
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D1.2.2
Modeling of Resources (Final Report)

Date of document: T0+30

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: UIO

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Modeling of Resources (Final Report)

This document summarises deliverable D1.2.2 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable describes the outcomes of Task T1.2: The formalization of virtualized resources and
their full integration into the syntax and semantics of the abstract behavioral specification language.

The content of this deliverables supercedes Deliverable D1.2.1 (Modeling of Resources, Intermediate
Report).

List of Authors
Abel Garcia (BOL)
Samir Genaim (UCM)
Enrique Martín (UCM)
Rudolf Schlatte (UIO)

2

http://www.envisage-project.eu

Contents

1 Introduction 4

2 Real-Time ABS 5
2.1 Basic Manipulation of Time in ABS . 5

3 Resource Modeling in ABS 7
3.1 Resource Types . 7

3.1.1 Bandwidth . 8
3.1.2 Memory . 8
3.1.3 Cores . 9

3.2 Resource Configurations . 9
3.3 Deployment Components . 9
3.4 Modeling Resource Usage . 10

4 Static Analysis for Resource Modeling 11
4.1 Worst-Case Size Analysis for Bandwidth Annotations . 11
4.2 Worst-Case Analysis of CPU Resource Consumption . 12
4.3 Upper Bounds and Simulation . 13
4.4 Static Memory Analysis . 14

Bibliography 15

Glossary 17

3

Chapter 1

Introduction

Task T1.2 is about the modeling of resources. The task formalizes virtualized resources and integrates them
into the syntax and semantics of the ABS language. We aim to introduce virtualized resources as first class
citizens of the modeling language, and connect them to concepts of execution and locality.

In order to be realistic, resource management must depend on the execution and data flow in the business
code of the object-oriented model, and must reflect the timed behavior of the real system. In this, we rely
on the Real-Time ABS extension to the ABS language. This task develops data type descriptions for the
different kinds of resources, and considers the generalization from a single resource to a set of resources.
Further, we investigate the operational integration of these descriptions in terms of annotations, deployment
components and deployment strategies. Finally, to streamline our language definition, we investigate the
expressive power of our extensions.

This deliverable describes the results of Task T1.2. This task formalized resource modeling and iden-
tified two different uses for resources, which we call static and dynamic. Static resources form the basis
of deployment descriptions, plans and (compile- or run-time) decisions. Dynamic resources form the basis
of performance analysis done with simulation tools. This deliverable discusses both, with an emphasis on
dynamic resources. The use of static resources is also discussed in the report on Task T1.3 (Modeling of
Deployment).

In terms of execution and simulation semantics, this deliverable discusses the three dynamic resource types
identified in the context of simulating virtualized systems; i.e., CPU speed, memory size, and bandwidth.
We develop data type descriptions for these different resources, and consider the generalization from a single
resource to a set of resources. We describe a representation of these resources as first class citizens of the
modeling language in order to express load balancing and scheduling decisions for service requests based on
resource availability. In terms of deployment strategies, we discuss the static resource types core count and
memory size that help Task T1.3 achieve its goals. A discussion of static deployment strategies and resource
configurations can be found in [5].

The present deliverable first briefly reviews the language features of real-time ABS that are relevant for
resource modeling in Chapter 2, then presents modeling of static and dynamic resources and its influence on
the behavior of ABS models in Chapter 3. Finally, Chapter 4 puts the resource models in the context of the
static analysis tools developed in Work Packages 2 and 3.

4

Chapter 2

Real-Time ABS

In order to run timed simulations, which forms the basis of simulations estimating the effect of different
resource usage and deployment scenarios, it is necessary to introduce a notion of time into ABS.

The ABS notion of time is dense time with run-to-completion semantics. This means that in a simulation,
most statements conceptually run infinitely fast. Time advances when all processes meet one of the following
conditions:

∙ the cog of the process is blocked

∙ the process is suspended waiting for time to advance

∙ the process is waiting for a resource to become available

∙ the process is suspended or blocked waiting for another process

In practice this means that all process run as long as there is “work to be done.” Once all processes are
stuck waiting (directly or indirectly) for the clock, the clock advances by an amount sufficient to unblock
one or more processes (big-step time advance semantics).

Note that an ABS model that contains neither duration nor resource constructs will run without influ-
encing the clock. This means that all ABS models are valid in Real-Time ABS; Real-Time ABS is a strict
super-set of (untimed, non-resource-aware) Core ABS. ABS models without duration or resource constraints
run in zero simulated time; the clock will be at time zero at the end of the simulation.

The standard library contains the following definition of a time datatype:

data Time = Time(Rat timeValue);

def Time now() = ...

The function now() always returns the current time as a non-negative rational number.

2.1 Basic Manipulation of Time in ABS

The following statements cause simulated time to advance:

duration(Rat min, Rat max);

await duration(Rat min, Rat max);

The duration statement blocks the cog of the executing process until at least min and at most max time
units have passed. The await duration statement suspends the current process until at least min and at most
max time units have passed.

In practice, the main purpose of these statements for directly controlling time advance is to model external
processes that are not part of the model (e.g., a database query, machine initialization, . . .). In all these

5

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

cases, the exact duration might be known only within an interval, which is why these statements take two
arguments. The language semantics and simulators guarantee that time will not advance beyond max, but
not that it will advance precisely to the min of the interval.

The difference between duration and await duration is that in the latter case other processes in the same
cog can execute while the awaiting process is suspended. In the case of the blocking duration statement, no
other process in the same cog can execute. Note that processes in other cogs are not influenced by duration
or await duration, except when they attempt to synchronize with the future of that process, at which point
they will be blocked or suspended as well.

A subtle difference between duration and await duration is that in the latter case, the suspended process
becomes eligible for scheduling after the specified time, but there is no guarantee that it will actually be
scheduled at that point. This means that in case of multiple processes eligible for scheduling, a process might
observe more time passed than the maximum given in its await duration guard.

Example:
Time t = now();
await duration(1/2, 5);
Time t2 = now();

In line 2, the process suspends for 1/2–5 time units; t2 will be at least 1/2 time units larger than t. The
process will become enabled and runnable at most after 5 time units.

Example:
Time t = now();
duration(1/2, 5);
Time t2 = now();

In this example, the process and its cog will be blocked for 1/2–5 time units; t2 will be between 1/2 and 5
time units larger than t.

6

Chapter 3

Resource Modeling in ABS

Resource Modeling deals with simulating and analyzing the non-functional properties of models: planning
and executing code deployment on varying numbers and kinds of machines, and the effects of different
CPU speeds, interconnection bandwidth, code locality, etc. on the performance of a system. We call
resources that influence deployment decisions static resources, and resources that influence performance
dynamic resources. This section describes the constructs ABS offers to the modeler that form the base of
qualitative and quantitative modeling of resources.

We introduce several tightly-connected concepts: resource types and resource annotations using them
(Section 3.1), resource configurations (Section 3.2), and deployment components (Section 3.3). In brief,
deployment components provide a resource configuration to cogs and their processes; resource configurations
assign quantities to (a subset of all) resource types, and resource annotations describe semantic effects of
parts of the model on a resource configuration (e.g., consuming some CPU by executing a certain statement).

All language identifiers described in this section reside in the ABS.DC module. To use them, import this
module as follows:

module Name;
import * from ABS.DC;

3.1 Resource Types

The term Resource can be used in different ways. In ABS, we understand a Resource to be a countable,
measurable property of a location. In the case of ABS, locations are modeled by deployment components. If
the resource is influenced by program execution and the passage of time, we call it a dynamic resource. If the
resource is unchanging and influences deployment, via its presence or quantity, we call it a static resource.

A resource always has a resource type; the simulation tools and language semantics currently offer band-
width, CPU speed and memory as dynamic resource types, and memory and number of cores as static
resource types. These resource types are defined in the ABS.DC module as follows:

data Resourcetype
= Speed
| Cores
| Bandwidth
| Memory
;

Notably, the Speed and Cores resource types started out as a unified resource type CPU. During work on
modeling the Envisage case studies, it became apparent that there was a need to express both the number
of cores of a VM and its relative speed, and that these concepts were only weakly related.

Note that there are some other attributes that a deployment component can carry: duration of starting
up and shutting down, payment interval and cost per interval. These attributes model cost of deployment
and are discussed in Deliverable D1.3.2.

7

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

Speed

The Speed dynamic resource type models execution speed. Intuitively, a deployment component with twice
the number of CPU (speed) resources will execute twice as fast. In an ABS model, not all parts of a model
consume CPU while executing – speed resources are consumed when execution in the current process reaches
a statement that is annotated with a Cost annotation. This aligns with the observation that most CPU time
will be spent at certain hotspots in a program; an example of this technique is presented in [4]. The advantage
of explicit annotations is that, similar to running untimed models in Real-Time ABS, all un-annotated or
partially annotated ABS models are valid and well-behaved under resource simulations.

Statements that consume CPU are annotated with a Cost annotation:
Example:
[Cost: 5] skip;

Executing the above skip statement will consume 5 Speed resources from the deployment component
where the cog was deployed.

If the resource configuration of the deployment component does not have infinite speed resources, ex-
ecuting the above skip statement might take an observable amount of time proportional to its cost. For
example, if the resource configuration contains 3 speed resources, the skip statement will be executed within
⌈5/3⌉ = 2 time units.

3.1.1 Bandwidth

Bandwidth is a measure of transmission speed. Bandwidth resources are consumed during method invocation
and return statements. Bandwidth resources are consumed on both the sending and the receiving deployment
component. We do not currently distinguish outgoing from incoming bandwidth since the case studies do
not demand this distinction, so both incoming and outgoing messages consume from the same “budget”.

Bandwidth consumption is expressed via a Size annotation to method invocation and return statements:

Example:
[Size: 2 * length(x)] o!m(x);

[Size: 1] return 145;

Executing the above method invocation statement will consume bandwidth resources proportional to
the length of list x. The return statement consumes a constant amount of bandwidth during execution.
Resource consumption will occur both at the sender (the deployment component where the current process
is running), and at the receiver (the deployment component where o is deployed resp. where the return value
is delivered).

Similar to the CPU speed case, executing the above statements will take an observable amount of time
proportional to the message sizes given in the Size annotations. The effective bandwidth between two
deployment components is the minimum of the bandwidths in the two resource configurations. Transferring
a message will be finished when the necessary number of bandwidth resources has been consumed. If one
deployment component has more bandwidth resources than the other, that deployment component can send
and receive other messages concurrently since not all available bandwidth will be consumed.

3.1.2 Memory

The memory resource type abstracts from the size of main memory, as a measure of how many and which
cogs can be created on a deployment component. The memory resource type is different from CPU and
bandwidth in that it does not refresh in each time unit: memory that is consumed stays consumed until
it is freed. Also in contrast to bandwidth and cpu, memory does not influence the timed behavior of the
simulation of an ABS model. Instead, accidental or on-purpose overuse of memory in a model leads to failure.
Hence, memory can be seen as both a dynamic and static resource type: it has an influence at runtime but
does not influence timing behavior.

8

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

The necessary memory of running a new cog of a certain class (including the local objects and processes
it creates) are specified with a MaxSize resource annotation.
Example:
[MaxSize: 5] class C { }

A new cog of the above (empty) class C can only be instantiated on a deployment component with at
least 5 available memory resources.

3.1.3 Cores

The number of cores present on a deployment component is expressed via the Cores resource type. This
static resource type is used in static and dynamic deployment to express and check constraints regarding
number of cores needed for deployment of a module or system. This resource has influence on the simulation
only insofar as it might influence deployment decisions (and hence the number of deployment components
created). For static and dynamic deployment decisions, please refer to Deliverable D1.3.2.

3.2 Resource Configurations

To express availability of resource types, we introduce the concept of resource configuration. A resource config-
uration is a mapping from resource type to a number, for example map[Pair(Speed, 10), Pair(Bandwidth, 20)].
We use the standard ABS Map datatype; the ABS type of a resource configuration is Map<Resourcetype, Rat>,
i.e., a mapping from resource types to rational numbers. Resource types not included, such as Memory in
the above example, are treated as being infinite.

Example:
def Map<Resourcetype, Rat> amazonSmallInstance() =

map[Pair(Speed, 100), Pair(Memory, 1000), Pair(Cores 2)];

In this example, we define a resource configuration as the result of the constant function amazonSmallInstance.
This resource configuration models 100 Speed, 1000 Memory and (implicitly) infinite Bandwidth resources
on a 2-core (virtual or physical) machine.

3.3 Deployment Components

Modeling code deployment and code execution under resource constraints requires a notion of locality. For
this purpose, ABS offers a language construct called Deployment Component.

Deployment Components are first-class language constructs, i.e., they can be created, referenced and
interacted with from within the model. A reference to a deployment component is treated the same way as
a reference to an object. Deployment Components are created using the new expression. Any other cog can
be created "on" a deployment component by using a DC annotation to the new statement.

A new deployment component is constructed using a name and a resource configuration.

Example:
1 DeploymentComponent dc = new DeploymentComponent("Server 1", amazonSmallInstance());
2 [DC: dc] Worker w = new CWorker();

Line 1 A new deployment component dc is created using the resource configuration defined earlier

Line 2 w will run inside dc; resource annotations inside the CWorker class will influence dc

Note that it is an error to try to locally create deployment components (via new local DeploymentComponent(...))
or new local objects on another cog (via [DC: x] new local C();).

9

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

3.4 Modeling Resource Usage

As described above, resource models are added to an ABS model using annotations. Adding annotations to
specific statements and declarations causes side-effects on the status of an applicable deployment component.

Example:
1 module Test;
2 import * from ABS.DC;
3 interface I {
4 Unit process();
5 }
6 [MaxSize: 3]
7 class C implements I {
8 Unit process() {
9 [Cost: 10] skip;

10 }
11

12 {
13 DeploymentComponent dc = new DeploymentComponent("Server",
14 map[Pair(Speed, 5), Pair(Bandwidth, 10), Pair(Memory, 5)]);
15 [DC: dc] I i = new C();
16 [Size: 5] i!process();
17 }

Line 2 Make all necessary identifiers accessible in the current module

Line 6 Declare the memory needed to instantiate a cog of class C

Line 9 Executing this statement costs 10 CPU units; the execution time will depend on the resource config-
uration of the deployment component, and on other cogs executing in parallel on the same deployment
component. With the resource configuration in this example, executing the skip statement will take
Cost:10 / CPU:5 = two time units.

Line 15 Creating a new cog succeeds since the available memory (5) is more than the necessary memory
(3). Trying to create a second cog of the same class would fail in the given resource configuration.

Line 16 Executing this method call consumes 5 Bandwidth resources. Since dc has 10 bandwidth per time
unit and the main block operates in an unconstrained resource configuration, the message will be
transmitted in the same time unit.

10

Chapter 4

Static Analysis for Resource Modeling

The simulation tools developed in the Envisage project already handle resource annotations and deployment
components and their resource configurations. I.e., information on non-functional properties can be obtained
by running ABS models inside the simulator. This chapter presents further connections between the presented
resource models and the static analysis tools developed in the Envisage project.

4.1 Worst-Case Size Analysis for Bandwidth Annotations

The transmission data sizes analysis presented in [3] statically infers an upper bound on the amount of data
that the different objects in a distributed system may transmit. It is integrated into the resource analyzer
SACO [1] presented in the deliverable D.3.3.1 of the Envisage project. This analysis focuses on method
invocations and return statements because only at those points there will be data transmission, so its results
can be used to infer the Size annotations related to method invocations that express bandwidth consumption.
In order to obtain these upper bounds, the analysis over-approximates the sizes of the data at the program
points where methods are invoked and where the results are received, and then over-approximates the
total number of messages. The final result obtained by the analysis contains the data transmitted between
every pair of objects, but they are indexed by origin object, destination object and method invoked; so the
annotations can be easily extracted. For example, consider the following program:
Example:

1 module Test_Bandwidth;
2 import * from ABS.DC;
3 interface I {
4 List<Int> filter(List<Int> list);
5 }
6

7 class C implements I {
8 List<Int> filter(List<Int> list) {
9 List<Int> result = Nil;

10 while (list != Nil) {
11 Int h = head(list);
12 if (*) { result = Cons(h,result); }
13 list = tail(list);
14 }
15 return result;
16 }
17 }
18

19 { //main
20 DeploymentComponent dc = new DeploymentComponent("Server", map[Pair(Bandwidth, 10)]);
21 [DC: dc] I i = new C();
22 List<Int> list = Cons(1,Nil);
23 i!filter(list);
24 }

The developer would want to infer automatically the annotation of the invocation in Line 23. In this case the

11

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

transmission data sizes included in SACO would produce the following results—they have been pretty-printed
for clarity:

[main -> i, C.filter] = 3 // <1>

[i -> main, C.filter] = 3 // <2>

The line in the output marked <1> shows that there is a transmission of 3 units of data from the main block
to the object i—note that the list Cons(1,Nil) has size 3: 2 list constructors plus one basic integer value—
corresponding to the invocation at Line 23. In the worst case the list result that is returned at Line 15 will
be as long as the list list passed as argument. Therefore the analysis expresses in the output line marked
<2> that there is a transmission of 3 units of data from the object i to the main block.

Using this information the developer can add a Size annotation in the method invocation at Line 23:
Example:

[Size: 3] i!process(list);

Similarly with the return statement at Line 15:
Example:

[Size: 3] return result;

4.2 Worst-Case Analysis of CPU Resource Consumption

As not all statements consume CPU resources, the Cost annotations presented in Section 3.1 are used to
indicate how many CPU resources are consumed when execution in the current process reaches a particular
statement. Therefore it would be very interesting to obtain an upper bound on the total consumption of
CPU resources in a method. The resource analysis presented in [2] and integrated into SACO [1] (deliverable
D.3.3.1) can solve this problem. This analysis performs two steps: first it generates a set of cost relations from
the program source code and then it solves them to obtain an upper bound on the resource consumption. A
very interesting feature of the first step is that it is parametric on the notion of cost: it supports different
metrics, known as cost models, in order to quantify the cost of an execution step. Thus it can measure
different kinds of resources: the number of executed instructions, the number of objects created, the number
of methods invoked, etc. In this case, the resource analysis could be easily extended with a new cost model
that takes into account only annotated statements. This new cost model would quantify as 0 the cost of a
statement without annotation, whereas a statement with annotation [Cost: c] would be quantified as 𝑐. Using
this new cost model the resource analysis could generate cost relations containing the information from the
annotations and then compute an upper bound on the total consumption of CPU resources without further
changes.

Consider the following method:
Example:

Unit process(Int n) {
while (n > 0) {

[Cost: 7] skip; //Consumes 7 CPU resources
n = n − 1;

}
}

This method executes a statement of cost 7 which is inside a loop that iterates nat(n) times—where nat(n) =
max(n, 0) is used to lift negative values to 0. When computing the resource analysis for the process method
the result would be 7 * 𝑛𝑎𝑡(𝑛) CPU resources, as it was expected.
Example:

UB for ’process’(this,n) = 7*nat(n)

12

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

4.3 Upper Bounds and Simulation

The static analyses integrated in the resource analyzer SACO [1] infer upper bounds on the resource con-
sumption of the different methods, using different cost models such as number executed instructions, size
of transmitted data, number of objects created, number of methods invoked, etc. These upper bounds are
usually complex (mathematical) cost expressions that involve the size of the method parameters, where the
meaning of size of a parameter depends on the type of the parameter. Consider the following method powlist
which takes a list l of integer values and an integer n, and returns a list whose elements are those of l raised
to the power of n (using method pow):

Example:
List<Int> powlist(List<Int> l, Int n) {

List<Int> result = Nil;
while (list != Nil) {

Int h = head(l);
Fut<Int> f = this ! pow(h, n);
Int pow_h = f.get;
result = Cons(pow_h,result);
l = tail(l);

}
return result;

}

Int pow(Int b, Int n) {
Int i = 0;
Int acc = 1;
while (i < n) {

acc = acc * b;
i = i + 1;

}
return acc;

}

Analyzing the above code using SACO, we obtain the following upper bounds on, for example, the number
of executed instructions:

Example:
UB for ’C.powlist’(this,l,n) = 6+nat(l)*(19+6*nat(n))
UB for ’C.pow’(this,b,n) = 6+6*nat(n)

As expected, the upper bound of method pow depends only on the parameter n, and the upper bound of
method powlist depends on both l and n. Note that nat(v) should be interpreted as max(0,v). Variable l
in the above cost expressions refers to the length of the list to which variable l is bounded, and variable n
refers to the corresponding integer value (since the size of an integer is its value). Now suppose that we have
concrete values for l and n, during simulation for example, and we would like to compute an upper bound
on the cost of executing powlist(l, n). This can be done by first computing the length of the list l and then
substituting the result, together with the value of n, in the above expressions.

Although computing upper bounds for concrete data is simple for the specific case above, for complex
data-structures it might be more complicated as the definition of the corresponding size functions might be
more elaborated. In order to simplify this process, and thus facilitate the usage of the inferred upper bounds
during simulation, SACO generates ABS functions that can be used to compute corresponding upper bounds
without the need of computing the corresponding sizes by the user (or the simulator). Each such function
takes the same parameters as the corresponding method and returns the evaluation of the corresponding
upper bound with respect to those parameters. For example, for the methods above SACO would generate
the following code:

Example:

13

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

def Int nat(Int n) = max(0, n) ;

def Int listsize_list_int(List<Int> list) =
case list {

Cons(hd, tl) => 1 + listsize_list_int(tl);
Nil => 0;

} ;

def Int powlist_ub(List<Int> list, Int n) = 6 + nat(listsize_list_int(list)) * (19 + 6 * nat(n)) ;

def Int pow_ub(Int elem, Int n) = 6 + 6 * nat(n) ;

Note that in addition to the functions that define the upper bounds for methods powlist and pow, namely
powlist_ub and pow_ub, SACO generates a function listsize_list_int that computes the size of a list of type
List<Int> (in this case its length). If we had more types in the program, corresponding size functions will
be generated. These upper bound functions can be easily integrated into the simulation process by means
of annotations. For example, consider the following main method that invokes powlist and note the Cost
annotation at Line 3:

Example:
1 Unit main() {
2 List<Int> l = Cons(1, Cons(2, Nil));
3 [Cost: powlist_ub(l, 5)] this ! powlist(l, 5);
4 }

Now when reaching Line 3, if the simulator needs (an upper bound on) the cost of the corresponding call to
powlist it can simply execute the call given in the corresponding Cost annotation, namely powlist_ub(l, 5).

4.4 Static Memory Analysis

The work included as Appendix B in Deliverable D2.2.1 and reported in [6] proposes a static analysis
technique that computes upper bounds of resource consumption (the technique is tailored to virtual machine
usage in order to measure the maximum number of virtual machines used by a cloud service that dynamically
acquires and release these kind of resources; however the same technique can be applied to heap memory
consumption). This technique is orthogonal to the MaxSize annotations presented in Section 3.1.2 but is a
step towards checking the validity of such MaxSize annotations against the ABS class itself.

Our technique is modular and consists of (i) a type system associating programs with behavioural types
that records relevant information for resource usage (creations, releases, and concurrent operations), (ii) a
translation function that takes behavioral types and return cost equations, and (iii) an automatic solver for
the the cost equations.

The language features not only the allocation of memory (new operation) but also the deallocation (release
operation). When deallocation is considered, the precision of the computed upper bounds is heavily affected
by parallelism, which is intrinsic in ABS semantics (i.e. if several tasks are managing the memory allocation
concurrently, the estimation of how many memory slots are free at any given point in the computation may
require a considerable effort).

The technique in the paper can be adopted for generating the Size annotation for methods. Indeed,
our behavioural types can be used for storing information on object creation and computing the maximum
number of objects created within a cog in a certain class. This number can then be set as the Size annotation
of the class.

In order to illustrate the features of our technique we discuss few examples. For every example we also
examine the type of output we expect from our cost analysis. We present two methods computing the fac-
torial function, declared in a (omitted) class Math:

14

Envisage Deliverable D1.2.2 Modeling of Resources (Final Report)

[Size: n] Int fact(Int n){
Fut<Int> x ; Int m ; Math z ;
if (n==0) { return 1 ; }
else { z = new Math() ; x = z!fact(n−1) ; m = x.get ; release z ; return n*m ;
}

}
[Size: 1] Int cheap_fact(Int n, Int r){

Fut<Int> x, y ; Int m ; Math z ;
if (n==0) { return r ; }
else { z = new Math(); x = z!prod(n,r) ; m = x.get ; release z ;

y = this!cheap_fact(n−1,m) ; await y? ; m = y.get ; return m ;
}

}

(prod(x,y) has been omitted: it just returns x*y). The method fact is the standard definition of factorial
with the recursive invocation fact(n-1) performed on a new object z. The caller waits for its result, let it
be m, then it deallocate the object z and delivers the value n*m. Notice that every object creation occurs
before any release operation. As a consequence, fact will create as many new objects (and new cogs) as the
argument 𝑛. Therefore, in order to be executed, fact needs n additional memory slots, as it is displayed by
the corresponding Size annotation.

While cheap_fact also computes the factorial, its behaviour is different. In particular it implements the
function

𝑓(𝑛, 𝑟) =

{︂
𝑟 if 𝑛 = 0
𝑓(𝑛− 1, 𝑛 * 𝑟) otherwise

which is initially invoked with 𝑓(𝑛, 1). In cheap_fact the computation of 𝑛*𝑟 is performed on a new object,
which is deallocated before the recursive invocation. For this reason, one might always reuse the same object
(from a pool). In fact, it turns out that the cost of cheap_fact is 1, as it is displayed by the Size annotation.

The following cost equations for our Math class are a simplified version of the automatic cost equation
generation described in the Appendix B (The full detail of the analysis of these as well as of other more
complex examples can be found in the demo website1):

eq(fact(N), 0, [N = 0]).
eq(fact(N), 1, [fact(N − 1)], [N > 0]).
eq(fact(N), 0, [], [N > 0]).

eq(cheap_fact(N, R), 0, [N = 0]).
eq(cheap_fact(N, R), 1, [prod(N,R)], [N > 0]).
eq(cheap_fact(N, R), 0, [cheap_fact(N − 1)], [N > 0]).

eq(prod(N,R), 0, [], []).

The equations for both factorial functions are quite similar, the main difference is in number of objects
created while the recursive invocations takes place. In the case of fact the recursive invocation (second
equation above) takes place after the creation of one object (see value 1 in the second argument of the
equation), this object is released just after the recursion concludes (see third equation). On the other hand
in cheap_fact the recursive invocation (sixth equation)takes place after the release of the newly created
object (see second argument of the equation).

The resolution of these equations by means of an automatic solver produce the expected results, exactly
the values specified in the Size annotations.

1http://sra.cs.unibo.it

15

Bibliography

[1] Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel Gómez-Zamalloa, Enrique
Martin-Martin, Germán Puebla, and Guillermo Román-Díez. SACO: Static Analyzer for Concurrent
Objects. In 20th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 8413 of Lecture Notes in Computer Science, pages 562–567. Springer-Verlag,
2014.

[2] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, and Germán Puebla. Cost Analysis
of Concurrent OO programs. In Hongseok Yang, editor, Proceedings 9th Asian Symposium on Program-
ming Languages and Systems (APLAS 2011), volume 7078 of Lecture Notes in Computer Science, pages
238–254. Springer-Verlag, 2011.

[3] Elvira Albert, Jesús Correas, Enrique Martín-Martín, and Guillermo Román-Díez. Static Inference of
Transmission Data Sizes in Distributed Systems. In Tiziana Margaria and Bernhard Steffen, editors, 6th
International Symposium On Leveraging Applications of Formal Methods, Verification and Validation
(ISOLA’14), volume 8803 of Lecture Notes in Computer Science, pages 104–119. Springer-Verlag, 2014.

[4] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth
Tapia Tarifa, and Peter Y. H. Wong. Formal modeling of resource management for cloud architectures:
An industrial case study using Real-Time ABS. Journal of Service-Oriented Computing and Applications,
8(4):323–339, 2014.

[5] Stijn de Gouw, Michael Lienhardt, Jacopo Mauro, Behrooz Nobakht, and Gianluigi Zavattaro. On the
integration of automatic deployment into the ABS modeling language. In Schahram Dustdar, Frank Ley-
mann, and Massimo Villari, editors, Service Oriented and Cloud Computing - 4th European Conference,
ESOCC 2015, Taormina, Italy, September 15-17, 2015. Proceedings, volume 9306 of Lecture Notes in
Computer Science, pages 49–64. Springer-Verlag, 2015.

[6] Abel Garcia, Cosimo Laneve, and Michael Lienhardt. Static analysis of cloud elasticity. In Proceedings of
the 17th International Symposium on Principles and Practice of Declarative Programming, Siena, Italy,
July 14-16, 2015, pages 125–136. ACM, 2015.

16

Glossary

Deployment Component A location where cogs and their processes execute. Deployment components
have an associated resource configuration.

Dynamic Resource A resource that influences runtime performance.

Real-Time ABS ABS with a dense-time clock, duration guard and await duration statement.

Resource A property of a deployment component reflecting real-world machine capacities like CPU speed,
bandwidth, available memory. Resources consist of a resource type and a positive number or infinity.

Resource Annotation An annotation in ABS code that expresses a resource need at the location of the
annotation. The semantic effect is dependent on the resource type, but typically a number of available
resources will be consumed upon execution.

Resource Configuration A mapping from resource type to rational number, designating available or
needed amounts of resources. Resource types that are not contained in the resource configuration
are treated as infinite.

Resource type A unit of resources, e.g., bandwidth or CPU usage.

Static Resource A resource that influences deployment decisions.

17

	1 Introduction
	2 Real-Time ABS
	2.1 Basic Manipulation of Time in ABS

	3 Resource Modeling in ABS
	3.1 Resource Types
	3.1.1 Bandwidth
	3.1.2 Memory
	3.1.3 Cores

	3.2 Resource Configurations
	3.3 Deployment Components
	3.4 Modeling Resource Usage

	4 Static Analysis for Resource Modeling
	4.1 Worst-Case Size Analysis for Bandwidth Annotations
	4.2 Worst-Case Analysis of CPU Resource Consumption
	4.3 Upper Bounds and Simulation
	4.4 Static Memory Analysis

	Bibliography
	Glossary

