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Executive Summary:
Modeling of Deployment (Final Report)

This document summarizes deliverable D1.3.2 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eul

This deliverable describes the final outcomes of Task T1.3, dedicated to the integration of deployment
scenarios related to virtualization into the Abstract Behavioral Specification language ABS. The preliminary
deliverable D1.3.1 at T'18 already reported the main lines of research followed within this Task. Following the
structure of the previous deliverable, besides an introductory chapter, this deliverable includes three main
contributions organized in three independent chapters.

Chapter 2 focuses on an extension of the ABS language for programming deployment declaratively:
the ABS language is enriched with annotations used by the programmer to specify high-level deployment
constraints, and then an external solver synthesizes the ABS low-level deployment actions needed to realize
a deployment satisfying the specified constraints. In our preliminary deliverable we already discussed this
approach, but it was limited to the synthesis of the initial deployment of an ABS model. We have completed
this line of work by supporting also dynamic modifications to the current deployment, thus managing the
elastic up- and down-scale of the modeled application.

Chapter 3 reports a more mature experience, w.r.t. the one described in D1.3.1, about the use of ABS
for the modeling and analysis of dynamic deployment strategies: we discuss the general outline of dynamic
resource management in terms of using a given amount of resources and scaling to change the amount of
resources. We also discuss the realization (and empirical validation) of ABS-YARN, i.e., a configurable ABS-
based framework for the modeling of clusters using YARN, a state-of-the-art technology for job scheduling
and resource management. In this case, the analysis is done by exploiting one of the ABS back-ends, namely,
the MAUDE simulator and the empirical evaluation of the modeling framework by comparing benchmarks
with a real cluster with 30 machines.

Finally, Chapter 4 reports on an updated version of the so-called ABS Cloud API (included in the ABS
Standard Library) providing interfaces for dynamic acquisition/release of resources, as well as the dynamic
inspection of the current state of resource usage. These interfaces have been used in the modeling of the
case-studies, and then collected in an ABS library to help the ABS programmer in the modeling of issues
related to deployment.

The deliverable includes also two technical appendixes, each one containing one paper. The first one,
in Appendix [A] and currently submitted, is integral part of Chapter 2: it describes automatic declarative
deployment for ABS, driven and validated by the FRH case study. The second one, in Appendix [B| and
published in the Proceedings of the 19th International Conference on Fundamental Approaches to Software
Engineering (FASE’16), describes the modeling of the YARN platform with ABS.
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Chapter 1

Introduction

Software applications deployed and executed on top of cloud computing infrastructures should flexibly adapt
in order to dynamically acquire or release computing resources. This is necessary to properly deliver to
the final users the expected services at the expected level of quality, maintenance an optimized usage of the
computing resources (e.g., avoiding resource over-provisioning). For this reason, modern software systems call
for novel engineering approaches that anticipate deployment issues already at the early stages of development.

Several modeling languages like TOSCA [15], CloudML [I1], and CloudMF [I0] have been proposed to
specify the deployment of software artifacts, but they are mainly intended to express deployment of already
developed software. An actual integration of deployment in software development is still far from being
obtained in the current practices. To cover this gap, the Envisage project, in particular Task 1.3, addresses
the problem of extending the ABS (Abstract Behavioural Specification) language with linguistic constructs
and mechanisms to properly specify deployment. In the preliminary deliverable D1.3.1 we already outlined
the approach adopted in ABS for the modeling of deployment:

Deployment components are added to the ABS language to represent object containers, respon-
sible for providing the running objects with the resources they require (e.g. CPU cores, memory,
bandwidth, etc.). Primitives are also added, specified by means of the so-called ABS Cloud API
(included in the ABS standard library), to deal with the management of deployment components,
like e.g. their creation/destruction or the monitoring of the current resource usage.

More precisely, D1.3.1 contained three main contributions. The first one was concerned with the automatic
static deployment of applications specified in ABS: starting from ABS classes annotated with deployment
information (namely, the resources that objects of that class need to properly run), a description of the
available deployment components indicating their resources and costs, and the high-level specification of the
expected deployment, an external engine synthesizes ABS code (to be included in a main block) that gener-
ates an application instance satisfying the constraints by minimizing the total cost. The second contribution
included the description of preliminary experiences in the usage of ABS to specify, analyse and compare
different deployment strategies for cloud applications; in particular, ABS was used to model resource man-
agement policies, and then the ABS simulator allowed for the evaluation of the corresponding performances.
The third contribution was a preliminary version of the ABS Cloud API.

Following the research directions reported in D1.3.1, this deliverable presents the completion of T1.3
activities by:

e discussing additional ABS extensions supporting the declarative programming of deployment, not only
for the initial static application configuration, but also considering the so-called dynamic upscale and
downscale of the application deployment;

e showing how ABS can be used to model and reason about deployment strategies on top of indus-
trial frameworks, like Apache Hadoop YARN, representing state-of-the-art technologies for resource
management and job scheduling;
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e completing the specification of the ABS Cloud API

In the remainder of this chapter we more precisely focus on the first two contributions (the ABS Cloud API
does not require further introduction) and we outline the structure of the deliverable.

1.1 Declarative Elasticity in ABS

Following the general approach presented in [6], and initially applied to ABS in [7], we have adopted a declar-
ative approach according to which the programmer specifies deployment constraints and a solver computes
actual deployments satisfying such constraints. In particular, in our previous work [7] included in D1.3.1, we
presented an external engine for ABS able to synthesize ABS code specifying the initial static deployment.
In this deliverable we complete this work by fully integrating this approach in the ABS language allowing for
the declarative specification of the dynamic upscale/downscale of the modeled application depending, e.g.,
on the monitored workload or the current level of resource usage.

Our initial proposal for the declarative modeling of deployment in ABS [7] was based on three main pillars:
(i) classes are enriched with annotations that indicate functional dependencies of objects of those classes as
well as the resources they require, (ii) a separate high-level language for the declarative specification of the
deployment, (iii) an engine that, based on the annotations and the programmer’s requirements, computes
a fully specified deployment that minimizes the total cost of the system. The computed deployment is
expressed in ABS and can be manually included in a main block.

The work in [7] had two main limitations: (i) there was no way to express dynamic deployment decisions
like, e.g., the need to upscale or downscale the modeled system and (ii) there was no automatic integration
of the code synthesized by the engine in the corresponding ABS specification. In this deliverable we address
these limitations by promoting the notion of deployment as a first-class citizen of the language. During a
pre-processing phase, a new tool named SmartDepl generates ad-hoc classes exposing the methods deploy
and undeploy to dynamically upscale and downscale the system. The deployment requirements can now
also reuse already deployed objects just specifying which of the existing objects could be used, and how they
should be connected with new objects to be freshly deployed. This has been the fundamental step forward
that allowed us to support dynamic modification of the current deployment. Moreover, other relevant novel
contributions are: (i) a more natural high-level language for the specification of requirements that now
supports universal and existential quantifiers, and (ii) the usage of the delta modules and the variability
modeling features of the ABS framework [5] to automatically and safely inject the synthesized deployment
instructions into the existing ABS code.

Our ABS extension and the realization of the corresponding SmartDepl tool have been driven and validated
by considering the Fredhopper Cloud Services case study. Fredhopper Cloud Services offer search and
targeting facilities on a large product database to e-Commerce companies. Depending on the specific profile
of an e-Commerce company FRH has to decide the most appropriate customized deployment of the service.
Currently, such decisions are taken manually by an operation team which decides customized, hopefully
optimal, service configurations taking into account several aspects like, for instance, the level of replications
of critical parts of the service to ensure high availability. The operators manually perform the operations
to scale up or down the system and this usually causes the over-provision of resources for guaranteeing the
proper management of requests during a usage peak. With our extension of ABS, we have been able to realize
a new modeling of the Fredhopper Cloud Services in which both the initial deployment and the subsequent
up- and down-scale is expected to be executed automatically. This new model is a first fundamental step
towards a new more efficient and elastic deployment management of the Fredhopper Cloud Services.

1.2 Modeling and Analysis of Deployment Strategies in ABS

Shifting deployment decisions from the deployment phase to the design phase of a software development
process calls for the possibility to perform model-based validation of the chosen decisions during the software
design. However, virtualized computing poses new and interesting challenges for formal methods because we



Envisage Deliverable D1.3.2 Modeling of Deployment (Final Report)

need to express deployment decisions in formal models of distributed software and analyze the non-functional
consequences of these deployment decisions at the modeling level. A popular example of cloud infrastructure
used in industry is Hadoop [2], an open-source software framework available in cloud environments from
vendors such as Amazon, HP, IBM, Microsoft, and Rackspace. YARN [9] is the next generation of Hadoop
with a state-of-the-art resource negotiator. We have developed ABS-YARN, a generic framework for modeling
YARN infrastructure and job execution. Using ABS-YARN, modelers can easily prototype a YARN cluster
and evaluate deployment decisions at the modeling level, including the size of clusters and the resource
requirements for containers depending on the jobs to be executed and their arrival patterns. Using ABS-
YARN, designers can focus on developing better software to exploit YARN in a cost-efficient way.

The basic approach to modeling resource management for cloud computing in ABS is a separation of
concerns between the resource costs of the execution and the resource provisioning at (virtual) locations.
Upon modeling of the resource management in ABS, we can use the executable semantics of ABS, defined
in Maude, as a simulation tool. ABS-YARN has been defined to support easy-to-use rapid prototyping of
YARN-based applications, in such a way that the ABS simulation tool can be subsequently used to perform
evaluation of the designed application.

To validate ABS-YARN, we comprehensively compared the results of model-based analyses using our
modeling framework with the performance of a real YARN cluster by using several Hadoop benchmarks to
create a hybrid workload and designing two scenarios in which the job inter-arrival time of the workload
follows a uniform distribution and an exponential distribution, respectively. The results demonstrate that
ABS-YARN models the real YARN cluster accurately in the uniform scenario. In the exponential scenario,
ABS-YARN performs less well but it still provides a good approximation of the real YARN cluster. The
main contributions can be summarized as follows:

1. We introduce ABS-YARN, a generic framework for modeling software targeting YARN. Using ABS,
designers can develop software for YARN on top of the ABS-YARN framework and evaluate the
performance of the software model before the software is realized and deployed on a real YARN cluster.

2. ABS-YARN supports dynamic and realistic job modeling and simulation. Users can define the number
of jobs, the number of the tasks per job, task cost, job inter-arrival patterns, cluster scale, cluster
capacity, and the resource requirements for containers to rapidly evaluate deployment decisions with
the minimum costs.

3. We comprehensively evaluate and validate ABS-YARN under several performance metrics. The results
demonstrate that ABS-YARN provides a satisfiable modeling to reflect the behaviors of real YARN
clusters.

1.3 Structure of the Deliverable

The remainder of this deliverable is composed of three sections, one for each of the three main contributions.
Chapter 2 details SmartDepl, the new tool for the declarative programming of deployment in ABS, supporting
also dynamic upscale/downscale. Chapter 3 presents ABS-YARN for the modeling of applications based on
the Apache Hadoop YARN technology for resource management and job scheduling. Finally, Chapter 4
reports the description of the ABS Cloud API. The deliverable includes also two technical appendixes, each
one containing a technical paper: the first one (in Appendix details SmartDepl, while the second one (in
Appendix [Bf) discusses ABS-YARN.



Chapter 2

Declarative Elasticity in ABS

In D1.3.1 we already discussed how to automatize the instantiation of the initial static deployment of an
ABS model. The ABS code was synthesized by an external engine based on the Zephyrus tool [6]. Our main
source of inspiration for that preliminary work has been provided us by the FRH case study, in particular the
problem of customizing the deployment of instances of the Fredhopper Cloud Services based on the customer
profile (e.g. the expected number of final clients, possible usage peaks, etc.). Reasoning about deployment
at the modeling level can have several interesting benefits. For example, in the case of Fredhopper Cloud
Services, it can be a valuable support to the decisions currently taken by the so-called operations team
responsible to actually deploy the Fredhopper Cloud Services instances.

However, there are interesting aspects related to the FRH case study that we were unable to address
in our preliminary work. In particular, the number of requests can vary greatly over time, and typically
depends on several factors. Figure is a typical real-world graph for a single day (with data up to 18:00)
showing the number of queries per second (y-axis, ranging from 0-25 gps, the horizontal dotted lines are
drawn at 5,10,15 and 20 qps) over the time of the day (x-axis, starting at midnight, the vertical dotted lines
indicate multiples of 2 hours). A low in demand is clearly observable between 2am - 5am, and this typically
occurs every day. Moreover, peaks can occur during promotions of the shop or around Christmas.

This dynamic variation of the number of requests over time in the FRH case study, suggested us to improve
our previous work to support also automatic dynamic deployment, namely its upscale and downscale. This
extension required a complete re-design of our approach. In our preliminary work, the external deployment
engine synthesized ABS code to be manually copy-pasted in the ABS specification. This is not a viable
solution for dynamic deployment modifications because, for instance, upscale actions executed within a loop
should be distinct between one cycle and the subsequent one. For this reason, we have promoted the notion
of deployment as a first-class citizen of the language. A deployment is now an object on which methods
like deploy, or undeploy, can be invoked to execute, or cancel, the corresponding deployment actions. For
instance, in case of a loop, a new distinct deployment object can be instantiated at each cycle.

The external engine generates the class declaration for the deployment objects. In the ABS specification,
wherever deployment actions are needed, the programmer can declaratively specify a corresponding deploy-
ment class. More precisely, two kinds of information are expressed: (i) the constraints on the new target
configuration and (ii) the objects and deployment components already available that can be used in the new
configuration. The external engine generates the ABS code for the required deployment classes as follows:
it first synthesizes the new configuration (minimizing the costs for new deployment components) and then
generates an ABS class implementing a predefined SmartDeploylnterface, that includes the above mentioned
deploy and undeploy methods. Instead of using manual copy-paste on the generated code, we now use the
delta modules and the variability modeling features of the ABS framework [5] to automatically and safely
inject the deployment instructions into the ABS specification.

It is worth to mention that we also re-engineered the external deployment engine by realizing a new
tool named SmartDepl. Such tool uses Zephyrus2 (freely available at https://jacopomauro@bitbucket.
org/jacopomauro/zephyrus2.git) which is a new implementation of the Zephyrus tool that was used in
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Figure 2.1: The number of queries per second over time (green part represents the query processing time).

our previous work. Zephyrus2 supports a more expressive language for declaration of the constraints on
the desired configuration. In particular, the new language includes also universal and existential quantifiers.
Another more technical novelty is concerned with the exploitation of MiniSearch [I6] to support a more
efficient and flexible framework for planning search strategies.

In the remainder of this Chapter we describe more precisely our contribution by (i) reporting the way
functional dependencies and resource consumption annotations can be added to ABS classes, (ii) describing
how to use and how we implemented the SmartDepl tool and (iii) showing its application to the modeling of
dynamic deployment issues in the FRH use case.

2.1 Annotated ABS

The way deployment information are included in an ABS specification was not changed since the previous
preliminary deliverable. Here, we quickly report a simple example of how deployment components are
modeled according to the new version of the ABS Cloud API (described in Chapter [4]) and how classes can
be annotated with deployment information. For a detailed description we refer the interested reader to [7]
(which was also a technical annex of D1.3.1).

As already mentioned, the basic element to capture deployment in ABS is the deployment component,
which is a container for objects. A deployment component, intuitively, may model a virtual machine running
objects that may represent the possible services that are offered by the virtual machine. The ABS Cloud API
allows the programmer to model a cloud provider as a supplier offering a given set of deployment components,
each one with its own resources and cost.

CloudProvider cProv = new CloudProvider ("Amazon");
cProv.addInstanceDescription(Pair ("c3",
InsertAssoc (Pair(CostPerInterval,210),
InsertAssoc (Pair (Memory,7500),
InsertAssoc (Pair (Cores,4), EmptyMap)))));

DeploymentComponent dc = cProv.prelaunchInstanceNamed("c3");
[DC: dc] Service s = new QueryServiceImpl();
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In the ABS code above, the cloud provider “Amazon” is modeled as the object cProv of type CloudProvider. The
fact that “Amazon” can provide a virtual machine of type “c3” is captured by calling the addInstanceDescription
in Line 2. With this instruction we also specify that c¢3 virtual machines cost 210 cents per hour and provide
7.5 GB of RAM and 4 cores. In Line 6 an instance of “c3” is launched and the corresponding deployment
component is saved in the variable dc. Finally, in Line 6, a new object of type QueryServiceImpl (implementing
the interface Service) is created and deployed within the deployment component dc.

In ABS it is possible to declare interface hierarchies and define classes implementing them.

interface Service { ... }

interface IQueryService extends Service { ... }

class QueryServiceImpl(DeploymentService ds, Bool staging)
implements IQueryService { ... }

In the excerpt of ABS above, the IQueryService service is declared as an interface that extends Service, and
the class QueryServiceImpl is defined as an implementation of this interface. Notice that the initialization
parameters required at object instantiation are indicated as parameters in the corresponding class definition.
Classes can be enriched with annotations that denote the resources consumed and the functional require-
ments of an object of that class.
[ Deploy: scenario[Name("staging"), Cost("Cores", 2), Cost("Memory",7000),
Param("staging", Default("True")), Param("ds", Req)] 1]

[ Deploy: scenario[Name("live"), Cost("Cores", 1), Cost("Memory",3000),
Param("staging", Default("False")), Param("ds", Req)] ]

The previous two annotations, assumed to be associated to the declaration of the class QueryServiceImpl,
describe two possible deployment scenarios for the objects of that class. The first annotation captures the
deployment of a Query Service in staging modality while the second one captures the deployment of the
Query Service in live modality. A Query Service in staging modality requires 2 cores and 7GB of RAM while
in live mode it only requires 1 core and 3GB of RAM. The creation of a Query Service Object requires an
object of type DeploymentService that is associated with the parameter dc while the parameter staging is set
to true or false according to the desired deployment scenario.

2.2 Deployment Declaration and Synthesis

When a system deployment should be automatically computed, a user must first specify the specific goals
he expects to reach. For instance, in the considered Fredhopper Cloud Services use case, the initial goal is
to deploy a given number of Query Services and a Platform Service, possibly located on different machines
(e.g., to improve fault tolerance) and later on to upscale or downscale the system according to the monitored
traffic.

All these goals can be expressed in the Declarative Requirement Language (DRL): a new language for
stating the constraints that the final configuration should satisfy.

As shown in Table that reports the DRL grammar defined using the ANTLR toolE] a goal is expressed
as a boolean formula b_expr obtained using the usual logical connectives over comparison of arithmetic
expressions. The atom of this arithmetic expression may be integers (Line 6), a quantifier statement (Line
7), a sum statement (Line 8) and an identifier for the number of deployed objects (Line 9). The number of
objects deployed using a given scenario is defined by its class identifier and the scenario name enclosed in
square brackets (Line 12).

As an example the following formula requires the presence of at least an object of class QueryServiceImpl
deployed in staging mode.

QueryServiceImpl [staging] > O

The square brackets may be omitted (Line 12 - first option) for objects that have only one default
deployment scenario. Regular expressions (RE in Line 12) can be used to match objects deployed using

!ANTLR. (ANother Tool for Language Recognition) - http://www.antlr.org/
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b_expr : b_term (bool_binary_op b_term )x* ;

b_term : (’not’)? b_factor ;

b_factor : ’true’ | ’false’ | relation ;

relation : expr (comparison_op expr)? ;

expr : term (arith_binary_op term)* ;

term : INT |
(’exists’ | ’forall’) VARIABLE ’in’ type ’:’ b_expr |
’sum’ VARIABLE ’in’ type ’:’ expr |
(C ID | VARIABLE | ID [’ INT °]’ ) ’.°)7 objId |
arith_unary_op expr |
>(’ b_expr )’ ;

objId : ID | VARIABLE | ID [’ INT ’]’ | ID [’ RE ’]’;

type : ’obj’ | ’DC’ | RE ;

bool_binary_op : ’and’ | ’or’ | ’dimpl’ | ’iff’ ;
arith_binary_op : ’+’ | =2 | 7%’ ;

arith_unary_op : ’abs’ ; // absolute walue
comparison_op : <=’ | =7 | >=2 | <’ | >0 | =2

Table 2.1: DRL grammar.

different deployment scenarios. The number of deployed objects can also be prefixed by a deployment
component identifier to denote just the number of objects defined within this specific deployment component.
As an example, the deployment of exactly one object of class DeploymentServiceImpl on the first and on the
second instance of a “c3” virtual machine can be enforced as follows.

c3[0] .DeploymentServiceImpl

= 1 and
c3[1] .DeploymentServiceImpl =

1

Here the 0 and 1 numbers between the square brackets represent respectively the first and second virtual
machine of type “c3” . To shorten the notation, the [0] can be omitted (Line 9)E|

It is possible to use also quantifiers and sum expressions to capture more concisely some of the desired
properties. Variables are identifiers prefixed with a question mark. As specified in Line 13, quantifiers and
sum term variables can range on all the possible objects (’obj’), all the deployment components (’pc’), or
just on all the virtual machines which names match a given regular expression (RE).

Using such constraint it is possible to express more elaborate constraints like the co-location or distri-
bution of objects, or limit the amount of objects deployed on a given DCE| As an example, to enforce the
constraint that every Query Service requires a Deployment Service installed on its virtual machine we can
require the following.

forall 7x in DC: (
?x.QueryServiceImpl[’.*x’] > 0 impl
?x.DeploymentServiceImpl > O

)

Here we use the regular expression ’.x’ to match with all the possible deployment modalities (either
staging or live) for the Query Services. Note that the syntactic element *imp1’ denotes logical implication.

Finally, requiring for instance the load balancer to be installed alone in a virtual machine can be done
as follows.

forall ?x in DC: (
?x.LoadBalancerServiceImpl > O impl
(sum ?y in obj: ?x.7y) = 7?x.LoadBalancerServicelImpl

2We assume that the user could launch only a bounded number of deployment components. In particular, for every cloud
deployment type SmartDepl allows to specify the maximal number of deployment components that can be created.

3DRL improves on the specification language presented in [7] because the addition of the quantifiers and the sum terms allows
the user to write her desiderata in a more concise and natural way.

10
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{ "id": "AddQueryDeployer",
"specification": "QueryServiceImpl[live] = 1",
"obj": [ { "name": "platformObj",
"provides": [ {
"ports": [ "MonitorPlatformService",
"PlatformService" 1],
"num": -1 } ],
"interface": "PlatformService" },
{ "name": "loadBalancerObj",
"provides": [ {
"ports": [ "LoadBalancerService" 1],
"num": -1 } 1,
"interface": "LoadBalancerService" },
{ "name": "serviceProviderObj",
"provides": [ {
"ports": [ "ServiceProvider" 1],
"num": -1 } 1,
"interface": "ServiceProvider" } 1],

"DC" : [] }

Table 2.2: JSON annotation example.

SmartDepl is the tool that we have implemented to automatize deployment. More concretely, we require
the program to specify all its deployment needs by enriching the ABS code with specific annotations (see
Table for an example of such annotations that we will describe later on). SmartDepl processes them and
generates, for every deployment need, a new class that specifies the deployment steps to reach the desired
target. This class can be used to trigger the execution of the deployment but also to undo it in case the
system needs to downscale.

As an example, imagine that an initial deployment of the Fredhopper Cloud Services has been already
obtained and that, for example due to a usage peak, it is necessary to add 1 Query Services in live mode.
The annotation required by SmartDepl for capturing this need is the JSON object defined in Table

In Line 1, by using the keyword "id" the programmer specifies that the name of the class containing the
deployment code is AddQueryDeployer. As we will see later, the user can exploit this name to upscale and
downscale the system assuming the class existence. The second line contains the desired configuration in
DRL. By using the keyword "obj", Lines 3-18 define objects that are assumed to be already available, hence
are not needed to be re-deployed. Assuming that the user has already a working Fredhopper Cloud Services,
he knows indeed that there is already a Platform Service, a Load Balancer and a Service Provider deployed.
Every available object is defined by assigning to it a unique name (keyword "name" in Lines 3,9,14), the
interfaces it provide (keyword "port" in Lines 5-6,11,16) with the amount of other objects that can use them
(keyword "num" in Lines 7,12,17 — in this case a -1 value means that the object can be used by an unbounded
number of other objects), and the object type (keyword "interface" in Lines 8,13,18). Finally, by using the
keyword "pc" it is possible to specify if there are existing deployment components with free resources that
can be used to deploy new objects inside them. In this case, for fault tolerance reasons we want to deploy
the new objects in new machines and therefore "pc" is left empty (Line 19).

For the interested reader, the formal specification of the JSON annotation is defined in https://github.
com/jacopoMauro/abs_deployer/blob/smart_deployer/spec/smart_deploy_annotation_schema. jsonl

Once the annotation is given the programmer may freely use this class. For instance, the ABS code below
upscales and downscales the system based on a monitor decision.

while ( ... ) {
if ( monitor.scaleUp() ) {
SmartDeploylnterface depObj = new AddQueryDeployer(cProv, platformService, loadBalancerService, serviceProvider);
depObj.deploy();
depObjList = Cons(depObj,depObjList);
} else if ( (monitor.scaleDown()) && (depObjList != Nil) ) {

D s W N =
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7 SmartDeploylnterface depObj = head(depObjList);
8 depObijList = tail(depObjList);
9 depObj.undeploy(); } }

The idea is to store the references to deployment decisions in a list called depObjList. When the monitor
decides to upscale by adding new Query Services (Line 2) a new deployment object is created (Line 3). In
this case AddQueryDeployer is the name associated with the annotation previously discussed. Its first parameter
is the cloud provider, as defined for instance in Section [2.1] The following parameters are the objects already
available for the deployment that do not need to be re-deployed from scratch. These are given according to
the order they are defined in the annotation in Table The interface of this class is SmartDeploylnterface which
is initially an empty interface that SmartDepl populated with: i) a deploy method to realise the deployment of
the desired configuration, ii) an undeploy method to undo the deployment gracefully by removing the virtual
machine created with the application of the deploy method, iii) getter methods to retrieve the new list of
objects and deployment components created by running the deploy method (e.g., to retrieve the list of all
the Query Services created by depObj.deploy() it is possible to call the operation depObj.getlQueryService()). The
real addition of the Query Service is performed in Line 4 with the call of the deploy method. If instead the
monitor decides to downscale (Line 6), the last deployment solution is retrieved (Line 7) and then the action
performed by the deployment are undone by calling the undeploy methodE]

Technically, SmartDepl is written in python (~1k lines of code) and relies on Zephyrus2, a configuration
optimizer that given the user desiderata and a universe of components was able to compute the optimal
configuration satisfying the user needsE] SmartDepl uses the cost annotations as defined in Section to
compute a configuration that satisfies the user requirements minimizing the cost of the deployment compo-
nents that need to be created and, in case of ties, minimizing also the number of created objects. Once a
configuration is obtained, SmartDepl uses a topological sort to take into account all the object dependen-
cies and establishes the correct sequence of deployment instructions to realise the computed configuration.
SmartDepl generates the code of the classes and the methods to inject to the interface exploiting Delta Model
techniques [5]. SmartDepl notifies the user in case no configuration can satisfy the desiderata, e.g., when the
specification is too restrictive. Moreover, SmartDepl also notifies the user when it is unable to generate a
sequence of deployment actions due to mutual dependencies between the objectsE]

As an example the deploy code generated by SmartDepl for the annotation defined in Table is the
following.

1 Unit deploy() {

2 DeploymentComponent c¢3_ 0 = cloudProvider.prelaunchinstanceNamed("c3");
3 Is_DeploymentComponent = Cons(c3_0,Is_DeploymentComponent);

4 [DC: c3_ 0] DeploymentService oDef ~ DeploymentServicelmpl 0 ¢3 0 =
5 new DeploymentServicelmpl(platformObj);

6 Is_DeploymentService = Cons(oDef  DeploymentServicelmpl 0 ¢3 0,

7 Is_DeploymentService);

8 [DC: c3_0] IQueryService olive_ QueryServicelmpl 0 c3 0 = new

9 QueryServicelmpl(oDef  DeploymentServicelmpl 0 c3 0, False);

10 Is_IQueryService = Cons(olive  QueryServicelmpl 0 c3 0, Is_IQueryService);
11 Is_Service = Cons(olive_ QueryServicelmpl 0 c3 0, Is_Service);
12 Is_EndPoint = Cons(olive  QueryServicelmpl 0 c3 0, Is_EndPoint);

13} B

In the previous code, at Line 3, a new deployment component ¢3 0 is created. At Lines 4-5 an object of class
DeploymentService is created. This is due to the fact that every Query Service requires its Deployment Service
(i.e., it is one of the required parameters, cfr. Section [2.1]) and therefore this object needs to be created and

4Since ABS does not have an explicit operation to force the removal of objects the undeploy procedure just removes the
references to these objects leaving the garbage collector to actually remove them. The deployment components created by the
deploy methods are removed instead using an explicit kill primitive provided by ABS.

®SmartDepl Zephyrus2 (freely available at https://jacopomauro@bitbucket .org/jacopomauro/zephyrus2.git) is a com-
pletely new re-engineering of the previously used Zephyrus solver [6].

5This occurs when the creation of an object requires the execution of a complex protocol like for instance what happens for
the boostrapping of Linux distribution [I].
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Figure 2.2: SmartDepl execution within the ABS toolchain IDE.

deployed before the Query Service. In Lines 8-9 the desired object of class IQueryService is finally created.
Both tobjects are deployed on ¢3 0.

SmartDepl is open source and freely available from https://github.com/jacopoMauro/abs_deployer/
tree/smart_deployer. Asshown in Figure SmartDepl has also been integrated into the ABS toolchainm
i.e., an IDE and a collection of tools for writing, inspecting, checking, and analyzing ABS programs developed
withing the Envisage European project.

2.3 Application to the FRH use case

In this section we report about the modeling with SmartDepl of the concrete deployment requirements of the
Fredhopper Cloud Services.

SmartDepl was used twice: to synthesize the initial static deployment of the entire framework and for
dynamically adding (and then removing) single instances of Query Services in case the system needs to scale
(up or down). Since Fredhopper Cloud Services is using Amazon EC2 Instance Types we used two types
of deployment components corresponding to the “xlarge” and “2xlarge” instances of the Compute Optimized
instances (version 3)E| of Amazon. Moreover, for fault tolerance and stability, Fredhopper Cloud Services
uses instances in multiple regions in Amazon (regions are geographically separate, so even if there is a force
magjeure in one region, other regions are not necessarily affected). We model the instance types in different
regions as follows: “c3 xlarge eu”, “c3_xlarge us”, “c3_2xlarge eu”, “c3 2xlarge us” (“eu” refers to a
European region, “us” refers to an American region).

The static deployment of the system requires the deployment of a Load Balancer, a Platform Service, a
Service Provider, 2 Query Services among whom at least one in staging mode. This can be easily expressed
as follows.

"http://abs-models.org/installation/
Shttps://aws.amazon.com/ec2/instance-types/
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Figure 2.3: Example of automatic objects allocation to deployment components.

LoadBalancerServicelmpl = 1 and PlatformServicelmpl = 1 and
ServiceProviderlmpl = 1 and QueryServicelmpl[staging] > 0 and
QueryServicelmpl[staging] + QueryServicelmpl[live] = 2

For the correct functioning of the system a Query Service requires a Deployment Service installed on the same
machine. This constraint can be expressed as shown in Section The requirement that a ServiceProvider
is present on every machine containing a Platform Service can be expressed as follows.

forall ?x in DC: (?x.PlatformServicelmpl > 0 impl ?x.ServiceProviderlmpl > 0)

Not all services can be freely installed on an arbitrary virtual machine. To increase fault tolerance Fred-
hopper Cloud Services require that the Load Balancer, the Query/Deployment Services, and the Platform
Service/Service Provider are never co-located on the same virtual machine. This can be easily expressed as
shown at the end of Section 2.2

As mentioned above, to cope with catastrophic failures, Fredhopper Cloud Services distribute the Query
Services among the available regions. This can be enforced by constraining the number of the Query Services
in the different data centers to be equal. In DRL this can be expressed using regular expressions as follows.

(sum ?xin ".x_eu': ?x.QueryServicelmpl['.x']) =
(sum ?x in ".x_us': ?x.QueryServicelmpl['.%"])

Another constraint in the Fredhopper Cloud Services is that, for performance reasons, the Query Service in
Staging mode should be located in the same region as that with the Platform Service, since Amazon connects
instances in the same region with low-latency links. For the European data-center this can be expressed by:

(sum ?x in ".x_eu': ?x.QueryServicelmpl[staging]) > 0) impl
(sum ?x in ".x_eu': ?x.PlatformServicelmpl ) > 0)

With this specification, SmartDepl is able to compute that the initial configuration that minimizes the
total costs per interval is the one depicted in Figure that uses two “xlarge” instances in Europe for
deploying the Load Balancer and the Platform Service, one “2xlarge” instance in Europe to deploy the Query
Service in staging mode, and one “xlarge” instance in Europe to deploy the Query Service in live mode.

After this initial deployment, if there is need to scale up, two Query Service instances are added (one in an
EU region, and one in an US region for balancing across regions). On the other hand, if there is unnecessary
overcapacity, the most recent ones can be shut down. However, since the decision to scale is a manual
process by the Cloud operations team, and FRH has very aggressive SLAs, the operations team is typically
conservative with downscaling, leading to potential over-spending. The ability of SmartDepl to deploy in
the programming language (ABS) itself allows to put auto-scaling on a rigorous basis. Furthermore, while
the operations team currently use ad-hoc scripts to configure newly added or removed service instances,
and these scripts are specific to the infrastructure provider, SmartDepl automatically generates code that
accomplishes this (for example, see Table .

To automatically generate the desired deployment configuration, SmartDepl uses as specification all the
previous constraints except that now instead of requiring a Platform Service and a Load Balancer we simply
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require two Query services in live mode. In this case, as expected after the deployment of the initial
framework, the best solution is to deploy one Query Service in Europe and one in US using “xlarge” instances.

SmartDepl is able to compute the optimal deployment configurations and generate the code in less than
5 seconds. The ABS model used with all the annotations and specifications is available at https://github.
com/ jacopoMauro/abs_deployer/blob/smart_deployer/test
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Chapter 3

Modeling YARN in ABS

3.1 Dynamic Resource Management

A common strategy for web applications these days, especially in early development and deployment, is
to acquire the needed resources (server, storage, bandwidth) from a cloud infrastructure provider such as
Amazon, Windows or Google, instead of purchasing server hardware and data centre space. In that way,
initial costs can be kept low while still keeping the flexibility to react quickly to demand growth [4].

Deliverable D1.3.1 presented various examples of how resource management can be integrated in ABS
models of resource-aware applications. In those examples we integrated the resource management strategies
in the client layer (see Figure which is taken from the DoW). The examples used a simple and initial
version of a Cloud API which were only focused on computer resources and which was originally developed
in [12) 13]. Chapter 4] discusses the current status of the Cloud API. In this chapter, we will now discuss in
a high-level manner some dimensions of dynamic resource management as encountered during our work in
the Envisage project.

Formal Service Contract

Formal Methods

. Executable Model of Client Layer “early analysis”
Simulation

“early modeling’

Cloud API

Provisioning

B . L
Provisioning Layer runtime monitoring

Figure 3.1: The approach to modeling services in Envisage.

3.2 Dimension 1: The Management of Available Resources

Dynamic resource management assumes that there is a number of resources available to the program. In the
simplest case, this may simply be a single resource (e.g., a server), in which case the role of the dynamic
resource manager would be to prioritise on the ordering of jobs sent to the server. Figure depicts a typical
scaling points for web applications: the workers that deal with the actual transactions from clients. These
typically receive requests from a service endpoint which distributes html-queries to the workers. Note that
there may be several other scaling points in an application. In the rest of this chapter, we shall focus on this
scaling point and ignore other possible scaling points in the application.

A resource manager implements a policy for the utilisation of a pool of resources. There can be many
different policies for resource management, both with respect to the selection of the job (which we call the
application management) and the selection of the resource (which we call the resource management). For
simplicity, we here assume that all jobs have equal priority and focus on the selection of the resource. (ABS
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Figure 3.2: Scaling points.

supports customised schedulers for COGs which allow, e.g., priorities between jobs or earliest-deadline-first

policies to be expressed at the abstraction level of the functional layer of the language [3].) For the selection
of resources, we believe there are in practice basically two general strategies:

e Round-robin: the goal is to distribute jobs equally between the available resources

e Saturation: the goal is to fill the first resource up to capacity (e.g., a given level of acceptable load)
before starting to use the next resource.

We have also experimented with more esoteric (i.e., highly application-specific) policies as one would get
if different kinds of jobs have very different deadlines or the resources differ significantly in profile (e.g., a
cheap, slow-running machine and an expensive, fast-running machine).

Resource
Manager

Request
resource

Resource Pool

/

Worker l—— =1 Worker

Figure 3.3: The resource manager.

Service
End Point

Processing
request

A service running with dynamic resource management will typically have one COG implementing the
application manager with the business logic and another COG implementing the resource manager, as de-
picted in Figure This is not necessary but has the advantage of providing a separation of concerns such
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that the task selection as well as the resource manager can be replaced by another, implementing a different
policy, without interfering with the rest of the system.

Many cloud systems restrict their dynamic resource management to this dimension of load distribution
and fix the number of available resources before starting the application. One example of such a system
is HADOOP, which in its modern version uses the YARN resource negotiator to manage the utilisation of
resources.

We can illustrate a load balancer in ABS, realising the resource manager component of Figure [3.3] by
the very simple class in Figure The class implements the interface LoadBalancer with two methods for
acquiring and releasing a resource, respectively. The application manager will interact with the resource
manager by means of these methods. Here the Worker objects represent the application-level resources;
i.e., the workers are deployed on one deployment component each, but this is transparent to the resource
management policy. The class RoundRobinLoadBalancer implements a round robin resource management
policy where a worker is never allocated for two requests at the same time. Note that a request for a worker
will be suspended if the resource manager has no available workers.

Example:

interface LoadBalancer {
Worker getWorker();
Unit releaseWorker(Worker w);

}

class RoundRobinLB(List<Worker> resources) implements LoadBalancer {
List<Worker> available = resources;

Worker getWorker(){
Worker w;
await (available = Nil);
w = head(available);
available = tail(available);
return w;

}

Unit releaseWorker(Worker w){
available = appendright(available,w);
}

}

Figure 3.4: A class implementing a simple resource manager in ABS

3.3 Dimension 2: Scaling

Scaling is a dimension of dynamic resource management which is orthogonal to the previous discussion.
Scaling is concerned with fixing the number of resources available to the resource manager. Scaling may be
a static decision, a manual decision at runtime, or the decision-making may be integrated in the application
(so-called auto-scaling). For example in HADOOP YARN, the number of slave nodes for the big data
processing is fixed in advance. For the Fredhopper case study of Envisage, the current production system
does manual scaling. Auto-scaling requires a good understanding of thresholds for congestion and for the
increase in expenses, and we believe a model-based approach such as the one developed in Envisage may help
in gaining confidence in the adequacy of a considered auto-scaling algorithm.

The auto-scaling component depicted in Figure is primarily responsible for adding or removing
resources from the pool managed by the resource manager. Before we illustrate how an auto-scaling
component may be realised in ABS, we observe that since the resource manager encapsulates the queue
of available resources, the actual addition or removal of resources in our example must be handled by
RoundRobinLoadBalancer (or the queue must be made external to the two components). Hence, we first
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revise our class from Figure [3.4 with a few additional features. The revised class is depicted in Figure [3.6] on
Page 20l The new interface ResourceController exports methods to add or remove a worker with an associ-
ated deployment component). The class RoundRobinLB is now interacting with the Cloud API via the class
parameter cloud to acquire and release virtual machine instances with a given resource specification spec. In
this example, we also let the RoundRobinLB report to the auto-scaler component at regular intervals about
the length of its queue of available workers. This is done by the run method.

We can now illustrate how a scaling component may be implemented in ABS by the class ScalingManager
below. In this example, the scaling component receives updates about the length of two queues: one for the
number of pending tasks, as monitored by the application manager, and the other for the number of available
resources as discussed above. The auto-scaling strategy decides to add or remove deployment components
depending on thresholds upper and lower for the ratio between the two queues.

Example:

interface ScalingAPI {
Unit jobQueuelLength(Int n);
Unit workerQueueLength(Int n);
Unit register(WorkManager rm);

class ScalingManager(Rat lower, Rat upper) implements ScalingAPI {
Int jobQueue = 0;
Int workerQueue = 0;
ResourceManager resourcemanager;

Unit run(){
await duration(1,1); // activate at certain intervals (here every time interval)
// check conditions for scaling up
if (jobQueue > upper * workerQueue) { resourcemanagerladdWorker(); }
// check conditions for scaling down
if (jobQueue < lower * workerQueue) { resourcemanager!removeWorker(); }
// wait for time to pass, then repeat
this!run();

}

Unit register(ResourceManager r){resourcemanager = r;}
Unit jobQueuelLength(Int n){jobQueue=n;}
Unit workerQueueLength(Int n){workerQueue=n;}
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Example:

interface LoadBalancer {
Worker getWorker();
Unit releaseWorker(Worker w);

interface ResourceController {
Unit addWorker();
Unit removeWorker();

interface FullLoadBalancer extends LoadBalancer, ResourceController {}

class RoundRobinLB(List<Worker> resources, CloudAPI cloud,
ResourceSpec spec, ScalingAPI scaler) implements FullLoadBalancer {

List<Worker> available = resources;

Unit run(){
while (True) {
await duration(1,1);
scalerlworkerQueuelength(length(available));
}
}

Worker getWorker(){
Worker w;
await (available != Nil);
w = head(available);
available = tail(available);
return w;

}

Unit releaseWorker(Worker w){
available = appendright(available,w);
}

Unit addWorker(){
// We launch a new virtual machine instance, and deploy the worker on it
DC machine = await cloud!launchlnstance(spec);
[DC: machine] Worker w = new WorkerObject(db);
available = appendright(available,w);

}

Unit removeWorker(){ // To scale down
// Our invariant is that we have one worker per virtual machine instance
// If the worker is available, its machine is idle and we can release the machine.
if (available != Nil) {
Worker w = head(available); available = tail(available);
DC machine = await w!getDC(); cloud!releaselnstance(machine);

}
}

Figure 3.6: A class implementing a simple resource manager in ABS
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3.4 Service-Level Agreements and Scaling

The scaling policy of the auto-scaler can be made parametric in a service contract. For example, it could log
the ratio of deadline violations and the total number of jobs for a given custom SLA, and use the distance
to the promised performance as a criterion for scaling in a similar way to the upper and lower thresholds
above.

3.5 Deploying Containers on Virtual Machines

A typical problem when working with containers is the mapping between the containers and the underlying
virtual machines; e.g., two containers with 2 cores each can be mapped to a virtual machines with five cores,
but three containers can not be mapped to the same virtual machine. When modeling containers-based
systems in ABS, it is therefore natural to use deployment components to model the containers rather than
the virtual machines, and simply use a table to keep track of available resources on different virtual machines
when doing container-level resource management. For example, if the workers of our running example were
deployed on containers, the machines of the addWorker method of Figure would need to find enough
available resources on one of the virtual machines before the worker could be deployed on that virtual
machine and made available to the application.

3.6 Example: ABS-Yarn

We have studied the modeling of dynamic resource management strategies for containers in ABS by a case
study of HADOOP YARN [9], a popular MapReduce framework for big data processing with a slightly more
complex resource management (see Figure . This work combines containers mapped to slave nodes with
a state of the art resource management strategy. We have also used this model to study the precision of
our model in terms of an empirical evaluation, comparing configurations of HADOOP YARN in ABS with
benchmarks running on a cluster of 30 virtual machines. The results are reported in [14]; the paper is
attached as an appendix to this deliverable.
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Figure 3.7: The architecture of HADOOP YARN.
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Chapter 4

The ABS Cloud API

This chapter describes the facilities for modeling cloud deployment. This chapter supersedes the correspond-
ing chapter in Deliverable D1.3.1 and presents the Cloud API as validated by the case studies.

This section builds upon Deliverable D1.2.2, which discusses resource modeling and its effects on model
simulation using deployment components. This section shows support for modeling complex deployment
scenarios in ABS and how this is applied in the case studies.

All ABS identifiers (classes, interfaces, functions, data types) mentioned in this chapter are either con-
tained in the standard library or exported from the module ABS.DC if not otherwise mentioned. An import
clause import x from ABS.DC; in module declarations enables the code fragments to run.

4.1 Datatypes, Expressions and Resource Configurations

As mentioned in Deliverable D1.2.2, deployment components are involved in modeling resource configurations
and deployment scenarios. All COGs (and their objects and processes) are deployed on some deployment
component, which will restrict execution capacity according to its resource configuration. This section
expands on the use of deployment components.

Finding the current deployment component. The function thisDC() returns a reference to the current
deployment component, i.e., the deployment component that contains the COG on which the current process
is running.

Resource Configurations. The datatype ResourceType, as described in Deliverable D1.2.2, has construc-
tors for the resource types in use in ABS. Currently, the resource types are Speed, Cores, Bandwidth and
Memory. A resource configuration assigns numeric values to a subset of these resource types. Resource
configurations can be used to describe, create and query deployment configurations.

Additionally, the following attributes of deployment components are included in the resource configu-
ration: Startupduration, Shutdownduration, PaymentInterval, and CostPerInterval. These attributes provide
information about startup and shutdown behavior and cost accounting to CloudProvider instances.

Example:

def Map<Resourcetype, Rat> amazonSmalllnstance() =
map[Pair(Cores, 2), Pair(Memory, 10000),
Pair(Paymentinterval, 5), Pair(CostPerlnterval, 1)];

This example defines an amazonSmalllnstance to be a deployment component with 2 cores and 10000 memory
capacity. Note that there is no value given for bandwidth and speed; in this case, these attributes are deemed
to be either infinite or not necessary for purposes of the given model. Startup and shutdown happen instantly
since there is no value given for these attributes. Every 5 intervals, the cloud provider will incur 1 cost for
each deployment component running with this resource configuration.
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Infinite values. Cogs that are created outside any deployment component are in effect running on a
deployment component with a resource configuration with infinite resources of all types. To express infinity,
the module ABS.DC defines a datatype InfRat as follows:

data InfRat = InfRat | Fin(Rat finvalue);

The value of a resource can be either infinity (InfRat) or a finite value Fin(value). The concrete value can be
accessed via the finvalue() function. It is an error to call finvalue on an infinite value InfRat.

4.2 Modeling Machines: the DeploymentComponent Interface

As described in Deliverable D1.2.2, COGs are deployed on deployment components (via the [DC: x] annota-
tion to a new expression). A deployment component is created with a given resource configuration which
influences all COGs created on that deployment component.

Example:

DeploymentComponent dc = new DeploymentComponent("Small Server 1", amazonSmalllnstance());
[DC: dc] Worker w = new CWorker();

In this example, the new COG w (with an initial object of class CWorker and all objects that this object
creates without annotations) will run on the deployment component dc with the resource configuration
specified above.

Information about the current deployment component. The deployment component interface con-
tains methods that give access to information about the resource configuration and current resource usage.

Example:

[Atomic] Rat load(Resourcetype rtype, Int periods);
[Atomic] InfRat total(Resourcetype rtype);

The method load returns a value between 0 and 100 that represents the load (consumed resources vs. available
resources) for the given resource type over the last n periods. If the resource type is infinite in the resource
configuration of the deployment component, the load is always 0.

The method total returns the total capacity of the deployment component for the given resource type.
Note that the total capacity can be infinite, as in the case of an unspecified value when creating the deploy-
ment component.

Changing a resource configuration. For some simulation scenarios, it is expedient to modify the effec-
tive resource configuration. Usually these methods are called in a dedicated part of the model that implements
load monitoring and resource balancing. Note that the methods in this section are sufficiently general to
express a variety of theoretical and practical scenarios. For example, using Linux control groups, traffic
shaping etc. it is possible to manipulate CPU, bandwidth or available memory for certain types of virtual
machine or container deployments. The Cloud API supports these kinds of operations, but does not ensure
that the modeled scenarios are realistic wrt. some physical deployment scenario — it is the responsibility of
the modeler to ensure that models reflect the real system.
The following methods in the DeploymentComponent interface modify its resource configuration:

Example:

Unit incrementResources(Rat amount, Resourcetype rtype);
Unit decrementResources(Rat amount, Resourcetype rtype);
Unit transfer(DeploymentComponent target, Rat amount, Resourcetype rtype);
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Figure 4.1: The Amazon instance lifecycle (taken from http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-instance-lifecycle.html)

EBS-backed instances only

The methods incrementResources and decrementResources increment or decrement the total available re-
sources by the given amount. Neither have an effect when the resource type is infinite. In addition,
decrementResources will not decrement below zero resources.

Incrementing and decrementing resources becomes effective in the next time slot. For example, incre-
menting the CPU resource type by 5 will make 5 more resources of that type available in the next and every
subsequent time period.

The method transfer is a utility method implemented in terms of incrementing and decrementing re-
sources. It transfers a given amount of resources to the target deployment component.

4.3 Modeling the Deployment Component Lifecycle: the CloudProvider
Interface

Especially when going beyond static scenarios with a fixed number of deployment components, it is neces-
sary to manage the creation, allocation, deallocation and destruction of deployment components. In many
scenarios, the billing (cost) information is also an essential part of a model since it provides a quantitative
measurement of the fitness of different deployment and balancing scenarios (see [§] for an example).

During work on the Envisage and non-Envisage case studies, it became apparent that the DeploymentComponent
interface is not sufficient to properly model cloud-deployed systems. Similar solutions were re-implemented
multiple times in the following areas:

e Management of a pool of deployment components;

e Management of the deployment component lifecycle;

Modeling of accounting, tracking the cost of running machines of different sizes;

Modeling startup and shutdown times;
e Dynamic allocation and deallocation of deployment components.

The CloudProvider interface deals with modeling the lifecycle and billing information of a number of
deployment components. See Figure for the life cycle of a deployment component that is managed by a
cloud provider.

interface CloudProvider {
// (pre)launchinstance might have a delay, the others are instantaneous.
// launchinstance might hand out an already—running instance if it has
// been released; in this case there will be no delay.
DeploymentComponent prelaunchlnstance(Map<Resourcetype, Rat> d);
DeploymentComponent launchinstance(Map<Resourcetype, Rat> description);
// acquirelnstance, releaselnstance are called from deployment components.
// launchinstance does the equivalent of acquirelnstance.
Bool acquirelnstance(DeploymentComponent instance);
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Bool releaselnstance(DeploymentComponent instance);
Bool shutdownlnstance(DeploymentComponent instance);

[Atomic] Rat getAccumulatedCost();
[Atomic] Unit shutdown();

// Instance descriptions. Call setlnstanceDescriptions with a map of

// (name —> resources) information. Then, launchinstanceNamed() returns a

// deployment component with the specified resources, or null if the given

// name could not be found. The resulting deployment components are then

// handled as normal (acquire/release/kill).

[Atomic] Unit setlnstanceDescriptions(Map<String, Map<Resourcetype, Rat>> instanceDescriptions);
[Atomic] Unit addInstanceDescription(Pair<String, Map<Resourcetype, Rat>> instanceDescription);
[Atomic] Unit removelnstanceDescription(String instanceDescriptionName);

[Atomic] Map<String, Map<Resourcetype, Rat>> getlnstanceDescriptions();
DeploymentComponent prelaunchinstanceNamed(String instancename);

DeploymentComponent launchlnstanceNamed(String instancename);

4.3.1 Creating and Configuring a Cloud Provider

A cloud provider instance can be obtained via a normal new expression. A cloud provider can be configured
with a list of machine descriptions (i.e., a map of instance names to resource configurations), this enables
creation of named instance types.

Example:

CloudProvider p = new CloudProvider("Amazon");
await plsetlnstanceDescriptions(
map[Pair("T2_ MICRO", map[Pair(Memory,1), Pair(Speed,1)]),
Pair("T2_SMALL", map[Pair(Memory,2), Pair(Speed,1)]),
Pair("T2 _MEDIUM", map[Pair(Memory,4), Pair(Speed,2)]),

)

Backends that implement real cloud deployment of ABS code typically provide a backend- and provider-
specific class that implements the CloudProvider interface and uses provider-specific API calls to instantiate
physical virtual machines.

Multiple Cloud Providers

It is possible to use more than one cloud provider in a model. Each deployment component will be managed
by the cloud provider that created it. The deployment component methods acquire(), release() and shutdown
() will work as expected, communicating with the cloud provider. The deployment component method
getProvider() will return a reference to the cloud provider that manages that deployment component.

The cloud provider of the current deployment component can be obtained via thisDC()!getProvider().
Note that the return value can be null if the current deployment component is not managed by a cloud
provider|T]

4.3.2 Launching and Acquiring Deployment Components

A deployment component is acquired from a cloud provider by calling the method launchinstanceNamed,
giving the name of an instance description set via setlnstanceDescriptions. It is also possible to create a
deployment component by giving its resource configuration by calling the method launchlnstance.

DeploymentComponent launchinstanceNamed(String instancename);
DeploymentComponent launchinstance(Map<Resourcetype, Rat> description);

IThis is the case if the deployment component in question was created via new.
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Upon launching a deployment component, the cloud provider starts tracking the cost (as per CostPerlnterval
and Paymentinterval of its resource scenario). The method will return after Startupduration, after which time
the deployment component is ready to be used. In terms of lifecycle (Fig. , these methods return an
instance in the state “running”.

These two methods return null upon failure.

Pre-Launching Deployment Components

When modeling advanced dynamic deployment strategies, it is sometimes convenient to preallocate instances
in preparation of higher load. The following cloud provider methods model this use case.

DeploymentComponent prelaunchlnstanceNamed(String instancename);
DeploymentComponent prelaunchinstance(Map<Resourcetype, Rat> d);

The method prelaunchinstanceNamed returns a new deployment component of the given instance type.
prelaunchinstance returns a deployment component matching the given resource scenario. Deployment com-
ponents returned by these methods are not ready to be used. In terms of lifecycle (Fig. , these methods
return an instance in the state “pending”.

These instances can be used after one of the following:

e The cloud provider method acquirelnstance() returns True when called with the instance as argument.
e The deployment component method acquire() returns true.

e The instance is returned by the method launchinstance() or launchinstanceNamed(). Pre-launched in-
stances are returned by these methods if they match.

Bool acquirelnstance(DeploymentComponent instance);

The acquirelnstance method acquires a deployment component, i.e., after this method returns True the
caller is allowed to deploys on the deployment component until the deployment component is released again.
If this method returns False, the deployment component has already been acquired or is otherwise not ready
to be used.

For convenience, the DeploymentComponent interface offers a convenience method Bool acquire() with the
same semantics as acquirelnstance. In case the deployment component is not managed by a cloud provider,
this method will always return True.

4.3.3 Releasing and Shutting Down Deployment Components

A model can release a deployment component after all activities have finished.

Bool releaselnstance(DeploymentComponent instance);
Bool shutdownlnstance(DeploymentComponent instance);

After releaselnstance, a subsequent call to launchinstance or launchinstanceNamed might return a reference to
that same deployment component if it fits. A deployment component that has been released represents a
running but idle virtual machine instance. Cost is still accrued for this instance in the cloud provider.

The DeploymentComponent interface offers a convenience method Bool release() that is equivalent to
releaselnstance(). In case the deployment component is not managed by a cloud provider, release will always
return True.

After calling the method shutdownlnstance, no call to launchlnstance will ever return a reference to that
deployment component, and it will not influence the cost of running the model anymore.

The DeploymentComponent interface offers a convenience method Unit shutdown() that is equivalent to
shutdownlInstance().
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Glossary

ABS Abstract Behavioural Specification language. An executable class-based, concurrent, object-oriented
modelling language based on Creol, created for the HATS project. In Envisage this language has been
extended with the notion of deployment component, which is a container providing running objects with the
needed resources.

ABS Cloud API An interface included in the ABS Standard Library for the modeling of typical remote
calls to a cloud infrastructure to acquire, release, monitor and manage virtual computing resources.

ABS Standard Library It includes ABS class and interface declarations that are typically included into
ABS programs.

API Application Programming Interface. It usually identifies the set of external remote calls a program
or a service exposes to its clients.

Cloud Computing metaphor identifying utilities for acquisition and consumption of virtual computing
resources on-demand.

Cloud Application Deployment The deployment of an application on a cloud infrastructure corresponds
to the definition of the software architecture of the application (software artifacts and their relationship) and
the description of the distribution of the software components on top of the computing resources offered by
the clod infrastructure.

Deployment component ABS abstraction encoding virtual machine identities: objects executing inside
a specific deployment component corresponds to processes running in a specific virtual machine and using
its resources and computation power.

Dynamic deployment Acquisition or release of new resources like computing power, memory, etc. dur-
ing a computing system lifetime, including the allocation of the new acquired resources to corresponding
computing components.

Static deployment Initial configuration of a component-based computing system obtained by means of
the proper distribution and interconnection of the components over the available computing resources.

29



Appendix A

Declarative Elasticity in ABS

30



Declarative Elasticity in ABS*

Stijn de Gouw!, Jacopo Mauro?, Behrooz Nobakht?, and Gianluigi Zavattaro®*

! Fredhopper, Netherlands
2 Leiden University, Netherlands
3 University of Oslo, Norway
4 University of Bologna/INRIA, Ttaly

Abstract. Traditional development methodologies that separate soft-
ware design from application deployment have been replaced by ap-
proaches such as continuous delivery or DevOps according to which
deployment issues should be taken into account already at the early
stages of development. This calls for the definition of new modeling and
specification languages. In this paper we show how deployment can be
added as a first-class citizen in the object-oriented specification language
ABS. We follow a declarative approach: programmers specify deploy-
ment constraints and a solver synthesizes ABS classes exposing methods
like deploy (resp. undeploy) that executes (resp. cancels) configuration
actions changing the current deployment towards a new one satisfying
the programmer’s desiderata. Differently from previous works, this novel
approach allows for the specification of dynamic modifications thus sup-
porting the declarative modeling of elastic applications.

1 Introduction

Software applications deployed and executed on cloud computing infrastructures
should flexibly adapt by dynamically acquiring or releasing computing resources.
This is necessary to properly deliver to the final users the expected services at
the expected level of quality, maintaining an optimized usage of the computing
resources. For this reason, modern software systems call for novel engineering
approaches that anticipate the possibility to reason about deployment already
at the early stages of development.

Modeling languages like TOSCA [21], CloudML [16], and CloudMF [13] have
been proposed to specify the deployment of software artifacts, but they are
mainly intended to express deployment of already developed software. An ac-
tual integration of deployment in software development is still far from being
obtained in the current practices. To cover this gap, in this paper we address the
problem of extending the ABS (Abstract Behavioural Specification) language [2]

* Supported by the EU projects FP7-610582 FEnvisage: Engineering Vir-
tualized Services (http://www.envisage-project.eu) and H2020-644298 Hy-
Var: Scalable Hybrid Variability for Distributed, FEvolving Software Systems
(http://www.hyvar-project.eu).



with linguistic constructs and mechanisms to properly specify deployment. Fol-
lowing [9] our approach is declarative: the programmer specifies deployment con-
straints and a solver computes actual deployments satisfying such constraints.
In previous work [10] we presented an external engine able to synthesize ABS
code specifying the initial static deployment; in this paper we fully integrate this
approach in the ABS language allowing for the declarative specification of the
dynamic upscale/downscale of the modeled application depending, e.g., on the
monitored workload or the current level of resource usage.

ABS is an object-oriented modeling language with a formally defined and
executable semantics. It includes a rich tool-chain supporting different kinds of
analysis (like, e.g., logic-based modular verification [11], deadlock detection [15],
and cost analysis [3]). Production code can be automatically obtained from ABS
specifications by means of code generation. ABS has been mainly used to model
systems based on asynchronously communicating concurrent objects, distributed
over Deployment Components corresponding to containers offering to objects
the resources they need to properly run. For our purposes, we adopted ABS
because it allows the modeling of computing resources and it has a real-time
semantics reflecting the way in which objects consume resources. This makes
ABS particularly suited for modeling and reasoning about deployment.

Our initial proposal for the declarative modeling of deployment into ABS
[10] was based on three main pillars: (i) classes are enriched with annotations
that indicate functional dependencies of objects of those classes as well as the
resources they require, (ii) a separate high-level language for the declarative
specification of the deployment, (iii) an engine that, based on the annotations
and the programmer’s requirements, computes a fully specified deployment that
minimizes the total cost of the system. The computed deployment is expressed
in ABS and can be manually included in a main block.

The work in [10] had two main limitations: (i) there was no way to express
dynamic deployment decisions like, e.g., the need to upscale or downscale the
modeled system and (ii) there was no real integration of the code synthesized by
the engine in the corresponding ABS specification. In this paper we address these
limitations by promoting the notion of deployment as a first-class citizen of the
language. During a pre-processing phase, the new tool SmartDepl generates ad-
hoc classes exposing the methods deploy and undeploy to dynamically upscale
and downscale the system. The deployment requirements can now also reuse
already deployed objects just specifying which existing objects could be used,
and how they should be connected with new objects to be freshly deployed.
This has been the fundamental step forward that allowed us to support dynamic
modification of the current deployment. Moreover, other relevant contributions
of this paper are (i) a more natural high-level language for the specification of
requirements that now supports universal and existential quantifiers, and (ii)
the usage of the delta modules and the variability modeling features of the ABS
framework [7] to automatically and safely inject the deployment instructions into
the existing ABS code.



Our ABS extension and the realization of the corresponding SmartDepl tool
have been driven and validated against the Fredhopper Cloud Services, an indus-
trial case-study of the European FP7 Envisage project. The Fredhopper Cloud
Services offer search and targeting facilities on a large product database to e-
Commerce companies. Depending on the specific profile of an e-Commerce com-
pany Fredhopper has to decide the most appropriate customized deployment of
the service. Currently, such decisions are taken manually by an operation team
which decides customized, hopefully optimal, service configurations taking into
account the tension among several aspects like the level of replications of critical
parts of the service to ensure high availability. The operators manually per-
form the operations to scale up or down the system and this usually causes the
over-provision of resources for guaranteeing the proper management of requests
during a usage peak. With our extension of ABS, we have been able to real-
ize a new modeling of the Fredhopper Cloud Services in which both the initial
deployment and the subsequent up- and down-scale is expected to be executed
automatically. This new model is a first fundamental step towards a new more
efficient and elastic deployment management of the Fredhopper Cloud Services.

Structure of the paper Section 2 describes the Fredhopper Cloud Services case-
study. Section 3 reports the ABS deployment annotations that we already defined
in [10]. Section 4 presents the new high-level language for the specification of
deployment requirements while Section 5 discusses the corresponding solver.
Finally, the application of our technique to the Fredhopper Cloud Services use-
case is reported in Section 6. Concluding remarks are in Section 7.

2 The Fredhopper Cloud Services

Fredhopper uses the Fredhopper Cloud Services to offer search and targeting fa-
cilities on a large product database to e-Commerce companies as services (SaaS)
over the cloud computing infrastructure (IaaS). The Fredhopper Cloud Services
drives over 350 global retailers with more than 16 billion in online sales ev-
ery year. A customer (service consumer) of Fredhopper is a web shop, and an
end-user is a visitor of the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice,
these services are implemented to be RESTful and accept connections over
HTTP. Typically, software services are deployed as service instances. Each in-
stance offers the same service and is exposed via the Load Balancing Service,
which in turn offers a service endpoint. Load Balancers serve as endpoints and
distribute requests over the service instances. Figure 1 shows a block diagram of
the Fredhopper Cloud Services.

The number of requests can vary greatly over time, and typically depends on
several factors. For instance, the time of the day in the time zone where most of
the end-user are plays an important role (typical lows in demand are observed
between 2 am and 5 am). Figure 2 is a typical real-world graph for a single
day (with data up to 18:00) showing the number of queries per second (y-axis,
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Fig. 1. The architecture of the Fredhopper Cloud Services

ranging from 0-25 qgps, the horizontal dotted lines are drawn at 5,10,15 and 20
gps) over the time of the day (x-axis, starting at midnight, the vertical dotted
lines indicate multiples of 2 hours). The 2a - 5am low is clearly visible.

Peaks can occur during promotions of the shop or around Christmas. To
ensure a high quality of service, web shops negotiate an aggressive Service Level
Agreement (SLA) with Fredhopper. QoS attributes of interest include query
latency (response time) and throughput (queries per second). For example, based
on the negotiated SLA with a customer, services must maintain 100 queries per
seconds with less than 200 milliseconds of response time over 99.5% of the service
uptime, and 99.9% with less than 500 milliseconds.

Previous work reported in [10] aimed to compute an optimal initial deploy-
ment configuration (based on the size of the product catalogue, number of ex-
pected visitors and cost of the required virtual machines). The computation was
based on an already available model of the Fredhopper Cloud Services written in
the ABS language. In this paper we address the problem of maintaining a high
quality of service after this initial set-up by taking dynamic factors into account,
such as fluctuating user-demand and unexpectedly failing virtual machines.

The solution that we propose is based on a tool named SmartDepl that, when
integrated in the ABS specification of the Fredhopper Cloud Services, enables the
modeling of the automatic dynamic upscaling or downscaling. When the decision
to scale up or down is made, SmartDepl indicates how to automatically evolve
the deployment configuration. This is not a trivial task: the desired deployment
configuration should satisfy various requirements, and those can trigger the need
to instantiate multiple service instances that furthermore require proper config-
uring to ensure they function correctly.
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Fig. 2. Number of queries per second (in green the query processing time).

The requirements can originate from both business decisions or technical
reasons. For instance, for security reasons, services that operate on sensitive
customer data should not be deployed on machines shared by multiple customers.
Below we list some of these requirements.

— To increase fault-tolerance, we aim to spread virtual machines across ge-
ographical locations. Amazon allows specifying the desired region (a geo-
graphical area) and availability zone (a geographical location in a region) for
a virtual machine. Fault tolerance is then increased by balancing the num-
ber of machines between different availability zones. Thus, when scaling, the
number of machines should be adjusted in all zones simultaneously. Effec-
tively this means that with two zones, we scale up or down with an even
number of machines.

— Each instance of a Query service is in one of two modes: ‘live’ mode to serve
queries, or ‘staging’ mode to serve as an indexer (i.e., to publish updates
to the product catalogue). There always should be at least one instance of
Query service in staging mode.

— The network throughput and latency between the PlatformService and in-
dexer is important. Since the infrastructure provider gives better perfor-
mance for traffic between instances in the same zone, we require the indexer
and PlatformService to be in the same zone.

— Installing an instance of the QueryService requires the presence of an in-
stance of the DeploymentService on the same virtual machine.

— For performance reasons and fault tolerance, load balancers require a dedi-
cated machine without other services co-located on the same virtual machine.
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3 Annotated ABS

The ABS language is designed to develop executable models. It targets dis-
tributed and concurrent systems by means of concurrent object groups and asyn-
chronous method calls. Here, we will recap just the specific linguistic features of
ABS to support the modeling of the deployment; for more details we refer the
interested reader to the ABS project website [2] and [10] for the cost annotations.

The basic element to capture the deployment in ABS is the Deployment
Component (DC), which is a container for objects/services that, intuitively, may
model a virtual machine running those objects/services. ABS comes with a rich
API that allows the user to model a cloud provider of deployment components.

CloudProvider cProv = new CloudProvider ("Amazon");
cProv.addInstanceDescription(Pair ("c3",
InsertAssoc (Pair(CostPerInterval,210),
InsertAssoc (Pair (Memory,7500),
InsertAssoc (Pair(Cores,4), EmptyMap)))));
DeploymentComponent dc = cProv.prelaunchInstanceNamed("c3");
[DC: dc] Service s = new QueryServiceImpl();

In the ABS code above, the cloud provide “Amazon” is modeled as the object
cProv of type CloudProvider. The fact that “Amazon” can provide a virtual
machine of type “c3” is captured by calling the addInstanceDescription in Line
2. With this instruction we also specify that ¢3 virtual machines cost 210 cents
an hour and provide 7.5 GB of RAM and 4 cores. In Line 5 an instance of “c3” is
launched and the corresponding deployment component is saved in the variable
dc. Finally, in Line 6, a new object of type QueryServiceImpl (implementing
interface Service) is created and deployed in the deployment component dc.

In ABS it is possible to declare interface hierarchies and define classes im-
plementing them.

interface Service { ... }

interface IQueryService extends Service { ... }

class QueryServicelmpl (DeploymentService ds, Bool staging)
implements IQueryService { ... }

In the excerpt of ABS above, the IQueryService service is declared as an in-
terface that extends Service, and the class QueryServiceImpl is defined as an
implementation of this interface. Notice that the initialization parameters re-
quired at object instantiation are indicated as parameters in the corresponding
class definition.

Classes can be annotated with annotations that denote the cost and the
requirements of an object of that class.

[Deploy: scenario[Name ("staging"), Cost("Cores", 2),

Cost ("Memory",7000), Param("staging", Default ("True")),
Param("ds", Req)] 1]

[Deploy: scenario[Name("live"), Cost("Cores", 1),

Cost ("Memory",3000), Param("staging", Default("False")),
Param("ds", Req)] 1]
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b_expr : b_term (bool_binary_op b_term )* ;
b_term : (’not’)? b_factor ;
b_factor : ’true’ | ’false’ | relation ;
relation : expr (comparison_op expr)? ;
expr : term (arith_binary_op term)x* ;
term : INT |
(’exists’ | ’forall’) VARIABLE ’in’ type ’:’ b_expr |
’sum’ VARIABLE ’in’ type ’:’ expr
(C ID | VARIABLE | ID [’ INT ’]’ ) ’.’)7 objId |
arith_unary_op expr
>(’ b_expr ’)° ;
objId : ID | VARIABLE | ID °[’ ID ’]’ | ID ’[’ RE ’]’;
type : ’obj’ | ’DC’ | RE ;
bool_binary_op : ’and’ | ’or’ | ’impl’ | ’iff’ ;
arith_binary_op : ’+’ | =7 | 7%’
arith_unary_op : ’abs’ ; // absolute walue
comparison_op : <=7 | =7 | >=7 | <2 | >0 | =2

Table 1. DRL grammar.

The previous two annotations describe two possible deployment scenarios
for an object of the class QueryServiceImpl. The first annotation captures the
deployment of a Query Service in staging modality while the second captures the
deployment of the Query Service in live modality. A Query Service in staging
modality requires 2 cores and 7GB of RAM while in live mode it only requires
1 core and 3GB of RAM. The creation of a Query Service Object requires an
object of type DeploymentService that is associated with the parameter dc while
the parameter staging is set to true or false according to the desired deployment
scenario.

4 The Declarative Requirement Language DRL

When a system deployment is automatically computed, a user expects to reach
specific goals and could have some desiderata. For instance, in the considered
Fredhopper Cloud Services use case, the initial goal is to deploy a given number
of Query Services and a Platform Service, possibly located on different machines
(e.g., to improve fault tolerance) and later on to upscale or downscale the system
according to the monitored traffic.

All these goals and desiderata can be expressed in the Declarative Require-
ment Language (DRL): a new language for stating the constraints that the final
configuration should satisfy.

As shown in Table 1 that reports the DRL grammar defined using the ANTLR
tool,” a desiderata is a boolean formula b_expr obtained using the usual logical

5 ANTLR (ANother Tool for Language Recognition) - http://www.antlr.org/



connectives over comparison of arithmetic expression. The atom of this arith-
metic expression may be integers (Line 6), a quantifier statement (Line 7), a sum
statement (Line 8) and an identifier for the number of deployed objects (Line
9). The number of object deploy using a given scenario is defined by its class
identifier and the scenario name enclosed in square brackets (Line 14). As an
example the following formula requires the presence of at least an object of class
QueryServiceImpl deployed in staging mode.

QueryServiceImpl [staging] > 0

The square brackets may be omitted (Line 12 - first option) for objects that
have only one default deployment scenario. Regular expression (RE in Line 12)
can be used to match objects deployed using different deployment scenarios.
The number of deployed objects can also be prefixed by a deployment compo-
nent identifier to denote just the number of objects defined within that specific
deployment component. As an example, the deployment of only one object of
class DeploymentServiceImpl on the first and second instance of a “c3” virtual
machine can be enforced as follows.

c3[0] .DeploymentServiceImpl = 1 and
c3[1] .DeploymentServiceImpl = 1

Here the 0 and 1 numbers between the square brackets represent respectively
the first and second virtual machine of type “c3” . To shorten the notation, the
[0] can be omitted (Line 9).9

It is possible to use also quantifiers and sum expressions to capture more
concisely some of the desired properties. Variables are identifiers prefixed with
a question mark. As specified in Line 15, quantifiers and sum term variables
can range on all the objects (*obj’), all the deployment components (°DC’), or
just on all the virtual machines matching a given regular expression (RE). In
this way it is possible to express more elaborate constraints such as the co-
location or distribution of objects, or limit the amount of objects deployed on a
given DC.” As an example, to enforce the constraint that every Query Service
requires a Deployment Service installed on its virtual machine we can require
the following.

forall 7?x in DC: (
?7x.QueryServiceImpl[’.*x’] > 0 impl
?x.DeploymentServiceImpl > 0)

Here we use the regular expression ’.*’ to be able to match with only one
repetition the Query Services deployed in staging and live mode.

Finally, requiring for instance the load balancer to be installed alone in a
virtual machine can be done as follows.

5 We assume that the user could launch only a bounded number of deployment com-
ponents. In particular, for every cloud deployment type SmartDepl allows to specify
the maximal number of deployment components that can be created.

" DRL improves on the specification language presented in [10] because the addition of
the quantifiers and the sum terms allows the user to write her desiderata in a more
concise and natural way.
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"id": "AddQueryDeployer",
"specification": "QueryServiceImpl[live] = 1",
"obj": [ { "name": "platformObj",
"provides": [ {
"ports": [ "MonitorPlatformService",
"PlatformService" ],
"num": -1 } 1,
"interface": "PlatformService" },
{ "name": "loadBalancerObj",
"provides": [ {
"ports": [ "LoadBalancerService" 1],
"num": -1 } 1,
"interface": "LoadBalancerService" },
{ "name": "serviceProviderObj",
"provides": [ {
"ports": [ "ServiceProvider" 1],
"num": -1 } 1,
"interface": "ServiceProvider" } 1],

n DC n . [] }
Table 2. JSON annotation example.

forall ?x in DC: (
?x.LoadBalancerServiceImpl > 0 impl
(sum ?y in obj: ?x.7y) = 7x.LoadBalancerServicelImpl)

5 Deployment Engine

SmartDepl is the tool that we have implemented to support the user with the
automation of deployment choices. The key idea of SmartDepl is to allow the
user to specify declaratively what she wants to deploy and write the program
abstracting from the concrete deployment decision. More concretely, we require
the user to specify all its deployment needs as program annotations. SmartDepl
processes them and it generates for every deployment need a new class that
specifies the deployment steps to reach the desired target. This class can be
used by the user to trigger the execution of the deployment but also to undo it
in case the system needs to downscale.

As an example, imagine that an initial deployment of the Fredhopper Cloud
Services has been already obtained and that, based on a monitor decision, the
user wants to add 1 Query Services in live mode. The annotation required by
SmartDepl for capturing this need is the JSON object defined in Table 2.

In Line 1, by using the keyword "id" the user specifies that the name of the
class containing the deployment code is AddQueryDeployer. As we will see later,
the user can exploit this name to upscale and downscale the system assuming
the class existence. The second line contains the desired configuration in DRL.



By using the keyword "obj", Lines 3-18 define objects that are assumed to be
already available, hence are not needed to be re-deployed. Assuming that the
user has already a working Fredhopper Cloud Services, she knows indeed that
there is already a Platform Service, a Load Balancer and a Service Provider
deployed. Every available object is defined by assigning to it a unique name (the
keyword "name" in Lines 3,9,14), the interfaces it provide (the keyword "port"
in Lines 5-6,11,16) with the amount of services that can use them (keyword
"num" in Lines 7,12,17 — in this case a -1 value means that the object can
be used by an unbounded number of other objects), and the object interface
(keyword "interface" in Lines 8,13,18). Finally, by using the keyword "DC" the
user can also specify if there are some existing deployment components with
free resources that can be used to deploy new objects inside them. In this case,
for fault tolerance reasons the user wants to deploy the Query Service in new
machines and therefore the "Dc" is left empty (Line 19).

For the time being this annotation is given in a textual form but in order to
better support the user we are considering its generation via a graphical nota-
tion. For the interested reader, the formal specification of the JSON annotation
is defined in https://github.com/jacopoMauro/abs_deployer/blob/smart_
deployer/spec/smart_deploy_annotation_schema. json.

Once the annotation is given the user may freely use this class. For instance,
the ABS snipped code to upscale and downscale the system based on a monitor
decision follows.

1 while (... ) {

2 if ( monitor.scaleUp() ) {

3 SmartDeploylnterface depObj = new AddQueryDeployer(

4 cProv, platformService, loadBalancerService, serviceProvider);
5 depObj.deploy();

6 depObjList = Cons(depObj,depObjList);

7} else if ( (monitor.scaleDown()) && (depObjList != Nil) ) {

8 SmartDeployInterface depObj = head(depObjList);

9 depObjList = tail(depObjList);

10 depObj.undeploy(); } }

The idea is to store the references to deployment decisions in a list called
depObjList. When the monitor decides to upscale by adding new Query Ser-
vices (Line 2) a new deployment decision object is created (Line 3). In this
case AddQueryDeployer is the name associated with the annotation previously
discussed. Its first parameter is the cloud provider, as defined for instance in
Section 3. The following parameters are the objects already available for the
deployment that do not need to be re-deployed from scratch. These are given
according to the order they are defined in the annotation in Table 2. The in-
terface of this class is SmartDeploylnterface which is initially an empty interface
that SmartDepl populated with: i) a deploy method to realise the deployment of
the desired configuration, ii) an undeploy method to undo the deployment grace-
fully by removing the virtual machine created with the application of the deploy
method, iii) getter methods to retrieve the new list of objects and deployment
components created by running the deploy method (e.g., to retrieve the list of all

10



the Query Service created by depObj.deploy() it is possible to call the operation
depObj.getlQueryService()). The real addition of the Query Service is performed in
Line 5 with the call of the deploy method. If instead the monitor decides to down-
scale (Line 7), the last deployment solution is retrieved (Line 8) and then the
action performed by the deployment are undone by calling the undeploy method.®

Technically, SmartDepl is written in python (~1k lines of code) and relies
on Zephyrus2, a configuration optimizer that given the user desiderata and a
universe of components is able to compute the optimal configuration satisfying
the user needs.” SmartDepl uses the cost annotations as defined in Section 3
to compute a configuration that satisfies the user requirements minimizing the
cost of the deployment components that need to be created and, in case of
ties, minimizing also the number of created objects. Once a configuration is
obtained, SmartDepl uses a topological sort to take into account all the object
dependencies and establishes the correct sequence of deployment instructions to
realise the computed configuration. SmartDepl generates the code of the classes
and the methods to inject to the interface exploiting Delta Model techniques [7].
SmartDepl notifies the user in case no configuration can satisfy the desiderata,
e.g., when the specification is too restrictive. Moreover, SmartDepl also notifies
the user when it is unable to generate a sequence of deployment actions due to
mutual dependencies between the objects.!”

As an example the deploy code generated by SmartDepl for the annotation
defined in Table 2 is the following.

1 Unit deploy() {

2 DeploymentComponent c3_.0 = cloudProvider.prelaunchlnstanceNamed(" c3");
3 Is_DeploymentComponent = Cons(c3_0,ls_DeploymentComponent);

1 [DC: ¢3.0] DeploymentService oDef___DeploymentServicelmpl_0_c3.0 =

5 new DeploymentServicelmpl(platformObj);

6 Is_DeploymentService = Cons(oDef___DeploymentServicelmpl_0_¢3.0,

7 Is_DeploymentService);

s [DC: ¢3.0] IQueryService olive___QueryServicelmpl_0_c3_.0 = new

9 QueryServicelmpl(oDef___DeploymentServicelmpl_0_c3_0, False);

10 Is_IQueryService = Cons(olive___QueryServicelmpl_0_c3_.0, Is_IQueryService);
11 Is_Service = Cons(olive___QueryServicelmpl|_0_c3_0, Is_Service);

12 Is_LEndPoint = Cons(olive___QueryServicelmpl_0_c3.0, Is_EndPoint);

8 Since ABS does not have an explicit operation to force the removal of objects the
undeploy procedure just removes the references to these objects leaving the garbage
collector to actually remove them. The deployment components created by the deploy
methods are removed instead using an explicit kill primitive provided by ABS.
SmartDepl uses Zephyrus2 (freely available at https://jacopomauro@bitbucket.
org/jacopomauro/zephyrus2.git) since it allows the use of a new expressive lan-
guage and because it relies on MiniSearch [24], a new efficient and flexible framework
for planning the search strategies. Zephyrus2 is a completely new re-engineering of
the previous Zephyrus solver [8,9].
10 This occurs when the creation of an object requires the execution of a complex
protocol like for instance what happens for the boostrapping of Linux distribution [1].

©

11



< C © [ locathost: /&0 - e 0

Settings Apply | ABS Smart Deployer v Refresh Outline || & Clear Help

# i User_Pre

= & collaboratory FRH_staging.abs
& g deliverabies. -

i

& Deadlock
+ & MainGeneration
» 8 MHP
& Misc
+ & ResourceUsage
- & SmartDeploy
[BFRH staging.abs|
) README.md

& Termination
[ README.md
&g review_2nd,

Default Console Default Console 4

List V{ return Us, ¥

unit deploy() {

Fig. 3. SmartDepl execution within the ABS toolchain IDE.

In the previous code, at Line 3, a new deployment component ¢3.0 is created.
At Lines 4-5 an object of class DeploymentService is created. This is due to the
fact that every Query Service requires its Deployment Service (i.e., it is one of
the required parameters, cfr. Section 3) and therefore this object needs to be
created and deployed before the Query Service. In Lines 8-9 the desired object
of class IQueryService is finally created. Both the objects are deployed on ¢3.0.

Even though for the presentation sake this is just a simple example, it is
immediately possible to notice that by using SmartDepl the user is alleviated
from the burden of the deployment decisions. Indeed, she can specify the desired
configuration without taking care of the dependencies of the various objects and
their distributed placement for obtaining the cheapest possible solution.

SmartDepl is open source and freely available from https://github.com/
jacopoMauro/abs_deployer/tree/smart_deployer. To increase its portability
it can be installed also by using the Docker container technology [12]. As shown
in Figure 3, SmartDepl has also been integrated into the ABS toolchain,'! i.e.,
an IDE and a collection of tools for writing, inspecting, checking, and analyzing
ABS programs developed withing the Envisage European project.

6 Application to the Fredhopper use case

In this section we report about the modeling with SmartDepl of the concrete de-
ployment requirements of the Fredhopper Cloud Services, previously introduced
in Section 2. We decided to apply our techniques to the Fredhopper Cloud Ser-
vices use case because it was already modeled in ABS and, thanks to a profiling
activity of the real system, the cost of the services are known.

SmartDepl was used twice: to synthesize the initial static deployment of the
entire framework and for dynamically adding (and then removing) single in-

" http://abs-models.org/installation/
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stances of Query Services in case the system needs to scale (up or down). Since
Fredhopper Cloud Services is using Amazon EC2 Instance Types we used two
types of deployment components corresponding to the “xlarge” and “2xlarge” in-
stances of the Compute Optimized instances (version 3)'* of Amazon. Moreover,
for fault tolerance and stability, Fredhopper Cloud Services uses instances in mul-
tiple regions in Amazon (regions are geographically separate, so even if there is a
force majeure in one region, other regions are not necessarily affected). We model
the instance types in different regions as follows: “c3_xlarge_eu”, “c3_xlarge_us”,
“c3_2xlarge_eu”, “c3_2xlarge_us” (“eu” refers to a European region, “us” refers
to an American region).

For the static deployment of the system Fredhopper Cloud Services requires
the deployment of a Load Balancer, a Platform Service, a Service Provider, 2
Query Services among whom at least one in staging mode. This can be easily
expressed as follows.

LoadBalancerServicelmpl = 1 and PlatformServicelmpl = 1 and
ServiceProviderlmpl = 1 and QueryServicelmpl[staging] > 0 and
QueryServicelmpl[staging] + QueryServicelmpl[live] = 2

For the correct functioning of the system a Query Service requires a Deployment
Service installed on the same machine. This constraint can be expressed as shown
in Section 4. The requirement that a ServiceProvider is present on every machine
containing a Platform Service can be expressed as follows.

forall ?x in DC: (?x.PlatformServicelmpl > 0 impl ?x.ServiceProviderlmpl > 0)

Not all services can be freely installed on an arbitrary virtual machine. To in-
crease fault tolerance Fredhopper Cloud Services requires that the Load Bal-
ancer, the Query/Deployment Services, and the Platform Service/Service Provider
are never co-located on the same virtual machine. This can be easily expressed
as shown at the end of Section 4.

To cope with catastrophic failures, as discussed in Section 7?7, Fredhopper
Cloud Services distribute the Query Services among the available regions. This
can be enforced by constraining the number of the Query Services in the different
data centers to be equal. In DRL this can be expressed using regular expressions
as follows.

(sum ?x in ".x_eu": ?x.QueryServicelmpl['.x']) =
(sum ?x in ".x_us": ?x.QueryServicelmpl['.x'])

As described in Section 4, for performance reasons, the Query Service in Stag-
ing mode should be located in the zone of the Platform Service, since Amazon
connects instances in the same region with low-latency links. For the European
data-center this can be expressed by:

(sum ?x in ".x_eu’: ?x.QueryServicelmpl[staging]) > 0) impl

(sum ?x in ".x_eu’: ?x.PlatformServicelmpl ) > 0)

12 nttps://aws.amazon. com/ec2/instance-types/
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Fig. 4. Example of automatic objects allocation to deployment components.

With this specification, SmartDepl is able to compute that the initial configu-
ration that minimizes the total costs per interval is the one depicted in Figure 4
that uses three “2xlarge” instances in Europe for deploying the Load Balancer,
the Platform Service, one the staging Query Service, and one “xlarge” instance
in US to deploy the Query Service in live mode.

After this initial deployment, the Cloud engineers of Fredhopper Cloud Ser-
vices rely on feedback provided by monitors to decide if more Query Services
in live mode are needed. Figure 5 and 6 show some of the main metrics for a
single customer used to determine the scaling. The timescale in the figures is 1
day, but this can be adjusted to see trends over a longer period, or zoom in on
a shorter period. The figures show that the number of queries served per second
(gps, first graph of Figure 5) is relatively high and the requests (second graph
of Figure 5) are relatively low, so requests are not queuing. Furthermore the
CPU usage (third graph of Figure 5) and memory consumption with small swap
space used (second and third graphs of Figure 6) look healthy. Hence, no scaling
is needed.

If we would have needed to scale up, two Query Service instances are added
(one in an EU region, and one in an US region for balancing across regions). On
the other hand, if there is unnecessary overcapacity, the most recent ones can be
shut down. However, since the decision to scale is a manual process by the Cloud
operations team, and Fredhopper has very aggressive SLAs, the operations team
is typically conservative with downscaling, leading to potential over-spending.
The ability of SmartDepl to deploy in the programming language (ABS) itself
allows to put auto-scaling on a rigorous basis by its tight integration into the
ABS monitoring framework.

Furthermore, while the operations team currently use ad-hoc scripts to con-
figure newly added or removed service instances, and these scripts are specific
to the infrastructure provider, SmartDepl automatically generates code that ac-
complishes this (for example, see Table 2). SmartDepl is flexible in the sense that
it is infrastructure independent, allowing to seamlessly switch between different
infrastructure providers: virtual machines are launched and terminated through
a generic API offered by ABS for managing virtual resources, and this API is im-
plemented for different infrastructure providers (Amazon, Docker, OpenStack).

14
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Fig. 5. Metrics graphed over a single day for a customer (a).

To automatically generate the desired deployment configuration, SmartDepl
uses as specification all the previous constraints except that now instead of
requiring a Platform Service and a Load Balancer we simply require two Query
services in live mode. In this case, as expected after the deployment of the initial
framework, the best solution is to deploy one Query Service in Europe and one
in US using “xlarge” instances.

SmartDepl is able to compute the optimal deployment configurations and
generate the code in less than 5 seconds. The ABS model used with all the an-
notations and specifications is available at https://github.com/jacopoMauro/
abs_deployer/blob/smart_deployer/test/FRH_staging.abs

7 Related Work and Conclusions

We have presented an extension of the ABS specification language supporting
the modeling of deployment following a declarative approach: the programmer
specifies deployment constraints, and a solver synthesizes ABS classes including
methods that executes deployment actions able to reach an optimal applica-
tion configuration that satisfies the given constraints. Our approach, that takes
inspiration from [9] and significantly improves our initial work [10], could be
easily applied to any other object-oriented language offering primitives for the
acquisition and release of computing resource.

Many management tools for the bottom-up deployment such as CFEngine [6],
Puppet [19], MCollective [23], and Chef [22] exists. Such tools allow for the dec-
laration of components, by indicating how they should be installed on a given
machine, together with their configuration files, but they are not able to auto-
matically decide where components should be deployed and how to interconnect
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Fig. 6. Metrics graphed over a single day for a customer (b).

them for an optimal resource allocation. The alternative holistic approach allows
for the modeling of the entire application and the deployment plan is then derived
in a top-down manner. In this context, one prominent work is represented by
the TOSCA (Topology and Orchestration Specification for Cloud Applications)
standard [21]. Following a similar philosophy, we can mention Terraform [17],
Apache Brooklyn [4], and other tools supporting the Cloud Application Man-
agement for Platforms protocol [20]. In [5] a first attempt of combination of the
holistic and the bottom-up approaches is reported: a global deployment plan
expressed in TOSCA is checked for correctness against local specifications of the
deployment lifecycle of the single components.

Similarly to our approach, ConfSolve [18] and Engage [14] use a solver to
plan deployment starting from the local requirements of components, but these
approaches were not incorporated in fully-fledged specification languages (in-
cluding also behavioral descriptions as in our case with ABS).

As a future work we plan to investigate the possibility to invoke at run time
the external deployment engine. In this way, it could be possible to dynamic
re-define the deployment constraints by means of a dynamic tuning of the en-
gine. Nevertheless, dynamically computing the deployment steps may require
additional elements such as the support of new reflection primitives to get a
snapshot of the running application, and possibly the use of sub-optimal solu-
tions when computing the optimal configuration takes too much time.
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Abstract. In cloud computing, software which does not flexibly adapt
to deployment decisions either wastes operational resources or requires
reengineering, both of which may significantly increase costs. However,
this could be avoided by analyzing deployment decisions already during
the design phase of the software development. Real-Time ABS is a for-
mal language for executable modeling of deployed virtualized software.
Using Real-Time ABS, this paper develops a generic framework called
ABS-YARN for YARN, which is the next generation of the Hadoop cloud
computing platform with a state-of-the-art resource negotiator. We show
how ABS-YARN can be used for prototyping YARN and for modeling
job execution, allowing users to rapidly make deployment decisions at
the modeling level and reduce unnecessary costs. To validate the mod-
eling framework, we show strong correlations between our model-based
analyses and a real YARN cluster in different scenarios with benchmarks.

1 Introduction

Cloud computing changes the traditional business model of IT enterprises by
offering on-demand delivery of IT resources and applications over the Internet
with pay-as-you-go pricing [6]. The cloud infrastructure on which software is de-
ployed can be configured to the needs of that software. However, software which
does not flexibly adapt to deployment decisions either require wasteful resource
over-provisioning or time-consuming reengineering, which may substantially in-
crease costs in both cases. Shifting deployment decisions from the deployment
phase to the design phase of a software development process can significantly
reduce such costs by performing model-based validation of the chosen decisions
during the software design [14]. However, virtualized computing poses new and
interesting challenges for formal methods because we need to express deployment
decisions in formal models of distributed software and analyze the non-functional
consequences of these deployment decisions at the modeling level.

A popular example of cloud infrastructure used in industry is Hadoop [5], an
open-source software framework available in cloud environments from vendors

* Supported by the EU projects H2020-644298 HyVar: Scalable Hybrid Variability
for Distributed Evolving Software Systems (http://www.hyvar-project.eu) and FP7-
610582 Envisage: Engineering Virtualized Services (http://www.envisage-project.eu).



such as Amazon, HP, IBM, Microsoft, and Rackspace. YARN [27] is the next
generation of Hadoop with a state-of-the-art resource negotiator. This paper
presents ABS-YARN, a generic framework for modeling YARN infrastructure
and job execution. Using ABS-YARN, modelers can easily prototype a YARN
cluster and evaluate deployment decisions at the modeling level, including the
size of clusters and the resource requirements for containers depending on the
jobs to be executed and their arrival patterns. Using ABS-YARN, designers can
focus on developing better software to exploit YARN in a cost-efficient way.

ABS-YARN is defined using Real-Time ABS, a formal language for the ex-
ecutable modeling of deployed virtualized software [10]. The basic approach to
modeling resource management for cloud computing in Real-Time ABS is a sep-
aration of concerns between the resource costs of the execution and the resource
provisioning at (virtual) locations [18]. Real-Time ABS has previously been used
to model and analyze the management of virtual resources in industry [3] and
compared to (informal) simulation tools [17]. Although Real-Time ABS provides
a range of formal analysis techniques (e.g., [2,30]), our focus here is on obtaining
results based on easy-to-use rapid prototyping, using the executable semantics
of Real-Time ABS, defined in Maude [12], as a simulation tool for ABS-YARN.

To evaluate the modeling framework, we comprehensively compare the results
of model-based analyses using ABS-YARN with the performance of a real YARN
cluster by using several Hadoop benchmarks to create a hybrid workload and
designing two scenarios in which the job inter-arrival time of the workload follows
a uniform distribution and an exponential distribution, respectively. The results
demonstrate that ABS-YARN models the real YARN cluster accurately in the
uniform scenario. In the exponential scenario, ABS-YARN performs less well but
it still provides a good approximation of the real YARN cluster.

The main contributions of this paper can be summarized as follows:

1. We introduce ABS-YARN, a generic framework for modeling software tar-
geting YARN. Using Real-Time ABS, designers can develop software for
YARN on top of the ABS-YARN framework and evaluate the performance
of the software model before the software is realized and deployed on a real
YARN cluster.

2. ABS-YARN supports dynamic and realistic job modeling and simulation.
Users can define the number of jobs, the number of the tasks per job, task
cost, job inter-arrival patterns, cluster scale, cluster capacity, and the re-
source requirement for containers to rapidly evaluate deployment decisions
with the minimum costs.

3. We comprehensively evaluate and validate ABS-YARN under several perfor-
mance metrics. The results demonstrate that ABS-YARN provides a satisfi-
able modeling to reflect the behaviors of real YARN clusters.

Paper organization. Section 2 provides a background introduction to Real-
Time ABS and YARN. Section 3 presents the details of the ABS-YARN frame-
work. In Section 4, we validate ABS-YARN and compare it with a real YARN
cluster. Section 5 surveys related work and Section 6 concludes the paper.
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Fig. 1. Syntax for the imperative layer of Real-Time ABS. Terms € and T de-
note possibly empty lists over the corresponding syntactic categories, and square
brackets [| denote optional elements.

2 Background

2.1 Modeling Deployed Systems Using Real-Time ABS

Real-Time ABS [10] is a formal, executable, object-oriented language for mod-
eling distributed systems by means of concurrent object groups [16], akin to
concurrent objects [11], Actors [1], and Erlang processes [7]. Concurrent objects
groups execute in parallel and communicate by asynchronous method calls and
futures. In a group, at most one process is active at any time, and a queue of
suspended processes wait to execute on an object of the group. Processes, which
stem from methods calls, are cooperatively scheduled, so active and reactive
behaviors can be easily combined in the concurrent object groups. Real-Time
ABS combines functional and imperative programming styles with a Java-like
syntax and a formal semantics. Internal computations in an object are captured
in a simple functional language based on user-defined algebraic data types and
functions. A modeler may abstract from many details of the low-level impera-
tive implementations of data structures, but maintain an overall object-oriented
design. The semantics of Real-Time ABS is specified in rewriting logic [12], and
a model written in Real-Time ABS can be automatically translated into Maude
code and executed by the Maude tool.

The imperative layer of Real-Time ABS addresses concurrency, communica-
tion, and synchronization based on objects. The syntax is shown in Figure 1.
A program P consists of interfaces IF, classes C'L with method definitions M,
and a main block {[T 7;] s}. Our discussion focuses on interesting imperative
language features, so we omit the explanations of standard syntax and the func-
tional layer (see [16]).

In Real-Time ABS, communication and synchronization are decoupled. Com-
munication is based on asynchronous method calls f = olm(e) where f is a future
variable, o an object expression, m a method name, and € the parameter values
for the method invocation. After calling f = olm(€), the caller may proceed with



its execution without blocking on the method reply. Synchronization is controlled
by operations on futures. The statement await f7 releases the processor while
waiting for a reply, allowing other processes to execute. When the reply arrives,
the suspended process becomes enabled and the execution may resume. The re-
turn value is retrieved by the expression f.get, which blocks all execution in the
object until the return value is available. The syntactic sugar © = await olm(e)
encodes the standard pattern f = olm(e); await f7;x = f.get.

In Real-Time ABS, the timed behavior of concurrent objects is captured by
a mazximal progress semantics. The execution time can be specified directly with
duration statements, or be implicit in terms of observations on the executing
model. Method calls have associated deadlines, specified by deadline annota-
tions. The statement duration(e;,ez) will cause time to advance between a
best case e; and a worst case e; execution time. Whereas duration-statements
advance time at any location, Real-Time ABS also allows a separation of con-
cerns between the resource cost of executing a task and the resource capacity of
the location where the task executes. Cost annotations [Cost: e] are used to
associate resource consumption with statements in Real-Time ABS models.

Real-Time ABS uses deployment components to capture the execution ca-
pacity of a location in the deployment architecture, on which a number of con-
current objects can be deployed [18]. Each deployment component has its own
execution capacity, which will determine the performance of objects executing
on the deployment component. Deployment components are dynamically created
by & = new DeploymentComponent (descriptor, capacity), where x is typed by
the DC interface, descriptor is a descriptor for the purpose of monitoring, and
capacity specifies the initial CPU capacity of the deployment component. Ob-
jects are deployed on a deployment component using the DC annotation on the
object creation statement.

2.2 YARN: Yet Another Resource Negotiator

YARN [27] is an open-source software framework supported by Apache for dis-
tributed processing and storage of high data volumes. It inherits the advantages
of its well-known predecessor Hadoop [5], including resource allocation, code
distribution, distributed data processing, data replication, and fault tolerance.
YARN further improves Hadoop’s limitations in terms of scalability, serviceabil-
ity, multi-tenancy support, cluster utilization, and reliability.

YARN supports the execution of different types of jobs, including MapRe-
duce, graph, and streaming. Each job is divided into tasks which are executed in
parallel on a cluster of machines. The key components of YARN are as follows:

— ResourceManager (RM): RM allocates resources to various competing jobs
and applications in a cluster, replacing Hadoop’s JobTracker. Unlike Job-
Tracker, the scheduling provided by RM is job level, rather than task level.
Thus, RM does not monitor each task’s progress or restart any failed task.
Currently, the default job scheduling policy of RM is CapacityScheduler [23],
which allows cluster administrators to create hierarchical queues for multiple
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tenants to share a large cluster while giving each tenant a capacity guaran-
tee. The jobs in each queue are scheduled based on a First-in-First-out policy
(FIFO), i.e., the first job to arrive is first allocated resources.

— ApplicationMaster (AM): This is an instance of a framework-specific library
class for a particular job. It acts as the head of the job to manage the job’s
lifecycle, including requesting resources from RM, scheduling the execution
of all tasks of the job, monitoring task execution, and re-executing failed
tasks.

— Containers: Each container is a logical resource collection of a particular
node (e.g., 1 CPU and 2GB of RAM). Clients can specify container resource
requirements when they submit jobs to RM and run any kind of applications.

Figure 2 shows the architecture of a YARN cluster, which consists of RM and
a set of slave nodes providing both computation resources and storage capacity
to execute applications and store data, respectively. A slave node has an agent
called NodeManager to periodically monitor its local resource usage and report
its status to RM. The execution flow of a job on a YARN cluster is as follows:

1. Whenever receiving a job request from a client, RM follows a pre-defined job
scheduling algorithm to find a container from an available slave and initiate
the AM of the job on the container.

2. Once the AM is initiated, it starts requesting a set of containers from RM
based on the client’s container resource requirement and the number of tasks
of the job. Basically, each task will be run on one container.
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3. When RM receives a container request from the AM, it inserts the request
into its queue and follows its job scheduling algorithm to allocate a desired
container from an available slave node to the AM.

4. Upon receiving the container, the AM executes one task of the job on the
container and monitors this task execution. If a task fails due to some errors
such as an underlying container/slave node failure, the AM will re-request a
container from RM to restart the task.

5. When all tasks of a job finish successfully, implying that the job is complete,
the AM notifies the client about the completion.

3 Formal Model of the ABS-YARN Framework

Figure 3 shows the structure of ABS-YARN with classes RM, AM, and Container
reflecting the main components of a YARN cluster. In our framework, RM is
deployed as an independent deployment component with its own CPU capacity.
To model the most general case, we assume that RM has a single queue for all
job requests, implying that all jobs are served in a FIFO order. When a client
submits a job, an AM object is created for this job, and its req method starts
requesting containers from RM by invoking the getContainer method. If a
slave has sufficient resources, a container will be created and returned to the
AM. Then the AM submits one task of the job to the allocated container by
invoking the exe method. When the task terminates, the result is returned to
the associated AM, the free method is invoked to release the container, and the
logger method is used to record execution statistics.

ABS-YARN allows modelers to freely determine the scale and resource ca-
pacity of a YARN cluster, including (1) the number of slave nodes in the cluster,
(2) the CPU cores of each slave node, and (3) the memory capacity of each slave
node. To support dynamic and realistic modeling of job execution, ABS-YARN
also allows modelers to define the following parameters:
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— Number of clients submitting jobs

Number of jobs submitted by each client

— Number of tasks per job

Cost annotation for each task

CPU and memory requirements for each container

— Job inter-arrival pattern. Modelers can determine any kind of job inter-
arrival distributions in ABS-YARN.

MapReduce jobs are the most common jobs in YARN, so we focus on modeling
their execution in this paper. Each MapReduce job has a map phase followed by
a reduce phase. In the map phase, all map tasks are executed in parallel. When
all the map tasks have completed, the reduce tasks are executed (normally, each
jobs has only one reduce task). The job is completed when all the map and
reduce tasks have finished.

The execution time of a task in a real YARN cluster might be influenced
by many factors, e.g., the size of the processed data and the computational
complexity of the task. To reduce the complexity of modeling the task execution
time, ABS-YARN adopts the cost annotation functionality of Real-Time ABS
to associate cost to the execution of a task. Hence, the task execution time will
be the cost divided by the CPU capacity of the container that executes the task.

In the following, we limit our code presentation to the main building blocks
and functionalities to simplify the description.

3.1 Modeling ResourceManager (RM)

The ResourceManager implements the RM interface:

interface RM {
Bool initialization(Int s, Int sc, Int sm);
Pair<Int, Container> getContainer (Int c, Int m);
Unit free(Int slavelID, Int c, Int m);
Unit logger(...);}

Method initialization initializes the entire cluster environment, including
RM and s slaves. Each slave is modeled as a record in a database SlaveDB,
with a unique SlavelID, sc CPU cores, and amount sm of memory capacity.
After the initialization, the cluster can start serving client requests. Method
getContainer allows an AM to obtain containers from RM. The size of the
required container core and container memory are given by ¢ and m, respectively.
Method free is used to release container resources whenever a container finishes
executing a task, and method 1logger is used to record job execution statistics,
including job ID and job execution time.

The getContainer method, invoked by an AM, tries to allocate a container
with ¢ CPU cores and m amount of memory capacity from an available slave to
the AM. Each container request is allowed at most thd attempts. Hence, as long
as Find==False and attempt<=thd (line 3), the getContainer method
will keep trying to obtain the database token to ensure a safe database access.
The built-in function 1ookupDefault checks each slave in slaveDB to find a
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slave with sufficient resources. If such a slave exists (line 11), the corresponding
container will be created as a deployment component with ¢ cores, and the
slave’s resources will be reduced and updated accordingly (lines 12-14). The
successfully generated container is returned to the AM.

However, if no slaves have enough resources, the process will suspend (line
21), allowing RM to process other method activations. The suspended process
will periodically check whether any slaves can satisfy the request. If the desired
container cannot be allocated within thd attempts, the method terminates and
RM is unable to provide the desired container to the AM.

Pair <Int, Container> getContainer (Int c, Int m) {
Bool find=False; Int slavelID=1; Int attempt=1l;
while (find==False && attempt<=thd) {
await dbToken==True;
dbToken==False;
Int i=1;
while (find==False && i<=size (keys (slaveDB))) {
Pair<Int,Int> slave= lookupDefault (slaveDB, i, Pair(1l,1));
Int free_core= fst(slave);
Int free_mem= snd(slave);
if (free_core>=c && free_mem >= m) {
slaveDB=put (slaveDB, i, Pair (free_core-c, free_mem-m));
DC s=new DeploymentComponent ("slave", map[Pair (CPU,c)]);
[DC: s] Container container = new Container (this);
find=True;
slavelID=i;
)
1++;
}
// Release dbToken
await duration(1,1);
attempt++;

if (find==False){ container=null;}
return Pair (slaveID, container);

3.2 Modeling ApplicationMaster (AM)

An AM implements the AM interface with a req method to acquire a container
from RM and then execute a task on the container. For an AM, the total number
of times that req is called corresponds to the number of map tasks of a job (e.g.,
if a job is divided into 10 map tasks, this method will be called 10 times).

interface AM {
Unit reqg(Int mNum, Int ¢, Int m, Rat mCost, Rat rCost);}

The req method first invokes the getContainer method and sends a
container-resource request (i.e., the parameters c and m) to acquire a container
from RM. Since the call is asynchronous, the AM is able to request containers
for other tasks of jobID while waiting for the response.

Unit reg(Int mNum, Int c, Int m, Rat mCost, Rat rCost) {
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Pair<Int, Container> p= await rm!getContainer(c, m);
Int slaveld=fst(p);
Container container=snd(p);
if (container!=null) {
Fut<Bool> f = container!exe(slavelID, c¢, m, mCost);
await f£?;
Bool map_result = f.get;
if (map_result==True) {
returned_map+t++;
if (returned_map==mNum) {
Bool red_result;
...//Try to request a container and run the reduce task
if (red_result==True) {
logging the job completion;

else{ logging the reducde-task failure;}
}

else{ logging the map-task failure;}

else{ logging unsuccessful container request;}

}

When a container is successfully obtained, a map task with cost mCost can
be executed on the container (line 7). The process suspends while waiting for
the result of the task execution. Each time when map_result==True, the req
method increases the variable returned_map by one. When all map tasks of
the job have successfully completed (line 12), the AM proceeds with a container
request to run the reduce task of the job with cost rCost. Only when all map
and reduce tasks are completed (line 15), the job is considered completed.

3.3 Modeling Containers

A container implements the Container interface:

interface Container{
Bool exe (Int slaveID, Int ¢, Int m, Rat tcost);}

Method exe is used to execute a task on a container. The formal parameters of
exe consist of slaveID, CPU capacity ¢, memory capacity m, and the task cost
tcost. Hence, the task execution time is tcost/c. When a task terminates,
the free method of RM is invoked to release the container, implying that the
corresponding CPU and memory resources will be returned back to the slave.

Bool exe (Int slaveID, Int c, Int m, Rat tcost) {
[Cost: tcost] ... //executing a task;
rm! free(slavelID, c, m);
return true;}

4 Performance Evaluation and Validation

To compare the simulation results of ABS-YARN against YARN, we established
a real YARN cluster using Hadoop 2.2.0 [5] with one virtual machine acting as



RM and 30 virtual machines as slaves. Each virtual machine runs Ubuntu 12.04
with 2 virtual cores of Intel Xeon E5-2620 2GHz CPU and 2 GB of memory.
To achieve a fair validation, we also created an ABS-YARN cluster with 30
slaves; each with 2 CPU cores and 2 GB of memory. To realistically compare
job execution performance between ABS-YARN and YARN clusters, we used
the following five benchmarks from YARN [23]: WordCount, which counts the
occurrence of each word in data files; WordMean, which calculates the average
length of the words in data files; WordStandardDeviation (WordSD), which
counts the standard deviation of the length of the words in data files; GrepSort,
which sorts data files; and GrepSearch, which searches for a pattern in data
files.

We created a hybrid workload consisting of 22 WordCount jobs, 22 Word-
Mean jobs, 20 WordSD jobs, 16 GrepSort jobs, and 20 GrepSearch jobs. The
submission orders of all jobs were randomly determined. Each job processes 1 GB
of enwiki data [13] with 128 MB block size (the default block size of YARN [23]).
Hence, each job was divided into 8 (=1GB/128MB) map tasks and one reduce
task, implying that 9 containers are required to execute each job. We assume
that the resource requirement for each container is 1 CPU core and 1 GB RAM
for both the ABS-YARN and YARN clusters.

We considered two job inter-arrival patterns in our experiments: Uniform and
exponential distribution [20]. In the former, the inter-arrival time between two
consecutive jobs submitted by clients are equal. In the latter, job inter-arrival
time follows a Poisson process [20], i.e., job submissions occur continuously and
independently at a constant average rate. Reiss et al. [25] show that job ar-
rival patterns in a Google trace approximates an exponential distribution. This
distribution has also been widely used as job arrival pattern in the literature
(e.g., [22,24]). Based on these distributions, two scenarios were designed:

— Uniform scenario: The job inter-arrival time of the workload is 150 sec in
the real YARN cluster. In ABS-YARN, this is normalized into 2 time units.

— Exponential scenario: The job inter-arrival time of the workload follows an
exponential distribution with the average inter-arrival time of 158 sec and
a standard deviation of 153 sec in the real YARN cluster. This is normal-
ized into the average inter-arrival time of 158/75 time units and a standard
deviation of 153/75 time units in the ABS-YARN cluster.

The following metrics were used to evaluate how well ABS-YARN can simulate
job scheduling, job execution behavior, and job throughput of YARN:

— Starting time of all jobs of the workload
— Finish time of all jobs of the workload

— The number of cumulative completed jobs
Total number of completed jobs

4.1 Validation Results in the Uniform Scenario

In order to achieve a fair comparison, we conducted the uniform scenario on
the YARN cluster to obtain the average map-task execution time (AMT) and



Table 1. The average map-task execution time (AMT), average reduce-task
execution time (ART), normalized map-task cost annotation (MCA), and nor-
malized reduce-task cost annotation (RCA) in the uniform scenario.

Benchmark ~ AMT (sec) ART (sec)  MCA RCA

WordCount  162.64 251.01 2.17 (—162.64/75)  3.35 (251.01,/75)
WordMean  107.10 139.94 1.43 (=107.10/75) 1.87 (=139.94/75)
WordSD 108.23 162.27 1.44 (=108.23/75)  2.16 (=162.27/75)
GrepSort  20.39 38.44 0.27 (=20.39/75)  0.51 (=38.44/75)
GrepSearch  31.22 55.97 0.42 (=31.22/75)  0.75 (=55.97/75)
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Fig. 4. The normalized time points of all jobs in the uniform scenario.

average reduce-task execution time (ART) for each job type. The results are
listed in Table 1. After that, we respectively normalized each AMT and ART
into a map-task cost and a reduce-task cost for ABS-YARN by dividing the AMT
value by 75 and dividing the ART value by 75 (Note that 75 is half of the job
inter-arrival time for the uniform scenario). With the corresponding map-task
cost annotation (MCA) and reduce-task cost annotation (RCA), we simulated
the uniform scenario on ABS-YARN.

Figure 4(a) shows the normalized starting time of all jobs in both clusters. We
can see that the two curves are almost overlapping. The average time difference
between ABS-YARN and YARN is 0.02 time units with a standard deviation
of 1.73 time units, showing that ABS-YARN is able to precisely capture the
job scheduling of YARN in the uniform scenario. Figure 4(b) depicts all job
finish time in both clusters. The average difference between ABS-YARN and
YARN is 2.67 time units with a standard deviation of 1.81 time units, indicating
that the framework can accurately model how containers execute jobs in a real
YARN cluster. Based on the results shown in Figure 4, we can derive that the
cumulative numbers of completed jobs between the two clusters are close (see
Figure 5(a)). The average error is approximately 2.52%, implying that ABS-
YARN can precisely reflect the operation of YARN in the uniform scenario.
Figure 5(b) shows that 100 jobs of the workload successfully finished in the
ABS-YARN cluster, but 99 jobs of the workload completed in the YARN cluster
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Fig. 5. The cumulative completed jobs and the total number of completed jobs
in the uniform scenario.

since the remaining one job could not obtain sufficient containers to execute
its tasks. The job completion error of ABS-YARN is only 1.01%. Based on the
above-mentioned results, it is evident that the ABS-YARN framework offers a
superior modeling of YARN in the uniform scenario.

4.2 Validation Results in the Exponential Scenario

In this section, we compare ABS-YARN and YARN under the exponential sce-
nario. Similar to the uniform scenario, we performed a normalization by exe-
cuting the exponential scenario on the YARN cluster to derive a map-task cost
annotation and a reduce-task cost annotation for each job type. The results are
listed in Table 2. Note that regardless of which job type was tested, the cor-
responding average map-task and reduce-task execution time were apparently
higher than those in the uniform scenario. The main reason is that the job inter-
arrival time in the exponential scenario had a much higher standard deviation,
implying that many jobs might compete for containers at the same time. How-
ever, due to the limited container resources, these jobs had to wait for available
containers and hence prolonged their execution time.

Table 2. The AMT, ART, MCA, and RCA in the exponential scenario.
Benchmark ~ AMT (sec) ART (sec) MCA RCA

WordCount  205.47 430.24 3.4 (—295.27/75)  5.74 (430.24/75)
WordMean ~ 139.98 201.11 1.87 (=139.98/75)  2.68 (=201.11/75)
WordSD  238.46 312.38 3.18 (=238.46/75)  4.17 (=312.38/75)
GrepSort  37.38 62.06 0.50 (=37.38/75)  0.83 (=62.06/75)
GrepSearch  173.92 205.94 2.32 (=173.92/75) 2.75 (205.94/75)

The normalized job starting time illustrated in Figure 6(a) show that the
ABS-YARN cluster follows the same trend as the YARN cluster. However, as
more jobs were submitted, their starting time in ABS-YARN were later than
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Fig. 6. The time points of all jobs in the exponential scenario.

those in the YARN cluster. The average time difference is around 19.48 with
standard deviation of 12.92. The key reasons are two. First, the normalized map-
task (reduce-task) cost annotations used by ABS-YARN were based on average
map-task (reduce-task) execution time of the entire workload, which were longer
than the actual map-task (reduce-task) execution time spent by the real YARN
cluster in the early phase of the workload execution. Second, the number of
available containers gradually decreased when more jobs were submitted to the
ABS-YARN cluster. For these two reasons, the starting time of the subsequent
jobs were delayed.

Figure 6(b) depicts the normalized job finish time of the two clusters un-
der the exponential scenario. We can see that during the workload execution,
many jobs in the ABS-YARN cluster finished later than the corresponding jobs
in the YARN cluster. The reasons are the same, i.e., the map-task (reduce-task)
cost annotation values were derived from the corresponding average map-task
(reduce-task) execution time, which were usually higher than the actual execu-
tion time in the YARN cluster during the early stage of the workload. Never-
theless, the results show that even under a heavy and dynamic workload, the
ABS-YARN framework can still adequately model YARN.

The cumulative number of completed jobs illustrated in Figure 7(a) shows
that during most of the workload execution, the ABS-YARN cluster finished
fewer jobs than the YARN cluster for the above mentioned reasons. However,
in the late stage, the ABS-YARN cluster had more completed jobs than the
YARN cluster. This phenomenon can also be deduced from Figure 6 since seven
jobs could not complete by the YARN cluster. The average difference of the
cumulative workload completion between ABS-YARN and YARN is 14.49%.
Due to failing to get containers, 97 jobs and 93 jobs (as shown in Figure 7(b))
were finished by the ABS-YARN cluster and the YARN cluster, respectively.
Although the job completion error of ABS-YARN is increased to 4.3% from the
uniform scenario to the exponential scenario, the above results still demonstrate
that the ABS-YARN framework provides a satisfiable modeling for YARN.
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Fig. 7. The cumulative completed jobs and the total number of completed jobs
in the exponential scenario.

5 Related Work

General-purpose modeling languages provide abstractions where the main focus
has been on describing functional behavior and logical composition. However,
this is inadequate for virtualized systems such as clouds when the software’s
deployment influences its behavior and when virtual processors are dynamically
created. A large body of work on performance analysis using formal models can
be found based on, e.g., process algebra [9], Petri Nets [26], and timed and prob-
abilistic automata [4, 8]. However, these works mainly focus on non-functional
aspects of embedded systems without associating capacities with locations. A
more closely related technique for modeling deployment can be found in an
extension of VDM-++ for embedded real-time systems [28], in which static ar-
chitectures are explicitly modeled using buses and CPUs with fixed resources.

Compared to these languages, Real-time ABS [10,18] provides a formal basis
for modeling not only timed behavior but also dynamically created resource-
constrained deployment architectures, which enables users to model feature-rich
object-oriented distributed systems with explicit resource management at an
abstract yet precise level. Case studies validating the formalization proposed in
Real-Time ABS include Montage [17] and the Fredhopper Replication Server [3].
Both case studies address resource management in clouds by combining simula-
tion techniques and cost analysis. Different from these case studies, this paper
uses Real-Time ABS to create a formal framework for YARN and comprehen-
sively compare this framework with a real YARN cluster.

In recent years, many simulation tools have been introduced for Hadoop,
including MRPerf, MRSim, and HSim. MRPerf [29] is a MapReduce simulator
designed to understand the performance of MapReduce jobs on a specific Hadoop
parameter setting, especially the impact of the underlying network topology, data
locality, and various failures. MRSim [15] is a discrete event based MapReduce
simulator for users to define the topology of a cluster, configure the specification
of a MapReduce job, and simulate the execution of the job running on the clus-
ter. HSim [21] models a large number of parameters of Hadoop, including nodes,



cluster, and simulator parameters. HSim also allows users to describe their own
job specification. All the above-mentioned simulators target Hadoop rather than
YARN. Due to the fundamental difference between Hadoop and YARN, these
simulators are unable to simulate YARN. Besides, these simulators concentrate
on simulating the execution of a single MapReduce job and compare the cor-
responding simulation results with the actual results on real Hadoop systems.
However, this is insufficient to confirm that they can faithfully simulate Hadoop
when multiple jobs are running on Hadoop. Similar work can also be found
in [19]. Different from all these simulators, the proposed ABS-YARN framework
is designed to model a set of jobs running on YARN, rather than just one job.
With ABS-YARN, users can comprehend the performance of YARN under a
dynamic workload.

To our knowledge, the Yarn Scheduler Load Simulator (SLS) [31] is the only
simulator currently designed for YARN, but it concentrates on simulating job
scheduling in a YARN cluster. Besides, SLS does not provide any performance
evaluation to validate its simulation accuracy. Compared with SLS, ABS-YARN
provides a formal executable YARN environment. In this paper, we also present
a comprehensive validation to demonstrate its applicability.

6 Conclusion and Future Work

This paper has presented the ABS-YARN framework based on the formal mod-
eling language Real-Time ABS. ABS-YARN provides a generic model of YARN
by capturing the key components of a YARN cluster in an abstract but pre-
cise way. With ABS-YARN, modelers can flexibly configure a YARN cluster,
including cluster size and resource capacity, and determine job workload and
job inter-arrival patterns to evaluate their deployment decisions.

To increase the applicability of formal methods in the design of virtualized
systems, we believe that showing a strong correlation between model behaviors
and real system results is of high importance. We validated ABS-YARN through
a comprehensive comparison of the model-based analyses with the actual per-
formance of a real YARN cluster. The results demonstrate that ABS-YARN is
accurate enough to offer users a dependable framework for making deployment
decisions about YARN at design time. In addition, the provided abstractions en-
able designers to naturally model and design virtual systems at this complexity,
such as enhancing YARN with new algorithms.

In future work, we plan to further enhance ABS-YARN by incorporating
multi-queue scheduler modeling, slave and container failure modeling, and dis-
tributed file-system modeling. Modeling different job types will also be con-
sidered. Whereas this paper has focussed on the accuracy of the ABS-YARN
framework, our ongoing work on a more powerful simulation and visualization
tool for Real-Time ABS will improve the applicability of ABS-YARN.

Acknowledgement. The authors thank NCLab at National Chiao Tung
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