history, and the grammar gen-
erates the set of valid histories of the thread. Semantically, such thread-local
histories can be obtained from the global history by projection on the value of
the threadId attribute (which , as mentioned above, stores the identity of the
thread in which the event occurred).

We illustrate the thread view using the running example (Figure 10). Fig-
ure 11 presents the corresponding communication view, introducing the grammar
terminals “BOW” and “BOWBACK” for the corresponding events. Only events
from implementations of the Fork interface with synchronized versions of get
and release are selected.

thread view BowHistory grammar Bow.g {

call public synchronized void

Deadlock.Friend.bow(Friend bower) BOW,

call public synchronized void

Deadlock.Friend.bowBack(Friend bower) BOWBACK

}

Fig. 11. Communication view of bow and bowBack

We will specify that each person bows back to the same person that bowed to
them. This intuitive property is formalized by the ANTLR grammar in Figure 12.
It specifies that each thread must first call bow, then bowBack, and (using an
assertion) that the parameter of bow denotes the same object as the callee of
bowBack.

Object View In the object view of a Java program, we specify the interactions
of a single object with a communication view and corresponding grammar. The

14

grammar Bow;

///////////// HEADERS

//////////////////////// start ::= s EOF ///////////////////////////////

start : s EOF;

//////////////////////// s ::= BOW BOWBACK? | /\ ///////////////////////

s : BOW

(BOWBACK {assert $BOW.bower() == $BOWBACK.callee();})?

| ;

Fig. 12. ANTLR attribute grammar specifying bowing behavior

grammar generates the set of all valid traces of events that the object engages in.
In a multi-threaded setting, several threads can be active (executing) in a single
object, thus the object view is particularly useful for specifying (constrain) the
order between events from different threads active in the same object. Intuitively,
the local object histories can be obtained from the global history by projection
on the values of the built-in attributes caller (for calls made by the object)
and callee (for calls to the object).

For the bow-bowBack example, the object view is uninteresting: all interleav-
ings/orderings between bows and bowBacks from different threads are allowed.
A useful application of the object view is illustrated by the communication view
in Figure 2 and grammar in Figure 3 in Section 2.

Global View The global view treats the Java program as a single entity that we
wish to specify. The grammar generates the set of all valid global traces of the
entire program. The user can specify the desired interleavings between events
from different threads.

We use the global view for our deadlock detector. A thread blocks if it calls a
synchronized method on an object that is already locked by another thread. The
general idea is to build a directed “wait-for” graph to capture such dependencies
between threads. A deadlock corresponds to a cycle in the wait-for graph.

In more detail, the nodes of the graph are thread id’s, and there is an edge
from t1 to t2 if t1 calls a method on some object that is locked by t2.

The view depicted in Figure 13 selects the events relevant for deadlock de-
tection. Note that we do not need to distinguish whether a certain event arose
from bow or bowBack: the only information needed to identify deadlocks is which
thread has requested/acquired/released the lock for which objects. Thus the calls
to bow and bowBack are identified (mapped to the same terminal). The terminal
“REQ” signifies requesting a lock, “ACQ” events are generated if a lock was
acquired, and “REL” denotes the release of a lock.

Figure 14 shows an ANTLR attribute grammar that asserts no deadlock has
occurred. To that end, a wait-for graph is built in the grammar productions

15

global view DeadlockHistory grammar Deadlock.g {

call public synchronized void

Deadlock.Friend.bow (Deadlock.Friend bower) REQ,

call public synchronized void

Deadlock.Friend.bowBack(Deadlock.Friend bower) REQ,

exec public synchronized void

Deadlock.Friend.bow (Deadlock.Friend bower) ACQ,

exec public synchronized void

Deadlock.Friend.bowBack(Deadlock.Friend bower) ACQ,

return public synchronized void

Deadlock.Friend.bow (Deadlock.Friend bower) REL,

return public synchronized void

Deadlock.Friend.bowBack(Deadlock.Friend bower) REL

}

Fig. 13. Global communication view

with the help of two inherited attributes (syntactically in the ANTLR grammar,
those are passed as parameters to the “s” non-terminal):

– An attribute reqLock of type Map<Long, Object> that maps a thread id (a
Long) to the object for which it requested, but has not yet acquired the lock.

– An attribute hasLock of type Map<Long, Map<Object, Integer> >. Given
a thread id and an object, this map returns the number of times the lock on
that object has been acquired but not released by the thread5.

The attributes are updated in the grammar productions. In particular, the two
maps are initialized to empty by the start production (line 6–7). Further:

– The production with the “REQ” terminal (line 12–16) signifies the request
of a lock on the callee, correspondingly, in the grammar production we insert
the thread identity and callee identity into the reqLock map.

– The production with terminal “ACQ” (line 18–31) signifies that the thread
has successfully acquired the lock on the callee. Since the lock request for the
callee is not pending anymore, the thread id is removed from the reqLock

map. Additionally we increase the number of locks (due to re-entrance, a
lock may have been acquired for that object already by the thread) that
that thread has on the callee in the hasLock map.

– The “REL” terminal (line 33-42) signifies the release of a lock. In the gram-
mar production we therefore decrease the number of locks that the thread
has on the object. If the count becomes 0, the entry is removed.

– The last production (the empty production, line 44-60) builds the wait-for
graph: an edge is drawn from thread t1 to thread t2 if t1 requests a lock

5 Due to re-entrance, locks in Java can be acquired more than once by the same thread.

16

1 grammar Deadlock;

2

3 ///////////// HEADERS

4

5 //////////////////////// start ::= s EOF////////////////////////////////

6 start : s[new HashMap<Long, Object>(),

7 new HashMap<Long, Map<Object, Integer> >()]

8 EOF;

9

10 //////////////////////// s ::= (REQ | ACQ | REL)* //////////////////////

11 s[Map<Long, Object> reqLock, Map<Long, Map<Object, Integer> > hasLock] :

12 REQ

13 {

14 reqLock.put($REQ.threadId(), $REQ.callee());

15 }

16 s[reqLock,hasLock]

17

18 | ACQ

19 {

20 reqLock.remove($ACQ.threadId());

21 Map<Object, Integer> m = hasLock.get($ACQ.threadId());

22 int newCnt = 1;

23 if(m == null) {

24 m = new HashMap<Object, Integer>();

25 hasLock.put($ACQ.threadId(), m);

26 } else if(m.get($ACQ.callee()) != null)

27 newCnt = m.get($ACQ.callee())+1;

28 m.put($ACQ.callee(), newCnt);

29 }

30

31 s[reqLock,hasLock]

32

33 | REL

34 {

35 Map<Object, Integer> m = hasLock.get($REL.threadId());

36 Integer cnt = m.get($REL.callee());

37 if(cnt == 1)

38 m.remove($REL.callee());

39 else

40 m.put($REL.callee(), cnt-1);

41 }

42 s[reqLock,hasLock]

43

44 |

45 {

46 DirectedGraph<Long, DefaultEdge> g =

47 new DefaultDirectedGraph<Long, DefaultEdge>(DefaultEdge.class);

48 for(Long rl : reqLock.keySet()) {

49 for(Long hl : hasLock.keySet()) {

50 if(rl != hl && hasLock.get(hl).containsKey(reqLock.get(rl))) {

51 g.addVertex(rl);

52 g.addVertex(hl);

53 g.addEdge(rl, hl);

54 }

55 }

56 }

57

58 CycleDetector<Long, DefaultEdge> d =

59 new CycleDetector<Long, DefaultEdge>(g);

60 assert !d.detectCycles();

61 };

Fig. 14. ANTLR attribute grammar specifying deadlocks.

17

owned by t2. If t1 = t2 then t1 has requested a lock that it already owns.
In that case the lock can be acquired (no deadlock), thus we insert the edge
only if t1 6= t2. Since a cycle now corresponds to a deadlock, the assertion
(line 60) is true if and only if there is no deadlock.

Fig. 15. Sequence diagram of a deadlocking executing of program Figure 10.

As observed previously, there are schedulings for which the program in Fig-
ure 10 deadlocks. We executed the program, checking for deadlocks using the
given attribute grammar and encountered a deadlocking scenario. Our run-time
checker prints certain information to aid debugging and isolate errors when an
assertion fails or a parse error occurs: a stack trace that indicates the line of
code where the error occurred, and a textual representation of the history that
violated the specification. For example, the stack trace in Figure 16 shows that
execution failed at line 18 in the file Deadlock.java (Figure 10).

That textual representation of the history can be visualised by the Quick
Sequence Diagram Editor sdEdit. Figure 15 shows a visualization by sdEdit of
a deadlocking trace. sdEdit gives each thread a color: in our case, gray(ish) and
yellow. After the exec_bow-events, the gray thread owns the lock on o1 and the
yellow thread has the lock on o2. With the two call_bowBack-events, the gray
thread requests the lock for o2 and the yellow thread requests the lock for o1,
thereby causing a deadlock.

5 Tool Architecture

For practical purposes, an important design goal of our run-time checker SAGA
was to allow the use of up-to-date versions of the Java language. In particular,

18

1 java.lang.AssertionError

2 at DeadlockParser.s(DeadlockParser.java:229)

3 at DeadlockParser.s(DeadlockParser.java:146)

4 at DeadlockParser.s(DeadlockParser.java:146)

5 at DeadlockParser.s(DeadlockParser.java:176)

6 at DeadlockParser.s(DeadlockParser.java:176)

7 at DeadlockParser.s(DeadlockParser.java:146)

8 at DeadlockParser.s(DeadlockParser.java:146)

9 at DeadlockParser.start(DeadlockParser.java:68)

10 at DeadlockHistoryAspect$DeadlockHistory.parse

11 (DeadlockHistoryAspect.java:502)

12 at DeadlockHistoryAspect$DeadlockHistory.update

13 (DeadlockHistoryAspect.java:603)

14 at DeadlockHistoryAspect.ajc$before$DeadlockHistoryAspect5e8e2469d

15 (DeadlockHistoryAspect.java:242)

16 at Deadlock$Friend.bow(Deadlock.java:18)

17 at Deadlock$2.run(Deadlock.java:36)

18 at java.lang.Thread.run(Thread.java:745)

Fig. 16. Assertion failure in attribute grammar.

updates to the compilers should not break SAGA (in contrast, previous run-
time checkers for JML specifications used a proprietary Java compiler which
was not kept in sync with the Java language). The input of SAGA consists of a
specification in the form of an attribute grammar with assertions, accompanied
by a communication view. The output of SAGA is an AspectJ program for the
generation of the events specified by the communication views (see [5]).

Choosing AspectJ as the output language of SAGA, allows the use of modern
Java language versions, including the latest Java 8. AspectJ is tailored to the
interception of events and as such is a most natural target language. An alterna-
tive approach would to instrument the program with a self-developed component
of SAGA. But this is difficult because in general the instrumentation cannot be
restricted locally to the methods that must be monitored. For example, since
the identity of the caller is a built-in attribute of the grammar terminal, we
cannot get away with instrumenting only the monitored methods, as one does
not have access to the low-level stack in Java. Thus the identity of the callee is
not accessible. This means that all call-sites should be instrumented.

However, the use of AspectJ raises certain challenges: we are now bound by
limitations of Java. For a debugging tool such as a run-time checker, it would
be convenient to have some control or access to various elements from the un-
derlying execution platform, but this is often prohibited or even impossible in
Java. For example: in a multi-threaded environment, during the evaluation of
the specifications (i.e. the attribute grammar), another thread can potentially
modify the heap. This would mean that different parts of the specification are
evaluated in different states. Consider for example the assertion assert x==x;,

19

where x is a field of an object. If after retrieving the value of the first occurrence
of x another thread modifies x then the assertion may evaluate to false! This
problem can be prevented if the run-time checker had control over the execution
platform: it could then stall the other threads while a specification is evaluated.
In [4] we discuss how we solved this without having control over the execu-
tion platform, and without stalling other threads (since this can cause a severe
performance loss). A second implication arising from using AspectJ as target
language is that to print an accurate sequence diagram, we must distinguish
objects with different identities in the diagram. In Java, one can test objects
for equality (using “==”), but in general there is no string that identifies each
object uniquely (for example, the memory location for the object would qualify,
but it is not accessible in Java). Thus SAGA generates a unique ID itself for
each object appearing in the history.

Fig. 17. SAGA Tool Architecture

Figure 17 shows an overview of the resulting tool architecture. It consists
of an integration of four different components: a state-based assertion checker,
a parser generator, a monitor to intercept events and a general tool for meta-
programming. This architecture is further discussed in [4].

6 Conclusion and Future Work

We discussed a method for the run-time detection of deadlock in both multi-
threaded Java programs and systems of concurrent objects. The new version of

20

SAGA which implements this method for multi-threaded Java programs can be
obtained from https://github.com/cwi-swat/saga. Although we illustrated
our framework for detecting deadlock for multi-threaded Java programs which
use synchronized methods, general locks as provided in the package
java.util.concurrent.locks can be handled just as easily by tracking the
methods lock, tryLock and unlock in the communication view. What remains
to be done is extending SAGA to deadlock detection of concurrent objects as
described in this paper. In general, future work will focus on further improving
and extending the method by applying it to (industrial) case studies.

Acknowledgement

We thank the anonymous reviewers for their most constructive and helpful com-
ments.

References

1. R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-Buchbinder, S. D. Stoller,
S. Ur, and L. Wang. Detection of deadlock potentials in multithreaded programs.
IBM Journal of Research and Development, 54(5):3, 2010.

2. F. S. de Boer, M. Bravetti, I. Grabe, M. D. Lee, M. Steffen, and G. Zavattaro.
A petri net based analysis of deadlocks for active objects and futures. In For-
mal Aspects of Component Software, 9th International Symposium, FACS 2012,
Mountain View, CA, USA, September 12-14, 2012. Revised Selected Papers, pages
110–127, 2012.

3. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future.
In Programming Languages and Systems, 16th European Symposium on Program-
ming, ESOP 2007, Held as Part of the Joint European Conferences on Theory and
Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,
Proceedings, pages 316–330, 2007.

4. F. S. de Boer and S. de Gouw. Run-time checking multi-threaded java programs.
In 42nd International Conference on Current Trends in Theory and Practice of
Computer Science, SOFSEM. Lecture Notes in Computer Science, 2016.

5. F. S. de Boer, S. de Gouw, E. B. Johnsen, A. Kohn, and P. Y. H. Wong. Run-time
Assertion Checking of Data- and Protocol-oriented Properties of Java Programs:
An Industrial Case Study. T. Aspect-Oriented Software Development, 11:1–26,
2014.

6. F. S. de Boer and I. Grabe. Automated deadlock detection in synchronized reen-
trant multithreaded call-graphs. In SOFSEM 2010: Theory and Practice of Com-
puter Science, 36th Conference on Current Trends in Theory and Practice of Com-
puter Science, Spindleruv Mlýn, Czech Republic, January 23-29, 2010. Proceedings,
pages 200–211, 2010.

7. T. M. Gawlitza, P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Join-
lock-sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In Verification, Model Checking, and Abstract Interpretation -
12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25,
2011. Proceedings, pages 199–213, 2011.

21

8. E. Giachino, C. A. Grazia, C. Laneve, M. Lienhardt, and P. Y. H. Wong. Deadlock
analysis of concurrent objects: Theory and practice. In Integrated Formal Meth-
ods, 10th International Conference, IFM 2013, Turku, Finland, June 10-14, 2013.
Proceedings, pages 394–411, 2013.

9. E. Giachino and C. Laneve. Analysis of deadlocks in object groups. In Formal
Techniques for Distributed Systems - Joint 13th IFIP WG 6.1 International Con-
ference, FMOODS 2011, and 31st IFIP WG 6.1 International Conference, FORTE
2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings, pages 168–182, 2011.

10. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and
M. M. Bonsangue, editors, Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010), volume 6957 of LNCS, pages 142–164.
Springer-Verlag, 2011.

11. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

12. T. Parr. The Definitive ANTLR Reference. Pragmatic Bookshelf, 2007.

Appendix D

Declarative Elasticity in ABS [7]

68

Declarative Elasticity in ABS?

Stijn de Gouw1, Jacopo Mauro3, Behrooz Nobakht2, and Gianluigi Zavattaro4

1 Fredhopper, Netherlands
2 Leiden University, Netherlands

3 University of Oslo, Norway
4 University of Bologna/INRIA, Italy

Abstract. Traditional development methodologies that separate soft-
ware design from application deployment have been replaced by ap-
proaches such as continuous delivery or DevOps, according to which
deployment issues should be taken into account already at the early
stages of development. This calls for the definition of new modeling and
specification languages. In this paper we show how deployment can be
added as a first-class citizen in the object-oriented modeling language
ABS. We follow a declarative approach: programmers specify deploy-
ment constraints and a solver synthesizes ABS classes exposing methods
like deploy (resp. undeploy) that executes (resp. cancels) configuration
actions changing the current deployment towards a new one satisfying
the programmer’s desiderata. Differently from previous works, this novel
approach allows for the specification of incremental modifications, thus
supporting the declarative modeling of elastic applications.

1 Introduction

Software applications deployed and executed on cloud computing infrastructures
should flexibly adapt by dynamically acquiring or releasing computing resources.
This is necessary to properly deliver to the final users the expected services at
the expected level of quality, maintaining an optimized usage of the computing
resources. For this reason, modern software systems call for novel engineering
approaches that anticipate the possibility to reason about deployment already
at the early stages of development.

Modeling languages like TOSCA [21], CloudML [16], and CloudMF [13] have
been proposed to specify the deployment of software artifacts, but they are
mainly intended to express deployment of already developed software. An inte-
gration of deployment in software modeling is still far from being obtained in
the current practices. To cover this gap, in this paper we address the problem of
extending the ABS (Abstract Behavioural Specification) language [2] with lin-
guistic constructs and mechanisms to properly specify deployment. Following [9]

? Supported by the EU projects FP7-610582 Envisage: Engineering Vir-
tualized Services (http://www.envisage-project.eu) and H2020-644298 Hy-
Var: Scalable Hybrid Variability for Distributed, Evolving Software Systems
(http://www.hyvar-project.eu).

our approach is declarative: the programmer specifies deployment constraints
and a solver computes actual deployments satisfying such constraints. In pre-
vious work [10] we presented an external engine able to synthesize ABS code
specifying the initial static deployment; in this paper we fully integrate this
approach in the ABS language allowing for the declarative specification of the
incremental upscale/downscale of the modeled application depending, e.g., on
the monitored workload or the current level of resource usage.

ABS is an object-oriented modeling language with a formally defined and
executable semantics. It includes a rich tool-chain supporting different kinds of
analysis (like, e.g., logic-based modular verification [11], deadlock detection [15],
and cost analysis [3]). Executable code can be automatically obtained from ABS
specifications by means of code generation. ABS has been mainly used to model
systems based on asynchronously communicating concurrent objects, distributed
over Deployment Components corresponding to containers offering to objects
the resources they need to properly run. For our purposes, we adopted ABS
because it allows the modeling of computing resources and it has a real-time
semantics reflecting the way in which objects consume resources. This makes
ABS particularly suited for modeling and reasoning about deployment.

Our initial proposal for the declarative modeling of deployment into ABS
[10] was based on three main pillars: (i) classes are enriched with annotations
that indicate functional dependencies of objects of those classes as well as the
resources they require, (ii) a separate high-level language for the declarative
specification of the deployment, (iii) an engine that, based on the annotations
and the programmer’s requirements, computes a fully specified deployment that
minimizes the total cost of the system. The computed deployment is expressed
in ABS and can be manually included in a main block.

The work in [10] had two main limitations: (i) there was no way to express
incremental deployment decisions like, e.g., the need to upscale or downscale
the modeled system at run-time and (ii) there was no real integration of the
code synthesized by the engine in the corresponding ABS specification. In this
paper we address these limitations by promoting the notion of deployment as a
first-class citizen of the language. During a pre-processing phase, the new tool
SmartDepl generates classes exposing the methods deploy and undeploy to up-
scale and downscale the system. The deployment requirements can now also reuse
already deployed objects just specifying which existing objects could be used,
and how they should be connected with new objects to be freshly deployed. This
has been the fundamental step forward that allowed us to support incremental
modification of the current deployment. Moreover, other relevant contributions
of this paper are (i) a more natural high-level language for the specification of
requirements that now supports universal and existential quantifiers, and (ii)
the usage of the delta modules and the variability modeling features of the ABS
framework [7] to automatically and safely inject the deployment instructions into
the existing ABS code.

Our ABS extension and the realization of the corresponding SmartDepl tool
have been driven by Fredhopper Cloud Services, an industrial case-study of the

2

European FP7 Envisage project. The Fredhopper Cloud Services offer search and
targeting facilities on a large product database to e-Commerce companies. De-
pending on the specific profile of an e-Commerce company Fredhopper has to de-
cide the most appropriate customized deployment of the service. Currently, such
decisions are taken manually by an operation team which decides customized,
hopefully optimal, service configurations taking into account the tension among
several aspects like the level of replications of critical parts of the service to
ensure high availability. The operators manually perform the operations to scale
up or down the system and this usually causes the over-provision of resources
for guaranteeing the proper management of requests during a usage peak. With
our extension of ABS, we have been able to realize a new modeling of the Fred-
hopper Cloud Services in which both the initial deployment and the subsequent
up- and down-scale is expected to be executed automatically. This new model
is a first fundamental step towards a new more efficient and elastic deployment
management of the Fredhopper Cloud Services.

Structure of the paper Section 2 describes the Fredhopper Cloud Services case-
study. Section 3 reports the ABS deployment annotations that we already defined
in [10]. Section 4 presents the new high-level language for the specification of
deployment requirements while Section 5 discusses the corresponding solver.
Finally, the application of our technique to the Fredhopper Cloud Services use-
case is reported in Section 6. Section 7 discuss the related literature while in
Section 8 we draw some concluding remarks.

2 The Fredhopper Cloud Services

Fredhopper provides the Fredhopper Cloud Services to offer search and target-
ing facilities on a large product database to e-Commerce companies as services
(SaaS) over the cloud computing infrastructure (IaaS). The Fredhopper Cloud
Services drives over 350 global retailers with more than 16 billion in online sales
every year. A customer (service consumer) of Fredhopper is a web shop, and an
end-user is a visitor of the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice,
these services are implemented to be RESTful and accept connections over
HTTP. Software services are deployed as service instances. Each instance of-
fers the same service and is exposed via Load Balancer endpoints that distribute
requests over the service instances.

The number of requests can vary greatly over time, and typically depends
on several factors. For instance, the time of the day in the time zone where
most of the end-users are plays an important role (typical lows in demand are
observed between 2 am and 5 am). Figure 1 shows a real-world graph for a single
day (with data up to 18:00) plotting the number of queries per second (y-axis,
ranging from 0-25 qps, the horizontal dotted lines are drawn at 5,10,15 and 20
qps) over the time of the day (x-axis, starting at midnight, the vertical dotted
lines indicate multiples of 2 hours). The 2a - 5am low is clearly visible.

3

Fig. 1. Number of queries per second (in green the query processing time).

Peaks typically occur during promotions of the shop or around Christmas. To
ensure a high quality of service, web shops negotiate an aggressive Service Level
Agreement (SLA) with Fredhopper. QoS attributes of interest include query
latency (response time) and throughput (queries per second). For example, based
on the negotiated SLA with a customer, services must maintain 100 queries per
seconds with less than 200 milliseconds of response time over 99.5% of the service
uptime, and 99.9% with less than 500 milliseconds.

Previous work reported in [10] aimed to compute an optimal initial deploy-
ment configuration (using the size of the product catalogue, number of expected
visitors and cost of the required virtual machines). The computation was based
on an already available model of the Fredhopper Cloud Services written in the
ABS language. In this paper we address the problem of maintaining a high qual-
ity of service after this initial set-up by taking dynamic factors into account,
such as fluctuating user-demand and unexpectedly failing virtual machines.

The solution that we propose is based on a tool named SmartDepl that, when
integrated in the ABS model of the Fredhopper Cloud Services, enables the
modeling of automatic upscaling or downscaling. When the decision to scale up or
down is made, SmartDepl indicates how to automatically evolve the deployment
configuration. This is not a trivial task: the desired deployment configuration
should satisfy various requirements, and those can trigger the need to instantiate
multiple service instances that furthermore require proper configuring to ensure
they function correctly.

The requirements can originate from both business decisions or technical
reasons. For instance, for security reasons, services that operate on sensitive
customer data should not be deployed on machines shared by multiple customers.
Below we list some of these requirements.

4

– To increase fault-tolerance, we aim to spread virtual machines across ge-
ographical locations. Amazon allows specifying the desired region (a geo-
graphical area) and availability zone (a geographical location in a region) for
a virtual machine. Fault tolerance is then increased by balancing the num-
ber of machines between different availability zones. Thus, when scaling, the
number of machines should be adjusted in all zones simultaneously. Effec-
tively this means that with two zones, we scale up or down with an even
number of machines.

– Each instance of a Query service is in one of two modes: ‘live’ mode to serve
queries, or ‘staging’ mode to serve as an indexer (i.e., to publish updates
to the product catalogue). There always should be at least one instance of
Query service in staging mode.

– The network throughput and latency between the PlatformService and in-
dexer is important. Since the infrastructure provider gives better perfor-
mance for traffic between instances in the same zone, we require the indexer
and PlatformService to be in the same zone.

– Installing an instance of the QueryService requires the presence of an in-
stance of the DeploymentService on the same virtual machine.

– For performance reasons and fault tolerance, load balancers require a dedi-
cated machine without other services co-located on the same virtual machine.

3 Annotated ABS

The ABS language is designed to develop executable models. It targets dis-
tributed and concurrent systems by means of concurrent object groups and asyn-
chronous method calls. Here, we will recap just the specific linguistic features of
ABS to support the modeling of the deployment; for more details we refer the
interested reader to the ABS project website [2] and [10] for the cost annotations.

The basic element to capture the deployment in ABS is the Deployment
Component (DC), which is a container for objects/services that, intuitively, may
model a virtual machine running those objects/services. ABS comes with a rich
API that allows the programmer to model a cloud provider of deployment com-
ponents.

1 CloudProvider cProv = new CloudProvider (" Amazon ");

2 cProv.addInstanceDescription(Pair("c3",

3 InsertAssoc(Pair(CostPerInterval,210),

4 InsertAssoc(Pair(Memory,7500),

5 InsertAssoc(Pair(Cores,4), EmptyMap)))));

6 DeploymentComponent dc = cProv.prelaunchInstanceNamed ("c3");

7 [DC: dc] Service s = new QueryServiceImpl ();

In the ABS code above, the cloud provider “Amazon” is modeled as the object
cProv of type CloudProvider. The fact that “Amazon” can provide a virtual
machine of type “c3” is modeled by calling addInstanceDescription in Line 2.
With this instruction we also specify that c3 virtual machines cost 0,210 cents
per hour, provide 7.5 GB of RAM and 4 cores. In Line 5 an instance of “c3” is

5

launched and the corresponding deployment component is saved in the variable
dc. Finally, in Line 6, a new object of type QueryServiceImpl (implementing
interface Service) is created and deployed on the deployment component dc.

ABS supports declaring interface hierarchies and defining classes implement-
ing them.

interface Service { ... }

interface IQueryService extends Service { ... }

class QueryServiceImpl(DeploymentService ds, Bool staging)

implements IQueryService { ... }

In the excerpt of ABS above, the IQueryService service is declared as an inter-
face that extends Service, and the class QueryServiceImpl is an implementation
of this interface. Notice that the initialization parameters required at object
instantiation are indicated as parameters in the corresponding class definition.

Classes can be annotated with the cost and requirements of an object of that
class.

[Deploy: scenario[Name(" staging "), Cost(" Cores", 2),

Cost(" Memory",7000), Param (" staging", Default ("True")),

Param("ds", Req)]]

[Deploy: scenario[Name("live"), Cost(" Cores", 1),

Cost(" Memory",3000), Param (" staging", Default ("False ")),

Param("ds", Req)]]

The above two annotations, to be included before the declaration of the
class QueryServiceImpl in the above ABS code, describe two possible deployment
scenarios for objects of that class. The first annotation models the deployment
of a Query Service in staging mode, the second one models the deployment in
live mode. A Query Service in staging mode requires 2 cores and 7GB of RAM.
In live mode, 1 core and 3GB of RAM suffices. Creating a Query Service object
requires the instantiation of its two initialization parameters ds and staging.
The second parameter should be instantiated with True or False depending on
the deployment scenario. The first parameter is required (keyword Req in the
annotation): this means that the Query Service requires a reference to an object
of type DeploymentService passed via the ds initialization parameter.

4 The Declarative Requirement Language DRL

Computing a deployment configuration requires taking into account the expec-
tations of the ABS programmer. For example, in the Fredhopper Cloud Services,
one initial goal is to deploy with reasonable cost a given number of Query Ser-
vices and a Platform Service, possibly located on different machines to improve
fault tolerance, and later on to upscale (or subsequently downscale) the sys-
tem according to the monitored traffic. Each desiderata can be expressed with
a corresponding expression in Declarative Requirement Language (DRL): a new
language for stating constraints a configuration to be computed should satisfy.

6

1 b_expr : b_term (bool_binary_op b_term)* ;

2 b_term : (’not’)? b_factor ;

3 b_factor : ’true’ | ’false ’ | relation ;

4 relation : expr (comparison_op expr)? ;

5 expr : term (arith_binary_op term)* ;

6 term : INT |

7 (’exists ’ | ’forall ’) VARIABLE ’in’ type ’:’ b_expr |

8 ’sum’ VARIABLE ’in’ type ’:’ expr |

9 ((ID | VARIABLE | ID ’[’ INT ’]’) ’.’)? objId |

10 arith_unary_op expr |

11 ’(’ b_expr ’)’ ;

12 objId : ID | VARIABLE | ID ’[’ ID ’]’ | ID ’[’ RE ’]’;

13 type : ’obj’ | ’DC’ | RE ;

14 bool_binary_op : ’and’ | ’or’ | ’impl’ | ’iff’ ;

15 arith_binary_op : ’+’ | ’-’ | ’*’ ;

16 arith_unary_op : ’abs’ ; // absolute value

17 comparison_op : ’<=’ | ’=’ | ’>=’ | ’<’ | ’>’ | ’!=’ ;

Table 1. DRL grammar.

As shown in Table 1, that reports an excerpt of the DRL grammar,5 a desider-
ata is a (possibly quantified) Boolean formula b_expr obtained by using the usual
logical connectives over comparisons between arithmetic expressions. An atomic
arithmetic expression is an integer (Line 6), a sum statement (Line 8) or an
identifier for the number of deployed objects (Line 9). The number of objects to
deploy using a given scenario is defined by its class name and the scenario name
enclosed in square brackets (Line 12). For example, the below formula requires
deploying at least one object of class QueryServiceImpl in staging mode.

QueryServiceImpl[staging] > 0

The square brackets are optional (Line 12 - first option) for objects with only
one default deployment scenario. Regular expressions (RE in Line 12) can match
objects deployed using different scenarios. The number of deployed objects can
be prefixed by a deployment component identifier to denote just the number of
objects defined within that specific deployment component. As an example, the
deployment of only one object of class DeploymentServiceImpl on the first and
second instance of a “c3” virtual machine can be enforced as follows.

c3[0]. DeploymentServiceImpl = 1 and

c3[1]. DeploymentServiceImpl = 1

5 The complete grammar defined using the ANTLR compiler generator is available
at https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/decl_
spec_lang/DeclSpecLanguage.g4.

7

Here the 0 and 1 numbers between the square brackets represent respectively
the first and second virtual machine of type “c3”. To shorten the notation, the
[0] can be omitted (Line 9).6

It is possible to use also quantifiers and sum expressions to capture more
concisely some of the desired properties. Variables are identifiers prefixed with
a question mark. As specified in Line 13, variables in quantifiers and sums can
range over all the objects (’obj’), all the deployment components (’DC’), or
just all the virtual machines matching a given regular expression (RE). In this
way it is possible to express more elaborate constraints such as the co-location
or distribution of objects, or limit the amount of objects deployed on a given
DC.7 As an example, the constraint enforcing that every Query Service has a
Deployment Service installed on its virtual machine is as follows.

forall ?x in DC: (

?x.QueryServiceImpl[’.*’] > 0 impl

?x.DeploymentServiceImpl > 0)

Here impl stands for logical implication. The regular expression ’.*’ allows
us to match with both deployment modalities for the Query Service (staging and
live). Finally, specifying that the load balancer must be installed on a dedicated
virtual machine (without other Service instances) can be done as follows.

forall ?x in DC: (

?x.LoadBalancerServiceImpl > 0 impl

(sum ?y in obj: ?x.?y) = ?x.LoadBalancerServiceImpl)

5 Deployment Engine

SmartDepl is the tool that we have implemented to realize automatic deployment.
The key idea of SmartDepl is to allow the user on the one hand to declaratively
specify the desired deployments and, on the other hand, to develop its program
abstracting from concrete deployment decisions. More concretely, deployment
requirements are specified as program annotations. SmartDepl processes each of
these annotations and generates for each of them a new class that specifies the
deployment steps to reach the desired target. Then this class can be used to
trigger the execution of the deployment, and to undo it in case the system needs
to downscale.

As an example, imagine that an initial deployment of the Fredhopper Cloud
Services has been already obtained and that, based on a monitor decision, the

6 We assume that every deployment desiderata expressed in DRL deals with only a
bounded number of deployment components (the bound is a configuration parameter
for SmartDepl). Notice that this does not mean that the total number of deployment
components in an application is bound, as the deployment can be repeated an un-
bounded number of times.

7 DRL improves on the specification language presented in [10] because the addition
of the quantifiers and sums allow to write the desiderata more concise and naturally.

8

1 { "id": "AddQueryDeployer",

2 "specification": "QueryServiceImpl[live] = 1",

3 "obj": [{ "name": "platformObj",

4 "provides": [{

5 "ports": ["MonitorPlatformService",

6 "PlatformService"],

7 "num": -1 }],

8 "interface": "PlatformService" },

9 { "name": "loadBalancerObj",

10 "provides": [{

11 "ports": ["LoadBalancerService"],

12 "num": -1 }],

13 "interface": "LoadBalancerService" },

14 { "name": "serviceProviderObj",

15 "provides": [{

16 "ports": ["ServiceProvider"],

17 "num": -1 }],

18 "interface": "ServiceProvider" }],

19 "DC": [] }

Table 2. An example of a deployment annotation.

user wants to add a Query Service instance in live mode. The annotation that
describes this requirement is the JSON object defined in Table 2.8

In Line 1, the keyword "id" specifies that the name of the class with the de-
ployment code, to be synthesized by SmartDepl, is AddQueryDeployer. As we will
see later, this class exposes methods to be invoked to actually execute deploy-
ment actions that modifies the current deployment according to the requirements
in the deployment annotation. The second line contains the declarative specifica-
tion of the desired configuration in DRL. Deploying a new instance of the Query
Service may involve other relevant objects from the surrounding environment,
such as the PlatformService or a LoadBalancerService. Which objects are rele-
vant may come from business, security or performance reasons, thus in general
it may be undesirable to select or create automatically a Service instance of the
right type. SmartDepl is flexible in this regard: the user supplies the appropriate
ones. By using the keyword "obj", Lines 3-18 list the appropriate objects. Since
these object are already available, they need not be deployed again. The names
of these objects are specified with the keyword "name" (Lines 3,9,14), the pro-
vided interfaces with the keyword "port" (Lines 5-6,11,16) with the amount of
services that can use it (keyword "num" in Lines 7,12,17 — in this case a -1 value

8 To facilitate the interoperability between ABS and SmartDepl we have
adopted a JSON syntax for the deployment annotations. For the inter-
ested reader the formal specification of the JSON annotations is defined
in https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/spec/

smart_deploy_annotation_schema.json.

9

means that the object can be used by an unbounded number of other objects),
and the object interface with keyword "interface" (Lines 8,13,18). Finally, with
the keyword "DC", the user specifies if there are existing deployment components
with free resources that can be used to deploy new objects. In this case, for fault
tolerance reasons the user wants to deploy the Query Service in a new machine
and therefore the "DC" is empty (Line 19).

Once the annotation is given, the user may freely use this class. For instance,
the below ABS code scales the system up or down based on a monitor decision.

1 while (...) {
2 if (monitor.scaleUp()) {
3 SmartDeployInterface depObj = new AddQueryDeployer(
4 cProv, platformService, loadBalancerService, serviceProvider);
5 depObj.deploy();
6 depObjList = Cons(depObj,depObjList);
7 } else if ((monitor.scaleDown()) && (depObjList != Nil)) {
8 SmartDeployInterface depObj = head(depObjList);
9 depObjList = tail(depObjList);

10 depObj.undeploy(); } }

Every time an upscale is needed, an object of class AddQueryDeployer (the name
associated with the annotation previously discussed) is created. The idea is to
store the references to these deployment objects in a list called depObjList. We
now discuss the initialization parameters for such objects. The first parameter
is the cloud provider, as defined for instance in Section 3. The next parameters
are the objects already available for the deployment that do not need to be
re-deployed. These are given according to the order they are defined in the
annotation in Table 2. The generated class implements the SmartDeployInterface

with: i) a deploy method to realise the deployment of the desired configuration, ii)
an undeploy method to undo the deployment gracefully by removing the virtual
machine created with the deploy method, iii) getter methods to retrieve the list of
new objects and deployment components created by running the deploy method
(e.g., a call depObj.getIQueryService() retrieves the list of all the Query Services
created by depObj.deploy()). The actual addition of the Query Service is performed
in Line 5 with the call of the deploy method. If the monitor decides to downscale
(Line 7), the last deployment solution is retrieved (Line 8), and the corresponding
deployment actions are reverted by calling the undeploy method.9

Technically, SmartDepl is written in Python (∼1k lines of code) and relies
on Zephyrus2, a configuration optimizer that given the user desiderata and a
universe of components, computes the optimal configuration satisfying the user
needs.10 The cost annotations (see Section 3) are used to compute a configuration

9 Since ABS does not have an explicit operation to force the removal of objects the
undeploy procedure just removes the references to these objects leaving the garbage
collector to actually remove them. The deployment components created by the deploy
methods are removed instead using an explicit kill primitive provided by ABS.

10 SmartDepl uses Zephyrus2 (freely available at https://jacopomauro@bitbucket.

org/jacopomauro/zephyrus2.git) since it allows the use of a new expressive lan-

10

that satisfies the constraints, minimizes the cost of the deployment components
that need to be created and, in case of ties, minimizes the number of created
objects. The user is notified if no configuration exists that satisfies the desider-
ata. Once a configuration is obtained, SmartDepl uses topological sorting to take
into account all the object dependencies and computes the sequence of deploy-
ment instructions to realise the desirable configuration. SmartDepl exploits Delta
Modeling [7] to generate the code of the classes and methods to inject into the in-
terface. SmartDepl also notifies the user when it is unable to generate a sequence
of deployment actions due to mutual dependencies between the objects.11

As an example the deploy code generated by SmartDepl for the annotation
defined in Table 2 is the following.

1 Unit deploy() {
2 DeploymentComponent c3 0 = cloudProvider.prelaunchInstanceNamed(”c3”);
3 ls DeploymentComponent = Cons(c3 0,ls DeploymentComponent);
4 [DC: c3 0] DeploymentService oDef DeploymentServiceImpl 0 c3 0 =
5 new DeploymentServiceImpl(platformObj);
6 ls DeploymentService = Cons(oDef DeploymentServiceImpl 0 c3 0,
7 ls DeploymentService);
8 [DC: c3 0] IQueryService olive QueryServiceImpl 0 c3 0 = new
9 QueryServiceImpl(oDef DeploymentServiceImpl 0 c3 0, False);

10 ls IQueryService = Cons(olive QueryServiceImpl 0 c3 0, ls IQueryService);
11 ls Service = Cons(olive QueryServiceImpl 0 c3 0, ls Service);
12 ls EndPoint = Cons(olive QueryServiceImpl 0 c3 0, ls EndPoint);
13 }

At Line 3, a new deployment component c3 0 is created. In Lines 4-5 an object
of class DeploymentService is created, since every Query Service requires a corre-
sponding Deployment Service (it is one of the required parameters, cf. Section
3) to be deployed before the Query Service. In Lines 8-9 the desired object of
class IQueryService is created. Both objects are deployed on c3 0.

Even though for the sake of the presentation this is just a simple example,
it is immediately possible to notice that SmartDepl alleviates the user from the
burden of the deployment decisions. Indeed, she can specify the desired configu-
ration without worrying about the dependencies of the various objects and their
distributed placement for obtaining the cheapest possible solution.

SmartDepl is open source, available at https://github.com/jacopoMauro/

abs_deployer/tree/smart_deployer and to increase its portability it can be
installed also by using the Docker container technology [12]. As illustrated in
Figure 2, SmartDepl has also been integrated into the ABS toolchain,12 an IDE
for a collection of tools for writing, inspecting, checking, and analyzing ABS
programs developed within the Envisage European project.

guage and because it relies on MiniSearch [24], a new efficient and flexible framework
for planning the search strategies. Zephyrus2 is a completely new re-engineering of
the previous Zephyrus solver [8, 9].

11 This occurs when the creation of an object requires the execution of a complex
protocol, such as what happens for the boostrapping of Linux distributions [1].

12 http://abs-models.org/installation/

11

Fig. 2. SmartDepl execution within the ABS toolchain IDE.

6 Application to the Fredhopper use case

In this section we report on the modeling with SmartDepl of the concrete de-
ployment requirements of the Fredhopper Cloud Services, previously introduced
in Section 2. We decided to apply our techniques to the Fredhopper Cloud Ser-
vices use case because it was already modeled in ABS, and thanks to extensive
profiling of the in-production system, the cost of its services are known.

SmartDepl was used twice: to synthesize the initial static deployment of the
entire framework and to add (and later remove) instances of the Query Service if
the system needs to scale. Since the Fredhopper Cloud Services uses Amazon EC2
Instance Types, we used two types of deployment components corresponding
to the “xlarge” and “2xlarge” instances of the Compute Optimized instances
(version 3)13 of Amazon. For fault tolerance and stability, Fredhopper Cloud
Services uses instances in multiple regions in Amazon (regions are geographically
separate areas, so even if there is a force majeure in one region, other regions
may be unaffected). We model the instance types in different regions as follows:
“c3 xlarge eu”, “c3 xlarge us”, “c3 2xlarge eu”, “c3 2xlarge us” (“eu” refers to
a European region, “us” is an American region).

The static deployment of the Fredhopper Cloud Services requires deploying
a Load Balancer, a Platform Service, a Service Provider and 2 Query Services
with at least one in staging mode. This is expressed as follows.

LoadBalancerServiceImpl = 1 and PlatformServiceImpl = 1 and

13 https://aws.amazon.com/ec2/instance-types/

12

2xlarge - Eu
HAProxy

xlarge - Us

Deployment
Service

Query
Service

(live)
2xlarge - Eu

Deployment
Service

Query
Service

 (staging)

Platform
Service

2xlarge - Eu

Platform
Service

Service
Provider

Fig. 3. Example of automatic objects allocation to deployment components.

ServiceProviderImpl = 1 and QueryServiceImpl[staging] > 0 and
QueryServiceImpl[staging] + QueryServiceImpl[live] = 2

For the correct functioning of the system, a Query Service requires a Deployment
Service installed on the same machine. This constraint is expressed as shown in
Section 4. The requirement that a Service Provider is present on every machine
containing a Platform Service is expressed by:

forall ?x in DC: (?x.PlatformServiceImpl > 0 impl ?x.ServiceProviderImpl > 0)

Not all services can be freely installed on an arbitrary virtual machine. To in-
crease resilience, we require that the Load Balancer, the Query/Deployment
Services, and the Platform Service/Service Provider are never co-located on the
same virtual machine. The end of Section 4 shows how this is expressed.

To handle catastrophic failures, the Fredhopper Cloud Services aim to bal-
ance the Query Services between the regions (see Section 2). This is enforced by
constraining the number of the Query Services in the different data centers to
be equal. In DRL this is expressed with regular expressions as follows.

(sum ?x in ’.* eu’: ?x.QueryServiceImpl[’.*’]) =
(sum ?x in ’.* us’: ?x.QueryServiceImpl[’.*’])

As described in Section 4, for performance reasons, the Query Service in Stag-
ing mode should be located in the zone of the Platform Service, since Amazon
connects instances in the same region with low-latency links. For the European
data-center this is expressed by:

(sum ?x in ’.* eu’: ?x.QueryServiceImpl[staging]) > 0) impl
(sum ?x in ’.* eu’: ?x.PlatformServiceImpl) > 0)

From this specification SmartDepl computes the initial configuration in Fig-
ure 3, which minimizes the total costs per interval. It deploys the Load Balancer,
Platform Service and one staging Query Service on three “2xlarge” instances in
Europe, and deploys a live Query service on an “xlarge” instance in US.

After this initial deployment, the Cloud engineers of Fredhopper Cloud Ser-
vices rely on feedback provided by monitors to decide if more Query Services
in live mode are needed. Figure 4 and 5 show some of the main metrics for a
single customer used to determine the scaling. The timescale in the figures is 1

13

Fig. 4. Metrics graphed over a single day for a customer (a).

day, but this can be adjusted to see trends over longer periods, or zoom in on
a short period. The figures show that the number of queries served per second
(qps, first graph of Figure 4) is relatively high and the requests (Figure 4, second
graph) are fairly low, so requests are not queuing. Furthermore the CPU usage
(Figure 4, third graph) and memory consumption with small swap space used
(Figure 5, second and third graphs) look healthy. Hence, no scaling is needed.

If we would have needed to scale up, two Query Service instances are added:
one in an EU region, and one in an US region for balancing across regions. In
contrast, if there is unnecessary overcapacity, the most recent ones can be shut
down. Since the Cloud operations team currently manually decides to scale, and
Fredhopper has very aggressive SLAs, the team is typically conservative with
downscaling, leading to potential over-spending. The ability of SmartDepl to
deploy in the programming language (ABS) itself allows to leverage the extensive
tool-supported analyses available for ABS [3, 11, 15, 25]. For example, by using
monitors to track the quality of services, SmartDepl allows to reason on a rigorous
basis on the scaling decisions and their impact on the SLA agreed with the
customers.

14

Fig. 5. Metrics graphed over a single day for a customer (b).

Furthermore, while the operations team currently use ad-hoc scripts to con-
figure newly added or removed service instances, and these scripts are specific
to the infrastructure provider, SmartDepl automatically generates code that ac-
complishes this (for example, see Table 2). SmartDepl is flexible in the sense that
it is infrastructure independent, allowing to seamlessly switch between different
infrastructure providers: virtual machines are launched and terminated through
a generic Cloud API offered by ABS for managing virtual resources. Executable
code is automatically generated from ABS for any of the infrastructures for which
an implementation of the Cloud API exists (e.g., Amazon, Docker, OpenStack).

To automatically generate the scaling deployment configuration, SmartDepl
uses all the previous specifications, except that now instead of requiring a Plat-
form Service and a Load Balancer we simply require two Query services in
live mode. In this case, as expected after the deployment of the initial frame-
work, the best solution is to deploy one Query Service in Europe and one in
US using “xlarge” instances. The ABS model used with all the annotations
and specifications and an example of generated code is available at https:

//github.com/jacopoMauro/abs_deployer/blob/smart_deployer/test/.

15

7 Related Work

Many management tools for bottom-up deployment exist, e.g., CFEngine [6],
Puppet [19], MCollective [23], and Chef [22]. Such tools allow for the declaration
of components, by indicating how they should be installed on a given machine,
together with their configuration files, but they are not able to automatically de-
cide where components should be deployed and how to interconnect them for an
optimal resource allocation. The alternative holistic approach allows modeling
the entire application and derives the deployment plan top-down. In this context,
one prominent work is represented by the TOSCA (Topology and Orchestration
Specification for Cloud Applications) standard [21]. Following a similar philoso-
phy, we can mention Terraform [17], JCloudScale [26], Apache Brooklyn [4], and
tools supporting the Cloud Application Management for Platforms protocol [20].
A first attempt to combine the holistic and bottom-up approaches is reported
in [5]: a global deployment plan expressed in TOSCA is checked for correctness
against local specifications of the deployment lifecycle of the single components.

Similarly to our approach, ConfSolve [18] and Engage [14] use a solver to
plan deployment starting from the local requirements of components, but these
approaches were not incorporated in fully-fledged specification languages (in-
cluding also behavioral descriptions as in our case with ABS).

8 Conclusions

We presented an extension of the ABS specification language that supports mod-
eling deployment in a declarative manner: the programmer specifies deployment
constraints, and a solver synthesizes ABS classes with methods that execute
deployment actions to reach an optimal deployment configuration that satisfies
the constraints. Our approach, which is inspired by [9] and significantly improves
our initial work [10], can be easily applied to any other object-oriented language
that offers primitives for the acquisition and release of computing resources.

As a future work we plan to investigate the possibility to invoke at run time
the external deployment engine. In this way, it could be possible to dynamic
re-define the deployment constraints by means of a dynamic tuning of the en-
gine. Nevertheless, dynamically computing the deployment steps may require
additional elements such as the support of new reflection primitives to get a
snapshot of the running application, and possibly the use of sub-optimal solu-
tions when computing the optimal configuration takes too much time.

References

1. P. Abate and S. Johannes. Bootstrapping Software Distributions. In CBSE’13,
2013.

2. Abstract behavioral specification language. http://www.abs-models.com/.
3. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,

E. Martin-Martin, G. Puebla, and G. Román-Dı́ez. SACO: Static Analyzer for
Concurrent Objects. In ETAPS, 2014.

16

4. Apache Software Foundation. Apache Brooklyn. https://brooklyn.incubator.

apache.org/.
5. A. Brogi, A. Canciani, and J. Soldani. Modelling and Analysing Cloud Application

Management. In ESOCC, 2015.
6. M. Burgess. A Site Configuration Engine. Computing Systems, (2), 1995.
7. D. Clarke, R. Muschevici, J. Proença, I. Schaefer, and R. Schlatte. Variability

Modelling in the ABS Language. In FMCO, 2010.
8. R. D. Cosmo, M. Lienhardt, J. Mauro, S. Zacchiroli, G. Zavattaro, and

J. Zwolakowski. Automatic Application Deployment in the Cloud: from Practice
to Theory and Back. In CONCUR, 2015.

9. R. D. Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski, A. Eiche,
and A. Agahi. Automated synthesis and deployment of cloud applications. In
ASE, 2014.

10. S. de Gouw, M. Lienhardt, J. Mauro, B. Nobakht, and G. Zavattaro. On the Inte-
gration of Automatic Deployment into the ABS Modeling Language. In ESOCC,
2015.

11. C. C. Din, R. Bubel, and R. Hähnle. Key-abs: A deductive verification tool for the
concurrent modelling language ABS. In CADE, 2015.

12. Docker Inc. Docker. https://www.docker.com/.
13. N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg. Managing multi-cloud

systems with CloudMF. In NordiCloud, 2013.
14. J. Fischer, R. Majumdar, and S. Esmaeilsabzali. Engage: a deployment manage-

ment system. In PLDI, 2012.
15. E. Giachino, C. Laneve, and M. Lienhardt. A framework for deadlock detection in

core ABS. CoRR, 2015.
16. G. E. Gonçalves, P. T. Endo, M. A. Santos, D. Sadok, J. Kelner, B. Melander, and

J. Mångs. CloudML: An Integrated Language for Resource, Service and Request
Description for D-Clouds. In CloudCom, 2011.

17. HashiCorp. Terraform. https://terraform.io/.
18. J. A. Hewson, P. Anderson, and A. D. Gordon. A Declarative Approach to Auto-

mated Configuration. In LISA, 2012.
19. L. Kanies. Puppet: Next-generation configuration management. ;login: the

USENIX magazine, (1), 2006.
20. OASIS. Cloud Application Management for Platforms. http://docs.oasis-open.

org/camp/camp-spec/v1.1/camp-spec-v1.1.html.
21. OASIS. Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/

TOSCA-v1.0-cs01.html.
22. Opscode. Chef. http://www.opscode.com/chef/.
23. Puppet Labs. Marionette collective. http://docs.puppetlabs.com/

mcollective/.
24. A. Rendl, T. Guns, P. J. Stuckey, and G. Tack. MiniSearch: A Solver-Independent

Meta-Search Language for MiniZinc. In CP, 2015.
25. P. Y. H. Wong, R. Bubel, F. S. de Boer, M. Gómez-Zamalloa, S. de Gouw,

R. Hähnle, K. Meinke, and M. A. Sindhu. Testing abstract behavioral specifi-
cations. STTT, 17(1):107–119, 2015.

26. R. Zabolotnyi, P. Leitner, W. Hummer, and S. Dustdar. JCloudScale: Closing the
Gap Between IaaS and PaaS. ACM Trans. Internet Techn., 15(3):10, 2015.

17

	1 Introduction
	2 Service Level Agreements
	2.1 Deployment Architecture
	2.2 Definitions and Assumptions
	2.3 Service Availability (s,,tc)
	2.4 Budget Compliance (s,)

	3 General Monitoring Framework in ABS
	3.1 Attribute Grammars
	3.2 Monitoring Architecture
	3.3 Tooling

	4 Use cases
	4.1 Visualisation
	4.2 Auto-scaling
	4.3 Formal Analysis
	4.3.1 Functional Correctness
	4.3.2 Resource Analysis

	4.4 Connecting External Systems

	Bibliography
	Glossary
	A HTTP API
	A.1 Registering Objects
	A.2 Making Methods Callable
	A.3 Querying for Objects
	A.4 Reading Object State
	A.5 Calling Methods

	B Formal Verification of Service Level Agreements Through Distributed Monitoring esocc15:sla:monitoring
	C Run-time Deadlock Detection ProCos
	D Declarative Elasticity in ABS GouwMNZ16

