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Executive Summary:
Test Case generation

This document summarises deliverable D3.5 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable of nature “prototype” consists of two main parts:

• The first part describes the basic concepts which are necessary for understanding the techniques used
for testing the abstract behavioral models developed in Envisage, including the concepts of dynamic
and static testing, and deadlock-guided testing.

• The second part provides end user documentation for using the two testing tools developed in the
project: the SYCO tool that is used for dynamic (optionally deadlock-guided) testing and the aPET tool
that is used for static testing and test case generation by means of symbolic execution.
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Chapter 1

Introduction

Writing correct concurrent programs is harder than writing sequential ones, because with concurrency
presents additional hazards not present in sequential programs such as race conditions, data races, dead-
locks, and livelocks. Therefore, software validation techniques urge especially in the context of concurrent
programming. Testing is the most widely used methodology for software validation. However, due to the
non-deterministic interleavings of processes, traditional testing for concurrent programs is not as effective
as for sequential programs. Systematic and exhaustive exploration of all interleavings is typically too time-
consuming and often computationally intractable (see, e.g., [23] and its references). Furthermore, the order
in which tasks are selected for execution can be affected by different scheduling policies, and thus the initial
state when resuming a task can be different by adopting one policy or another. As a result, computation
is often non-deterministic and multiple (possibly different) solutions can be produced depending on the
interleaved tasks and the scheduler.

One of the main challenges when testing concurrent programs, that we have faced in Envisage, is to reduce
as much as possible the exploration of the search space without losing solutions. Partial-order reduction
(POR) [14] is a well-known theory to tackle this problem, focusing on exploring the subset of all possible
interleavings which lead to different solutions. In Section 2.1, we overview the techniques that we have
proposed to reduce state exploration of ABS programs. These techniques are implemented within the SYCO

tool that is described in Section 3.1. Besides, SYCO can be used to find deadlock traces (or discard the absence
of them). This approach is described in Section 2.2. Finally, in addition to improving POR methods in the
context of dynamic testing, we have also applied them in static testing using symbolic execution techniques.
This generalization is described in Section 2.3. Since the symbolic execution tree is in general infinite, a
termination criterion must be imposed to ensure its finiteness. In this section, a termination and coverage
criterion is defined for ABS programs. The aPET tool, described in Section 3.2, implements static testing and
incorporates the aforementioned coverage criterion.

The technical details which describe the dynamic and static methods used for testing ABS models can
be found in the following papers, which have been published along the duration of the Envisage project, and
that are attached in the Appendix:

• SFM’14 [5]: This tutorial paper provides a comprehensive description of a symbolic execution mech-
anism used for static testing, and the main extensions performed in a test case generation tool for
sequential programs in order to extend it to testing ABS models.

• FORTE’14 [3]: This work presents new mechanisms and strategies for effectively testing ABS models.
A relevant aspect of this work is that the new techniques can be used in combination with existing
algorithms proposed for systematic testing and model checking.

• ATVA’15 [4]: We extend the approach for dynamic testing of [3] to the context of static testing. This
allows us to achieve effectiveness as in the dynamic context and have an engine for test case generation.

• STTT’15 [24]: This article shows by means of a case study (developed by Fredhopper) how the test
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case generation process is performed on ABS models and how it can be combined with other testing
and runtime-checking methodologies.

• CC’16 [7]: This tool demonstration paper overviews the SYCO tool for testing systematically ABS

models.

• iFM’16 [2]: Our most recent work guides the testing process towards deadlock traces so that we can
provide a detailed description of the task scheduling and program state in deadlock executions. For
this, we use a static deadlock analyzer which provides potential deadlock cycles that are used by the
testing tool to discard deadlock-free paths.
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Chapter 2

Basic Concepts

2.1 Dynamic Testing

Dynamic testing consists in executing the application under test on concrete input values or on a set of
test cases. In the context of concurrent and parallel programs, a single dynamic execution with a concrete
test case can be of little value, since the execution is usually non-deterministic, possibly producing different
outputs depending on the interleavings of the involved processes. A thorough testing process must therefore
systematically explore all non-deterministic interleavings that the concurrent execution may have - any of the
interleavings may reveal the erroneous behavior. This is known as systematic testing [8, 23] in the context
of concurrent programs.

In the execution of ABS concurrent objects, two sources of non-determinism can be distinguished:

• Object-selection, i.e., the selection of which object executes and;

• Task-selection, the selection of the task within the selected object.

Thanks to the non-preemptive scheduling and the absence of shared memory among different objects, it
suffices to consider the above two levels of non-determinism only at release points, in order not to lose any
behavior of the program. Compared to other models of concurrency this alleviates the state space explosion.
However, a naïve systematic exploration of all possible selections usually does not scale. Two different
families of techniques can help in mitigating such a state explosion:

1. Partial-order reduction (POR): It is well-known that many different derivations are often redundant
and are guaranteed to produce the same results. POR [18, 13] is a general theory that allows character-
izing derivations in equivalence classes. State-of-the-art POR algorithms are able to detect redundant
derivations dynamically during the execution, and, allow generating only one derivation per equivalence
class, avoiding a considerable number of redundant explorations.

2. Guided testing: A complementary approach to POR is to focus the search towards specific behaviors
of the model, avoiding, as much as possible, the exploration of derivations leading to non-interesting
behaviors. A particular case of this, which has been subject of our research in this task, is deadlock-
guided testing, where the execution is driven towards potentially deadlock paths (while other paths are
pruned). This is further elaborated in Section 2.2.

2.1.1 The SYCO Tool

The first prototype reported in this deliverable is the SYCO tool, a systematic tester for ABS concurrent
objects. Figure 2.1 shows the main architecture of SYCO. Boxes with dash lines are internal components of
SYCO whereas boxes with regular lines are external components. The user interacts with SYCO through its web
interface which is integrated within the ABS collaboratory and is hence provided by EasyInterface [16]. The
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Figure 2.1: SYCO architecture

SYCO engine receives an ABS program and a selection of parameters. The ABS compiler compiles the program
into an abstract-syntax-tree (AST) which is then transformed into the SYCO intermediate representation
(IR). The DPOR engine carries out the actual systematic testing process. It comprises the ABS semantics,
the DPOR algorithm of [3] and the stability and dependencies analyses of [3]. The output manager then
generates the output in the format which is required by EasyInterface, including an XML file containing all
the EasyInterface commands and actions and SVG diagrams. In case deadlock-guided testing is applied, the
DECO deadlock analyzer [15] is invoked, which returns a set of potential deadlock cycles that are then fed to
the DPOR engine to guide the testing process (discarding non-deadlock executions) [2] (see Section 2.2). Let
us note that other actor-based languages with similar features could be handled by SYCO just by providing
a transformation to the SYCO IR.

The web interface of SYCO is available both at the ABS collaboratory site and also at costa.ls.fi.upm.
es/syco. Section 3.1 details its usage. Essentially, once the input program is ready, either selected from
the available library of ABS programs or supplied by the user, the SYCO engine is run (with the selected
settings) and the output is obtained. As a result, SYCO outputs a set of executions. For each one, SYCO
shows the output state and the sequence of tasks/interleavings and concrete instructions of the execution
(highlighting the source code). SYCO also generates sequence diagrams for each execution. Such sequence
diagrams provide graphical and more comprehensive representations of execution traces. Essentially, they
show the task/object executing at each time of the simulation, the spawned asynchronous calls (with arrows
from caller to callee), and, the waiting and blocking dependencies. See Section 3.1 for details.

2.2 Deadlock-guided Testing

In concurrent programs, deadlock is one of the most common programming errors and, thus, a main goal
of verification and testing tools for concurrent programs is, respectively, proving deadlock freedom and
deadlock detection. Since the execution of concurrent programs is non-deterministic, all combinations of
process interleavings must be considered as any of them might lead to a deadlock. Static analysis and testing
are two different ways of detecting deadlocks that often complement each other and thus it seems quite
natural to combine them. As static analysis examines all possible execution paths and values of variables,
it can reveal deadlocks that could not manifest until weeks, months or years after releasing the application.
This aspect of static analysis is especially important in security assurance, because security attacks try to
exercise an application in unpredictable and untested ways. However, when a deadlock is found, state-of-
the-art analysis tools [6, 17, 10, 22] often provide insufficient information on the source of the deadlock. In
particular, for deadlocks that are complex (involve many tasks and objects), it is essential to know the task
interleavings that have occurred and the objects involved in the deadlock, i.e., provide a concrete deadlock
trace that allows the programmer to identify and fix the problem. In contrast, testing consists in executing
the application for concrete input values. The primary advantage of testing for deadlock detection is that it
can provide the deadlock trace with all information that the user needs in order to fix the problem. There
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are two shortcomings though:

• Since not all inputs can be tried, there is no guarantee of deadlock freedom.

• Although recent research on POR tries to avoid redundant exploration as much as possible [14, 23, 8,
1, 3], the search space (even with POR) can be huge.

This is a threat to the application of testing in concurrent programming. We have proposed in [2] a
seamless combination of static analysis and testing for effective deadlock detection. The basic idea is the
following: (1) an existing static deadlock analysis [15] is used to obtain abstract descriptions of potential
deadlock cycles. (2) Such potential deadlock cycles are then used to guide the systematic testing process in
order to find associated deadlock traces (or discard them). This hybrid static analysis/testing technique has
been studied in the context of Task 3.4 where its theoretical foundations will be reported. The technique has
been implemented and is available within the SYCO tool. Details about its usage are found in Section 3.1.2.

2.3 Static Testing

Static testing comprises the set of testing techniques in which the code under test is not really executed.
This includes techniques performed by humans, like code reviews and inspections, and automatic or semi-
automatic techniques which make use of other programs or analyzers. One of the standard techniques for
automatic static testing is symbolic execution [9, 11, 12, 19, 20, 21], in which the program execution is
simulated for possibly unknown inputs hence using symbolic expressions for program variables. As a result,
it produces a system of constraints over the inputs containing the conditions to execute the different paths
and the expressions computed for their outputs. For instance, consider the method:

Int absValue(Int x) {
if (x < 0) return -x;
else return x;

}

The outcome is the set {〈 x < 0,y = -x 〉, 〈 x ≥ 0,y = x 〉}, where y refers to the return value. E.g., the first
element can be read as: if the program is executed with an input x < 0, then the output is y = −x.

Symbolic execution has many applications, namely software verification, program comprehension and
automatic test case generation (TCG). In this latter context, symbolic execution produces, by construction,
a (possibly infinite) set of test cases, which satisfy the path-coverage criterion.

In the context of symbolic execution of concurrent programs, the problem of the non-deterministic in-
terleavings of processes mentioned in Section 2.1, is added to the intrinsic non-determinism of symbolic
execution due to branching statements involving partially unknown data. It is therefore crucial to apply
aggressive POR techniques, and in many cases in practice, even to lose some interleavings and thus possibly
sacrifice full path-coverage. To this aim, [4] extends the POR techniques of [3] to the context of symbolic
execution and TCG.

On the other hand, in order to ensure finiteness of the process, and, at the same time, obtain a meaningful
set of test-cases, [4] proposes coverage criteria for concurrent objects consisting on limiting the number of:

• iterations of loops at the level of tasks;

• task switches allowed in each concurrent object and;

• concurrency units originated during symbolic execution per program point.

The theoretical aspects of our symbolic execution engine and our TCG framework can be found in [5, 4].
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2.3.1 The aPET Tool

The second prototype reported in this deliverable is the aPET tool, a symbolic execution-based test case
generator for ABS concurrent objects. The architecture of aPET is essentially the same as that of SYCO.
Indeed, both tools share most of their components, namely the ABS compiler, the AST-to-IR and part of
the DPOR Engine and Output Manager. The main differences are that the internal engine of aPET includes
support for symbolic execution and its termination criteria, and that the output manager includes support
for TCG in different formats. The user interacts with aPET through its web interface (available at the SYCO
website) which is also integrated within the ABS collaboratory and is hence provided by EasyInterface.

The usage of aPET is essentially as follows: given an input program and a selection of methods, the aPET
symbolic execution engine computes a set of test cases for the selected methods. Test cases can be given as
path constraints or, after a constraint solving procedure, as concrete test cases. Each test case includes the
input arguments and input state, and the output argument and output state. Section 3.2 details how to use
aPET with screenshots and provides information about the different parameters which can be set.
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Chapter 3

End User Documentation

This chapter presents the user manuals of SYCO and aPET. Both tools are integrated withing the Envisage
collaboratory. In order to start SYCO (resp. aPET) we select Systematic testing (SYCO) (resp. Test case

generation (aPET)) from the pull-down menu of available tools as shown in Fig. 3.1. The main window of
the Envisage collaboratory web interface comprises five components:

• File manager: which contains a list of predefined examples and/or files uploaded by the user;

• Code area: where the user can edit the selected program or write a new one;

• Outline view: which includes an outline (list of classes, methods, etc.) of the selected file and module;

• Toolbar: which includes several buttons to execute the main actions; and

• Console view: where the results and information of the execution is printed.

Let us go to the file manager, located at the left-hand side and open the folder syco_examples. The
subfolder Exhaustive_execution contains the code of the running example shown in Figure 3.2. Method fact
of class Fact computes the factorial of a number n in a distributed way so that each involved object computes
at most h multiplications. Let us suppose object o of class Fact is asked to compute the factorial of n by
means of a call o ! fact(n). Object o executes the task work(n, o.maxH) computing n∗(n−1)∗ . . . ∗(n−o.maxH+1).
Afterwards, the call delegate(n−o.maxH) delegates the rest of the computation to another object. When an
object is asked to compute the factorial of some n, smaller than its maxH, then the call this ! work(n, n)
computes directly the factorial of n and the result is reported to its caller by task report. The result is then
reported back to the initial object in a chain of report tasks using field boss, which stores the caller object.
The computed result of each object is stored in field r. The provided main block just creates a runner object
r and calls r ! fact(5,2) to compute the factorial of 5, which will be stored in field r of the initial Fact object.
The expected result is hence 120. As we show later, the program has a bug, which is only exploited in a
concrete sequence of interleavings when at least three objects are involved.

If we click over Fact.abs, the code of the running example appears at the code area. Now, if we press
button Refresh Outline, the right-hand side with the class and module information is updated. The Clear
button cleans the console area. Optionally, the parameters of the selected testing tool can be configured
by clicking on Settings (details are given in Sections 3.1.1 and 3.2.1 for SYCO and aPET respectively). To
execute the selected tool it is enough to click Apply in the pulldown menu on the tool bar and the results
are presented in the console area.

3.1 Use of SYCO

Let us perform a systematic testing of our running example with SYCO using default parameters. We just
select SYCO and press Apply. Note that systematic testing always targets the main block. Therefore, the
selection made in the outline view is ignored. The results are printed in the console area.
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Figure 3.1: Collaboratory web Interface

SYCO first prints the number of complete executions explored (in this case eight executions). Note that,
by default, the most aggressive POR is applied. As we will see later, the number of executions without POR
is 280. Then, it prints the output state and the execution trace. The output state (in blue color) contains
all the objects created during the execution. Each object is represented as a term with three arguments: the
object identifier, the object type or class, and the final values of the object fields. For instance:

|------object(2,’Fact’,[field(boss,null),field(maxH,2),field(r,20)])

means that the final state contains an object identified by 2 of class Fact, whose fields boss, maxH and r

have null, 2 and 20 as values. Since we are computing the factorial of 5, and this object is the initial object,
its r field should end with value 120, instead of the obtained 20. This execution therefore reveals a bug in
the program

The execution trace (in red color) shows, for each time or macro-step of the execution, the object and
task executing at this time. If we click one time of the trace, the corresponding line in the source code is
highlighted (in yellow color) in the code area. This is shown in Figure 3.3 where the first time (|------’Time:
0, Object: main, Task: 0:main’) of the trace has been clicked.

To see the sequence diagram of a concrete execution we click the text ‘‘Click here to see the

sequence diagram’’ (next to the execution number in the console view). Figure 3.4 shows the sequence
diagram of the first execution for our running example. At the left-hand side, a timeline is shown with the
times of the execution, in this case 13 times (0 − 12). Each vertical cluster corresponds to the activities
performed by each object, and each node corresponds to the task executing at the corresponding object in
the corresponding time. Objects are of the form class_id, where class is the object type and id is a unique
object identifier. Tasks are of the form id:method where id is a unique task identifier and method is the

11
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interface FactInt {
Unit fact(Int n);
Unit work(Int n, Int h);
Unit report(Int x);
Unit delegate(Int n);

}
interface RunnerInt {

Unit fact(Int n, Int h);
}
class Fact(Fact boss, int maxH) implements FactInt {

Int r = 1;
Unit fact(Int n) {

if (n > this.maxH) {
this ! work(n,this.maxH);
this ! delegate(n-this.maxH);

} else {
this ! work(n,n);
this ! report(1);

}
}

Unit delegate(Int n) {
FactInt worker = new Fact(this,this.maxH);
worker ! fact(n);

}

Unit work(Int n,Int h) {
while (h > 0) {

this.r = this.r * n;
n = n - 1;
h = h - 1;

}
}
Unit report(Int x) {

this.r = this.r * x;
if (this.boss != null) this.boss ! report(this.r);

}
}
class Runner implements RunnerInt {

Unit fact(Int n, Int h) {
FactInt f = new Fact(null,h);
f ! fact(n);

}
}
// main block

{
RunnerInt r = new Runner();
r ! fact(5,2);

}

Figure 3.2: Running Example

name of the method. Nodes also indicate why the execution of the associated task stopped. Nodes in green
color labeled with return correspond to tasks that have finished their executions; nodes in orange color
labeled with waiting for taskId are tasks which have been suspended waiting for task taskId; and nodes
in red color labeled with blocked for taskId are tasks which block the object waiting for task taskId.
Finally, arrows from nodes to clusters indicate asynchronous calls or object creations.
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Figure 3.3: Execution of SYCO with default parameters
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Figure 3.5: A correct execution for the running example

In our running example, the trace corresponding to execution 1 is shown in Figure 3.4. Let us briefly
explain the diagram and the relations among the diagram, the code of the program (Figure 3.2) and the final
state computed for execution 1 (Figure 3.3 below). Time 0 corresponds to the execution of the main block
within the object identified as main_0. It creates a new object Runner_1 (RunnerInt r = new Runner()) and
spawns task 2:fact (Runner_1 ! fact(5,2)). In the final state, this adds the objects object(main,main,[])
and object(1,’Runner’,[]) respectively. Then, the block main_0 finishes its execution and it is marked
with return. During time 1, object Runner_1 executes the task 2:fact which creates the new object Fact_2
(FactInt f = new Fact(null,h)), spawns task 4:fact to compute Fact_2 ! fact(5) and finishes. The new
created object object(2,’Fact’,[field(boss,null),field(maxH,2),...]) appears in the final state.
At time 2, Fact_2 spawns tasks 6:work (Fact_2 ! work(5,2)) and 13:delegate (Fact_2 ! delegate(3))
and finishes. At time 3, the execution of task 13:delegate creates a new object Fact_3 (FactInt worker
= new Fact(Fact_2,Fact_2.maxH)) and spawns task 15:fact which corresponds to the computation of
Fact_3 ! fact(3). The execution of 13:delegate finishes and the corresponding green node is marked
with return. The new object object(3,’Fact’,[field(boss,ref(2)),field(maxH,2),...]) appears
in the final state. Time 4 is similar to time 2, but executing task 15:fact. Time 5 is similar to time
3, but executing 24:delegate, which creates the new object Fact_4, also appearing in the final state as
object(4,’Fact’, [field(boss,ref(3)), field(maxH,2),...])). At time 6, the execution of 26:fact,
which corresponds to the execution of Fact_4 ! fact(1), spawns tasks 28:work (Fact_4 ! work(1,1)) and
33:report (Fact_4 ! report(1)). At time 7, the execution of 33:report spawns task 35:report on object
Fact_3, i.e., Fact_3 ! report(1). At time 8, the execution of task 28:work finishes and the final state for
object Fact_4 is object(4,’Fact’, [field(boss,ref(3)),field(maxH,2),field(r,1)]). At time 9,
task 35:report spawns task 37:report on object Fact_2 (Fact_2 ! report(1)). Time 10 executes 37:report
and finishes since the field boss of Fact_2 is null. At times 11 and 12, tasks 6:work (Fact_2 ! work(5,2))
and 17:work (Fact_3 ! work(3,2)) are executed completely, and thus the final states for objects Fact_2

and Fact_3 are, respectively, object(2,’Fact’,[field(boss,null),field(maxH,2),field(r,20)]) and
object(3,’Fact’, [field(boss,ref(2)), field(maxH,2),field(r,6)]).

Figures 3.5 and 3.6 show the result and sequence diagram of the third execution, in which we can
observe that the expected value 120 is obtained. If we make a comparison between the sequence diagrams
of executions 1 and 3, we can figure out that the problem in execution 1 originates on time 9, where the
result is reported before executing task 17:work. In the sequence diagram of execution 3 we can observe
that object Fact_3 reports the result after executing task 17 : work (see times 5 and 10).
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Figure 3.7: The SYCO parameters

3.1.1 Parameters of SYCO

Up to now we have executed SYCO with default parameters. Pressing button Settings at the toolbar, the
SYCO parameters window shows up, which allows to configure the available parameters for each application.
Figure 3.7 shows the parameters of SYCO, with default values. The following parameters can be set:

• Object selection policy. By default all objects from a state are selected non-deterministically on back-
tracking (option Non-deterministic). In case parameter Partial-order reduction below is enabled, only
the required objects are selected according to the POR theory (see [3]). The other value Round-robin
selects an object deterministically using a round-robin strategy.

• Task scheduling policy. It allows us to set the scheduling policy of objects. Available values are FIFO,
LIFO and Non-deterministic. The default value is Non-deterministic. Otherwise, SYCO performs
a deterministic simulation with the selected strategies.

• Partial-order reduction. It allows one to disable POR, by selecting value None, or to enable it with one
of the following two levels of precision, values Simple and Aggressive (by default). Option Simple

only applies the POR object selection in [3] whereas option Aggressive also applies the task selection
function of [3]. In the example, 8 executions are obtained with aggressive POR, whereas 18 are obtained
with the simple POR and 280 if POR is disabled. This illustrates the effectiveness of the available
POR techniques.

• Deadlock-guided testing. It allows us to enable/disable deadlock-guided testing. By default it is dis-
abled. If it is enabled, the testing process is guided towards deadlocks, discarding non-deadlock execu-
tions, with the corresponding state space reduction. This is useful in the context of deadlock detection
and debugging. See Section 3.1.2 above.

• Global timeout (seconds). It allows us to set a global time limit.

3.1.2 Deadlock-guided Testing with SYCO

As already mentioned, SYCO includes the deadlock-guided testing approach of [2], in which the execution is
driven towards potential deadlock paths discarding deadlock-free executions. If we enable Deadlock Guided
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data Data = DataNull | DataSomething;
interface DB {

Unit register(Worker w);
Data getData(Worker w);

}
class DBimp(Data dt) implements DB {

Worker cl = null;
Unit register(Worker w){

Fut 〈Int〉 f = w ! ping(1);
Int r = f.get;
if (r == 1) this.cl = w;

}
Data getData(Worker w){

Data d;
if (cl == w) d = this.dt;
else d = DataNull;
return d;

}
}

interface Worker {
Unit work(DB db);
Int ping(Int n);

}
class WorkerImp() implements Worker {

Data datum = DataNull;
Unit work(DB db){

Fut〈Data〉 f = db ! getData(this);
this.datum = f.get;

}
Int ping(Int n){

Int m = n;
return n;

}
}
{ // main block

DB db = new DBimp(DataSomething);
Worker w = new WorkerImp();
db ! register(w);
w ! work(db);

}

Figure 3.8: An example with deadlock

Testing for our running example, we get printed Number of executions: 0 as result in the console, which
means that the program is deadlock-free.

Let us consider the program in Figure 3.8 which simulates a simple communication protocol between a
database and a worker. The main block creates the two objects and invokes the methods register and work

respectively. The work method of the worker simply accesses the database (invoking asynchronously method
getData) and then blocks until it gets the result, which is assigned to its datum field. The register method
of the database, first checks that the worker is online (invoking asynchronously method ping), then blocks
until it gets the result, and finally it registers the worker by storing its reference in its cl field. Method
getData of the database returns its dt field if the caller worker is registered, otherwise it returns DataNull.

Depending on the sequence of interleavings, the execution of this program can finish: (i) as expected, i.e.,
with w.datum having the same value as db.dt, (ii) with w.datum = DataNull, or, (iii) in a deadlock. Case
(i) happens when the worker is registered in the database before getData is executed. Case (ii) happens
when getData is executed before assigning the worker as the database client. A deadlock is produced if
both register and work start executing before getData and ping. With POR disabled, SYCO produces 6
executions for the example in Figure 3.8, which cover all possible task interleavings that may occur. SYCO

reports that two executions are deadlock executions corresponding to sequences main→ register→ work
and main→ work→ register, which correspond to scenario (iii). Within the remaining four executions,
two of them correspond to scenario (i) and the other two to scenario (ii). If we enable Deadlock-guided

testing, we obtain just the two deadlock executions which are shown in Figure 3.9. Looking at the sequence
diagram of the first execution (Figure 3.10 up), we can observe a deadlock situation, since both DBimp_1

and WorkerImp_2 are blocked and, as we can see, they are squared in red color. During time 1, DBimp_1
gets blocked waiting for WorkerImp_2 to execute task 4:ping. During the next time, object WorkerImp_2,
instead of executing task 4:ping, it executes task 5:work, getting blocked waiting for DBimp_1 to execute
6:getData. Therefore, none of the objects can make any progress. Both tasks are highlighted with red solid
edges to indicate that these are the ones responsible for the deadlock. The second execution (see Figure 3.10
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Figure 3.9: Deadlock-guided testing on the Database example

down) is similar but changing the execution order between tasks 3:register and 5:work.

3.2 Use of aPET

This section illustrates the usage of aPET using our running example. In this case we select Test case

generation (aPET) from the pull down menu in the toolbar. In contrast to SYCO, since aPET performs
symbolic execution, it can be applied over any method, possibly containing input arguments. Symbolic
execution produces as a result the conditions over the input arguments and input state, or directly concrete
values satisfying those conditions, to execute the different execution paths. Also, for each considered path,
the expressions to compute the corresponding outputs, or concrete outputs satisfying them, are generated.
Methods to which we want to apply aPET are selected in the outline view.

Let us select method fact of class Runner, and generate test cases for it with aPET using default param-
eters. For this, we just click over the Apply button and in the console area we can observe that 5 test cases
have been generated. Let us focus on the first test case which is shown in Figure 3.11.

• In the Input section, Args stands for the value of the input arguments; in this case ref(A), 4 and 1

are the initial values computed for the input parameters this, n and h. State shows the input state. It
contains only one object (the caller object) of class Runner identified by A.

• The Output section contains the Return value, followed by the final state. The return type of method
fact is Unit, and, the final state contains 5 different objects, where the object identified by 0 contains
the value 24 in its field r, which is the expected result for this input (4).

aPET also generates the traces associated with each test case and the corresponding sequence diagrams
to graphically visualize the traces. They are displayed by clicking on ‘‘Click here to see the sequence
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Figure 3.10: Sequence diagrams of deadlock executions
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Figure 3.11: TCG with aPET for method fact

diagram’’ in each test case. As in SYCO, if we click over one time point of the trace, the corresponding line
in the source code is highlighted (in yellow color) in the code area.

3.2.1 Parameters of aPET

The parameters available for aPET are shown in Figure 3.12, with their corresponding default values. In the
following we describe the meaning and available values for the different parameters:

Concrete test-cases or path-constraints. The result of each feasible execution path in the symbolic
execution can be given in the form of (unresolved) path constraints (value Path constraints), or in
the form of a concrete test case (value Concrete tests), where arbitrary concrete values satisfying
the constraints are generated. Value Hybrid generates concrete data only for functional data, leaving
path constraints involving numeric variables. As an example, let us consider the TCG with aPET of
method report of class Fact with value Path constraints. The first computed test case is shown in
the screenshot below:

21



Envisage Deliverable D3.5 Test Case generation

Figure 3.12: The aPET parameters

which can be read as: the initial and final states contain three objects A, C and F such that the boss of
A is C, the boss of C is F and the boss of F is null. Field maxH of the objects in the initial state remain
the same in the final state. If we look at field r in the final state, the following associated constraints
are obtained:

rAf = rAi ∗ B
rCf = rCi ∗ rAi ∗ B
rFf = rFi ∗ rCi ∗ rAi ∗ B

where rof (resp. roi) stands for the final value (initial value) of field r of object o, o ∈ {A, C, F}.

Range of numbers for concrete test cases. It allows specifying the domain for numeric variables and
it is given in the format Min..Max . This option is only applicable when that concrete test-cases are
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Figure 3.13: First test case obtained with LIFO scheduling

generated.

Termination crit.: Loop iterations. The specified number (by default 1) is used as a limit on the
maximum number of loop iterations or function recursive calls which are allowed in symbolic execution.

Termination crit.: Task switchings per object. The specified number (by default 8) is used as a limit
on the maximum number of task switchings per object which are allowed in symbolic execution.

Termination crit.: Objects originated per program point. The specified number (by default 2) is used as
a limit on the maximum number of objects originated per program point which are allowed in symbolic
execution.

Parameters Object selection policy, Task scheduling Policy, Partial-order reduction and Global timeout
have the same meaning as in SYCO (see Section 3.1.1). The first two have however different default values in
aPET, namely Round-robin, and FIFO respectively. This is because, in the context of symbolic execution, it
is much more likely to run into state explosion problems with non-deterministic schedulings.

Let us set the task scheduling to LIFO and run again aPET for method fact. We also get five test cases,
but in this case, the first two test cases exploit the error reported in Section 3.1. E.g., in the first test case
(see Figure 3.13), method fact is called with values 4 and 1 resp., and 4 is obtained as a result. If we have a
look at the sequence diagram, it could be observed that the problem is similar to that shown in Figure 3.4.

Finally, if we set both scheduling parameters to Non-deterministic, we get 32 test cases, many of which
exploit the same error.
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Chapter 4

Conclusions

There has been good scientific progress in this task. We have defined new strategies for eliminating redundant
computations when testing ABS models. The strategies have been successfully applied in both static and
dynamic scenarios. We have contributed as well with the combination of deadlock analysis and testing in
such a way that potential deadlock cycles found by deadlock analysis are used to guide the systematic testing
process in order to find associated deadlock traces (discard deadlock-free paths). The technical details of this
hybrid technique that combines analysis and testing will be reported on Deliverable D3.4 (hybrid analyses).

Besides the scientific progress, there has been also an important implementation effort: the techniques
described in this deliverable have lead to the development of two testing prototypes, the SYCO and aPET

tools, which are fully integrated into the Envisage collaboratory.
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Glossary

ABS: Abstract behavioral specification.

AST: Abstract syntax tree.

aPET: Symbolic execution-based test case generator for ABS programs.

Coverage criteria: It is a measure used to describe the degree to which the source code of a program is
tested by a particular test suite.

DECO: Deadlock analyzer for concurrent objects.

DPOR: Dynamic partial order reduction

Dynamic testing: It is a term used in software engineering to describe the testing of the dynamic behavior
of code. That is, dynamic testing refers to the examination of the behaviour from the program w.r.t. concrete
values for the input variables.

IR: Intermediate representation.

POR: Partial order reduction techniques to reduce the exploration of the search space without losing
solutions when testing concurrent programs.

SYCO: Systematic testing tool for Concurrent Objects.

Software testing: It is a process conducted to provide stakeholders with information about the quality of
the software under test.

Static testing: It refers to the examination of the behaviour from the program without any information
on the concrete values for the input variables.

Test Case: Set of conditions under which a tester will determine whether and application is working as it
was originally established for it to do.

Test case generation (TCG): It is the process of creating a set of data for testing the adequacy of new
or revised software applications.
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Appendix A

Book Chapter “Test Case Generation by
Symbolic Execution: Basic Concepts, a
CLP-Based Instance, and Actor-Based
Concurrency”, [5]
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Abstract. The focus of this tutorial is white-box test case generation
(TCG) based on symbolic execution. Symbolic execution consists in ex-
ecuting a program with the contents of its input arguments being sym-
bolic variables rather than concrete values. A symbolic execution tree
characterizes the set of execution paths explored during the symbolic
execution of a program. Test cases can be then obtained from the suc-
cessful branches of the tree. The tutorial is split into three parts: (1) The
first part overviews the basic techniques used in TCG to ensure termina-
tion, handling heap-manipulating programs, achieving compositionality
in the process and guiding TCG towards interesting test cases. (2) In the
second part, we focus on a particular implementation of the TCG frame-
work in constraint logic programming (CLP). In essense, the imperative
object-oriented program under test is automatically transformed into
an equivalent executable CLP-translated program. The main advantage
of CLP-based TCG is that the standard mechanism of CLP performs
symbolic execution for free. The PET system is an open-source software
that implements this approach. (3) Finally, in the last part, we study the
extension of TCG to actor-based concurrent programs.

1 Introduction

A lot of research has been devoted in the last years to the problem of gener-
ating test cases automatically. A recent survey [6] describes some of the most
prominent approaches to TCG, namely model-based TCG, combinatorial TCG,
(adaptive) random TCG, search-based TCG and structural (white-box) TCG.
This tutorial focuses on structural (white-box) TCG, an approach in which the
availability of the code of the program under test is assumed and test cases
are obtained from the concrete program (e.g., using its control flow graph) in
contrast to black-box testing, where they are deduced from a specification of
the program. Also, our focus is on static testing, since we assume no knowledge
about the input data, in contrast to dynamic approaches [17, 24] which execute
the program under test using concrete input values.

Symbolic execution [11, 13, 15, 23, 31, 35, 36, 46] is arguably the most widely
used enabling technique for structural white-box TCG. It has received a renewed



interest in recent years, thanks in part to the increased availability of computa-
tional power and decision procedures [9]. Structural white-box TCG is among
the most studied applications of symbolic execution, with several tools avail-
able [10]. Symbolic execution consists in executing a program with the contents
of its input arguments being symbolic variables rather than concrete values. A
symbolic execution tree characterizes the set of execution paths explored during
the symbolic execution of a program. Test cases are obtained from the successful
branches of the tree. The set of obtained test cases forms a test suite.

The first part of the tutorial is devoted to review the basic concepts of TCG
by symbolic execution. We start by explaining the challenges to efficiently han-
dle heap-manipulating programs [38] in symbolic execution. The presence of
dynamic memory operations such as object creation and read/write field ac-
cesses requires special treatment during symbolic execution. Moreover, in order
to ensure reliability, symbolic execution must consider all possible shapes these
dynamic data structures can take. We proceed next to see how one can go to
symbolic execution to the actual production of test cases. An important issue
that is discussed afterwards is the compositionality of the TCG process. Finally,
we overview a practical issue to efficiently generate more relevant test cases. In
particular, guided TCG is a methodology that aims at steering symbolic execu-
tion towards specific program paths in order to generate relevant test cases and
filter out less interesting ones.

The second part of the tutorial introduces CLP-based Test Case Genera-
tion. CLP-based TCG advocates the use of CLP technology to perform test case
generation of imperative object-oriented programs. The process has two phases.
In the first phase, the imperative object-oriented program under test is auto-
matically transformed into an equivalent executable CLP-translated program.
Instructions that manipulate heap-allocated data are represented by means of
calls to specific heap operations. In the second phase, the CLP-translated pro-
gram is symbolically executed using the standard CLP execution and constraint
solving mechanisms. The above-mentioned heap operations are also implemented
in standard CLP, in a suitable way in order to support symbolic execution. We
will see the advantages of the CLP-based framework and, in particular, why it
is very relevant to implement guided TCG and an efficient heap solver. In this
context, we present the PET system, a system that implements the CLP-based
TCG framework described in this part and which is available online.

The last part of the tutorial is focused on TCG of actor-based concurrent
programs. It is known that writing correct concurrent programs is harder than
writing sequential ones, because with concurrency come additional hazards not
present in sequential programs such as race conditions, data races, deadlocks,
and livelocks. However, due to the non-deterministic interleavings of processes,
traditional testing for concurrent programs is not as effective as for sequential
programs. Systematic and exhaustive exploration of all interleavings is typically
too time-consuming and often computationally intractable (see, e.g., [45] and
its references). Furthermore, the fact that different scheduling policies can be
implemented affects the order in which tasks are selected for execution and, thus,
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the initial state when resuming a task can be different by adopting one policy
or another. As a result, computation is often non-deterministic and multiple
(possibly different) solutions can be produced depending on the interleaved tasks
and the scheduler.

The adoption of actor systems has some advantages in the regard. Very
briefly, actors [1, 25] constitute a model of concurrent programming that has
been gaining popularity and that it is being used in many systems (such as
ActorFoundry, Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala).
Actor programs consist of computing entities called actors or objects, each with
its own local state and thread of control, that communicate by exchanging mes-
sages asynchronously. An object configuration consists of the local state of the
objects and a set of pending messages (or tasks). In response to receiving a mes-
sage, an object can update its local state, send messages, or create new objects.
At each step in the computation of an object system, an object from the sys-
tem is scheduled to process one of its pending messages. The advantage of using
actor-systems in testing is that, as objects do not share their states, one can
assume [41] that the evaluation of all statements of a task takes place serially
(without interleaving with any other task) until it releases the processor (gets to
a return instruction). This assumption alleviates already a lot the scalability is-
sues mentioned above. We will discuss a basic algorithm and the main challenges
in TCG of actor systems.

2 Test Case Generation by Symbolic Execution

This section provides a general overview of TCG by symbolic execution and the
main challenges that currently the method poses.

2.1 Basic Concepts in Symbolic Execution

A symbolic execution tree characterizes the set of execution paths explored dur-
ing the symbolic execution of a program. During the course of symbolic exe-
cution, the values of the program’s variables are represented as symbolic ex-
pressions over the input symbolic values and a path condition is maintained.
Such a path condition is updated whenever a branch instruction is executed.
For instance, for each conditional statement in the program, symbolic execution
explores both the “then” and the “else” branch, refining the path condition ac-
cordingly. The satisfiability of each of these branches is checked and symbolic
execution stops exploring any path whose path condition becomes unsatisfiable,
hence only feasible paths are followed. Test cases are obtained from the successful
branches of the tree. The set of obtained test cases forms a test suite.

In this context, the quality of a test suite is usually assessed by using code
coverage criteria. A coverage criterion aims at measuring how well the program
under test is exercised by a test suite. Some popular coverage criteria are: state-
ment coverage which requires that every statement of the code is executed;
branch coverage which requires all conditional statements in the program to be
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evaluated both to true and false; and path coverage which requires that every
possible trace through a given part of the code is executed. These criteria are
however not finitely applicable [49]. That is, they can not always be satisfied by
a finite test suite, due to infinite paths and infeasible statements in the program
under test (i.e., dead code). An alternative to path coverage, which is finitely
applicable is the loop-k coverage criterion, which requires traversing all paths in
the program except those with more than k iterations on any loop.

Observe that by construction symbolic execution achieves the path coverage
criterion above described. However, since the symbolic execution tree is in gen-
eral infinite, a termination criterion must be imposed to ensure its finiteness.
Such a termination criterion can be expressed in different forms. For instance, a
computation time budget can be established, or an explicit bound on the depth
of the symbolic execution tree can be imposed. We adopt a more code-oriented
termination criterion. Concretely, we impose an upper bound k on the number of
times each loop is iterated. By doing so, the finitely applicable (feasible) version
of the path coverage criterion, i.e., the loop-k coverage, is achieved.

1 int intExp(int a,int n) {
2 if (n < 0)
3 throw new ArithmeticException();
4 else {
5 int out = 1;
6 while (n > 0) {
7 out = out*a;
8 n--;
9 }

10 return out;
11 }
12 }

Fig. 1: Java source code

Example 1. Figure 1 shows the Java source code for method intExp which takes
two integer input arguments a and n and computes an by successive multiplica-
tions. If the value of the input argument n is less than 0, an arithmetic exception
is thrown. For simplicity, we assume that the method cannot receive values 0
for both of its arguments (undefined 00). Figure 2 shows the symbolic execution
tree of method intExp for loop-1 termination criterion (loop-k with k=1 ). That
is to say, we require all paths that do not exercise the loop body (zero times)
and those that exercise the loop body one time. Nodes in the tree denote sym-
bolic states, and the edges are labeled with the line number of the instruction
that is executed. Observe that symbolic execution starts with the empty path
condition (PC:true). At each branching point, PC is updated with different condi-
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tions over the input arguments. For instance, when the if statement is executed,
both then (true) and else (false) alternatives are feasible, therefore symbolic
execution forks and the PC is updated accordingly in each of the resulting paths.

In the tree, solid squares denote intermediate symbolic states, solid double
squares denote successful (terminating) symbolic execution paths, and the only
dashed square denotes an unfinished path, i.e., a path that is about to enter the
loop body a second time and hence is pruned by the loop-1 criterion. 2
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Fig. 2: Symbolic execution tree

2.2 Handling Heap-manipulating programs

One of the main challenges in symbolic execution is to efficiently handle heap-
manipulating programs [38]. As will be illustrated later through an intuitive
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example, these kind of programs often create and use complex dynamically heap-
allocated data structures. The presence of dynamic memory operations such as
object creation and read/write field accesses requires special treatment during
symbolic execution. Moreover, in order to ensure reliability, symbolic execution
must consider all possible shapes these dynamic data structures can take. In
trying to do so, however, scalability issues arise since high (often exponential)
numbers of shapes may be built due to the aliasing of references.

In practice, symbolic execution assumes no knowledge about the heap shape
(unless explicitly provided in advance via e.g., preconditions), in contrast to
standard execution, where a program runs on concrete and fully-known initial
heap (as part of the execution context). Let us motivate the importance of special
treatment for heap operations and aliasing of references on a simple example.

Example 2. Consider the following method mist. It receives as input arguments
two references r1 and r2 to objects of type C (contains a field f of integer type),
checks the value of r1.f and writes r2.f in the then branch or writes r1.f in
the else branch.

1 void mist(C r1, C r2) {
2 if (r1.f > 0)
3 r2.f = 1;
4 else
5 r1.f = 0;
6 }

Seemingly, the method contains only two feasible paths, each corresponding to
one branch of the if statement:

1. If r1.f>0, then write r2.f=1 (line 3).
2. If r1.f<=0, then write r1.f=0 (line 5). Nothing is learned about r2.

However, these cases fall short to cover all possible executions of method mist.
There are other unapparent execution paths that must also be explored. Namely:

3. If r1 points to null, then a null pointer exception is thrown at line 2.
4. If r1.f>0 and r2 points to null, then a null pointer exception is thrown at

line 3.
5. If r1 and r2 point to the same object o and o.f>0, then write o.f=1 (line 3).

We say that r1 and r2 are aliased.

Notice that only by exhaustive exploration of all possible heap configuration can
symbolic execution generate these “hidden” paths and hence reveal the presence
of potential runtime errors for this rather simple method. Furthermore, let this
example also serve to see the relevance of the loop-k coverage criterion. Observe
that the set of the first two cases above, while not being sufficient to exercise
the complete behavior of method mist, would still be enough to achieve 100%
branch and statement coverage, which may convey an illusory sense of confidence
on the correctness of a possibly buggy program. 2
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Lazy Initialization. Lazy initialization [30] is the de facto standard technique to
enable symbolic execution to systematically handle arbitrary input data struc-
tures, and to explore all possible heap shapes that can be generated during the
process, including those produced due to aliasing of references. The main idea
is that symbolic execution starts with no knowledge about the program’s input
arguments and, as the program symbolically executes and accesses object fields,
the components of the program’s inputs are initialized on an “as-needed” basis.
The intuition is as follows. To symbolically execute method m of class C, a new
object o of class C with all its fields uninitialized is created (the this object in
Java). When an unknown field of primitive type is read, a fresh unconstrained
variable is created for that field. When an unknown reference field is accessed,
all possibilities are explored non-deterministically choosing among the following
values: (a) null; (b) any existing symbolic object whose type is compatible with
the field’s type and might alias with it; and (c) a fresh symbolic object. Such
non-deterministic choices are materialized into branches in the symbolic execu-
tion tree. As a result, the heap associated with any particular execution path is
built using only the constraints induced by the visited code.

The practicality and effectiveness of lazy initialization has been proved with
its use by existing symbolic execution engines such as PET and SPF. How-
ever, the very nature of the technique, i.e., producing branching due to aliasing
choices at every heap operation point, hampers the overall efficiency of symbolic
execution and its applicability to real-world programs.

A Heap Solver. The observation that branching due to aliasing choices can
be made “more lazily” than in lazy initialization by delaying such choices as
much as possible lead to the development of a heap solver [4] which enables
a more efficient symbolic execution of heap-manipulating programs. The key
features of the heap solver are the treatment of reference aliasing by means of
disjunctive reasoning, and the use of advanced back-propagation of heap related
constraints. In addition, the heap solver supports the use of heap assumptions
to avoid aliasing of data that, though legal, should not be provided as input.

Let us further illustrate the benefits of the heap solver over lazy initialization
by symbolically executing method m from Figure 3 using both approaches. For
simplicity, let us assume that the executions of methods a and b do not modify
the heap. The symbolic execution tree computed using lazy initialization (as in,
e.g., PET and SPF) is shown in Figure 4a. Note that before a field is accessed, the
execution branches if it can alias with previously accessed fields. For example,
the second field access z.f branches in order to consider the possible aliasing
with the previously accessed x.f. Similarly, the write access to y.fmust consider
all possible aliasing choices with the two previous accessed fields x.f and z.f.
This ensures that the effect of the field access is known within each branch. For
example, in the leftmost branch the statement y.f=x.f+1 assigns -4 to x.f, y.f
and z.f, since in that branch all these objects are aliased. The advantage of
this approach is that by the time we reach the if statement we know the result
of the test, since each variable is fixed. However, such early branching creates
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1 void m(Ref x, Ref y, Ref z) {
2 x.f=1;
3 z.f=-5;
4 a();
5 y.f=x.f+1;
6 b();
7 if (x==z)
8 c(y.f);
9 else

10 d(y.f);
11 }

Fig. 3: Heap Solver: Motivating example

a combinatorial explosion problem since, for example, method a is symbolically
executed in two branches and method b in five.
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Fig. 4: Symbolic Execution Trees: Lazy Initialization and Heap Solver

On the other hand, the heap solver enables symbolic execution to perform as
shown in Figure 4b, where branching only occurs due to explicit branching in the
program, rather than to aliasing. For this purpose, the heap solver handles non-
determinism due to aliasing of references by means of disjunctions. In particular,
at instruction 5 the solver will carry the following conditional information for
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x.f’ (the current value of field f of x): x = z → x.f ′ = z.f ∧x 6= z → x.f ′ = x.f
indicating that if x and z are aliased, then x.f’ will take its value from z.f
and, otherwise, from x.f. Once the conditional statement at line 7 is executed
and we learn that x and z are aliased (in the then branch), we need to look up
backwards in the heap and propagate this unification so that instruction 5 can be
fully executed. This allows the symbolic execution of d(y.f) with a known value
for y.f. The heap solver works on a novel internal representation of the heap that
encodes the disjunctive information and easily allows looking up backwards in
the heap. In addition, it is possible to provide heap assumptions on non-aliasing,
non-sharing and acyclicity of heap-allocated data in the initial state. The heap
solver can take these assumptions into account to discard aliasing that is known
not to occur for some input data. Importantly, the heap solver can be used by
any symbolic execution tool for imperative languages through its interface heap
operations.

Backwards Propagation, Arrays, and Heap Assumptions. As described
in the previous section, the heap solver uses information about equality and dise-
quality of references to determine equality among the heap cells. This is done by
propagating such information forwards in the rules of attributes. A straightfor-
ward extension to the solver allows propagating information backwards as well.
In doing so, the heap solver is capable of further refining disjunctive information
and variables’ domains, which in turn can lead to promptly pruning unfeasible
symbolic execution branches.

Example 3. Consider the method m but with the condition of the if (in instruc-
tion 7) changed to “if (x.f == 1)” . Thanks to backwards propagation, the solver
can infer that in the if branch, variables x, y and z do not alias, and therefore
the call call_c is performed with a 2 value. 2

Another straightforward extension to the heap solver allows to handle arrays
in a similar fashion to how object fields are handled, with the difference being
that array indices play the role of object references that point to the heap-
allocated data.

The last important feature of the heap solver is the support for heap assump-
tions. As we have seen so far, symbolic execution assumes feasible all possible
kinds of aliasing among heap-allocated (reference) input data of the same type.
However, it may be the case that while some of these aliasings might indeed oc-
cur, others might not (consider, for instance, aliased data structures that cannot
be constructed using the public methods in the Java class). In order to avoid gen-
erating such inputs, the heap solver provides support for heap assumptions, that
is, assertions describing reachability, aliasing, separation and sharing conditions
in the heap. Concretely, the following heap assumptions are supported:

– non-aliasing(a,b): specifies that memory locations a and b are not the same.
– non-sharing(a,b): specifies disjointness, i.e., that references a and b do not

share any common region in the heap.
– acyclic(a): specifies that a is an acyclic data structure.
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2.3 From Symbolic Execution to TCG

The outcome of symbolic execution is a set of path conditions, one for each
symbolic execution path. Each path condition represents the conditions over the
input variables that characterize the set of feasible concrete executions of the
program that take the same path. In a next step, off-the-shelf constraint solvers
can be used to solve such path conditions and generate concrete instantiations for
each of them. This last step provides actual test inputs for the program, amenable
to further validation by testing frameworks such as JUnit, which execute such
test inputs and check that the output is as expected.

Example 4. Let us look at the symbolic execution tree of Figure 2 again. Intu-
itively, the union of the three successful paths denoted with solid double squares
make up the symbolic test suite for method intExp that optimally satisfies the
loop-1 criterion:

# Input Output Path condition

1 A, N [exception] {N<0}
2 A, N 1 {N=0}
3 A, N Out {N>0,N’=N-1,Out=1*A,N’<=0}

The following are concrete test cases that can be derived from the above symbolic
ones.

# Input Output

1 -10, -10 [Exception]
2 -10, 0 1
3 -10, 1 10

And from these concrete test cases, the JUnit tests shown in Figure 5 can be
obtained.

It is important to note that imposing a larger k would allow to continue the
exploration through the unfinished, pruned path (dashed square) thus generating
test cases corresponding to further loop unrollings. 2

2.4 Compositionality

Compositional reasoning is a general purpose methodology that has been suc-
cessfully applied in the past to scale up static analysis and software verification
techniques and that has also proved effective for scaling up symbolic execution
and TCG [5, 7, 19, 40]. The overall goal of compositionality is to alleviate the
inter-procedural path explosion problem. That is, in the context of symbolic
execution and TCG, the path explosion caused by repeatedly conjoining the
symbolic execution trees of methods when their invocations occur. The main
idea is that symbolic execution and TCG of large programs can be done more
effectively, and more efficiently, by first performing symbolic execution and TCG
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public void test_1(){
int input0 = -10;
int input1 = -10;
try{
int output = Test.intExp(input0,input1);

}
catch(Exception ex){
assertEquals("exception","java.lang.ArithmeticException",

ex.getClass().getName());
return;

}
fail("Fail");

}
public void test_2(){
int input0 = -10;
int input1 = 0;
int output = Test.intExp(input0,input1);
int expected = 1;
assertEquals("OK",expected,output);

}
public void test_3(){
int input0 = -10;
int input1 = 1;
int output = Test.intExp(input0,input1);
int expected = -10;
assertEquals("OK",expected,output);

}

Fig. 5: JUnit tests generated for introductory example

of their individual components separately. In the context of object-oriented pro-
gramming, a method is the basic code component.

In symbolic execution for TCG, compositionality means that when a method
m invokes another method p, for which TCG has already been performed, the
execution can compose the test cases available for p (also known as method sum-
mary for p) with the current execution state and continue the process, instead
of having to symbolically execute p again. By test cases (or method summary),
we refer to the set of path conditions obtained by symbolically executing p. As
a result of this composition step, a method summary for m is created. Then,
larger portions of the system under test (components, modules, libraries, etc.)
are incrementally executed, following a bottom-up traversal of its call graph,
composing previously computed components results (summaries) until finally
whole-program results can be computed. Let us recall that since the symbolic
execution tree is in general infinite, a termination criterion is essential to ensure
finiteness of the process. Then, a method summary is a finite set of summary
cases, one for each terminating path through the symbolic execution tree of the
method. Intuitively, a summary can be regarded as a complete specification of
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the method for a certain termination criterion, but it is still a partial specification
of the method in general.

Intuitively, compositional TCG has several advantages over traditional non-
compositional TCG. First, it avoids repeatedly performing TCG of the same
method. Second, components can be tested with higher precision when they are
chosen small enough. Third, since separate TCG is done on parts and not on the
whole program, total memory consumption may be reduced. Fourth, separate
TCG can be performed in parallel on independent computers and the global TCG
time can be reduced as well. Furthermore, having a compositional TCG approach
in turn provides a practical solution to handle native code, i.e., code which is
implemented in a different programming language and may be unavailable. This
is achieved by modeling the behavior of native code as a method summary which
can be composed with the current state during symbolic execution in the same
way as the test cases inferred automatically by the testing tool are. By treating
native code, we overcome one of the inherent limitations of symbolic execution
(see [38]).

Approaches to Compositional TCG. In order to perform compositional
TCG, two main approaches can be considered:

Context-sensitive. Starting from an entry method m (and possibly a set of pre-
conditions), TCG performs a top-down symbolic execution such that, when a
method call p is found, its code is executed from the actual state φ. In a context-
sensitive approach, once a method is executed, we store the summary computed
for p in the context φ. If we later reach another call to p within a (possibly
different) context φ′, we first check if the stored context is sufficiently general.
In such case, we can adapt the existing summary for p to the current context φ′.
At the end of each execution, it can be decided which of the computed (context-
sensitive) summaries are stored for future use.

Context-insensitive. Another possibility is to perform the TCG process in a
context-insensitive way. This strategy comprises the following steps. First, the
call graph for the entry methodmP of the program under test is computed, which
gives us the set of methods that must be tested. Then, the strongly connected
components (SCCs for short) for such graph are computed. SCCs are traversed
in reverse topological order starting from those which do not depend on any
other. The idea is that each SCC is symbolically executed from its entry mscc

w.r.t. the most general context (i.e., true). If there are several entries to the
same SCC, the process is repeated for each of them. Hence, it is guaranteed that
the obtained summaries can always be adapted to more specific contexts.

In general terms, the advantages of the context-insensitive approach are that
composition can always be performed and that only one summary needs to be
stored per method. However, since no context information is assumed, summaries
can contain more test cases than necessary and can be thus more expensive to
obtain. In contrast, the context-sensitive approach ensures that only the required
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information is computed, but it can happen that there are several invocations to
the same method that cannot reuse previous summaries (because the associated
contexts are not sufficiently general). In such case, it is more efficient to obtain
the summary without assuming any context. A context-insensitive approach is
used in what follows.

Method Summaries. A method summary for m is a finite set of summary
cases, each of which mainly consists of the path condition for a particular sym-
bolic execution path of m. Each element in a summary is said to be a summary
case of the summary. Intuitively, a method summary can be seen as a com-
plete specification of the method for the considered coverage criterion, so that
each summary case corresponds to the path constraints associated to each fin-
ished path in the corresponding (finite) execution tree. Note that, though the
specification is complete for the criterion considered, it will be, in general, a
partial specification for the method, since the finite tree may contain incomplete
branches which, if further expanded, may result in (infinitely) many execution
paths.

When the method does not include any heap-related operation, the path con-
dition alone sufficiently characterizes the symbolic execution path (as in [7,19]).
However, in the presence of heap-manipulating methods, special mechanisms
must be employed. We adopt an intuitive alternative which consists in explic-
itly encoding the input and output heaps and store them along with the path
condition. Doing so, requires the implementation of two operations, a heap com-
patibility check and a heap composition operation.

Compatibility and Composition of Summaries. Let us assume that during
the symbolic execution of a method m, there is a method invocation to another
method p within a current state φ. The challenge is to define a composition
operation so that, instead of symbolically executing p, its previously computed
summary Sp can be reused. As a result, TCG for m should produce the same
results regardless of whether we use a summary for p or we inline symbolical
execution of p within TCG form, in a non-compositional way. Roughly speaking,
the state φc stored in a summary case is compatible with the current state φ if: 1)
the path condition stored in the summary case can be conjoined to the current
path condition, and 2) the structure of the input heap in the summary case match
with the structure of the current heap. Note that compatibility of a summary
case is checked on the fly, so that if φ is not compatible with φc, the composition
will fail, the summary case will be discarded, and symbolic execution will proceed
to attempt to compose the next summary case in Sp.

Example 5. Table 1 shows the summary obtained by symbolically executing
method simplify using the loop-1 coverage criterion: The summary contains 5
cases, which correspond to the different execution paths induced by the calls to
methods gcd and abs. For the sake of clarity, we adopt a graphical representa-
tion for the input and output heaps. Heap locations are shown as arrows labeled
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class Arithmetics {
static int abs(int a) {

if (a >= 0) return a;
else return -a;

}
static int gcd(int a,int b) {

int res;
while (b != 0) {

res = a%b; a = b; b = res;
}
return abs(a);

}
}
class Rational {

int n; int d;
void simplify() {

int gcd = Arithmetics.gcd(n,d);
n = n/gcd; d = d/gcd;

}
Rational[] simp(Rational[] rs) {

int length = rs.length;
Rational[] oldRs = new Rational[length

];
arraycopy(rs,oldRs,length);
for (int i = 0; i < length; i++)

rs[i].simplify();
return oldRs;

}
}

Fig. 6: Example for Compositional TCG.

Table 1: Summary of method simplify

Ain Aout Heapin Heapout EF Constraints

r(A)
F
0A M

0A ok F<0, N=-F, M=F/N

r(A)
F
0A 1

0A ok F>0

r(A)
0
0A 0

0A AEB exc(B)

r(A)
F
GA M

NA ok G<0, F mod G=0, K=-G, M=F/K, N=G/K

r(A)
F
GA M

1A ok G>0, F mod G=0, M=F/G
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Table 2: Summary of method arraycopy

Ain Aout Heapin Heapout EF Constraints

[X,Y,0] H H ok ∅

[r(A),null,Z] L [V|_]A L [V|_]A NPEB exc(B) Z>0, L>0

[null,Y,Z] H NPEA exc(A) Z>0

[X,Y,Z] H AEA exc(A) Z<0

[r(A),r(B),1] L1 [V|_]A L2 [V2|_]B L1 [V|_]A L2 [V|_]B ok L1>1, L2>0

with their reference variable names. Split-circles represent objects of type R and
fields n and d are shown in the upper and lower part, respectively. Exceptions
are shown as starbursts, like in the special case of the fraction “0/0”, for which
an arithmetic exception (AE) is thrown due to a division by zero. In the method
summary examples of Tables 2 and 3, split-rectangles represent arrays, with the
length of the array in the upper part and its list of values in the lower one. As-
sume that method arraycopy is native. This means that its code is not available
and we cannot symbolically execute it. A method summary for arraycopy can
be provided, as shown in Table 2, where we have (manually) specified five cases:
the first one for arrays of length zero, the second and third ones for null array
references, the fourth one for a negative length, and finally a normal execution
on non-null arrays. Now, by using our compositional reasoning, we can continue
symbolic execution for simp by composing the specified summary of arraycopy
and the one computed for simplify. The result of compositional symbolic exe-
cution is presented in Table 3, that is, the entire summary of method simp for
a loop-1 coverage criterion. 2

2.5 Guided TCG

A common limitation of symbolic execution in the context of TCG is that it
tends to produce an unnecessarily large number of test cases for all but tiny pro-
grams. This limitation not only hinders scalability but also complicates human
reasoning on the generated test cases. Guided TCG is a methodology that aims
at steering symbolic execution towards specific program paths in order to effi-
ciently generate more relevant test cases and filter out less interesting ones with
respect to a given structural selection criterion. The goal is thus to improve on
scalability and efficiency by achieving a high degree of control over the coverage
criterion and hence avoiding the exploration of unfeasible paths. This has po-
tential applicability for industrial software testing practices such as unit testing,
where units of code (e.g. methods) must be thoroughly tested in isolation, or
selective testing, in which only specific paths of a program must be tested.

15



Table 3: Summary of method simp

Ain Aout Heapin Heapout EF Constraints

r(A) r(B) 0 []A 0 []A 0 []B ok ∅

null X H NPEA exc(A) ∅

r(A) r(C) 1 [r(B)]A
F
0B 1 [r(B)]A

M
0B 1 [r(B)]C ok F<0, K=-F, M=F/K

r(A) r(C) 1 [r(B)]A
F
0B 1 [r(B)]A

1
0B 1 [r(B)]C ok F>0

r(A) X 1 [r(B)]A
0
0B 1 [r(B)]A

0
0B 1 [r(B)]C AED exc(D) ∅

r(A) r(C) 1 [r(B)]A
F
GB 1 [r(B)]A

M
NB 1 [r(B)]C ok G<0, F mod G=0, K=-G,

M=F/K, N=G/K

r(A) r(C) 1 [r(B)]A
F
GB 1 [r(B)]A

M
1B 1 [r(B)]C ok G>0, F mod G=0, M=F/G

r(A) X 1 [null]A 1 [null]A 1 [null]C NPEB exc(B) ∅

Example 6. Let us consider the unit-testing for method simplify (see Figure 6).
A proper set of unit-tests should include one test to exercise the exceptional
behavior arising from the division by zero, and another test to exercise the
normal behavior. Ideally, no more tests should be provided since there is anything
else to be tested in method simplify. This methodology works well under the
assumption that called methods are tested on their own, in this case method
gcd. Standard TCG by symbolic execution would consider all possible paths
including those arising from the different executions of method gcd, in this case
5 paths. The challenge in Guided TCG is to generate only the two test-cases
above, avoiding as much as possible traversing the rest of the paths (which for
this criterion can be considered redundant). As another example, let us consider
selective testing for method simplify. E.g., one could be interested in generating
a test-case (if any) that makes method simplify produce an exception due to a
division by zero. The challenge in Guided TCG is again to generate such a test
avoiding traversing as much as possible the rest of the paths. 2

The intuition of Guided TCG is as follows: (1) A heuristics-based trace-
generator generates possibly partial traces, i.e., partial descriptions of paths,
according to a given selection criterion. This can be done by relying on the
control-flow graph of the program. (2) Bounded symbolic execution is guided
by the obtained traces. The process is repeated until the selection criterion is
satisfied or until no more traces are generated. Section 3.6 presents a concrete
CLP-based methodology for guided TCG and formalizes a concrete guided TCG
scheme to support the criteria for unit testing considered in the above example.
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3 CLP-based TCG

We present a particular instance of TCG based on symbolic execution, and an
implementation, in which CLP is used as enabling technology.

3.1 Constraint Logic Programming

We assume certain familiarity with Logic Programming (LP) [33] and Con-
straint Logic Programming (CLP) [27,34]. Hence we only briefly overview both
paradigms.

Logic Programming. Logic Programming is a programming paradigm based
on the use of formal logic as a programming language. A logic program is a
finite set of predicates defining relationships between logical terms. An atom
(or call) A is a syntactic construct of the form p(t1, . . . , tn), with n ≥ 0, where
p/n is a predicate signature and t1, . . . , tn are terms. A clause is of the form
H : −B1, . . . , Bm. , with m ≥ 0, where its head H is an atom and its body
B1, . . . , Bm is a conjunction of m atoms (commas denote conjunctions). When
m = 0 the clause is called a fact and is written “H.”. The standard syntactic
convention is that names of predicates and atoms begin with a lowercase letter.
A goal is a conjunction of atoms. We denote by {X1 → t1, . . . , Xn → tn} the
substitution σ with σ(Xi) = ti for i = 1, . . . , n (with Xi 6= Xj if i 6= j),
and σ(X) = X for all other variables X. Given an atom A, θ(A) denotes the
application of substitution θ to A. Given two substitutions θ1 and θ2 , we denote
by θ1θ2 their composition. An atom A′ is an instance of A if there is a substitution
σ with A′ = σ(A).

SLD (Selective Linear Definite clause)-resolution is the standard operational
semantics of logic programs. It is based on the notion of derivations. A deriva-
tion step is defined as follows. Let G be A1, . . . , AR, . . . , Ak and C = H :
−B1, . . . , Bm. be a renamed apart clause in P (i.e., it has no common variables
with G). Let AR be the selected atom for its evaluation. As in Prolog, we assume
the simple leftmost selection rule. Then,G′ is derived fromG if θ is amost general
unifier betweenAR andH, andG′ is the goal θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1,
. . . , Ak).

As customary, given a program P and a goal G, an SLD derivation for P∪{G}
consists of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence
C1, C2, . . . of properly renamed apart clauses of P (i.e. Ci has no common vari-
ables with any Gj nor Cj with j < i), and a sequence of computed answer
substitutions θ1, θ2, . . . (or most-general unifiers, mgus for short) such that each
Gi+1 is derived from Gi and Ci+1 using θi+1. Finally, we say that the SLD
derivation is composed of the subsequent goals G0, G1, G2, . . .

A derivation step can be non-deterministic when AR unifies with several
clauses in P , giving rise to several possible SLD derivations for a given goal.
Such SLD derivations can be organized in SLD trees. A finite derivation G =
G0, G1, G2, . . . , Gn is called successful if Gn is the empty goal, denoted ε. In that
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case θ = θ1θ2 . . . θn is called the computed answer for goal G. Such a derivation
is called failing if it is not possible to perform a derivation step with Gn.

Executing a logic program P for a goal G consists in building an SLD tree
for P ∪ {G} and then extracting the computed answer substitutions from every
non-failing branch of the tree.

Constraint Logic Programming. Constraint Logic Programming is a pro-
gramming paradigm that extends Logic programming with Constraint solving.
It augments the LP expressive power and application domain while maintaining
its semantic properties (e.g., existence of a fixpoint semantics).

In CLP, the bodies of clauses may contain constraints in addition to ordi-
nary literals. CLP integrates the use of a constraint solver to the operational
semantics of logic programs. As a consequence of this extension, whereas in LP
a computation state consists of a goal and a substitution, in CLP a computation
state also contains a constraint store. The special constraint literals are stored
in the constraint store instead of being solved according to SLD-resolution. The
satisfiability of the constraint store is checked by a constraint solver. Then, we
say that a CLP computation is successful if there is a derivation leading from the
initial state S0 = 〈G0 true〉 (initially the constraint store is empty, i.e., true)
to the final state Sn = 〈ε S〉 such that ε is the empty goal and S is satisfiable.

The CLP paradigm can be instantiated with many constraint domains. A
constraint domain defines the class of constraints that can be used in a CLP pro-
gram. Several constraint domains have been developed (e.g., for terms, strings,
booleans, reals). A particularly useful constraint domain is CLP(FD) (Constraint
Logic Programming over Finite Domains) [47]. CLP(FD) constraints are usually
intended to be arithmetic constraints over finite integer domain variables. It has
been applied to constraint satisfaction problems such as planning and schedul-
ing [14,34]. Some features of CLP(FD) that make it suitable for TCG of programs
working with integers are:

– It provides a mechanism to define the initial finite domain of variables as an
interval over the integers and operations to further refine this initial domain.

– It provides a built-in labeling mechanism, which can be applied on a list of
variables to find values for them such that the current constraint store is
satisfied.

As we will see in the next section, our CLP-based TCG framework will rely
on CLP(FD) to translate conditional statements over integer variables into CLP
constraints. Moreover, the labeling mechanism is essential to concretize the ob-
tained test cases in order to obtain concrete input data amenable to be used and
validated by testing tools.

3.2 CLP-based Test Case Generation

CLP-based Test Case Generation advocates the use of CLP technology to per-
form test case generation of imperative object-oriented programs. The pro-
cess has two phases. In the first phase, the imperative object-oriented program
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under test is automatically transformed into an equivalent executable CLP-
translated program. Instructions that manipulate heap-allocated data are rep-
resented by means of calls to specific heap operations. In the second phase, the
CLP-translated program is symbolically executed using the standard CLP exe-
cution and constraint solving mechanism. The above-mentioned heap operations
are also implemented in standard CLP, in a suitable way in order to support
symbolic execution. The next two sections overview these two phases, which are
also shown graphically in Figure 7.

Program
under Test

Imperative
OO to CLP
Translation

CLP-translated
Program

Symbolic
Execution
and TCG

Phase I

Test
Suite

Coverage
Criterion

Phase II

Fig. 7: CLP-based Test Case Generation Framework

The Imperative Object-Oriented Language. Although our approach is not tied
to any particular imperative object-oriented language, we consider as the source
language a subset of Java. For simplicity, we leave out of such subset features
like concurrency, bitwise operations, static fields, access control (i.e., the use of
public, protected and private modifiers) and primitive types besides integers and
booleans. Nevertheless, these features can be relatively easy to handle in practice
by our framework, except for concurrency, which is well-known to pose further
challenges to symbolic execution and its scalability.

CLP-translated Programs. The translation of imperative object-oriented
programs into equivalent CLP-translated programs has been subject of previous
work (see, e.g., [2, 21]). Therefore, we will recap the features of the translated
programs without going into deep details of how the translation is done. The
translation is formally defined as follows:

Definition 1 (CLP-translated program). The CLP-translated program for
a given method m from the original imperative object-oriented program consists
of a finite, non-empty set of predicates m,m1, . . . ,mn. A predicate mi is de-
fined by a finite, non-empty set of mutually exclusive rules, each of the form
mk

i (In,Out , Hin, Hout,E ) : −[g, ]b1, . . . , bj ., where:

1. In and Out are, resp., the (possibly empty) list of input and output argu-
ments.

2. Hin and Hout are, resp., the input and (possibly modified) output heaps.
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3. E is an exception flag that indicates whether the execution of mk
i ends nor-

mally or with an uncaught exception.
4. If mi is defined by more than one rule, then g is the constraint that guards

the execution of mk
i , i.e., it must hold for the execution of mk

i to proceed.
5. b1, . . . , bj is a sequence of instructions including arithmetic operations, calls

to other predicates and built-ins to operate on the heap, etc., as defined in
Figure 8. As usual, an SSA transformation is performed [12].

Clause ::=Pred(Argsin,Argsout,Hin,Hout,ExFlag) :- [G,]B1,B2,. . . ,Bn.
G ::=Num* ROp Num* | Ref∗1 \== Ref∗2 | type(H,Ref∗,T )
B ::=Var #= Num* AOp Num*

| Pred(Argsin,Argsout,Hin,Hout,ExFlag)
| new_object(Hin,C∗,Ref∗,Hout)
| new_array(Hin,T,Num∗,Ref∗,Hout) | length(Hin,Ref∗,Var)
| get_field(Hin,Ref∗,FSig,Var) | set_field(Hin,Ref∗,FSig,Data∗,Hout)
| get_array(Hin,Ref∗,Num∗,Var)
| set_array(Hin,Ref∗,Num∗,Data∗,Hout)

Pred ::=Block | MSig
Args ::= [ ] | [Data∗|Args]
Data ::=Num | Ref | ExFlag
Ref ::=null | r(Var)

ExFlag ::= ok | exc(Var)

ROp ::= #> | #< | #>= | #=< | #= | #\=
AOp ::= + | - | ∗ | / | mod

T ::= bool | int | C | array(T)
FSig ::=C:FN
H ::=Var

Fig. 8: Syntax of CLP-translated programs

Specifically, CLP-translated programs adhere to the grammar in Figure 8. As
customary, terminals start with lowercase (or special symbols) and non-terminals
start with uppercase; subscripts are provided just for clarity. Non-terminals
Block, Num, Var, FN, MSig, FSig and C denote, resp., the set of predicate
names, numbers, variables, field names, method signatures, field signatures and
class names. A clause indistinguishably defines either a method which appear in
the original source program (MSig), or an additional predicate which correspond
to an intermediate block in the control flow graph of original program (Block).
A field signature FSig contains the class where the field is defined and the field
name FN . An asterisk on a non-terminal denotes that it can be either as defined
by the grammar or a (possibly constrained) variable (e.g., Num∗, denotes that
the term can be a number or a variable). Heap references are written as terms
of the form r(Ref ) or null. The operations that handle data in the heap are
translated into built-in heap-related predicates.

Let us observe the following:
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– There exists a one-to-one correspondence between blocks in the control flow
graph of the original program and rules in the CLP-translated one.

– Mutual exclusion between the rules of a predicate is ensured either by means
of mutually exclusive guards, or by information made explicit on the heads
of rules, as usual in CLP. This makes the CLP-translated program deter-
ministic, as the original imperative one is (point 4 in Definition 1).

– The global memory (or heap) is explicitly represented by means of logic
variables. When a rule is invoked, the input heap Hin is received and, after
executing the body of the rule, the heap might be modified, resulting in Hout.
The operations that modify the heap will be shown later.

– Virtual method invocations are resolved at compile-time in the original im-
perative object-oriented language by looking up all possible runtime in-
stances of the method. In the CLP-translated program, such invocations
are translated into a choice of type instructions which check the actual ob-
ject type, followed by the corresponding method invocation for each runtime
instance.

– Exceptional behavior is handled explicitly in the CLP-translated program.

These observations will become more noticeable later on Example 7.
Note that the above definition proposes a translation to CLP as opposed to

a translation to pure logic (e.g. to predicate logic or even to propositional logic,
i.e., a logic that is not meant for “programming”). This is because we then want
to execute the resulting translated programs to perform TCG and this requires,
among other things, handling a constraint store and then generating actual data
from such constraints. CLP is a natural paradigm to perform this task.

Heap Operations. Figure 9 summarizes the CLP implementation of the oper-
ations to create heap-allocated data structures (new_object and new_array) and
to read and modify them (getfield , set_array, etc.) [22]. These operations rely on
some auxiliary predicates (like deterministic versions of member member_det, of
replace replace_det, and nth0 and replace_nth0 for arrays) which are quite stan-
dard and hence their implementation is not shown. For instance, a new object
is created through a call to predicate new_object(Hin,Class,Ref,Hout), where Hin

is the current heap, Class is the new object’s type, Ref is a unique reference in
the heap for accessing the new object and Hout is the new heap after allocating
the object. Read-only operations do not produce any output heap. For example,
get_field(Hin,Ref,FSig,Var) retrieves from Hin the value of the field identified
by FSig from the object referenced by Ref , and returns its value in Var leav-
ing the heap unchanged. Instruction set_field(Hin,Ref,FSig,Data,Hout) sets the
field identified by FSig from the object referenced by Ref to the value Data,
and returns the modified heap Hout. The remaining operations are implemented
likewise.

The Heap term. Our CLP-translated programs manipulate the heap as a black-
box through its associated operations. The heaps generated and manipulated by
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new_object(H,C,Ref,H’) :- build_object(C,Ob), new_ref(Ref),
H’ = [(Ref,Ob)|H].

new_array(H,T,L,Ref,H’) :- build_array(T,L,Arr), new_ref(Ref),
H’ = [(Ref,Arr)|H].

type(H,Ref,T) :- get_cell(H,Ref,Cell), Cell = object(T,_).
length(H,Ref,L) :- get_cell(H,Ref,Cell), Cell = array(_,L,_).

get_field(H,Ref,FSig,V) :- get_cell(H,Ref,Ob), FSig = C:FN,
Ob = object(T,Fields), subclass(T,C),
member_det(field(FN,V),Fields).

get_array(H,Ref,I,V) :- get_cell(H,Ref,Arr), Arr = array(_,_,Xs),
nth0(I,Xs,V).

set_field(H,Ref,FSig,V,H’) :- get_cell(H,Ref,Ob), FSig = C:FN,
Ob = object(T,Fields), subclass(T,C),
replace_det(Fields,field(FN,_),field(FN,V),

Fields’),
set_cell(H,Ref,object(T,Fields’),H’).

set_array(H,Ref,I,V,H’) :- get_cell(H,Ref,Arr), Arr = array(T,L,Xs),
replace_nth0(Xs,I,V,Xs’),
set_cell(H,Ref,array(T,L,Xs’),H’).

get_cell([(Ref’,Cell’)|_],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get_cell([_|RH],Ref,Cell) :- get_cell(RH,Ref,Cell).

set_cell([(Ref’,_)|H],Ref,Cell,H’) :- Ref == Ref’, !,
H’ = [(Ref,Cell)|H].

set_cell([(Ref’,Cell’)|H’],Ref,Cell,H) :- H = [(Ref’,Cell’)|H”],
set_cell(H’,Ref,Cell,H”).

Fig. 9: Heap operations for ground execution [22]

using these operations adhere to this grammar:

Heap ::= [ ] | [Loc|Heap]
Cell ::= object(C∗,Fields∗) | array(T∗,Num∗,Args∗)
Loc ::= (Num∗,Cell)

Fields ::= [ ] | [field(FN,Data∗)|Fields∗]

The heap is represented as a list of locations which are pairs formed by a unique
reference and a cell. Each cell can be an object or an array. An object contains
its type and its list of fields, each of which is made of its signature and data
content. An array contains its type, its length and its list of elements.

Example 7. Figure 10a shows the Java source code of class List, which imple-
ments a singly-linked list. The class contains one field first of type Node. As
customary, Node is a recursive class with two fields: data of type int and next
of type Node. Method remAll takes as argument an object l of type List, tra-
verses it (outer while loop) and for each of its elements, traverses the this object
and removes all their occurrences (inner loop). Figure 10b shows the equivalent
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1 class Node {
2 int data;
3 Node next;
4 }
5 class List {
6 Node first;
7 void remAll(List l) {
8 // block1
9 Node lf = l.first;

10 // loop1
11 while (lf != null) {
12 // block2
13 Node prev = null;
14 Node p = null;
15 Node next = first;
16 // loop2
17 while (next != null) {
18 // block3
19 prev = p;
20 p = next;
21 next = next.next;
22 // if1
23 if (p.data == lf.data)
24 // if2
25 if (prev == null) {
26 first = next;
27 p = null;
28 } else {
29 prev.next = next;
30 p = prev;
31 }
32 }
33 // block4
34 lf = lf.next;
35 }
36 }
37 }

(a) Java source code

remAll([r(Th),L],[],Hi,Ho,E) :-
block1([Th,L],Hi,Ho,E).

block1([Th,r(L)],Hi,Ho,E) :-
get_field(Hi,L,first,LfR),
loop1([Th,L,LfR],Hi,Ho,E).

block1([Th,null],Hi,Ho,exc(E)) :-
create_object(Hi,’NPE’,E,Ho).

loop1([Th,L,null],H,H,ok).
loop1([Th,L,r(Lf)],Hi,Ho,E) :-
block2([Th,L,Lf],Hi,Ho,E).

block2([Th,L,Lf],Hi,Ho,E) :-
get_field(Hi,Th,first,FR),
loop2([Th,L,Lf,null,null,FR],Hi,Ho,E).

loop2([Th,L,Lf,Prev,P,null],Hi,Ho,E) :-
block4([Th,L,Lf],Hi,Ho,E).

loop2([Th,L,Lf,Prev,P,r(F)],Hi,Ho,E) :-
block3([Th,L,Lf,P,F],Hi,Ho,E).

block3([Th,L,Lf,P,F],Hi,Ho,E) :-
get_field(Hi,F,next,FRN),
get_field(Hi,F,data,A),
get_field(Hi,Lf,data,B),
if1([A,B,Th,L,Lf,P,F,FRN],Hi,Ho,E).

if1([A,B,Th,L,Lf,Prev,P,FRN],Hi,Ho,E) :-
#\=(A,B),
loop2([Th,L,Lf,Prev,P,FRN],Hi,Ho,E).

if1([A,A,Th,L,Lf,Prev,P,FRN],Hi,Ho,E) :-
if2([Th,L,Lf,Prev,P,FRN],Hi,Ho,E).

if2([Th,L,Lf,r(F),P,N],Hi,Ho,E) :-
set_field(Hi,F,next,N,H2),
loop2([Th,L,Lf,F,F,N],H2,Ho,E).

if2([Th,L,Lf,null,P,N],Hi,Ho,E) :-
set_field(Hi,Th,first,N,H2),
loop2([Th,L,Lf,null,null,N],H2,Ho,E).

block4([Th,L,Lf],Hi,Ho,E) :-
get_field(Hi,Lf,next,LfRN),
loop1([Th,L,LfRN],Hi,Ho,E).

(b) CLP-translation

Fig. 10: CLP-based TCG example

(simplified and pretty-printed) CLP-translated code for method remAll. Let us
observe some of the main features of the CLP-translated program. The if state-
ment in line 23 is translated into two mutually exclusive rules (predicate if1)
guarded by an arithmetic condition. Similarly, the if statement in line 25 is
translated into predicate if2, implemented by two rules whose mutual exclusion
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is guaranteed by terms null and r(_) appearing in each rule head. Observe that
iteration in the original program (while constructions) is translated into recur-
sive predicates. For instance, the head of the inner while loop is translated into
predicate loop2, its condition is guarded by the rules of predicate cond2 (null
or r(_)), and recursive calls are made from predicates if1 (first rule) and if2
(both rules). Finally, exception handling is made explicit in the CLP-translated
program; the second rule of predicate block1 encodes the runtime null pointer
exception (’NPE’) that raises if the input argument l is null. 2

3.3 Semantics of CLP-translated Programs

The standard CLP execution mechanism suffices to execute the CLP-translated
programs. Let us focus on the concrete execution of CLP-translated programs
by assuming that all input parameters of the predicate to be executed (i.e., In
and Hin) are fully instantiated in the initial input state.

LetM be a method in the original imperative program, m be its correspond-
ing predicate in the CLP-translated program P , and P ′ be the union of P and
the predicates in Figure 9. As explained in the previous section, the operational
semantics of the CLP program P ′ can be defined in terms of derivations. A
derivation is a sequence of reductions between states S0 →p S1 →P . . .→P Sn,
also denoted S0 →P Sn, where a state 〈G θ〉 consists of a goalG and a constraint
store θ. The concrete execution of m with input θ is the derivation S0 → Sn,
where S0 = 〈m(In,Out , Hin, Hout, ExF lag) θ〉 and θ initializes In and Hin to
be fully ground. If the derivation successfully terminates, then Sn = 〈ε θ′〉 and
θ′ is the output constraint store.

This definition of concrete execution relies on the correctness of the transla-
tion algorithm, which must guarantee that the CLP-translated program captures
the same semantics of the original imperative one [2, 21].

Example 8. The following is a correct input state for predicate remAll/5:

〈remAll([r(1),null],Out,
[(1,object(’List’,[field(’Node’:first,null)]))],Hout,E) true〉

Observe that the list of input arguments and the input heap (both underlined)
are fully instantiated. Argument r(1) corresponds to the implicit reference to
the this object, which appears in the input heap term with its field first being
instantiated to null. Concrete execution on this input state yields a final state
in which:

Out = [ ]∧
Hout = [(1,object(’List’,[field(’Node’:first,null)])),

(2,object(’NPE’,[ ]))]∧
E = exc(2)
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Notice that in this final state, a new object of type NPE (Null Pointer Excep-
tion) is created in the heap. The fact that the execution ends with an uncaught
exception is indicated in flag E. 2

3.4 Symbolic Execution

When the source imperative language does not support dynamic memory, sym-
bolic execution of the CLP-translated programs is attained by simply using the
standard CLP execution mechanism to run the main goal (i.e., the predicate
name after the method under test) with all arguments being free variables. The
inherent constraint solving and backtracking mechanisms of CLP allow to keep
track of path conditions (or constraint stores), failing and backtracking when
unsatisfiable constraints are hit, hence discarding such execution paths; and suc-
ceeding when satisfiable constraints lead to a terminating state in the program,
which in the context of TCG implies that a new test case is generated.

However, in the case of heap-manipulating programs, the heap-related op-
erations presented in Figure 9 fall short to generate arbitrary heap-allocated
data structures and all possible heap shapes when accessing symbolic references.
This is a well-known problem in TCG by symbolic execution. A naive solution
to this problem could be to fully initialize all the reference parameters prior to
symbolic execution. However, this would require imposing bounds on the size
of input data structures, which is highly undesirable. Doing so would circum-
scribe the symbolic search space, hence jeopardizing the overall effectiveness of
the technique.

Lazy Initialization. A straightforward generalization of predicate get_cell in Fig-
ure 9 provides a simple and flexible solution to the problem of handling arbitrary
input data structures during symbolic execution, and constitutes a quite natural
implementation of the lazy initialization technique in our CLP-based framework.
Figure 11 shows the new implementation of the get_cell operations; observe that
we have added just two new rules to the implementation shown in Figure 9.

get_cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)|_].
get_cell([(Ref’,Cell’)|_],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get_cell([(Ref’,Cell’)|_],Ref,Cell) :- var(Ref), var(Ref’), Ref = Ref’,

Cell = Cell’.
get_cell([_|RH],Ref,Cell) :- get_cell(RH,Ref,Cell).

Fig. 11: Redefining get_cell operations for symbolic execution [22]

The intuitive idea is that the heap during symbolic execution contains two
parts: the known part, with the cells that have been explicitly created during
symbolic execution appearing at the beginning of the list, and the unknown part,

25



which is a logic variable (tail of the list) in which new data can be added. Im-
portantly, the definition of get_cell/3 distinguishes two situations when search-
ing for a reference: (i) It finds it in the known part (second clause), meaning
that the reference has already been accessed earlier (note the use of syntac-
tic equality rather than unification, since references at execution time can be
variables); or (ii) It reaches the unknown part of the heap (a logic variable),
and it allocates the reference (in this case a variable) there (first clause). The
third clause of get_cell/3 allows to consider all possible aliasing configurations
among references. In essence, get_cell/3 is therefore a CLP implementation of
lazy initialization.

Let us illustrate the use of lazy initialization in symbolic execution with an
example.

Example 9. Figure 12 shows the CLP-translated program for method mist from
Example 2. Let mist(In,Out,Hin,Hout,E) be the initial goal for symbolic
execution. Observe that the input heap Hin is a free variable (i.e., fully un-
known). Let us choose rule mist1. By doing so, the list of input arguments
In gets instantiated to [r(A),R2], which indicates that the first argument is
a reference to an existing object in the heap, as opposed to the null refer-
ence in rule mist2. The execution of the get_field instruction imposes new con-
straints on the shape of the input heap. Namely, Hin is partially instantiated to
[(A,object(’C’,[field(f,F)|M]))|N]. Observe that there is still an unknown
part in the heap (variable N). Also, observe that the list of fields for object A is
also represented by an open list, meaning that there might be other fields in this
object, but nothing has been learned about them yet.

Now, let us assume that the execution proceeds with rules if1 and then1.
At this point, the second argument is also set to be a valid reference r(B). The
execution of the set_field will internally reach predicate get_cell (Figure 11),
leading to consider two possibilities:

– References R1=r(A) and R2=r(B) point to two different objects in the heap.
In this case, the resulting output heap is

Hout = [ (A,object(’C’,[field(f,D1)|M])),
(B,object(’C’,[field(f,1)|P]))|N],

and the constraint store is θ = {D1 > 0}.
– References R1=r(A) and R2=r(A) point to the same object in the heap, i.e.,

they are aliased. Here, the resulting output heap is
Hout=[(A,object(’C’,[field(f,D1)|M]))|N], with θ = {D1 > 0}. 2

To conclude this section, let us now provide a definition for symbolic execu-
tion in terms of the CLP derivation tree of the CLP-translated program extended
with built-in operations to handle dynamic memory:

Definition 2 (Symbolic Execution). Let M be a method, m be its corre-
sponding predicate from its associated CLP-translated program P , and P ′ be the
union of P and the set of predicates in Figure 9. The symbolic execution of m is
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mist1([r(A),R2],[],Hin,Hout,E) :-
get_field(Hin,A,f,D1),
if([D1,A,R2],Hin,Hout,E).

mist2([null,R2],[],Hin,Hout,exc(Exc)) :-
create_object(Hin,’NPE’,Exc,Hout).

if1([D1,A,R2],Hin,Hout,E) :-
#>(D1,0),
then([R2],Hin,Hout,E).

if2([D1,A,R2],Hin,Hout,ok) :-
#<=(D1,0),
set_field(Hin,A,f,0,Hout),

then1([r(B)],Hin,Hout,ok) :-
set_field(Hin,B,f,1,Hout).

then2([null],Hin,Hout,exc(Exc)) :-
create_object(Hin,’NPE’,Exc,Hout).

Fig. 12: CLP-translated program for method mist (Example 2)

the CLP derivation tree, denoted as Tm, with root m(In,Out,Hin, Hout, E) and
initial constraint store θ = {} obtained using P ′.

3.5 Test Case Generation

When handling realistic programs, it is well-known that the symbolic execution
tree to be explored is in general infinite. This is because iterative constructs such
as loops and recursion, whose number of iterations depend on input arguments,
usually induce an infinite number of execution paths when executed with sym-
bolic input values. It is therefore essential to establish a termination criterion.
Such a termination criterion can be expressed in different forms. For instance,
a computation time budget can be established, or an explicit bound on the
depth of the symbolic execution tree can be imposed (called depth-k criterion).
In this thesis, we adopt a more code-oriented termination criterion. Specifically,
we impose an upper bound k on the number of times each loop is iterated. As
a byproduct of imposing such a bound, the loop-k structural coverage criterion
below is satisfied.

Finite symbolic execution tree, test case, and TCG. Let us now establish
definitions for key concepts of our approach:

Definition 3 (Finite symbolic execution tree, test case, and TCG). Let
m be the corresponding predicate for a method M in a CLP-translated program
P , and let C be a termination criterion.

– T Cm is the finite and possibly incomplete symbolic execution tree of m with
root m(In,Out,Hin, Hout,EF ) w.r.t. C.
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Table 4: Test cases for method remAll

N Input Heap Output Heap Constraint Store EF

1 this this ∅ ok
l.first = null l.first = null

2 this.first = null this.first = null ∅ ok
l.first // A // null l.first // A // null

3 this.first // A // null this.first // A // null {A 6= B} ok
l.first // B // null l.first // B // null

4 this.first // A // null this.first = null ∅ ok
l.first // A // null l.first // A // null

5 this - ∅ exc
l // null

6 this.first // A // null this.first = null ∅ ok
l = this l = this

7 this.first // A // null

l.first

66 this.first = null ∅ ok
l.first // A // null

– Let b be a successful (terminating) path in T Cm. A test case for m w.r.t. C is
a 6-tuple of the form: 〈σ(In), σ(Out), σ(Hin), σ(Hout), σ(EF ), θ〉, where σ
and θ are, resp., the substitution and the constraint store associated to b.

– TCG is the process of generating the set of test cases obtained for all suc-
cessful (terminating) paths in T Cm.

In the remainder of this dissertation, we comply with the above abstract
(symbolic) definition of test case, hence adopting a non-standard use of the term
“test case”. Standard test cases are concrete, i.e., actual input values on which the
program under test can be run. In contrast, in this thesis a test case represents
the class of inputs that will follow the same execution path, characterized by
a path condition (and symbolic expressions for variables). A test suite is hence
a set of test cases that characterizes all symbolic execution paths explored by
symbolic execution using a particular termination criterion. Nevertheless, it is
possible to produce actual values from the obtained symbolic test cases. This can
be done in a straightforward subsequent stage in our framework. Namely, we can
use the labeling mechanisms of standard clpfd domains to assign concrete values
to all variables which satisfy the path condition, thus solving it. As a result of
this last step, concrete and executable test cases are obtained.

Example 10. The test suite generated for method remAll for a loop-1 coverage
criterion is shown in Table 4. The first 5 cases are generated without considering
aliasing of references. By doing so, the last two cases are also generated. Let us
explain in detail three of the obtained test cases:
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– Case 3. Corresponds to the path in which both the this list and the input
list l contain just one element. The constraint {A 6= B} indicates that fields
this.first.data and l.first.datamust have different values. The output
heap is the same as the input heap, which means that the heap remains
unchanged at the end of the execution path represented by this test case
(although it may have suffered changes in intermediate derivations).

– Case 4. The input heap is the almost same as in case 3, but here, the
symbolic variables corresponding to this.first.data and l.first.data
are unified (variable A), meaning that their values are the same. In the
output heap, notice that the first node from the this list has been removed.

– Case 7. Reference fields this.first and l.first are aliased. That is, they
point to the same Node object in the heap. Removing element A from the
this list boils down to setting reference this.first to null, leaving the
object in the heap intact.

Finally, as mentioned before, by solving the constraint system and applying
labeling on the variables involved, concrete inputs can be obtained. A con-
crete instantiation for this test case would consist of the following input heap
{this.first // 1 // null, l.first // 2 // null} where variables A and B have been
assigned concrete values 1 and 2, respectively, such that the constraint store
A 6= B is satisfied. As the test case specifies, the heap in the concrete output
state remains unchanged. 2

The PET System. PET (Partial Evaluation-based Test case generator) is
a system that implements the CLP-based TCG framework described in this
chapter. It is is fully implemented in SWI-Prolog [48] and uses the CLP(FD)
library [47] (Constraint Logic Programming over Finite Domains) as constraint
solver. Some of the important features of the PET system are:

– It is generic. Provided that appropriate CLP translations are available, PET
can work with other imperative object-oriented languages. That is, once the
CLP translation is done, the language features are abstracted away. That
is to say, the TCG phase of the approach implemented in PET is language
independent. In this way, we elude the difficulties of explicitly dealing with
features like recursion, procedure calls, dynamic memory allocation, excep-
tions, etc., whose treatment may differ from one language to another.

– It is flexible. Different termination (coverage) criteria can be easily incorpo-
rated to the PET system. These criteria are written in PET as predicates
which are permanently checked during TCG. Adding new criteria consists in
implementing such a predicate, which requires only basic knowledge of logic
programming.

– It is incremental. One of the artifacts that the PET system generates is a
test case generator. To the best of our knowledge, this is a unique feature
in a TCG tool nowadays. Namely, PET allows to extend test suites by ex-
ploring further in the symbolic execution tree in an on-demand fashion. In

29



other words, PET allows to incrementally relax the imposed termination cri-
terion to explore symbolic execution paths that were initially pruned by the
termination criterion.

The PET system is available for download as open-source software and for
online use through its web interface at http://costa.ls.fi.upm.es/pet. Fur-
thermore, an Eclipse plugin called jPET [3] is available. jPET supports full se-
quential Java and some of its interesting features are:

– Interactive test case visualization. jPET integrates a test case viewer to allow
an intuitive, interactive visualization of the information contained in test
cases. This includes objects and arrays involved in the input and output
heap terms.

– Trace highlighting. On selection of a particular test case, jPET highlights the
sequence of instructions in the original Java source code that the test case
exercises. Alternatively, a trace debugging feature allows for a step-by-step
highlighting of the source code, as in the traditional style of code debugging.

– Parsing of method preconditions written in JML [28]. jPET enables the spec-
ification of conditions on the input arguments of methods. These conditions
are written in a subset of JML (Java Modeling Language), the standard spec-
ification language within software verification of Java. Using preconditions
allows steering symbolic execution towards interesting parts of the program
under test, ignoring others that are less interesting.

– Generation of JUnit. JUnit is a Unit Testing Framework for Java, which
provides a set of classes to support writing, executing and reusing test
cases. jPET generates self-contained JUnit test cases, as shown in Exam-
ple 4. Whereas those unit tests therein are rather simple, the generation of
JUnit code for heap-manipulating programs is much more challenging, as it
often involves the need to synthesize the input and output heaps and com-
pare the output heap stored in the test case with the resulting heap after
the execution of the test.

3.6 Guided CLP-based TCG

Whereas standard TCG by symbolic execution aims to cover all feasible paths of
the program under test w.r.t. a termination criterion, in guided TCG, the termi-
nation criterion is combined with a selection criterion. To that end, the concept
of coverage criterion is redefined to be a pair of two components 〈TC, SC〉. TC is
a termination criterion that, as discussed earlier, ensures finiteness of symbolic
execution. This can be done either based on execution steps or on loop itera-
tions. Again, let us adhere to loop-k , which limits to a threshold k the number
of allowed loop iterations and/or recursive calls (of each concrete loop or recur-
sive method). SC is a selection criterion that determines which test cases the
TCG must produce. In guided TCG this will steer symbolic execution towards
the paths that should be explored. In particular, we consider the following two
coverage criteria:
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– all-local-paths: It requires that all local execution paths within the method
under test are exercised up to a loop-k limit. This has a potential interest in
the context of unit testing, where each method must be tested in isolation.

– program-points(P): Given a set of program points P, it requires that all of
them are exercised by at least one test case up to a loop-k limit. This criterion
is the most appropriate choice for bug-detection and reachability verification
purposes. A particular case of it is statement coverage (up to a limit), where
all statements in a program or method must be exercised.

This section develops a concrete methodology to incorporate selection cri-
teria into the CLP-based TCG framework. To that end, we could employ a
post-processing phase where only the test cases that are sufficient to satisfy the
selection criterion are selected by looking at their traces. This is however not
an appropriate solution in general due to the exponential explosion of the paths
that have to be explored in symbolic execution. Instead, we now aim at using the
selection criterion to drive the TCG process towards satisfying paths, stressing
to avoid as much as possible the exploration of irrelevant and redundant ones.
The key idea that allows us to guide the TCG process is to pass trace terms
as input arguments to symbolic execution. These trace terms can be complete
or partial, which allows guiding completely or partially, the symbolic execution
towards specific paths.

First, let us define the notion of trace term and update Definition 1 to add
a trace term as an additional argument to each rule of the CLP-translated pro-
gram, which enables us to keep track of the sequence of rules that are sym-
bolically executed. Notice that trace terms are not cardinal components in the
translated program, but rather a supplementary argument with a central role in
this chapter.

Definition 4 (CLP-translated program with traces). Given the rule of
Definition 1, its CLP-translation with trace is: m(In,Out , Hin, Hout,EF , T ) : −
g, b′1, . . . , b

′
n.” where:

– In, Out , Hin, Hout and EF remain as in Definition 1.
– T is the trace term for m of the form m(k, P, 〈Tci , . . . , Tcm〉), where
• P is the (possibly empty) list of trace parameters, i.e., the subset of the
variables in rule mk on which the resource consumption depends.

• ci, . . . , cm is the (possibly empty) subsequence of method calls in b1, . . . , bn.
• Tcj is a free logic variable representing the trace term associated to the
call cj.

– Calls in the body of the rule are extended with their corresponding trace
terms, i.e., for all 1 ≤ j ≤ n, if bj ≡ p(Ip, Op, Hinp

, Houtp), then b′j ≡
p(Ip, Op, Hinp , Houtp , Tcj ); otherwise b′j ≡ bj.
Now, let us revisit the definition of test case and TCG (Definition 3) to

incorporate the notion of trace as an input argument for symbolic execution.

Definition 5 (Test case with trace and TCG). Given a method m, a ter-
mination criterion C and a successful (terminating) path b in the symbolic execu-
tion tree T C

m with root m(In,Out,Hin, Hout,EF , T ), a test case with trace for m
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w.r.t. C is a 6-tuple of the form: 〈σ(In), σ(Out), σ(Hin), σ(Hout), σ(EF ), σ(T ), θ〉,
where σ and θ are, resp., the set of bindings and the constraint store associated
to b. TCG generates the set of test cases with traces obtained for all successful
paths in T C

m .

Trace-guided TCG. Given a method m, a coverage criterion C = 〈TC, SC〉,
and a (possibly partial) trace π, trace-guided TCG generates the set tgTCG of
test cases obtained for all successful branches of m using π as a guiding input
argument for symbolic execution. Observe that the TCG guided by one trace π
generates: (a) exactly one test case if π is complete and corresponds to a feasible
path; (b) none if π is unfeasible; or (c) possibly several test cases if π is partial.
In the latter case the traces of all test cases are instantiations of the partial trace.

For convenience, let us also define firstOf-tgTCG(m,TC, π) to be the unary
set containing the leftmost successful branch of the symbolic execution tree ofm.
Now, by relying on the existence of a trace generator TraceGen that generates,
on demand and one by one, (possibly partial) traces according to C, we define
in Algorithm 1 a generic scheme for guided TCG.

Algorithm 1 Generic scheme for guided TCG
Input: M, and 〈TC, SC〉
TestCases = {}
while TraceGen has more traces and TestCases does not satisfy SC

Ask TraceGen to generate a new trace in Trace
TestCases = TestCases ∪ firstOf-tgTCG(M,TC,Trace )

Output: TestCases

The intuition is as follows: the trace generator generates a trace, possibly using
for that SC, TC and the current TestCases. If the generated trace is feasible,
then the first solution of its trace-guided TCG is added to the set of test cases.
The process finishes either when SC is satisfied, or when the trace generator
has already generated all traces up to TC. If the trace generator is complete
(see below), this means that SC cannot be satisfied within the limit imposed
by TC. Observe that for some selection criteria, e.g., all-local-paths, the calls to
firstOf-tgTCG can be computed in parallel.

Example 11. Figure 13a shows a Java program made up of three methods: lcm
calculates the least common multiple of two integers, gcd calculates the greatest
common divisor of two integers, and abs returns the absolute value of an integer.
Figure 13b shows the equivalent CLP-translated program. Method lcm is trans-
lated into predicates lcm, cont, try and div. As per Section 3.2, the translation
preserves the control flow of the program and transforms iteration into recursion
(e.g. method gcd). Note that the example has been chosen deliberately small
and simple to ease comprehension. Let us consider the TCG for method lcm
with program-points for points µ and κ as selection criterion. Let us assume that
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int lcm(int a,int b) {
if (a < b) {
int aux = a;
a = b;
b = aux;

}
int d = gcd(a,b);
try {
return abs(a*b)/d;

} catch (Exception e) {
return -1; µ©

}
}

int gcd(int a,int b) {
int res;
while (b != 0) {
res = a%b;
a = b;
b = res;

};
return abs(a);

}

int abs(int a) {
if (a >= 0)
return a; κ©

else
return -a;

}

(a) Java source code

lcm([A,B],[R],_,_,E,lcm(1,[T])) :-
A #>= B,
cont([A,B],[R],_,_,E,T).

lcm([A,B],[R],_,_,E,lcm(2,[T])) :-
A #< B,
cont([B,A],[R],_,_,E,T).

cont([A,B],[R],_,_,E,cont(1,[T,V])) :-
gcd([A,B],[G],_,_,E,T),
try([A,B,G],[R],_,_,E,V).

try([A,B,G],[R],_,_,E,try(1,[T,V])) :-
M #= A*B,
abs([M],[S],_,_,E,T),
div([S,G],[R],_,_,E,V).

try([A,B,G],[R],_,_,exc,try(2,[])).
div([A,B],[R],_,_,ok,div(1,[])) :-

B #\= 0,
R #= A/B.

div([A,0],[-1],_,_,catch,div(2,[])). µ©
gcd([A,B],[D],_,_,E,gcd(1,[T])) :-

loop([A,B],[D],_,_,E,T).
loop([A,0],[F],_,_,E,loop(1,[T])) :-

abs([A],[F],_,_,E,T).
loop([A,B],[E],_,_,G,loop(2,[T])) :-

B #\= 0,
body([A,B],[E],_,_,G,T).

body([A,B],[R],_,_,E,body(1,[T])) :-
B #\= 0,
M #= A mod B,
loop([B,M],[R],_,_,E,T).

body([A,0],[R],_,_,exc,body(2,[])).
abs([A],[A],_,_,ok,abs(1,[])) :-

A #>= 0. κ©
abs([A],[-A],_,_,ok,abs(2,[])) :-

A #< 0.

(b) CLP-translation

Fig. 13: Guided TCG Example: Java (left) and CLP-translated (right) programs.

the trace generator starts generating the following two traces:

t1 : lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])
t2 : lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

The first iteration does not add any test case since trace t1 is unfeasible. Trace
t2 is proved feasible and a test case is generated. The selection criterion is now
satisfied and therefore the process finishes. The following test case is obtained for
the program-points criterion for method lcm and program points µ© and κ©. This
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particular case illustrates specially well how guided TCG can reduce the number
of produced test cases through adequate control of the selection criterion.

Constraint store Trace

{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),
try(1,[abs(1,[]),div(2,[])])])])

2

There are two properties of high importance in guided TCG, completeness
and effectiveness. Intuitively, a concrete instantiation of the guided TCG scheme
is complete if it never reports that the coverage criterion is not satisfied when it
is indeed satisfiable. Effectiveness is related to the number of iterations the algo-
rithm performs. These two properties depend completely on the trace generator.
A trace generator is complete if it produces an over-approximation of the set of
traces satisfying the coverage criterion. Its effectiveness depends on the number
of redundant and/or unfeasible traces it generates: the larger the number, the
less effective the trace generator.

Trace Generators for Structural Coverage Criteria. Let us now describe a
general approach to build complete and effective trace generators for structural
coverage criteria by means of program transformations. Then, we describe in
detail an instantiation for the all-local-paths coverage criteria.

The trace-abstraction of a program can be defined as follows. Given a CLP-
translated program with traces P , its trace-abstraction is obtained as follows:
for every rule of P , (1) remove all atoms in the body of the rule except those
corresponding to rule calls, and (2) remove all arguments from the head and
from the surviving atoms of (1) except the last one (i.e., the trace term).

Example 12. Figure 14 shows the trace-abstraction for the CLP-translated pro-
gram of Figure 13b. Observe that the trace-abstraction basically corresponds the
control-flow graph of the CLP-translated program. 2

The trace-abstraction can be directly used as a trace generator as follows: (1)
Apply the termination criterion in order to ensure finiteness of the process.
(2) Select, in a post-processing, those traces that satisfy the selection criterion.
Such a trace generator produces on backtracking a superset of the set of traces
of the program satisfying the coverage criterion. Note that, this can be done as
long as the criteria are structural. The obtained trace generator is by definition
complete. However, it can be very ineffective and inefficient due to the large
number of unfeasible and/or unnecessary traces that it can generate.

In the following, we propose a concrete, and more effective, instantiation for
the all-local-paths coverage criteria. As we will see, this is done by taking advan-
tage of the notion of partial traces and the implicit information on the concrete
coverage criteria. A concrete instantiation for the program-points coverage crite-
ria is described at [39].
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lcm(lcm(1,[T])) :- cont(T).
lcm(lcm(2,[T])) :- cont(T).
cont(cont(1,[T,V])) :- gcd(T), try(V).
try(try(1,[T,V])) :- abs(T), div(V).
try(try(2,[])).
div(div(1,[])).
div(div(2,[])).
gcd(gcd(1,[T])) :- loop(T).
loop(loop(1,[T])) :- abs(T).
loop(loop(2,[T])) :- body(T).
body(body(1,[T])) :- loop(T).
body(body(2,[])).
abs(abs(1,[])).
abs(abs(2,[])).

Fig. 14: Trace-abstraction

An Instantiation for the all-local-paths Coverage Criterion. Let us start
from the trace-abstraction program and apply a syntactic program slicing which
removes from it the rules that do not belong to the considered method.

Definition 6 (slicing for all-local-paths coverage criterion). Given a trace-
abstraction program P and an entry method M :

1. Remove from P all rules that do not belong to method M .
2. In the bodies of remaining rules, remove all calls to rules which are not in

P .

The obtained sliced trace-abstraction, together with the termination criterion,
can be used as a trace generator for the all-local-paths criterion for a method. The
generated traces will have free variables in those trace arguments that correspond
to the execution of other methods, if any.

lcm(lcm(1,[T])) :- cont(T).
lcm(lcm(2,[T])) :- cont(T).
cont(cont(1,[G,T])) :- try(T).
try(try(1,[A,T])) :- div(T).
try(try(2,[])).
div(div(1,[])).
div(div(2,[])).

lcm(1,[cont(1,[G,try(1,[A,div(1,[])])])])
lcm(1,[cont(1,[G,try(1,[A,div(2,[])])])])
lcm(1,[cont(1,[G,try(2,[])])])
lcm(2,[cont(1,[G,try(1,[A,div(1,[])])])])
lcm(2,[cont(1,[G,try(1,[A,div(2,[])])])])
lcm(2,[cont(1,[G,try(2,[])])])

Fig. 15: Slicing of method lcm for all-local-paths criterion.
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Example 13. Figure 15 shows on the left the sliced trace-abstraction for method
lcm. On the right is the finite set of traces that is obtained from such trace-
abstraction for any loop-k termination criterion. Observe that the free variables
G, resp. A, correspond to the sliced away calls to methods gcd and abs. 2

Let us define the predicates: computeSlicedProgram(M), that computes the
sliced trace-abstraction for methodM as in Definition 6; generateTrace(M,TC,
Trace), that returns in its third argument, on backtracking, all partial traces
computed using such sliced trace-abstraction, limited by the termination cri-
terion TC; and traceGuidedTCG(M,TC,Trace,TestCase), which computes on
backtracking the set tgTCG (definition of Trace-guided TCG above), failing if
the set is empty, and instantiating on success TestCase and Trace (in case
it was partial). The guided TCG scheme in Algorithm 1, instantiated for the
all-local-paths criterion, can be implemented in Prolog as follows:

(1) guidedTCG(M,TC) :-
(2) computeSlicedProgram(M),
(3) generateTrace(M,TC,Trace),
(4) once(traceGuidedTCG(M,Trace,TC,TestCase)),
(5) assert(testCase(M,TestCase,Trace)),
(6) fail.
(7) guidedTCG(_,_).

Intuitively, given a (possibly partial) trace generated in line (3), if the call in
line (4) fails, then the next trace is tried. Otherwise, the generated test case
is asserted with its corresponding trace which is now fully instantiated (in case
it was partial). The process finishes when generateTrace/3 has computed all
traces, in which case it fails, making the program exiting through line (7).

Example 14. The following test cases are obtained for the all-local-paths criterion
for method lcm:

Constraint store Trace
{A>=B} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

try(1,[abs(1,[]),div(1,[])])])])
{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

try(1,[abs(1,[]),div(2,[])])])])
{B>A} lcm(2,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

try(1,[abs(1,[]),div(1,[])])])])

This set of 3 test cases achieves full code and path coverage on method lcm and
is thus a perfect choice in the context of unit-testing. In contrast, the original,
non-guided, TCG scheme with loop-2 as termination criterion produces 9 test
cases. 2

A thorough experimental evaluation was performed in [39] which demon-
strates the applicability and effectiveness of guided TCG.
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4 TCG of Concurrent Programs

The focus of this section is on the development of automated techniques for
testing concurrent objects.

4.1 Concurrent Objects

The central concept of the concurrency model is that of concurrent object.
Concurrent objects live in a distributed environment with asynchronous and
unordered communication by means of asynchronous method calls, denoted
y ! m(z). Method calls may be seen as triggers of concurrent activity, spawning
new tasks (so-called processes) in the called object. After an asynchronous call
of the form x=y ! m(z), the caller may proceed with its execution without block-
ing on the call. Here x is a future variable which allows synchronizing with the
completion of task m(z̄). In particular, the instruction await x? allows checking
whether m has finished. In this case, execution of the current task proceeds and
x can be used for accessing the return value of m via the instruction x.get. Oth-
erwise, the current task releases the processor to allow another available task to
take it.

A synchronous call of the form x = y.m(z), is internally transformed into
the statement sequence w = y ! m(z); if (this == y) await w?; x = w .get,
where w is a fresh future variable. This is because when the synchronous call is
executed on the same object this we do not want to block this object (this would
lead to a deadlock on the object this). Instead, we use an await instruction that
will allow that the execution of the synchronous call to m can start to execute.
The statement x = w.get blocks the execution of the current object until m(z)
on y returns a value. The if statement avoids a deadlock when the object y is
equal to this. For simplicity we assume that all methods return a value.

Example 15. Fig. 16 shows the implementation of class A, which contains two
integer fields and five methods. Method sumFacts computes

∑ft+(n−1)
k=ft k! by

asynchronously invoking fact on object ob. The await instruction before en-
tering the loop allows releasing the processor if ft is negative. Once ft takes a
non-negative value, the task can resume its execution and enter the loop. For in-
stance, the asynchronous call f = ob ! fact(3, this); in sumFacts will add the task
fact(3, this) to the queue of ob. When this task starts executing, it will add the
task fact(2, ob) on the object this, which in turn will add fact(1, this) on ob and
so on, in such a way that the factorial is computed in a distributed way between
the two objects. Note that the calls are synchronized on future variables. This
means that until the recursive call fact(1, this) is not completed the other tasks
are suspended on their corresponding await conditions. 2

Let us briefly present the semantics for the concurrency instructions. An
object is a term ob(o, t, h,Q) where o is the object identifier, t is the identifier of
the active task that holds the object’s lock or ⊥ if the object’s lock is free, h is
its local heap and Q is the set of tasks in the object. A task is a term tk(t,m, l, s)
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class A(Int n, Int ft) {
Int sumFacts(A ob) {
Fut<Int> f; Int res=0;
Int m = this.n;
await this.ft >= 0;
while (m > 0) {
f =ob ! fact(this.ft, this);
await f ?;
Int a = f.get;
res = res + a;
this.ft = this.ft + 1;
m = m - 1;

}
return res;

}

Int fact(Int k, A ob){
Fut <Int> f; Int res = 1;
if (k <= 0) res = 1;
else { f = ob ! fact(k - 1,this);

await f ?; res = f.get;
res = k * res;

}
return res;

}
Int setN(Int a) { this.n=a; return 0; }
Int setFt(Int b) { this.ft=b; return 0; }
Int set(Int a, Int b){
this.setN(a); this.setFt(b);
return 0;

}

Fig. 16: ABS running example.

where t is a unique task identifier, m is the method name executing in the task,
l is a mapping from local variables to their values, and s is the sequence of
instructions to be executed or ε if the task has terminated.

A state or configuration S has the form o0 ·o1 · · · · ·on, where oi ≡ ob(oi, ti, hi,
Qi). The execution of a program from a method m starts from an initial state
S0 = {ob(0, 0, ⊥, {tk(0,m, l, body(m))}. Here, l maps parameters to their initial
values (null in case of reference variables), body(m) is the sequence of instructions
in method m, and ⊥ stands for the empty heap.

Fig. 17 presents the semantics of the concurrent objects. As objects do not
share their states, the semantics can be presented as a macro-step semantics
[41] (defined by means of the transition “−→”) in which the evaluation of all
statements of a task takes place serially (without interleaving with any other
task) until it gets to a release point, i.e., a point in which the object’s processor
becomes idle ⊥ (due to an await or return instruction). In this case, we apply
rule mstep to select an available task from an object, namely we apply the
function selectObject(S) to select non-deterministically one object in the state
with a non-empty queue Q and selectTask(Q) to select non-deterministically one
task of Q.

The transition ; defines the evaluation within a given object. We sometimes
label transitions with o · t, the name of the object o and task t selected (in rule
mstep) or evaluated in the step (in the transition ;). The notation h[f̄ 7→ l(ȳ)]
(resp. l[x 7→ v]) stands for the result of storing l(ȳ) in the fields f̄ (resp. v in x).

The remaining sequential instructions are standard and thus omitted. In
newob, an active task t in object o creates an object o′ of class D which is
introduced to the state with a free lock. Here h′ stands for a default mapping on
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(mstep) selectObject(S) = ob(o,⊥, h,Q),Q 6= ∅, selectTask(Q) = t, S
o·t
;∗ S′

S
o·t−→ S′

(newob)
t=tk(t,m, l, x=new D(ȳ); s), fresh(o′), h′=newhp(D), l′=l[x→o′], class D(f̄)

ob(o, t, h,Q∪{t}) ; ob(o, t, h,Q∪ {tk(t,m, l′, s)}) · ob(o′,⊥, h′[f̄ 7→l(ȳ)], {})

(async)
t = tk(t,m, l, y=x ! m1(z); s), l(x)=o1, fresh(t1), l1=buildLocals(z̄,m1, l)

ob(o, t, h,Q∪ {t}) · ob(o1,_,_,Q′) ;
ob(o, t, h,Q∪{tk(t,m, l[y 7→t1], s)}) · ob(o1,_,_,Q′∪{tk(t1,m1, l1, body(m1))})

(await1)
t = tk(t,m, l, 〈await y?; s〉), l(y) = t1, tk(t1,_,_, s1) ∈ Objects, s1 = ε(v)

ob(o, t, h,Q∪ {t}) ; ob(o, t, h, {tk(t,m, l, s)} ∪ Q)

(await2)
t = tk(t,m, l, 〈await y?; s〉), l(y) = t1, tk(t1,_,_, s1) ∈ Objects, s1 6= ε(v)

ob(o, t, h,Q∪ {t}) ; ob(o,⊥, h, {tk(t,m, l, 〈await y?; s〉)} ∪ Q)

(get)
t = tk(t,m, l, 〈x = get.y; s〉), l(y) = t1, tk(t1,_,_, s1) ∈ Objects, s1 = ε(v)

ob(o, t, h,Q∪ {t}) ; ob(o, t, h, {tk(t,m, l[x 7→ v], s)} ∪ Q)

(return)
t = tk(t,m, l, return x; s)

ob(o, t, h,Q∪ {t}) ; ob(o,⊥, h, {tk(t,_,_, ε(l(x)))} ∪ Q)

Fig. 17: Summarized Semantics for Distributed and Concurrent Execution

the fields of class D initialized with the values of l(ȳ). async spawns a new task
(the initial state is created by buildLocals) with a fresh task identifier t1 which
is associated to the corresponding future variable y in l. We have assumed that
o 6= o1, but the case o = o1 is analogous, the new task t1 is simply added to Q
of o1.

The remaining rules define the concurrent execution within each distributed
object. In await1, the future variable we are awaiting for points to a finished
task and the await can be completed. The finished task t1 is looked up in all
objects in the current state (denoted Objects). Otherwise, await2 yields the
lock so that any other task of the same object can take it. get blocks the
object until the task is finished. When return is executed, the return value is
stored in v so that it can be obtained by the future variable that points to that
task. Besides, the lock is released and will never be taken again by that task.
Consequently, that task is finished (marked by adding the instruction ε(v)) but
it does not disappear from the state as its return value may be needed later on in
an await. In what follows, a derivation S0 −→ · · · −→ Sn from an initial state
S0 of an object system is a sequence of macro-steps (applications of rule mstep).
Since the execution is non-deterministic, multiple derivations are possible from
an initial state.

Example 16. For instance, let us consider the following code corresponding to
some method m of some class B.
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(a) A x = new A(5,10);
(b) Fut<Int> f;
(c) f = x ! fact(2,x);
(d) await f?;
(e) z = f.get;

where class A is that in Ex. 15. We start from the initial state S0 = {ob(0, 0,⊥,
{tk(0,m, l0, (a) · · · (e)))}. By applying consecutively rules newob, async and
await2 to (a), (c) and (d) respectively we get:

S1 = {ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}), ob(1,⊥, h1, {tk(2, fact, l2, body(fact))})}
where l0(f) = 2, l2(k) = 2, l2(ob) = 1 and h1(n) = 5, h2(ft) = 10. We apply now
a macro step on object 1, by reducing task 2. In this case the macro step stops
when executing await f? of method fact, and the state is modified as follows:

S2 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .), tk(3, fact, l3, body(fact))})}

where l2(f) = 3, l3(k) = 1, l3(ob) = 1. Similarly as done before, task with
identifier 3 is now reduced, stopping the derivation when we reach await f?:

S3 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .),

tk(3, fact, l3, await f?; . . .), tk(4, fact, l4, body(fact))})}
where l3(f) = 4, l4(k) = 0, l4(ob) = 1. Now only task 4 can be reduced and
applying rule return we get:

S4 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .),

tk(3, fact, l3, await f?; . . .), tk(4,⊥, l4, ε(1))})}
Now, task 3 can be reduced by applying first await1 and after return:

S5 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .),

tk(3,⊥, l3, ε(1)), tk(4,⊥, l4, ε(1))})}
Similarly we reduce task 2 and after task 0 from object 0 and we finally get:

S6 = { ob(0, 0,⊥, {tk(0,m, l0, ε)}),
ob(1, 2, h1, {tk(2,⊥, l2, ε(2)),

tk(3,⊥, l3, ε(1)), tk(4,⊥, l4, ε(1))})}
where l0(z) = 2. 2

Given an initial state, a naïve exploration of the search space to reach all
possible system configurations does not scale. The challenge is then in avoiding
the exploration of redundant states which lead to the same configuration. Partial-
order reduction (POR) [16,20] is a general theory that helps mitigate the state-
space explosion problem by exploring the subset of all possible interleavings
which lead to a different configuration. A concrete algorithm (called DPOR) was
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proposed by Flanagan and Godefroid [18] which maintains for each configuration
a backtrack set, which is updated during the execution of the program when it
realizes that a non-deterministic choice must be tried. Recently, TransDPOR [45]
extends DPOR to take advantage of the transitive dependency relations in actor
systems to explore fewer configurations than DPOR. As noticed in [32,45], their
effectiveness highly depend on the actor selection order.

In our semantics in Fig. 16, functions selectObject and selectTask can be
implemented with novel strategies and heuristics to further prune redundant
state exploration, and they can be easily integrated within the aforementioned
algorithms. For instance, selectObject could try to find a stable object, i.e., an
object to which no other actor will post messages. Basically, this means that
the object is autonomous since its execution does not depend on any other
actor and thus no backtracking is required from that point. Furthermore, when
temporal stability of any object cannot be proved, it is possible to look for
heuristics that assign a weight to the messages according to the error that the
object-selection strategy may make when proving stability w.r.t. them. Finally,
function selectTask can be defined to select independent tasks according to the
independence notion defined in [8], which basically establishes that two tasks are
independent if they access disjoint parts of the shared memory. Note that this
would avoid non determinism reordering among tasks.

4.2 Coverage and Termination Criteria for Concurrent Objects

As commented in Sec. 2.1, an important problem in symbolic execution is that,
since the input data is unknown, the execution tree to be traversed is in general
infinite. Hence it is required to integrate a termination criterion which guar-
antees that the length of the paths traversed remains finite while at the same
time an interesting set of test cases is generated, i.e., certain code coverage is
achieved.

Task-Level coverage and Termination Criteria. Given a task executing on
an object, we aim at ensuring its local termination by leveraging existing Cov-
erage Criteria (CC for short) developed in the sequential setting to the context
of concurrent objects. We focus on the loop-k coverage criteria [26] described in
Sec. 2.1, which limits the number of times we iterate on loops to a threshold
KI (other existing criteria would pose similar problems and solutions). However
applying the task-level CC to all tasks does not guarantee termination. This is
because we can switch from one task to another an infinite number of times. For
example, consider the symbolic execution of ob1 ! fact(n, ob2), where method fact
is defined in Ex. 15. We circularly switch from object ob1 to object ob2 an infi-
nite number of times because each asynchronous call in one object adds another
call on the other object (see Ex. 16). This is not detected by the task-level CC
because each method invocation is a new task. Intuitively, we get the following
situation, where we show in each state the value of the queues in both objects.
In each step the corresponding call to fibo is always selected.
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{ob1, ob2}, Qob1={fact(n, ob2)}, Qob2 = {} −→
{ob1, ob2}, Qob1={await f?; . . .}, Qob2 = {fact(n1, ob1)} n1=n−1−→
{ob1, ob2}, Qob1={fact(n2, ob2), await f?; . . .}, Qob2 = {await f?; . . .} n2=n1−1−→
. . . . . . −→ . . .

The same problem can happen even with a single object, e.g., in method
sumFacts when executing await (ft >= 0), there is an infinite branch in the
evaluation tree, corresponding to the case ft < 0 which can be re-tried forever.
I.e., we can apply infinitely the rule await2 in Fig. 17 on the task await (ft >= 0),
whose effect is to extract the task from the queue, to prove that the task does
not hold, and to put again the task in the queue.

Task-Switching Coverage and Termination Criteria. In both examples
above we can observe that the problem, in presence of concurrency relies, not
only on loops, but also on the number of task switches allowed per object. Thus,
the number of task switches can be limited by simply allowing a fixed and global
number of task switching. However, it might happen that, due to excessive task
switching in certain objects, others are not properly tested (i.e., their tasks
exercised) because the global number of allowed task switches has been exceeded.
For example, suppose that we add the instructions B ob2 = new B(); ob2 ! q();
before the return in method sumFacts, where B is a class that implements method
q but whose code is not relevant. Then, as the evaluation for the while loop
generates an infinite number of task switches (because of the await instruction
in the loop), the evaluation of the call ob2 ! p(); is not reached. Thus, in order to
have fairness in the process and guarantee proper coverage from the concurrency
point of view, we propose to limit the number of task switches per object (i.e.,
per concurrency unit).

4.3 Task Interleavings in TCG

An important problem in TCG of concurrent languages is that, when a task t
suspends, there could be other tasks on the same object whose execution at this
point could interleave with t and modify the information stored in the heap. It
is essential to consider such task interleavings in order not to lose any important
path. For example, let us consider a class C with two fields int n, f, and a method p
in C defined as: int p(){n = 0; await (f > 0); if(n>=0) return 1; else return 2; }.
Suppose a call of the form x = o ! p(); await x?; y = x.get. The symbolic exe-
cution of p, will in principle consider just one path (the one that goes through
the if branch), giving as result always y = 1. There can be however another
task (suspended in the queue of the object o) which executes when p suspends
in await (f > 0) and writes a negative value on n. This would exercise the else
branch when p resumes, giving as result y = 2. For example, suppose that the
method void set(){n = −1; } belongs to class C and that set() is in the queue
when executing await (f > 0), and that is executed before f > 0 holds. Then
the execution of p() will try the else branch.
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The questions that we solve in this section are: (a) is it possible to consider all
interleavings that affect the method’s coverage? (b) do we have means to discard
useless interleavings? (i.e., those which do not add new paths). As regards (a),
it is not enough to assume that there is one instance of each method call in the
queue as further coverage is possible by introducing multiple instances of the
same method. Even though termination is guaranteed by the limit imposed on
the number of task switches in Sec. 4.2 (i.e., the length of the queue is finite), it is
more appropriate to define an additional coverage criteria in this new dimension
by fixing the maximum length of a queue in order to achieve a more meaningful
coverage.

In order to answer question (b), we start by characterizing the notion of
useless interleaving. Starting from the set of all methods in the class of the
method under test, we propose a sequence of prunings which ensure that only
useless interleavings are eliminated. The objective is to over-approximate, for
each method m, the set related(m), which contains all methods whose interleaved
execution with m can lead to a solution not considered before. The remaining
ones are useless interleavings. Starting from the set of all methods in the class
of the method under test, we propose a sequence of prunings which ensure that
only useless interleavings are eliminated.

(Pruning 1) The first refinement is to discard methods which do not modify the
heap, i.e., pure methods. Purity can be syntactically proved by checking that
the method does not contain any instruction of the form this.f = x and that
methods (transitively) invoked from it are pure. Using this pruning on Ex. 15,
we get related(sumFacts) = {sumFacts, set, setN, setFt}.

(Pruning 2) The second pruning amounts to considering only directly impure
methods (ignoring transitive calls), i.e., those which write directly on fields. Let
p be the method under test, m be a directly impure method and q a method that
invokes m. The intuition is that by considering m alone, we execute it from a
more general context, while its execution from q will be just more specific (since
q will have added additional constraints). Hence, it will not add additional local
traces for p. With this pruning, related(sumFacts) = {sumFacts, setN, setFt}.

(Pruning 3) The third pruning consists in considering only the interleavings with
those methods that write (directly) on fields which are used (read or written)
before an await , and read after an await. These sets are easily computed by
just looking for instructions this.f = x and x = this.f in the corresponding
program fragments. Given a field f, the intuition for this condition is that, if f
has not been accessed before the await then there is no information about the
field. Thus, related(sumFacts) = {sumFacts, setFt}.

4.4 Related Work on TCG of Thread-based Concurrency

As it happens with actor-based systems, the main difficulties in TCG of thread-
based systems are related to the scalability when considering thread interleav-
ings. In thread-based systems, this problem is exacerbated. In [37], a symbolic
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execution framework which combines symbolic execution with model checking is
presented to detect safety violations. Safety properties are represented by using
logical formalisms understood by the model checker or that can be inserted in
the code as annotations. The model checker, when doing symbolic execution,
is able to report counterexamples which violate the correctness safety criterion.
Furthermore, when generating test cases, the model checker generates the paths
that fulfill the safety property. To reduce the number of thread interleavings,
the model checker uses partial order reduction techniques [20] as we do. An
advantage on this technique is the possibility of handling native calls through
mixed concrete-symbolic solving. The main drawback of this framework is that
satisfiability of constraints is checked at the end of each branch of the symbolic
tree, what it might be unfeasible. Thus, they use preconditions on the symbolic
input values in order to avoid the exploration of branches which violate the pre-
condition. In contrast to [37], our CLP-approach is able to discard a branch in
the symbolic tree once the associated constraint are unsatisfiable.

Other approaches that use techniques different from ours are [29,43,44]. The
work [29] combines dynamic symbolic execution (concolic testing) with unfold-
ings. The unfolding approach allows constructing a compact representation of
the interleavings and thus the new testing algorithm may use this information
to guide the symbolic execution, avoiding irrelevant interleavings. This new ap-
proach achieves in some cases an exponential gain when compared with existing
dynamic partial-order reduction based approaches [18,45]. Basically, the point is
that in the previous approaches, the number of explored interleavings depends
on the order in which processes are executed, but in this new approach it does
not, since interleavings are computed a priory.

In [43,44], a runtime algorithm to monitor executions for multithreaded Java
and possibly detect safety violations is presented. From a concrete execution,
they automatically extract a partial order causality from a sequence of read-
/write events on shared variables. Basically they extract, for a shared variable,
the sequence of write/reads/write to that variable in the execution. Thus any
permutation of these events can be considered an execution of the program if
and only if it does not contradict the partial order. The main drawbacks is the
state explosion since a large number of unreachable branches may be explored.

As an improvement of the previous work, in [42], a novel approach uses
concolic execution (a combination of symbolic and concrete execution) to test
shared-memory in multithreaded programs by using an algorithm based on race-
detection and flipping. From a concrete execution, they determine the partial or-
der relation or the exact race conditions between the processes in the execution
path. Afterwards, such processes involved in races are flipped by generating new
thread schedules and generating new test inputs. Hence, differently to the previ-
ous conservative approaches, in this work they explore one path from each partial
order, avoiding possible warnings that could never occur in a real execution.
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5 Conclusions

This tutorial summarizes the basic principles used in TCG by symbolic exe-
cution. It first discusses the main challenges that TCG currently poses: the
efficient handling of heap-manipulating programs, compositionallity, and guid-
ing the process. It then overviews a particular instantiation of the generic TCG
framework that uses CLP as enabling technology. We will review the main fea-
tures, advantages and implementation of this CLP-approach. Finally, we discuss
the extension of the basic framework to handle concurrent actor systems.
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Actor- and Task-Selection Strategies for Pruning
Redundant State-Exploration in Testing

Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa

DSIC, Complutense University of Madrid, Spain

Abstract. Testing concurrent systems requires exploring all possible
non-deterministic interleavings that the concurrent execution may have.
This is because any of the interleavings may reveal the erroneous be-
haviour. In testing of actor systems, we can distinguish two sources of
non-determinism: (1) actor-selection, the order in which actors are ex-
plored and (2) task-selection, the order in which the tasks within each
actor are explored. This paper provides new strategies and heuristics for
pruning redundant state-exploration when testing actor systems by re-
ducing the amount of unnecessary non-determinism. First, we propose a
method and heuristics for actor-selection based on tracking the amount
and the type of interactions among actors. Second, we can avoid fur-
ther redundant interleavings in task-selection by taking into account the
access to the shared-memory that the tasks make.

1 Introduction

Concurrent programs are becoming increasingly important as multicore and
networked computing systems are omnipresent. Writing correct concurrent pro-
grams is harder than writing sequential ones, because with concurrency come ad-
ditional hazards not present in sequential programs such as race conditions, data
races, deadlocks, and livelocks. Therefore, software validation techniques urge es-
pecially in the context of concurrent programming. Testing is the most widely-
used methodology for software validation. However, due to the non-deterministic
interleavings of processes, traditional testing for concurrent programs is not as
effective as for sequential programs. Systematic and exhaustive exploration of
all interleavings is typically too time-consuming and often computationally in-
tractable (see, e.g., [16] and its references).

We consider actor systems [1, 9], a model of concurrent programming that
has been gaining popularity and that it is being used in many systems (such as
ActorFoundry, Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala).
Actor programs consist of computing entities called actors, each with its own
local state and thread of control, that communicate by exchanging messages
asynchronously. An actor configuration consists of the local state of the actors
and a set of pending tasks. In response to receiving a message, an actor can
update its local state, send messages, or create new actors. At each step in
the computation of an actor system, firstly an actor and secondly a process of
its pending tasks are scheduled. As actors do not share their states, in testing



one can assume [13] that the evaluation of all statements of a task takes place
serially (without interleaving with any other task) until it releases the processor
(gets to a return instruction). At this point, we must consider two levels of
non-determinism: (1) actor-selection, the selection of which actor executes, and
(2) task-selection, the selection of the task within the selected actor. Such non-
determinism might result in different configurations, and they all need to be
explored as only some specific interleavings/configurations may reveal the bugs.

A näıve exploration of the search space to reach all possible system configu-
rations does not scale. The challenge is in avoiding the exploration of redundant
states which lead to the same configuration. Partial-order reduction (POR) [6,8]
is a general theory that helps mitigate the state-space explosion problem by
exploring the subset of all possible interleavings which lead to a different con-
figuration. A concrete algorithm (called DPOR) was proposed by Flanagan and
Godefroid [7] which maintains for each configuration a backtrack set, which
is updated during the execution of the program when it realises that a non-
deterministic choice must be tried. Recently, TransDPOR [16] extends DPOR to
take advantage of the transitive dependency relations in actor systems to explore
fewer configurations than DPOR. As noticed in [12,16], their effectiveness highly
depend on the actor selection order. Our work enhances these approaches with
novel strategies and heuristics to further prune redundant state exploration, and
that can be easily integrated within the aforementioned algorithms. Our main
contributions can be summarized as follows:

1. We introduce a strategy for actor-selection which is based on the number
and on the type of interactions among actors. Our strategy tries to find a
stable actor, i.e., an actor to which no other actor will post tasks.

2. When temporal stability of any actor cannot be proven, we propose to use
heuristics that assign a weight to the tasks according to the error that the
actor-selection strategy may make when proving stability w.r.t. them.

3. We introduce a task-selection function which selects tasks based on the access
to the shared memory that they make. When tasks access disjoint parts of
the shared memory, we avoid non-determinism reordering among tasks.

4. We have implemented our actor-selection and task-selection strategies in
aPET [2], a Test Case Generation tool for concurrent objects. Our experi-
ments demonstrate the impact and effectiveness of our strategies.

The rest of the paper is organized as follows. Section 2 presents the syntax and
semantics of the actor language we use to develop our technique. In Sec. 3, we
present a state-of-the-art algorithm for testing actor systems which captures the
essence of the algorithm in [16] but adapted to our setting. Section 4 introduces
our proposal to establish the order in which actors are selected. In Sec. 5, we
present our approach to reduce redundant state exploration in the task selection
strategy. Our implementation and experimental evaluation is presented in Sec. 6.
Finally, Section 7 overviews related work and concludes.
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2 The Actor Model

We consider a distributed message-passing programming model in which each
actor represents a processor which is equipped with a procedure stack and an
unordered buffer of pending tasks. Initially all actors are idle. When an idle
actor’s task buffer is non-empty, some task is removed, and the task is executed
to completion. Each task besides accessing its own actor’s global storage, can
post tasks to the buffers of any actor, including its own. When a task does
complete, its processor becomes idle, chooses a next pending task to remove,
and so on.

2.1 Syntax and Semantics

Actors are materialized in the language syntax by means of objects. An actor
sends a message to another actor x by means of an asynchronous method call,
written x ! m(z̄), being z̄ parameters of the message or call. In response to
a received message, an actor then spawns the corresponding method with the
received parameters z̄. The number of actors does not have to be known a priori,
thus in the language actors can be dynamically created using the instruction new.
Tasks from different actors execute in parallel. The grammar below describes the
syntax of our programs.

M ::= void m(T̄ x̄){s; }
s ::= s ; s | x = e | x = this.f | this.f = y | if b then s else s |

while b do s | x = new C | x ! m(z̄) | return
where x, y, z denote variables names, f a field name and s an instruction.
For any entity A, the notation Ā is used as a shorthand for A1, ..., An. We
use the special actor identifier this to denote the current actor. For the sake of
generality, the syntax of expressions e, boolean conditions b and types T is not
specified. As in the object-oriented paradigm, a class denotes a type of actors
including their behavior, and it is defined as a set of fields and methods. In the
following, given an actor a, we denote by class(a) the class to which the actor
belongs. Fields(C) stands for the set of fields defined in class C. We assume
that there are no fields with the same name and different type. As usual in the
actor model [16], we assume that methods do not return values, but rather that
their computation modify the actor state. The language is deliberately simple to
explain the contributions of the paper in a clearer way and in the same setting
as [16]. However, both our techniques and our implementation also work in an
extended language with tasks synchronization using future variables [5].

An actor is a term act(a, t , h,Q) where a is the actor identifier, t is the
identifier of the active task that holds the actor’s lock or ⊥ if the actor’s lock is
free, h is its local heap and Q is the set of tasks in the actor. A task is a term
tsk(t ,m, l, s) where t is a unique task identifier, m is the method name execut-
ing in the task, l is a mapping from local variables to their values, and s is the
sequence of instructions to be executed or ε if the task has terminated. A state or
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(mstep) selectActor(S) = act(a,⊥, h,Q),Q 6= ∅, selectTask(a) = t , S
a·t
;∗ S′

S
a·t−→ S′

(setfield)
t = tsk(t ,m, l, this.f = y; s)

act(a, t , h,Q∪ {t}) ; act(a, t , h[f 7→ l(y)],Q∪ {tsk(t ,m, l, s)})

(getfield)
t = tsk(t ,m, l, x = this.f ; s)

act(a, t , h,Q∪ {t}) ; act(a, t , h,Q∪ {tsk(t ,m, l[x 7→ h(f)], s)})

(newactor)
t = tsk(t ,m, l, x = new D; s), fresh(a ′), h′ = newheap(D), l′ = l[x→ a ′]
act(a, t , h,Q∪ {t}) ; act(a, t , h,Q∪ {tsk(t ,m, l′, s)}) · act(a ′,⊥, h′, {})

(async)
t = tsk(t ,m, l, x ! m1(z); s), l(x) = a1, fresh(t1), l1 = buildLocals(z̄,m1, l)

act(a, t , h,Q∪ {t}) · act(a1, , ,Q′) ;
act(a, t , h,Q∪ {tsk(t ,m, l, s)}) · act(a1, , ,Q′ ∪ {tsk(t1,m1, l1, body(m1))})

(return)
t = tsk(t ,m, l, return; s)

act(a, t , h,Q∪ {t}) ; act(a,⊥, h,Q)

Fig. 1. Summarized Semantics for Distributed and Concurrent Execution

configuration S has the form a0 ·a1 ·· · ··an, where ai ≡ act(ai, ti, hi, Qi). The exe-
cution of a program from a method m starts from an initial state S0 = {act(0, 0,
⊥, {tsk(0,m, l, body(m))}. Here, l maps parameters to their initial values (null in
case of reference variables), body(m) is the sequence of instructions in method
m, and ⊥ stands for the empty heap.

Fig. 1 presents the semantics of the actor model. As actors do not share their
states, the semantics can be presented as a macro-step semantics [13] (defined
by means of the transition “−→”) in which the evaluation of all statements of a
task takes place serially (without interleaving with any other task) until it gets
to a return instruction. In this case, we apply rule mstep to select an available
task from an actor, namely we apply the function selectActor(S) to select non-
deterministically one active actor in the state (i.e., an actor with a non-empty
queue) and selectTask(a) to select non-deterministically one task of a’s queue.
The transition ; defines the evaluation within a given actor. We sometimes
label transitions with a · t , the name of the actor a and task t selected (in
rule mstep) or evaluated in the step (in the transition ;). The rules getfield
and setfield read and write resp. an actor’s field. The notation h[f 7→ l(y)]
(resp. l[x 7→ h(f)]) stands for the result of storing l(y) in the field f (resp.
h(f) in variable x). The remaining sequential instructions are standard and thus
omitted. In newactor, an active task t in actor a creates an actor a ′ of class D
which is introduced to the state with a free lock. Here h′ = newheap(D) stands
for a default initialization on the fields of class D. async spawns a new task (the
initial state is created by buildLocals) with a fresh task identifier t1. We assume
a 6= a1, but the case a = a1 is analogous, the new task t1 is added to Q of a.
In what follows, a derivation or execution E ≡ S0−→ · · · −→ Sn is a sequence
of macro-steps (applications of rule mstep). The derivation is complete if S0 is
the initial state and all actors in Sn are of the form act(a,⊥, h, {}). Since the
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execution is non-deterministic, multiple derivations are possible from a state.
Given a state S, exec(S) denotes the set of all possible derivations starting at S.

3 A State-of-the-Art Testing Algorithm

1: procedure Explore(E)
2: S = last(E);
3: updateBackSets(E ,S);
4: a = selectActor(S);
5: if a! = ε then
6: back(S) = {a};
7: done(S) = ∅;
8: while ∃(a∈back(S)\done(S)) do
9: done(S) = done(S) ∪ {a};

10: for all t ∈ selectTask(a) do
11: Explore(E · next(S, a · t));

Fig. 2. A state-of-the-art algorithm for testing

This section presents a state-of-the-art algorithm for testing actor systems
–which captures the essence of the algorithm DPOR in [7] and its extension
TransDPOR [16]– but it is recasted to our setting. The main difference with [7,16]
is that we use functions selectActor and selectTask that will be redefined later
with concrete strategies to reduce redundant state exploration.
To define the notion of redundancy, we rely in the standard definition of partial

order adapted to our macro-step semantics. An execution E=S0
a1·t1−→ · · · an·tn−→ Sn

defines a partial order [7] between the tasks of an actor. We write ti < tj , if ti, tj
belong to the same actor a and ti is selected before tj in E. Given S, we say that
E1, E2∈exec(S) are equivalent if they have the same partial order for all actors.

Definition 1 (redundant state exploration). Two complete executions are
redundant if they have the same partial order.

The algorithm DPOR [7], and its extension TransDPOR [16], achieve an enor-
mous reduction of the search space. Function Explore in Fig. 2 illustrates the
construction of the search tree that these algorithms make. It receives as param-
eter a derivation E, which starts from the initial state. We use last(E) to denote

the last state in the derivation, next(S, a · t) to denote the step S
a·t−→ S′ and

E · next(S, a · t) to denote the new derivation E
a·t−→ S′. Intuitively, each node

(i.e., state) in the search tree is evaluated with a backtracking set back , which
is used to store those actors that must be explored from this node. The back-
tracking set back in the initial state is empty. The crux of the algorithm is that,
instead of considering all actors, the back set is dynamically updated by means
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{ /* main Block */
Reg rg = new Reg;
Worker1 wk1 = new Worker1();
Worker2 wk2 = new Worker2();
rg ! p(); //p
wk1 ! q(rg); // q
wk2 ! h(rg); // h

}
class Reg {

int f=1; int g=1;
void p() {this.f++; return;}
void m() {this.g*2; return;}
void t() {this.g++; return;}

}

class Worker1 {
void q(Reg rg) {

rg ! m(); // m
return;

}
}

class Worker2 {
void h(Reg rg) {

rg ! t(); // t
return;

}
}

Fig. 3. Running Example

of function updateBackSets(E ,S ) with the actors that need to be explored. In
particular, an actor is added to back only if during the execution the algorithm
realizes that it was needed. Intuitively, it is needed when, during the execution,
a new task t of an actor a previously explored, occurs. Therefore, we must try
different reorderings between the tasks since according to Def. 1 they might not
be redundant. In this case, the back set of the last state S in which a was used to
give a derivation step might need to be updated. As a simple example, consider
a state S in which an actor a with a unique task t1 is selected. Now, assume that
when the execution proceeds, a new task t2 of a is spawned by the execution
of a task t ′ of an actor a ′ and that t ′ was in S. This means that it is required
to consider also first the execution of t2 and, next the execution of t1, since it
represents a different partial order between the tasks of a. This is accomplished
by adding a ′ to the back set of S, which allows exploring the execution in which
a ′ is selected before a at S, and thus considering the partial order t2 < t1. The
formal definition of updateBackSets (and its optimization with freeze flags to
avoid further redundancy) can be found at [16]. Function selectActor at line 4
selects non-deterministically an active actor in S (or returns ε if there is none).
The back set is initialized with the selected actor. The while loop at line 8 picks
up an actor in the back set that has not been evaluated before (checked in done
set) and explores all its tasks (lines 10-11).

Example 1. Consider the program in Fig. 3 borrowed from [16] and extended
with field accesses to later explain the concepts in Sec. 5. It consists of 3 classes,
one registry Reg and two workers Worker1 and Worker2, together with a main
block from which the execution starts. In Fig. 4 we show the search tree built by

executing Explore(E0), where E0 = Sini
main−→ S0, and Sini is the initial state from

the main block. The branches in the tree show the macro-steps performed labeled
with the task selected at the step (the object identifier is omitted). We distinguish
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Fig. 4. Execution Tree

three types of edges: dotted edges are introduced by the for loop at line 10 in Fig.
4, dashed edges are eliminated by the improvement of [16], and normal edges
are introduced by the while loop at line 8. After executing the main block,
there are three actors S0={rg,wk1,wk2} in node 0 and their queues of pending
tasks are Qrg={p()}, Qwk1={q(rg)} and Qwk2={h(rg)} resp. Let us focus on the

execution E2 = S0
p−→ S1

q−→ S2. The recursive call Explore(E2) updates the
back set of S0 because a new task m() of rg (previously explored) occurs. Since
this task has been produced by the execution of wk1 ! q(rg) and task q(rg) is in
S0, then back(S0) = {rg,wk1}. The derivation continues and task wk2 ! h(rg) is

selected. The execution of E3=E2
h−→ S3 introduces t() in the queue of rg. The

recursive call Explore(E3) updates the back set of node 0 by introducing wk2
in back(S0) since it is the responsible of introducing t() on rg (dashed line in
node 0). This branch, which generates 14 more (redundant) executions, can be
avoided by introducing a “freeze” flag as done in [16], an optimization that we
adopt but which is no relevant to explain our contributions. In S3, the unique
active actor rg is selected, and its tasks explored. The execution continues in a
similar way and other nodes are added to the back sets. For instance, the back
set of node 8 is updated with wk2 from node 10.

4 Actor-Selection based on Stability Criteria

This section introduces our method to establish the order in which actors are
selected based on their stability levels. In Sec. 4.1 we first motivate the prob-
lem. Afterwards, Sec. 4.2 introduces the notion of temporarily stable actor and
sufficient conditions to ensure it dynamically during testing. Finally, Section 4.3
presents heuristics based on the stability level of actors.
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4.1 Motivation

In Algorithm 2, function selectActor selects non-deterministically an active actor
in the state. As noticed in [12], the pruning that can be achieved using the testing
algorithm in Sec. 3 is highly dependent on the order in which tasks are considered
for processing. Consider the execution tree in Fig. 4. By inspecting the branches
associated to the terminal nodes, we can see that the induced partial order
p<m<t occurs in the executions ending in 5, 12, 18, p<t<m in those ending in
7, 14, 20, m<p<t ending in 23, m<t<p ending in node 25, t<p<m ending in 28,
and t < m < p ending in 30. Hence, it is enough to consider the coloured subtree
since the remaining executions (ending in 5, 7, 12, 14) have the same partial order
than some other execution in the coloured tree. Our work is motivated by the
observation that if selectActor first selects an actor to which no other actors
will post tasks, then we can avoid redundant computations. In particular, if
selectActor selects wk1, the exploration will lead to the coloured search tree,
which does not make any redundant state-exploration.

4.2 The Notion of Temporal Stability

The notion of temporal stability will allow us to guide the selection of actors
so that the search space can be pruned further and redundant computations
avoided. An actor is stable if there is no other actor different from it that in-
troduces tasks in its queue. Basically, this means that the actor is autonomous
since its execution does not depend on any other actor. In general, it is quite
unlikely that an actor is stable in a whole execution. However, if we consider the
tasks that have been spawned in a given state, it is often the case that we can
find an actor that is temporarily stable w.r.t. the actors in that state.

Definition 2 (temporarily stable actor). act(a, t , h,Q) is temporarily sta-

ble in S iff, for any E starting from S and for any subtrace S
∗−→ S′ ∈ E in

which the actor a is not selected, we have act(a, t , h,Q) ∈ S′.

The intuition of the definition is that an actor’s queue cannot be modified by the
execution of other actors (which are different from itself). E.g., actor rg in Ex. 1

is not temporarily stable in S0 because the derivation S0
p−→S1

q−→S2 introduces
the task m() in the queue of rg.

Lemma 1. Let a be a temporarily stable actor in a state S. For any execution
E generated by Explore(S) such that selectActor(S)=a, we have back(S)={a}.

The intuition of the lemma is that if selectActor returns a temporarily stable
actor a, it is ensured that, from that state, there will be only a branch in the
search tree (that corresponds to the selection of a), i.e., no other actors will be
added to back during its exploration using the testing algorithm Explore.

Our goal is to come up with sufficient conditions that ensure actors stabil-
ity and that can be computed during dynamic execution. To this end, given
a method m1 of class A1, we define Ch(A1::m1) as the set of all chains of
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method calls of the form A1::m1→A2::m2→· · ·→Ak::mk, with k≥2, such that
Ai::mi 6= Aj ::mj , 2≤i≤k−1, i 6= j and there exists a call within body(Ai::mi)
to method Ai+1::mi+1, 1≤i<k. This captures all paths A2::m2 → Ak−1::mk−1,
without cycles, that go from A1::m1 to Ak::mk. The set Ch(A1::m1) can be
computed statically for all methods.

Theorem 1 (sufficient conditions for temporal stability). We say that
act(a, t , h,Q) ∈ S, class(a)=An is temporarily stable in S, if for every act(a ′, t ′,
h′,Q′) ∈ S, a 6= a ′, class(a ′)=A1, and for every tsk( ,m1, l, s) ∈ Q′, one of the
following conditions holds:

1. There is no chain A1::m1 → · · · → An::mn ∈ Ch(A1::m1); or

2. For all chains A1::m1 → · · · → An::mn∈Ch(A1::m1), l(x)6=a holds, for all
x∈dom(l), h′(f) 6=a for all f∈Fields(A1), and for all act(a ′′, , h′′, )∈S with
class(a ′′)=Ai, 2≤i≤n−1, then h′′(f)6=a, for all f∈Fields(Ai).

Intuitively, the theorem above ensures that a ′ cannot modify the queue of a.
This is because (1) there is no transitive call from m1 to any method of class
An to which object a belongs, or (2) there are transitive calls from m1 to some
method of class An, but no reference to actor a can be found along the chain
of objects that will lead to the potential call (that will post a task on actor a).
In order to be sound, we check the second condition on all objects in the state
whose type matches that of the methods considered in the chain of calls. The
following example illustrates why seeking the reference in intermediate objects
is required in condition (2).

Example 2. Consider S=act(a1, , h1,Q1) · act(a2, , h2, ∅) · act(a3, , h3,Q3), of
classes A, B and C resp., with Q3={tsk(t3, m, l3, {y!p(); return; })}, l3(y) = a2,
body(B :: p) = {x = this.f ;x!q(); return; }, and h2(f) = a1. Then, even if a3 does
not have a reference to a1, it is able to introduce the call q() to Q1. This is
because from m there is a call to p() and from there to f !q() with h2(f) = a1.
Thus actor a1 is not temporarily stable.

Th. 1 allows us to define selectActor in Fig. 2 such that it returns an actor a
in S which is temporarily stable. If such actor does not exist, then it returns
randomly an active object in S.

Example 3. Consider Ex. 1. At node 0 the actor rg is not temporarily stable
because in the queue of wk1 there is a call q(rg) (i.e., actor rg can be reachable
from q), and in the body of method q there is also a call to method m() of class
Reg (i.e., rg can possibly be modified by wk1). However, actors wk1 and wk2 are
temporarily stable at node 0. Thus we can select any of these actors to start
the exploration. In Fig. 4, actor wk1 has been selected, resulting in the coloured
subtree. Similarly, in node 8, rg is not temporarily stable but wk2 it is.
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4.3 Heuristics based on Stability Level

When we are not able to prove that there is a stable actor, then we can use
heuristics to determine which actor must be explored first. In particular, we
refine the definition of function selectActor so that it computes stability levels
for the actors and selects the actor with highest stability level. Our heuristics
tries to weight the loss of precision of the sufficient conditions in Th. 1 in the
following way: (1) ka: this is the value assigned by the heuristics to the case in
which an object is not stable due to a direct call from another object that has
a reference to it, (2) kb: it corresponds to the case in which stability is lost by
a transitive (indirect) call from another object that has a reference to it, (3)
kc: this is the case in which the object that breaks its stability does not have
a reference to it (instead some intermediate object will have it). It is clear that
the heuristics must assign values such that ka > kb > kc. This is because the
most likely scenario in which the sufficient conditions detect an unfeasible non-
stability is (3) since the loss of precision can be large when we seek references
to the object within all other objects of the intermediate types in the call chain.
The first scenario (1) is more likely to happen since we have both the reference
and the direct call. Scenario (2) is somewhere in the middle.

Thus, we define the stability level of a∈class(An) w.r.t. a tsk(t ,m1, l, ) of an
actor act(a ′, , h′, )∈S breaking its stability (a 6= a ′, class(a ′)=A1) and a chain
Ch = A1::m1 →∗ An::mn, denoted as st(a, t ,Ch, S), as follows:

(a) If l(x)=a, for some x ∈ dom(l) or h′(f)=a, for some f ∈ Fields(A1) and
n=2, then st(a, t ,Ch, S)=ka.

(b) If l(x)=a, for some x ∈ dom(l) or h′(f)=a, for some f ∈ Fields(A1) and
n > 2, then st(a, t ,Ch, S)=kb.

(c) Otherwise, i.e., l(x) 6= a, for all x ∈ dom(l) and h′(f) 6= a, for all f ∈
Fields(A1), then st(a, t ,Ch, S)=kc.

The stability level of an actor a ∈ S, class(a)=An, w.r.t. a task tsk(t ,m1, l, )
from act(a ′, , h′, ) ∈ S, class(a ′)=A1, denoted as st(a, t , S), is defined as∑
st(a, t ,Ch, S) such that Ch = A1::m1 →∗ An::mn ∈ Ch(A1::m1).

Definition 3 (stability level of an actor). Let a be a non temporarily stable
actor in a state S. The stability level of a in S, denoted as st(a, S), is defined
as

∑
st(a, t , S) such that t ∈ Q′, act(a ′, t , h′,Q′) ∈ S, a 6= a ′.

Given a state S = a1 · . . . ·an, the above definition allows us to define the function
selectActor(S) in Fig. 2 such that, in case of finding an active actor, it returns
a temporarily stable actor a if it exists, and otherwise it returns ai, where ai

satisfies st(ai, S) ≥ st(aj , S), for all 1 ≤ i, j ≤ n, i 6= j.

Example 4. Let us consider the program in Fig. 5, borrowed from [16], which
computes the nth element in the Fibonacci sequence in a distributed fashion.
The computation starts with the execution of a task fib(3) on actor a1, which
in turn generates two actors a2 and a3 with Qa2

= {fib(2)} and Qa3
= {fib(1)}.
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class Fib {
Fib parent;
Int n = 0;
Int r = 0;

Fib(Fib p){
parent = p;
}
void fib(Int v) {

if (v <= 1) then parent!res(v);
else {

Fib child1 = new Fib(this);
child1!fib(v-1);
Fib child2 = new Fib(this);
child2!fib(v-2);
}
return;
}

void res(Int v) {
if (n == 0) then {
n++;
r = v;
}
else {

r = r + v;
if (parent 6= null) then parent!res(r);
}
return;

}
}
{// Main block

Fib a1 = new Fib(null);
a1!fib(3);
}

Fig. 5. Distributed Fibonacci

Both a2 and a3 are clearly temporarily stable since there is no reference pointing
to them. Let us select a2 and therefore execute its task fib(2). This generates
two more actors a4 and a5 with Qa4

= {fib(1)} and Qa5
= {fib(0)}. Again a4

and a5 are clearly temporarily stable. After selecting successively a3, a4 and a5

we reach a state S, where a3, a4 and a5 have an empty queue, Qa1 = {res(1)},
and Qa2

= {res(1), res(0)}. At this point, our sufficient condition for temporal
stability is not able to determine a stable actor. Namely, a1 is clearly non-stable
since the execution of task res on a2 can, and will, eventually launch a task res
on it. However, a2 is stable, but we cannot determine it syntactically since there
is a call chain Fib::res → Fib::res → Fib::res (i.e. we can reach from Fib::res to
Fib::res through Fib::res), which forces us to look for a reference to a2 within
all actors of type Fib (cond. 2 of Th. 1). That includes a4 and a5 whose parent
field points to a2. Interestingly, our heuristics assigns a much lower non-stability
factor to a2 than to a1, making it being selected first. Specifically, st(a2, S) = kc
whereas st(a1, S) = 2∗ka + 2∗kc. The latter is because we find 4 tasks that
break the stability, 2 of them fulfill condition (a) and the two others condition
(c). A wrong selection of a1 would cause a backtracking at S which produces
the exploration of redundant executions. In this concrete example, 8 executions
would be explored, whereas with our right selection we explore 4.

We have defined a heuristics which according to our experiments works very
well in practice. However, there are other factors to be taken into account to
define other heuristics. For instance, it is relevant to consider if the calls appear
within conditional instructions (and thus they may finally not hold). This can be
easily detected from the control flow graph of the program, where we can define
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the “depth” of the calls according to the number of conditions that need to be
checked to perform the call. In the absence of a stable object, it is also sensible
to select the object that is breaking most stabilities, since once it is explored,
those objects whose stability it was breaking might become stable.

5 Task Selection based on Shared-Memory Access

In the section, we present our approach to reduce redundant state exploration
within task selection. In Sec. 5.1, we first motivate the problem and characterize
the notion of task independence. In Sec. 5.2 we provide sufficient conditions to
ensure it. Finally, Sec. 5.3 presents our task selection function.

5.1 Motivation

Let us observe that there can be executions with different partial-orders which
lead to the same state, which according to a stronger notion of redundancy
could be considered as redundant executions. Consider node 15 in the search
tree of Fig. 4. At this point, only tasks of actor rg are available. The derivations
ending in nodes 18, 23, 25 result in the same state (namely fields of object rg
are f=2, g=3) and the derivations to nodes 20, 28 and 30 also result in the same
state (f=2, g=4). The reason for this redundancy is that the execution of p is
independent from the executions of m and t because they access disjoint areas of
the shared memory. However tasks m and t are not independent and the order
in which they are executed affects the final result.

Definition 4. Tasks t1 and t2 are independent, written indep(t1, t2), if for any
complete execution S0−→ · · · −→ Sn with t1 < t2, there exists another execution
S0−→ · · · −→ Sn with t2 < t1.

Observe that according to Def. 1, the above two derivations are not redundant
(as they have a different partial order). However, they are redundant because
they lead to the same state, which is a stronger notion of redundancy.

5.2 The Notion of Task Independence

The notion of independence between tasks is well-known in concurrent program-
ming [3]. Basically, tasks t and t ′ are independent if t does not write in the shared
locations that t ′ accesses, and viceversa. The following definition provides a syn-
tactic way of ensuring task independence by checking the fields that are read
and written. Let act(a, , ,Q)∈S and tsk(t ,m, , s)∈Q. We define the set W (t)
as {f | this.f=y ∈ s}. Similarly, the set R(t) is defined as {f | x=this.f ∈ s}. The
following theorem is an immediate consequence of the definition of independent
task above. We denote by indep(t1, t2) that t1 and t2 are independent.

Theorem 2 (sufficient condition for tasks independence). Given a state
S, an actor act(a, , ,Q) ∈ S and two tasks t1, t2 ∈ Q. If R(t1) ∩W (t2) = ∅,
R(t2)∩ W (t1) = ∅ and W (t1) ∩W (t2) = ∅, then indep(t1, t2) holds.
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9: for all t ∈ selectTask(a) do
10: unmark(a); mark(t , a);
11: Explore(E · next(S, a · t))

Fig. 6. Refining Algorithm 2 with Task Selection

Note that since the actor state is local, i.e., fields cannot be accessed from other
actors. Thus, all accesses to the heap are on the actor this.

5.3 A Task-Selection Function based on Task-Independence

We now introduce in Alg. 2 a task selection function which avoids unnecessary
reorderings among independent tasks. To this end, we introduce marks in the
tasks such that the elements in the queues have the form 〈t ,flag〉, where t is
a task and mark is a boolean flag which indicates if the task can be selected.
Furthermore, we treat queues as lists and assume that its elements appear in
the order in which they were added to the queue during execution. In order
to implement task independence in Alg. 2, we replace lines 10 and 11 of Alg.
2 by those in Fig. 6 where we have that: (1) function selectTask(a) returns
the list of unmarked tasks in the queue Q of a, i.e, those tasks of the form
〈t, false〉; (2) procedure unmark(a) traverses Q and changes the flag mark to
false; and (3) procedure mark(t , a) sets the flag mark to true for all tasks which
are independent with t and occur in Q after t .
Intuitively the task selection process works as follows. Given act(a, , , Q)∈S, Q
contains a list [t1, . . . , tn] of tasks. These tasks are selected one by one traversing
Q (line 10 of Alg, 2). This means that if ti is selected by selectTask(a) and ti is
independent from tj , then i < j, i.e., the task ti is selected before tj . Furthermore,
procedure mark(ti , a) puts the flag mark of tj to true. Thus, in the following
step in which actor a is selected, task tj cannot be chosen, i.e., the direct order
ti < tj is pruned. By direct order, we mean that tj is selected immediately after
ti. However, when tj is selected from S, as it occurs after ti, then ti will not
be marked. This branch will capture the direct order tj < ti. Since both orders
generate equivalent states, no solution is missed.

Example 5. Consider the execution tree in Fig. 4, and the subtree from node
15 in Fig. 7, where t̄ denotes that the flag mark of t is true. At this point, all
tasks in rg have the flag mark set to false. Thus selectTask(rg) returns the list
[p,m, t]. Procedure unmark does nothing. The execution of mark(p, rg) then sets
the flag mark of m and t to true since indep(p,m) and indep(p, t). This branch
is therefore cut at node 16 (selectTask(rg) returns the empty list). Afterwards,
the selection of m from node 15 does not mark any task. However, when select-
ing p from node 21, procedure mark(p, rg) sets the flag of t to true since we
have the independence relation indep(p, t). Hence at node 22 the branch is cut
(selectActor(rg) returns the empty list). Similarly, at node 27 the branch is cut
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Fig. 7. Pruning due to task-selection

because of indep(p,m). The only derivations are those ending in nodes 25 and
30 which correspond to the order of tasks m < t < p and t < m < p, resp.

6 Implementation and Experimental Evaluation

We have implemented and integrated all the techniques presented in the pa-
per within the tool aPET [2], a test case generator for ABS programs which
is available at http://costa.ls.fi.upm.es/apet. ABS [10] is a concurrent,
object-oriented, language based on the concurrent objects model, an extension
of the actors model which includes future variables and synchronization opera-
tions. Handling those features within our techniques does not pose any technical
complication. This section reports on experimental results which aim at demon-
strating the applicability, effectiveness and impact of the proposed techniques
during testing. The experiments have been performed using as benchmarks: (i)
a set of classical actor programs borrowed from [12,13,16] and rewritten in ABS
from ActorFoundry, and, (ii) some ABS models of typical concurrent systems.
Specifically, QSort is a distributed version of the Quicksort algorithm, Fib is an
extension of the example at Fig. 5, PI, computes an approximation of π distribu-
tively, PSort is a modified version of the sorting algorithm used in the dCUTE
study [13], RegSim is a server registration simulation, DHT is a distributed hash
table, Mail is an email client-server simulation, and BB is a classical producer-
consumer. All sources are available at the above website. For each benchmark,
we consider two different tests with different input parameters. Table 1 shows
the results obtained for each test. After the name, the first (resp. second) set
of columns show the result with (resp. without) our task selection function.
For each run, we measure: the number of finished executions (column Execs);
the total time taken and number of states generated by the whole exploration
(columns Time and States); and the number of states at which no stable actor
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No task sel. reduction With task. sel. reduct. Speedup

Test Execs Time States H ExecsTime States H Execs Time

QSort(5) 16 14 72 23 16 15 72 23 1.0x 1.0x
QSort(6) 32 29 146 55 32 29 146 55 1.0x 1.0x
Fib(5) 16 17 72 23 16 15 72 23 1.0x 1.0x
Fib(7) 4096 5425 16760 6495 4096 5432 16760 6495 1.0x 1.0x
Pi(3) 6 10 38 3 6 10 38 3 1.0x 1.0x
Pi(5) 120 65 932 5 120 66 932 5 1.0x 1.0x
PSort(4,1) 288 70 1294 144 288 71 1294 144 1.0x 1.0x
PSort(4,2) 5760 1389 25829 2880 288 71 1304 144 20.0x 19.6x
RegSim(6,1) 10080 804 27415 0 720 135 3923 0 14.0x 6.0x
RegSim(4,2) 11520 860 31576 0 384 70 2132 0 30.0x 12.3x
DHT(a) 1152 132 3905 0 36 5 141 0 32.0x 26.4x
DHT(b) 480 97 2304 0 12 4 85 0 40.0x 24.2x
Mail(2,2) 2648 553 11377 0 460 119 2270 0 5.8x 4.6x
Mail(2,3) 1665500 >200s 5109783 0 27880 4022 94222 0 >60x >50x
BB(3,1) 155520 23907 475205 0 4320 674 13214 0 36.0x 35.5x
BB(4,2) 1099008 165114 3028298 0 45792 6938 126192 0 24.0x 23.8x

Table 1. Experimental evaluation

is found and the heuristics is used for actor selection (column H ). Times are in
milliseconds and are obtained on an Intel(R) Core(TM) i5-2300 CPU at 2.8GHz
with 8GB of RAM, running Linux Kernel 2.6.38.

A relevant point to note, which is not shown in the table, is that no back-
tracking due to actor selection is performed at any state of any test. The number
of executions is therefore induced by the non-determinism at task selection. In
most states, overall in 99.9% of them, our sufficient condition for temporal sta-
bility is able to determine a stable actor (compare column H against States).
Interestingly, at all states where no stable actor can be found, the heuristics
for temporal stability guides the execution towards selections of actors which
are indeed temporarily stable. This demonstrates that, even though our suffi-
cient condition for stability and heuristics are syntactic, they are very effective
in practice since they are computed dynamically on every state. Another im-
portant point to observe is the huge pruning of redundant executions which our
task selection function is able to achieve for most benchmarks. Last two columns
show the gain of the task selection function in number of executions and time. In
most benchmarks, the speedup ranges from one to two orders of magnitude (the
more complex the programs the bigger the speedup). There is however no re-
duction in the first three benchmarks. This is because they only generate actors
of the same type, and at most two kinds of tasks, usually recursive, which are
dependent. This is also the main reason of the loss of precision of our sufficient
condition for temporal stability for these benchmarks (namely, cond. 2 of Th. 1
needs to consider all actors in the state).
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There are two more benchmarks, Chameneos and Shortpath, also borrowed
from [16], that have been used in our evaluation. We do not provide concrete
data for them in the table since they cannot be handled yet by our current
implementation. In Chameneos the heuristics needs to be used at many states in
order to select an actor. The heuristics of Sec. 4.3 enriched to take into account
calls affected by conditional instructions (as described at the end of Sec. 4)
would always be able to select actors which are indeed temporarily stable. The
ShortPath benchmark poses new challenges. It builds a cyclic graph of actors, all
of the same type, which interact through a recursive task. An intelligent actor
selection heuristics able to prune redundant executions in this case would require
detecting tasks which execute their base case. This could be done by computing
constrained call-chains, and checking dynamically that the constraints hold in
order to sum-up the effect of the call-chain when computing the non-stability
factor.

7 Related Work and Conclusions

We have proposed novel techniques to further reduce state-exploration in testing
actor systems which have been proven experimentally to be both efficient and
effective. Whereas in [12, 16] the optimal redundancy reduction can only be
accomplished by trying out different selection strategies, our heuristics is able to
generate the most intelligent strategy on the fly. Additionally, our task selection
reduction has been shown to be able to reduce the exploration in up to two
orders of magnitude. Our techniques can be used in combination with the testing
algorithms proposed in [7, 16]. In particular, the method in [16] makes a blind
selection on the actor which is chosen for execution first. While in some cases,
such selection is irrelevant, it is known that the pruning that can be achieved
is highly dependent on the order in which tasks are considered for processing
(see [12]). Sleep sets, as defined in [8], can be used as well to guide actor-selection
by relying on different criteria than ours (in particular, they use a notion of
independence different from ours). However, we have not found practical ways
of computing them, while we can syntactically detect stable actors by some
inspections in the state. Also, we define actor selection strategies based on the
stability level of actors. The accuracy of such strategies can be improved by
means of static analysis. In particular, points-to analysis [15] can be useful in
Th. 2 to detect more accurately if there is a reference to an object from another
one and also to know from which object a method is invoked. Another novelty
of our approach to reduce useless state-exploration is to consider the access to
the shared memory that tasks make. This allows us to avoid non-deterministic
task-selection among independent tasks. A strong aspect of our work is that
it can be used in symbolic execution [4, 11] directly. In symbolic execution, it
is even more crucial to reduce state-exploration, since we already have non-
deterministic choices due to branching in the program and due to aliasing of
reference variables. In aPET, we use our method to prune the state-exploration
of useless interleavings in the context of symbolic execution of actor programs.
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Recently, the project Setak [14] has developed a new testing framework for actor
programs. Differently to us, where everything is automatic, part of the testing
is doing manually, and programmers may specify the order of tasks during the
execution of a test.
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Test Case Generation of Actor Systems

Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa
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Abstract. Testing is a vital part of the software development process.
It is even more so in the context of concurrent languages, since due to
undesired task interleavings and to unexpected behaviours of the under-
lying task scheduler, errors can go easily undetected. Test case generation
(TCG) is the process of automatically generating test inputs for interest-
ing coverage criteria, which are then applied to the system under test.
This paper presents a TCG framework for actor systems, which consists
of three main elements, which are the original contributions of this work:
(1) a symbolic execution calculus, which allows symbolically executing
the program (i.e., executing the program for unknown input data), (2)
improved techniques to avoid performing redundant computations dur-
ing symbolic execution, (3) new termination and coverage criteria, which
ensure the termination of symbolic execution and guarantee that the test
cases provide the desired degree of code coverage. Finally, our framework
has been implemented and evaluated within the aPET system.

1 Introduction

Concurrent programs are becoming increasingly important as multicore and net-
worked computing systems are omnipresent. Writing correct concurrent pro-
grams is more difficult than writing sequential ones, because with concurrency
come additional hazards not present in sequential programs such as race con-
ditions, deadlocks, and livelocks. Therefore, software validation techniques urge
especially in the context of concurrent programming. Testing is the most widely-
used methodology for software validation in industry. It typically requires at least
half of the total cost of a software project. Test Case Generation (TCG) is a key
component to automate testing. It consists in generating test inputs for interest-
ing coverage criteria, which are then applied to the system under test. Examples
of coverage criteria for sequential code are: statement coverage, which requires
that each instruction of the code is executed; path coverage, which requires that
each possible path of the execution is tried; etc.

We consider actor systems [2, 14], a model of concurrent programming that
has been gaining popularity and that is being used in many systems (such as
ActorFoundry, Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala).
Actor programs consist of computing entities called actors, each with its own
local state and thread of control, that communicate by exchanging messages
asynchronously. An actor configuration consists of the local state of the actors
and a set of pending tasks. In response to receiving a message, an actor can



update its local state, send messages, or create new actors. At each step in the
computation of an actor system, firstly an actor and secondly a process of its
pending tasks are scheduled.

The aim of this work is to develop a framework for TCG of actor systems.
A standard approach to generating test cases statically is to perform a sym-
bolic execution of the program [6–8,12,17,19,20], where the contents of variables
are expressions rather than concrete values. Symbolic execution produces a sys-
tem of constraints over the input variables and the actor’s fields containing the
conditions to execute the different paths. The conjunction of these constraints
represents the equivalence class of inputs that would take this path. This pro-
duces, by construction, a (possibly infinite) set of test cases, which satisfy the
path-coverage criterion. Briefly, the TCG framework that we propose has three
main components, which are the contributions of this work: (1) in Sec. 3, we
leverage the semantics used for testing in [3] to the more general setting of sym-
bolic execution; (2) in Sec. 4, we extend and improve the techniques to avoid
redundant computation of [3] to eliminate redundancies in symbolic execution
and; (3) in Sec. 5, we propose novel termination and coverage criteria, which
guarantee termination of the process. We have implemented our framework in
aPET [4], a TCG tool for concurrent objects. Our experiments demonstrate the
usefulness, impact and effectiveness of the proposed techniques.

2 The Language

We consider a distributed message-passing programming model in which each
actor represents a processor, which is equipped with a procedure stack and an
unordered buffer of pending tasks. Initially all actors are idle. When an idle
actor’s task buffer is non-empty, some task is removed, and the task is executed
to completion. Each task besides accessing its own actor’s global storage, can post
tasks to the buffers of any actor, including its own. When a task does complete,
its processor becomes idle and chooses a next pending task to execute.

Actors are materialized in the language syntax by means of objects. An actor
sends a message to another actor x by means of an asynchronous method call,
written x ! m(z̄), being z̄ parameters of the message or call. In response to
a received message, an actor then spawns the corresponding method with the
received parameters z̄. The number of actors does not have to be known a priory,
thus in the language actors can be dynamically created using the instruction
new. Tasks from different actors execute in parallel. As in the object-oriented
paradigm, a class C denotes a type of actors and it is defined as a set of fields
F(C) and methods void m(T̄ x̄){s; }. The grammar for an instruction s is:

s ::= s ; s | x = e | while b do s | if b then s else s |
this.f = y | x = this.f | x = new C | x ! m(z̄)

where x, y, z denote variables names and f a field name. For any entity A,
the notation Ā is used as a shorthand for A1, ..., An. We use the special actor
identifier this to denote the current actor. For the sake of generality, the syntax
of expressions e, boolean conditions b and types T is not specified. We assume
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(mstep) selectA(S) = ac(r,⊥, h,Q), Q 6= ∅, selectT (r) = t , S
r·t
;∗ S′

S
r·t−→ S′

(setf)
t = tk(t ,m, l, this.f = y; s)

ac(r, t , h,Q ∪ {t}) ; ac(r, t , h[f 7→ l(y)], Q ∪ {tk(t ,m, l, s)})

(getf)
t = tk(t ,m, l, x = this.f ; s)

ac(r, t , h,Q ∪ {t}) ; ac(r, t , h,Q ∪ {tk(t ,m, l[x 7→ h(f)], s)})

(new)
t = tk(t ,m, l, x = new D; s), n = fresh(), h′ = newheap(D), l′ = l[x→ rDn ]

ac(r, t , h,Q ∪ {t}) ; ac(r, t , h,Q ∪ {tk(t ,m, l′, s)}) · ac(rDn ,⊥, h′, {})

(asy)
t = tk(t ,m, l, x ! m1(z); s), l(x) = r1, t1 = fresh(), r 6= r1, l1 = newlocals(z̄ ,m1 , l)

ac(r, t , h,Q ∪ {t}) · ac(r1, t
′, h′, Q′) ;

ac(r, t , h,Q ∪ {tk(t ,m, l, s)}) · ac(r1, t
′, h′, Q′ ∪ {tk(t1,m1, l1, bd(m1))})

(return)
t = tk(t ,m, l, ε)

ac(r, t , h,Q ∪ {t}) ; ac(r,⊥, h,Q)

Fig. 1. Summarized Semantics for Distributed and Concurrent Execution

that there are no fields with the same name and different type. As usual in the
actor model [2, 14, 22], we suppose that a method does not return a value, but
rather that its computation modifies the actor state. The language is simple to
explain the contributions of the paper in a clear way, as done in [3, 22].

An actor is a term ac(rCn , t , h,Q) where r stands for reference, n is the actor
identifier, C is the class name, t is the identifier of the active task that holds
the actor’s lock or ⊥ if the actor’s lock is free, h is its local heap and Q is
the set of tasks in the actor. A heap h is a mapping h : F(C) 7→ V, where
V = Z ∪ Ref ∪ {null} and Ref stands for the set of references of the form rCn .
Whenever it is clear from the context, we will omit n and C from actor identifiers
by using only r. A task is a term tk(t ,m, l, s) where t is a unique task identifier,
m is the method name executing in the task, l is a mapping from local variables
to V, and s is the sequence of instructions to be executed. Sometimes we use the
identifier t to refer to entire task and we use ε to denote an empty sequence of
instructions. A state S has the form r0 · r1 · ... · rn, where ri is used to refer to
the whole actor ac(rCi

i , ti, hi, Qi) and ri 6= rj , 1 ≤ i, j ≤ n, i 6= j.
Fig. 1 presents the semantics of the actor model. As actors do not share their

states, the semantics can be presented as a macro-step semantics [21] (defined
by means of the transition “−→”) in which the evaluation of all statements of a
task takes place serially (without interleaving with any other task) until it gets
the end of the method. In this case, we apply rule (mstep) to select an available
task from an actor, namely we apply the function selectA(S) to select non-
deterministically one active actor in the state (i.e., an actor with a non-empty
queue) and selectT (r) to select non-deterministically one task of r’s queue. The
transition ; defines the evaluation within a given actor. We sometimes label
transitions with r·t , the name of the actor r and task t selected in (mstep)
The rules (getf) and (setf) read and write resp. an actor’s field. The notation
h[f 7→ l(y)] (resp. l[x 7→ h(f)]) stands for the result of storing l(y) in the field
f (resp. h(f) in variable x). The remaining sequential instructions are standard
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void ft(int n) {
if (n > this.mx) {

this ! wk(n,this.mx);
this ! dg(n-this.mx);
} else {

this ! wk(n,n);
this ! rp(1);
}
}

void wk(int n,int h) {
while (h > 0){

this.r = this.r * n;
n = n - 1;
h = h - 1;

}
}

void dg(int n) {
Fact wkr = new Fact(this,this.mx);
wkr ! ft(n);

}
void rp(int x) {

this.r = this.r * x;
if (this.b != null) this.b ! rp(this.r);

}

Fig. 2. Running Example with class Fact(Fact b, int mx) {int r = 1; . . . }

and thus omitted. In (new), an active task t in actor r creates an actor rDn of
class D with a fresh identifier n = fresh(), which is introduced to the state with
a free lock. Here h′=newheap(D) stands for a default initialization on the fields
of class D. (asy) spawns a new task (the initial state is created by newlocals)
with a fresh task identifier t1 = fresh(). We assume r 6=r1, but the case r=r1

is analogous, the new task t1 is added to Q of r. In what follows, a derivation
E is a sequence S0 −→ · · · −→ Sk of macro-steps (applications of (mstep))
starting from an initial state ac(rC0 ,⊥, h, {tk(0,m, l, bd(m))}), where l (resp. h)
maps parameters (resp. fields) to elements in V and bd(m) is the sequence of
instructions in the body of m. The derivation is complete if all actors in Sk are of
the form ac(r,⊥, h, {}). Since the execution is non-deterministic in the selection
of actor and task, multiple derivations are possible from a state.

Example 1. Consider the class Fact in Fig. 2, which contains three fields Fact b,
int mx and int r. Fields b and mx can be initialized in the constructor Fact(Fact
b, int mx) whereas r is always initialized to 1. Let us suppose an actor a is asked
to compute the factorial of n (by means of call a ! ft(n)). Actor a computes
n∗(n−1)∗ . . . ∗(n−a.mx+1) by means of task wk(n, a.mx), and delegates to another
actor the rest of the computation, by means of task dg(n−a.mx). When an actor
is asked to compute the factorial of an n, which is smaller than its mx, then the
call this ! wk(n, n) computes directly the factorial of n and the result is reported to
its caller by means of task rp. The result is then reported back to the initial actor
in a chain of rp tasks using field b, which stores the caller actor. The computed
result of each actor is stored in field r. The program has a bug, which is only
exploited in a concrete sequence of interleavings when at least three actors are
involved. Let us consider two derivations that may arise among others from the
initial state S0=ac(r0,⊥, h0, {tk(0, ft, l0, bd(ft))}), where h0(r)=1, h0(b)=null,
h0(mx) =2 and l0(n)=5, i.e., we want to compute factorial of 5 with this.mx
equals 2. Arrows are labeled with the identifier of the task(s) selected and it is
executed entirely. The contents of the heap and local variables are showed when
it is relevant or updated (we only show the new updates). We use hi, li to denote
the heap of actor ri and the local variables of task ti respectively.

(a) S0
0−→ ac(r0, 0, h0, {tk(1,wk, [n7→5, h7→2], bd(wk)), tk(2, dg, [n7→3], bd(dg))}) (1,2)∗−→

(b) ac(r0,⊥, [r 7→5∗4], {}) · ac(r1,⊥, [r 7→1, b7→r0], {tk(3, ft, [n7→3], bd(ft))}) (3)∗−→
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(c)
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {}) · ac(r2,⊥, h2, {tk(4, ft, l4, bd(ft))})

h1(r)=3∗2, l4(n)=1, h2(r)=1, h2(b)=r1

}
(4)∗−→

(d) ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(5, rp, [x7→1], bd(rp))}) · ac(r2,⊥, h2, {}) (5)∗−→
(e) ac(r0,⊥, [r = 5∗4∗3∗2], {}) · ac(r1,⊥, h1, {}) · ac(r2,⊥, h2, {})
Note that after executing task 5 we compute the final state (e), where h0 stores
in the field r the value of factorial of 5. Suppose now that, in the above trace,
from (b), we first select method dg but we do not execute method wk, and all
calls to method rp are executed before method wk. Then:

(c)

{
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk))})·
ac(r2,⊥, [b7→r1], {tk(5, ft, [n7→1], bd(ft))})

}
(5)∗−→

(d)

{
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk))})·
ac(r2,⊥, [b7→r1], {tk(6,wk, l6, bd(wk)), tk(7, rp, l7, bd(rp))})

}
(7)∗−→

(e)

{
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk)), tk(8, rp, l8, bd(rp)})·
ac(r2,⊥, h2, {tk(6,wk, l6, bd(wk))})

}
(8)∗−→

(f)

{
ac(r0,⊥, h0, {tk(9, rp, l9, bd(rp))}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk))})·
ac(r2,⊥, h2, {tk(6,wk, l6, bd(wk))})

}
(9)∗−→

(g) ac(r0,⊥, [r 7→5∗4], {}) · ac(r1,⊥, [r 7→3∗2], {}) · ac(r2,⊥, [r 7→1], {})
}

In the last step we have computed h0(r)=5∗4, which is an incorrect result, hence
exploiting the above-mentioned bug. Although the execution at this point is not
finished, none of the pending tasks will modify the value of field r in r0. 2

3 Symbolic Execution

The main component of our TCG framework is symbolic execution [12, 17, 19,
20,23], whereby instead of on actual values, programs are executed on symbolic
values, represented as constraint variables. The outcome is a set of equivalence
classes of inputs, each of them consisting of the constraints that characterize a
set of feasible concrete executions of a program that takes the same path and,
optionally constraints, which characterize the output of the execution. For in-
stance, consider method int abs(int x){if (x<0) return -x; else return x;}. The
outcome is the set {〈X<0,Y

.
= − X〉, 〈X≥0,Y

.
=X〉} where Y refers to the return

value. Essentially, there are two elements in the set which will lead to two test in-
puts, the first one captures the execution of the then branch, with the constraint
X<0 on the input and Y=−X on the output. The second element captures the
execution of the else branch. Symbolic execution thus produces a set of test
cases satisfying the path coverage criterion. We use uppercase characters to syn-
tactically distinguish constraint variables from ordinary program variables. In
our simplified language, we consider two types of equality and inequality con-
straints, those that involve integer values and those that involve references (the
latter refer to aliasing conditions between references). The constraint variables
can represent field or variable names. Given an infinite set of constraint variable
names X,Y, F,G, . . . ∈ V, an atomic constraint ϕ is of the form:

ϕ ::= X
.

=n | X .
=Y | X·>Y | X .

=ref
where ref ∈Ref ∗ can be either rCn or sCn , n∈N and C is a class name. Each
element of the form rCn stands for a reference of class C created by using a new
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(mstep)Φ
selectA(S) = ac(ref ,⊥, ,Q, ),Q 6= ∅, selectT (ref ) = t ,S2I

ref ·t
;∗Φ S ′2I′

S2I ref ·t−→Φ S ′2I′

(setf)Φ
t = tk(t,m, ρ, this.f = y; s), θ′ = θ[f 7→ F ], ϕ = {F .

=ρ(y)}
ac(ref , t , θ,Q∪{t}, Φ) ;Φ ac(ref , t , θ′,Q∪{t′}, Φ ∪ ϕ)

(getf)Φ
t = tk(t,m, ρ, x = this.f ; s), ρ1 = ρ[x 7→ X], ϕ = {X .

=θ(f)}
ac(ref , t , θ,Q∪{t}, Φ) ;Φ ac(ref , t , θ,Q∪{tk(t ,m, ρ1, s)}, Φ ∪ ϕ)

(new)Φ

t = tk(t,m, ρ, x = new D; s), n=fresh(), ρ1=ρ[x 7→ X], Φ1=init(D), ϕ={X .
=rD

n }
ac(ref , t , θ,Q∪{t}, Φ) ;Φ

ac(ref , t , θ,Q∪{tk(t,m, ρ1, s)}, Φ ∪ ϕ) · ac(rDn ,⊥, θs, {}, Φ1)

(asy)Φ1

t=tk(t,m, ρ, x ! m1(z̄); s), ρ(x) is object-bounded in Φ
Φ |= ρ(x)

.
=ref ′, t1 =fresh(), fresh(m1 (w̄){s1 ; }),Φ′=Πρ(z̄)Φ∪{ρs(w̄)

.
=ρ(z̄ )}

ac(ref , t , θ,Q∪{t}, Φ) · ac(ref
′
, , θ′,Q1 ,Φ1 ) ;Φ

ac(ref , t , θ,Q∪{t′}, Φ) · ac(ref
′
, , θ′,Q1∪{tk(t1,m1, ρs, s1)}, Φ1 ∪ Φ′)

(asy)Φ2

t=tk(t,m, ρ, x ! m1(z̄); s), class(x)=D, ρ(x) is not object-bounded in Φ
t1=fresh(), fresh(m1(w̄){s1; }), Φ′=Πρ(z̄)Φ∪{ρs(w̄)

.
=ρ(z̄)}

ac(ref , t , θ,Q∪{t}, Φ) · ac(sDn , , θ
′,Q1, Φ1) ;Φ

ac(ref , t , θ,Q∪{t′}, Φ∪{ρ(x)
.

=sDn }) · ac(sDn , , θ
′,Q1∪{tk(t1,m1, ρs, s1)}, Φ1∪Φ′)

(asy)Φ3

t=tk(t,m, ρ, x ! m1(z̄); s), class(x)=D, ρ(x) is not object-bounded in Φ, n=fresh()
t1=fresh(), fresh(m1(w̄){s1; }), Φ′={θs(this)

.
=sDn }∪Πρ(z̄)Φ∪{ρs(w̄)

.
=ρ(z̄)}

ac(ref , t , θ,Q∪{t}, Φ)2I ;Φ ac(ref , t , θ,Q∪{t′}, Φ ∪ {ρ(x)
.

=sDn })·
ac(sDn ,⊥, θs, {tk(t1,m1, ρs, s1)}, Φ′)2I∪{〈sDn , θs〉}

(return)Φ
t = tk(t,m, ρ, ε)

ac(ref , t , θ,Q∪{t}, Φ) ;Φ ac(ref ,⊥, θ,Q, Φ)

Fig. 3. Symbolic Execution Calculus. t′ stands for tk(t,m, ρ, s)

instruction. References of the form sCn refer to actors not created with new but
arising from asynchronous calls in which the calling actor is unknown at the time
of the call. We denote by Φ a conjunction of atomic constraints. We use simply
r (resp. s) instead of rCn (resp. sCn ) when the values of C and n are irrelevant.
We use ref to refer either to r or s and sometimes set notations to refer to Φ.

Fig. 3 presents the operational semantics of symbolic execution for the con-
current instructions (the sequential ones are standard). A symbolic state has the
form S2I, where S is a collection of symbolic actors and I is a set of actors
required to know the actors that must be in the initial state to get to the final
state, and thus be able to build the test cases in Sec. 5.2. For simplicity, we
omit I in all rules except for (asy)Φ3 , since it is the only rule that modifies I. A
symbolic actor is represented as ac(ref , t , θ,Q, Φ), where ref ∈Ref ∗ is the actor
identifier, t is the identifier of the active task, Q is the queue of symbolic pending
tasks, Φ is a set of constraints involving the fields of the actor and the variables of
its tasks, and θ : F(C)∪{this} 7→ V is called the field renaming that maps fields
of class C and the this actor to V. In particular, if f is a field of class C, then
θ(f) is the current constraint variable F representing f in Φ. A symbolic task
tk(t ,m, ρ, s) of a method m in a class C contains the sequence of instructions s
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to be executed together with the current renaming ρ : vars(bd(m)) 7→ V of those
variables in m, where vars(A) stands for the set of variables occurring at any
entity A. The constraints associated to these variables are stored in the actor
in Φ. As for fields, the renaming is required to build correctly the set of atomic
constraints Φ and keep the relation between these constraints and the original
variables of method m. An initial state to symbolically execute m(x̄) on sCn has
the form S02I0, where S0=ac(sC0 ,⊥, θs, {tk(0,m, ρs, bd(m))}, {θs(this)

.
=sC0 }), θs

(resp. ρs) is a starting fresh mapping, i.e., θs(f) (resp. ρs(x)) are mapped to fresh
variables and I0=〈sC0 ,m(x̄), θs, ρs〉.

The different rules of the symbolic semantics in Fig. 3 extend those in Fig. 1
with constraint handling as follows. As notation, ρ1=ρ[x 7→X] maps in ρ variable
x to the fresh variable X. Rule (setf)Φ updates the field mapping θ with the fresh
variable F , and stores the new constraint F

.
=ρ(y) in Φ. Since a field is modified,

the mapping θ in the actor must be updated. However, in rule (getf)Φ, the field
f is read and thus, it is not required to update θ but ρ. Rule (new)Φ adds the
constraint X

.
=rDn to Φ and updates ρ. The function Φ1=init(D) initializes Φ1

with the corresponding initialization of the fields in D and the this actor, i.e.,
θs(this)

.
=rDn ∈Φ1 and if a field f in D is initialized to a value v, then θs(f)

.
=v will

be in Φ1. Rule (return)Φ allows us to apply rule (mstep)Φ. A main aspect is the
treatment of asynchronous calls x ! m1(z̄), which distinguishes three cases:
1. (asy)Φ1 : Object x exists in the store. This condition is checked by seeing if
x is bounded in Φ. Formally we say that x is object-bounded in Φ if ρ(x) ∈
vars(Φ) and Φ |= ρ(x)

.
=ref ′, for some actor ref ′. In this case, the task m1

is introduced in the queue of actor ref ′. Here fresh(m1(w̄){s1; }) is a fresh
renaming of the variables in m1. We use Πρ(z̄)Φ to denote the projection of Φ
on the variables ρ(z̄), i.e., the constraints in Φ involving the input parameters
z̄. Note that the constraint Φ′ is added to Φ1 in actor ref ′ in order to store
the relation between the formal and actual parameters of method m1.

2. (asy)Φ2 : Object x is compatible with objects in the state but ρ(x) is not
bounded in Φ. If ρ(x) is not bounded in Φ, this means either that ρ(x) 6∈
vars(Φ), or that Φ 6|= ρ(x)

.
=ref ′. Then we need to consider all possible alias-

ings with actors of compatible type that are in S whose actor identifiers have
not been created using new, i.e., those whose actor identifier has the form
sD. For example, for the instructions y = new D; x ! m1(z̄) and assuming
that x is not bounded, it is incorrect to bound variable x to y, as x must be
a different reference. Then if S contains some actor of class D not created
with new, then we can assume that ρ(x) and such actor are aliased, and
thus store the call in the queue of sDn and ρ(x)

.
=sDn in Φ. Function class(x)

returns the class of actor x.
3. (asy)Φ3 : Actor x corresponds to an actor not yet created. Then, a new actor

is created, forcing ρ(x) to be equals to it. Importantly, this situation requires
that an actor of class D be in the initial state. Hence, a new identifier sDn
corresponding to an actor not created with new, must be introduced in the
set I in order to be able to reconstruct the initial state at the end of the
computation. Note that rules (asy)Φ2 and (asy)Φ3 are both applicable under
the same conditions what generates non-determinism in symbolic execution.
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s0.wk

W0 .=r1,T1 .=r1,N1 .=N0
2,R1 .=1,B1 .=s0,M1 .=M0

N0
1
.

=N0,H0
1
.

=M0,N0
2
.

=N0−M0

s0.dg s0.rps0.wk

Tree11

N0·>M0 ¬(N0·>M0)

N0
1
.

=N0,H0
1
.

=N0,X0 .=1

(0) s0:{ft(n0)}

(6) s0:{wk(n0
1, h0

1), rp(x0)}(1) s0:{wk(n0
1, h0

1), dg(n0
2)}

Tree12

¬(N1·>M1)Tree2

r1.fts0.wk

Tree4Tree3

r1.wks0.wk

N1
1
.

=N1,H1
1
.

=M1,N1
2
.

=N1−M1

W1 .=r2,T2 .=r2,N2 .=N1
2,R2 .=1,B2 .=r1,M2 .=M1

(3) s0:{wk(n0
1, h0

1)}, r1:{wk(n1
1, h1

1), dg(n1
2)} (5) s0:{wk(n0

1, h0
1)}, r1:{wk(n1

1, h1
1), rp(x1)}

N1
1
.

=N1,H1
1
.

=N1,X1 .=1

Tree9

Tree1 (2) s0:{wk(n0
1, h0

1)}, r1:{ft(n1)}

(4) s0:{wk(n0
1, h0

1)}, r1:{wk(n1
1, h1

1)}, r2:{ft(n2)}

r1.dg
r1.wk

Tree6 Tree7Tree5

r1.wks0.wk r2.ft

r1.rp

Tree10

s0.wk

Tree8

N1·>M1

Fig. 4. Symbolic Execution for the Running Example

Example 2. Fig. 4 shows an excerpt of the symbolic execution tree of method
ft. We write Treei, 1 ≤ i ≤ 12, to denote partial execution trees, which are
not shown due to space limitations. The nodes contain the actor identifiers and
their queues of tasks in braces. A superscript in a variable corresponds to the
identifier of the actor to which it belongs, e.g., R2 refers to field r of actor s2.
Subscripts are used to generate fresh variables consecutively. The initial field re-
naming in the root node is θ0

s = {this7→T0, r 7→R0,mx 7→M0, b7→B0}, the constraint
attached to s0 is Φ0 = {T0 .=s0} and the initial renaming for local variables in
ft(n0) is ρ0

s = {n0 7→N0}. The left branch from node (0) corresponds to the if
instruction for the call ft(n0). The condition n0>this.mx produces the constraint
ρ0

s (n0)·>θ0
s (mx), i.e., N0·>M0. Since Φ0 |= θ0

s (this)
.

=s0 holds, rule (asy)Φ1 can be
applied to both asynchronous calls (the applications of (asy)Φ2 and (asy)Φ3 will
be illustrated in the tree in Fig. 5). For the call this ! wk(n0, this.mx), we generate
wk(n0

1, h
0
1) as fresh renaming for the method, together with the initial renaming

ρ0
1={n0

1 7→ N0
1, h

0
1 7→ H0

1}. Hence, the constraints N0
1
.

=N0 and H0
1
.

=M0 are added
to the constraints for s0. Similarly, the constraint N0

2
.

=N0−M0 originates from
using dg(n0

2) as renaming for dg(n−this.mx). The right branch of node (0) is as-
sociated to the else of method ft. In this case, the renaming ρ0

1 associated to
task s0.wk maps n0

1 (resp. h0
1) to N0

1 (resp. H0
1). Similarly, the initial renaming ρ0

2

for task s0.rp maps x0 to X0. Since in (1) we have two tasks, a new branching
is required to try the two reorderings. The branch s0.dg executes the call to dg
and thus, after applying rules (new)Φ and (asy)Φ1 , a new actor r1 appears in
(2) with a corresponding call to ft in its queue. The constraint W0 .=r1 is added
to the constraints of actor s0, where W0 is the fresh renaming for variable wkr.
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From (2), if we execute r1.ft, branches (3) and (5) are generated. From (3) the
execution of r1.dg creates a new actor r2 (node (4)) as in (2). 2

4 Less Redundant Exploration in Symbolic Execution

Already in the context of dynamic execution, a näıve exploration of the search
space to reach all possible system configurations does not scale. The problem
is exacerbated in the context of symbolic execution due to the additional non-
determinism introduced by the use of constraint variables instead of concrete
values. There has been intensive work to avoid the exploration of redundant
states, which lead to the same configuration. Partial-order reduction (POR)
[9,11] is a general theory that helps mitigate the problem by exploring the subset
of all possible interleavings, which lead to a different configuration. Concrete
algorithms have been proposed in [3, 10,22] for dynamic testing.

In this section, we adapt to the context of symbolic execution and improve
the notion of temporal stability of an actor introduced in [3] to avoid redun-
dant exploration. This notion states that, at a given state, if we first select a
temporarily stable actor, i.e., an actor to which no other actors will post tasks,
unless it executes, it is guaranteed that it is not necessary to try executions in
which the other actors in the state execute before this one, thus, avoiding such
redundant explorations. Note that a temporarily stable actor at a state, might
become non-stable in a subsequent state if tasks are added to it after it executes
again, hence the temporal nature of the property. This notion is of general ap-
plicability and can be used within the algorithms of [10,22]. The original notion
of [3] is here extended to consider symbolic states and strengthened to allow the
case in which an actor receives a task, which is independent of those in the queue
of the actor. As it is well-known in concurrent programming [5], tasks t and t ′

are independent if t does not write in the shared locations that t ′ accesses, and
viceversa. We say that t is independent of Q, denoted as indep(t ,Q), if t and t ′

are independent for all t ′ ∈ Q.

Definition 1 (temporarily stable actor). ac(ref , t , θ,Q, Φ) is temporarily

stable in S0 iff, for any E starting from S0 and for any subtrace S0
∗−→Φ Sn ∈ E

in which the actor ref is not selected, we have ac(ref , t , θ,Q′, Φ) ∈ Sn and for
all t′ ∈ Q′−Q it holds that indep(t ′,Q).

Our goal is to define sufficient conditions that ensure actors stability and
can be computed during symbolic execution. To this end, given a method m1

of class C1, we define Ch(C1:m1) as the set of all chains of method calls of the
form C1:m1→C2:m2→· · ·→Ck:mk, with k≥2, s.t. Ci:mi 6= Cj :mj , 2≤i≤k−1,
i 6= j and there exists a call within bd(Ci:mi) to method Ci+1:mi+1, 1≤i<k. This
captures all paths C2:m2 → Ck−1:mk−1, without cycles, that go from C1:m1 to
Ck:mk. The set Ch(C1:m1) can be computed statically for all methods.

Theorem 1 (sufficient conditions for temporal stability). ac(ref Cn , , ,
Q, )∈S, is temporarily stable in S, if for every ac(ref C1 , , , Q1, ) ∈S, ref Cn 6=
ref C1 and for every tk( ,m1, , )∈Q1, one of the following conditions holds:
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1. There is no chain C1:m1 → · · · → Cn:mn ∈ Ch(C1:m1); or
2. For all chains C1:m1→· · ·→Cn:mn∈Ch(C1:m1), mn is independent of Q; or
3. For all chains C1:m1 → · · · → Cn:mn∈Ch(C1:m1), for all ac(ref Ci , , θ,Q2,

Φ) ∈ S, 1≤i≤n−1, and for all tk( , , ρ, ) ∈ Q2, it holds that Φ∪θ(f)
.
=rCn

is unsatisfiable, for all f∈F(Ci) and Φ∪ρ(x)
.
=rCn is unsatisfiable, for all x

occurring in vars(Φ)−F(Ci).

Intuitively, the theorem above ensures that no ref C1 can modify the queue of
ref Cn . This is because (1) there is no transitive call from m1 to any method of
class Cn, or (2) if there is, the call is independent of those in ref Cn , or (3) there
are transitive (non-independent) calls from m1 to some method of class Cn, but
no reference to actor ref Cn can be found.

Example 3. Node (2) has two actors and the initial mapping for r1 contains
θ1

s (b)=B1. Points 1 and 2 of Th. 1 does not hold, since from ft (in the queue of
r1) there exists a call to rp and rp and wk are not independent. Besides, B1 .=s0

occurs as constraint in (2) and thus Point 3 of Th. 1 neither holds. Hence, actor
s0 is not temporarily stable. However, actor r1 is temporarily stable in (2), since
task wk in the queue of s0 does not call any method of class Fact. This means
that Tree2 in Fig. 4 is redundant and hence not expanded. A similar reasoning
allows us to conclude that trees Tree3, Tree5, Tree6 and Tree8 are redundant.
To illustrate the need of condition 2, consider a state with two actors r0, r1, with
task dg resp. ft in the queue of r0 resp. r1 and no associated constraints. Then,
for both actors neither condition 1 nor 3 in Th. 1 hold. However, since method
dg is independent of the remaining methods of class Fact, condition 2 holds and
both actors are temporarily stable. Finally note that, as explained in [3], Tree1

and Tree4 are detected redundant, since tasks wk and dg are independent. 2

5 Generation of Test Cases

An important problem for the generation of test cases for a given method (with-
out knowledge on the input values) is that the execution tree to be traversed by
symbolically executing the method is in general infinite. Hence, it is required to
fix a coverage and termination criterion (CTC) to guarantee that the number
of paths traversed remains finite, while at the same time an interesting set of
test-cases is generated.

5.1 Coverage and Termination Criteria for Actor Systems

Given a task executing on an actor, we can ensure its local termination by using
existing CTC developed in the sequential setting. For instance, we can use the
loop-count criteria [15], which limits the number of times we iterate on loops (and
the number of recursive calls) to a threshold kl . Other existing criteria defined
for sequential programs would be valid as well. Unfortunately, the application of
these CTC criteria to all tasks of a state does not guarantee termination of the
whole TCG process. There are two factors that threaten termination: (1) we can
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Fig. 5. Task-level and Object-number CTC Criteria

switch from one task to another an infinite number of times, (2) we can create
an unbounded number of actors. The following example shows the first factor,
a program for which the loop-k criterion does not guarantee termination unless
we limit the number of task switches per actor.

Example 4. The execution tree for rp(x) in showed in two fragments in Fig. 5
(the right part corresponds to the execution from node (2) in the left part). The
branch marked with (1) is infinite due to the task rp is continuously introduced
and extracted from the queue of s0. By limiting the number of task switches
per actor it is possible to prune branch (1) and to continue the execution by
exploring the branch corresponding to B0 .=s1. 2

In our symbolic semantics, we can easily track the number of task switches
per actor ref by counting the number of applications of rule (mstep)Φ on ref .

Definition 2 (task-level CTC). Let k ∈ N+. A symbolic execution E ≡ S02I0

−→∗Φ Sn2In satisfies the task-level CTC iff for all actor ref ∈Sn, it holds that
ref has been selected at most k times in E by rule (mstep)Φ.

Even by limiting the number of task switches per actor, a second factor for non-
termination arises when we create an unbounded number of actors for which,
the number of task switches does not exceed the limit allowed. New actors arise
when applying either (new)Φ or (asy)Φ3 in Fig. 3. Next example illustrates it.

Example 5. Using the task-level CTC, the branch marked with (2) in Fig. 5
can be explored. Such branch comes from the application of rule (asy)Φ3 , which
generates a new actor s1 when executing the asynchronous call this.b ! rp(this.r).
The continuation of the branch is detailed in Fig. 5 (right). Branch (3) will be
pruned by using the task-level CTC because field b in actor s0 points to s1

(B0 .=s1) and viceversa, such field points to s0 in actor s1 (B1 .=s0). Similarly,
branch (4) is pruned by the task-level criteria, since the field b in actor s1 points
to s1 (B1 .=s1). Branch (5) behaves differently to the others, since the application
of rule (asy)Φ3 generates a new actor in each execution step and thus the number
of new actors grows infinitely. By annotating the instruction this.b ! rp(this.r) in
method rp with a counter initialized to 0, it is possible to count the number of
times that such instruction is executed. When such counter exceeds a fixed limit,
the branch can be pruned. 2
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The idea of the next CTC is to limit the application of the instructions, which
introduce new actors (new and (asy)Φ3) to a threshold ko. Such ko cannot be
global, since the key is not to limit the total number of created actors but instead
the number of actors created at the same program point. Thus, we consider that
program points at which actors are introduced in the state are annotated with a
counter co initialized to 0. In particular, each new and asynchronous call have the
form 〈x = new C, co〉, and 〈x = y ! m(z̄), co〉 respectively. When a task executes
a new or (asy)Φ3 instruction, the counter co associated to such instruction in the
program is increased by one.

Definition 3 (actor-number CTC). Let ko ∈ N+. A symbolic execution E for
an annotated program P satisfies the actor-number CTC iff for all instructions
〈 , co〉 in P it holds that co ≤ ko.

5.2 Test Cases for Actor Systems

The generation of test cases for a method m(x̄) using the above CTC is as
follows. We start the symbolic execution of m(x̄) using the rules in Fig. 3 such
that each derivation is expanded until (a) it is complete (i.e., all actors are idle
and have empty queues) or (b) one of the CTC in Sec. 5.1 is not satisfied. In case
(a), we produce a test case associated to the complete derivation, which defines
the initial and final states of such execution. In the context of actor systems, the
state is given by the constraints gathered along symbolic execution on the fields
of the different actors, denoted as fields(ref ,Φ, θ), where ref is the reference of
the actor, Φ are the constraints for its field values and θ is the renaming relating
constraint variables in Φ with fields. Besides, in the initial state we want to
obtain also the constraints gathered for the arguments x̄ of the method m(x̄).
We use the notation args(m(x̄), Φ, ρ) to denote the constraints Φ imposed on
x̄, together with the initial renaming ρ, which keeps the association between
x̄ and Φ. Due to the non-determinism in symbolic execution, the execution of
m(x̄) produces a symbolic tree such that a test case is obtained from each of its
complete derivations (or branches). The following definition presents the notion
of test case associated to a given complete derivation.

Definition 4 (test case). Let E ≡ S02I0
∗−→Φ Sn2In be a complete symbolic

execution such that S02I0 is an initial state, where I0 = {〈sC0 ,m(x̄), θs, ρs〉}.
The test case for E is defined as the tuple 〈AI ,AO〉, where:

AI = {args(m(x̄ ),ΦI , ρs) | ac(sC0 , , , , Φ) ∈ Sn, ΦI = Πρs(x̄)Φ}∪
{fields(sC0 , ΦI , θs) | ac(sC0 , , , , Φ) ∈ Sn, ΦI = Πθs(F(C))Φ}∪
{fields(sDk , ΦI , θ

′
s) | ac(sDk , , , , Φ) ∈ Sn, 〈sDk , θ′s〉 ∈ In, ΦI = Πθ′s (F(D))Φ}

AO = {fields(ref Dk , ΦO, θ) | ac(ref Dk , , θ, , Φ) ∈ Sn, ΦO = Πθ(F(C))Φ}

In the above definition, we can observe that the test cases are given in terms of
the constraints in Φ. An essential aspect is that the renamings ρs and θs allow
us to establish the relation between the names for fields and variables in the
program and their corresponding constraint ones in order to generate a correct
test case. In particular, the initial state of the test case AI contains two types of
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information: (1) in args we store the information about the constraints gathered
for the method arguments x̄ that is obtained by projecting the constraints Φ on
the original names for the input arguments that were stored in ρs, (2) in fields
the constraints for the actor fields that are obtained by projecting Φ on the
initial names for the actor fields that are stored in θs. The final state contains
the constraints for the fields gathered in the final state of the computation and
applying the renamings that have been computed in θ until the last state.

Example 6. Let us consider the TCG of method ft(n0) with limits 1, 5 and 2
resp. for the constants k in criteria loop-k, task-level and actor-number. The
following two test cases A1 = 〈AI ,AO〉 and A2=〈AI ,A′O〉, are generated from
two of the derivations in Tree7 of Fig. 4, where:

AI = {args(ft(n0), {N0 .=3}, ρ0
s ), fields(sFact

0 , {M0 .=1,B0 .=null}, θ0
s )}

AO = {fields(sFact
0 , {M0

a
.

=1,B0
b
.

=null,R0
c
.

=R0∗3∗2∗1}, θ0
f ), fields(sFact

1 , {M1
d
.

=1,
B1

e
.

=sFact
0 ,R1

f
.

=2}, θ1
f ), fields(sFact

2 , {M2
g
.

=1,B2
h
.

=sFact
1 ,R2

i
.

=1}, θ2
f )}

being A′O as AO but replacing the first entry for sFact
0 by fields(sFact

0 , {M0
a
.

=1,
B0

b
.

=null,R0
c
.

=R0∗3∗1∗1}, θ0
f ). The renamings θ0

s and ρ0
s are defined in Ex. 2 and

the remaining ones are defined as θif (mx)=Mi , θif (b)=Bi , θif (r)=Ri , where 1 ≤ i ≤
2 and “ ” refers to the corresponding subindex. Note that test case A2 reveals
the bug in the program, which is only observable when an intermediate actor
in the chain of involved actors (in this case actor sFact

1 ), executes task rp before
task wk, hence sending to its caller a partial result. 2

From the constraints in the test cases, it is possible to produce actual values by
relying on standard labeling mechanisms. It is also straightforward to automat-
ically generate xUnit unit tests [4].

Example 7. The following concrete test case is obtained from A1:

TI = {args(ft(n0), {n0 .=3}), fields(sFact
0 , {mx

.
=1, b

.
=null, r

.
=1})}

TO = {fields(sFact
0 , {mx

.
=1, b

.
=null, r

.
=3∗2∗1}),

fields(sFact
1 , {mx

.
=1, b

.
=sFact

0 , r
.

=2}), fields(sFact
2 , {mx

.
=1, b

.
=sFact

1 , r
.

=1})}
In this case, only field r of actor sFact

0 has been labeled (with value 1). 2

6 Implementation and Experimental Evaluation

We have implemented all the techniques presented in the paper within the
tool aPET [4], a test case generator for ABS programs, which is available at
http://costa.ls.fi.upm.es/apet. ABS [16] is a concurrent, object-oriented,
language based on the concurrent objects model, an extension of the actors
model, which includes future variables and synchronization operations. Handling
those features within our techniques does not pose any technical complication.
This section reports on experimental results, which aim at demonstrating the
applicability, effectiveness and impact of the proposed techniques during sym-
bolic execution. The experiments have been performed using as benchmarks: (i)
a set of classical actor programs borrowed from [18,21,22] and rewritten in ABS
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Ignoring task indep. info Exploiting task indep. info Reduction

Benchm. Tests Time States L/T/O Tests Time States L/T/O Tests Time

QSort(2, ,1) 236 1934 2688 332/0/1052 236 1934 2688 332/0/1052 1.0x 1.0x
QSort(3, ,1) 1728 39084 44895 4719/0/20524 1728 39084 44895 4719/0/20524 1.0x 1.0x
QSort(2, ,2) 1017 21708 19300 3455/0/7928 1017 21825 19300 3455/0/7928 1.0x 1.0x

PSort(1, ,1) 478 696 1637 2/0/172 239 347 821 2/0/86 2.0x 2.0x
PSort(2, ,1) 3423 >200s 470087 0/0/182550 3425 >200s 470451 1/0/182649 1.0x 1.0x
PSort(1, ,2)13678 19072 43341 2/0/4148 6839 9508 21673 2/0/2074 2.0x 2.0x

RSim(1, ,1) 9 8 25 1/0/2 4 5 14 1/0/2 2.2x 1.6x
RSim(2, ,1) 441 333 1350 1/0/12 14 20 80 1/0/8 31.5x 16.6x
RSim(2, ,2) 4111 3101 11841 1/0/12 59 82 340 1/0/8 69.7x 37.8x

DHT(1,4,1) 35 665 3179 733/1730/8 21 124 555 125/98/8 1.7x 5.4x
DHT(2,4,1) 97 8171 19018 2977/12639/24 55 2864 2332 349/651/24 1.8x 2.9x
DHT(1,5,1) 35 6425 30231 7065/17090/10 21 343 1623 369/226/10 1.7x 18.7x
DHT(1,5,2) 53 21092 98117 23119/57504/0 39 2615 12613 2879/3632/0 1.4x 8.1x

Mail(2,4,2) 161 1033 4540 654/5184/6 58 236 944 157/648/6 2.8x 4.4x
Mail(3,4,2) 400 12321 46760 2100/72090/24 232 1029 4310 291/3994/24 1.7x 12.0x
Mail(2,5,2) 161 4226 13756 654/9216/582 58 641 2096 157/1152/78 2.8x 6.6x
Mail(2,5,3) 161 4495 14908 660/10368/0 58 665 2240 163/1296/0 2.8x 6.8x

Cons(2, , ) 15 10 30 1/0/0 9 7 19 1/0/0 1.7x 1.4x
Cons(3, , ) 159 118 334 1/0/0 33 26 75 1/0/0 4.8x 4.5x
Cons(4, , ) 3039 2562 6639 1/0/0 153 138 351 1/0/0 19.9x 18.6x
Prod(2, , ) 29 30 52 10/0/0 17 16 31 6/0/0 1.7x 1.9x
Prod(3, , ) 398 745 819 100/0/0 82 140 169 21/0/0 4.9x 5.3x
Prod(4, , ) 9155 30268 20679 1636/0/0 465 1393 1041 85/0/0 19.7x 21.7x

Fact(2,4,2) 720 944 2430 59/0/278 270 451 1128 41/0/128 2.7x 2.1x
Fact(3,4,2) 1104 1425 3576 52/0/395 432 665 1664 38/0/171 2.6x 2.1x
Fact(2,3,2) 72 286 720 59/204/98 54 222 564 41/120/80 1.3x 1.3x
Fact(3,4,3) 3416 4704 11938 63/0/896 960 1668 4094 49/0/282 3.6x 2.8x

Table 1. Experimental evaluation (times in ms on an Intel Core i5 at 3.2GHz, 4GB)

from ActorFoundry, and, (ii) some ABS models of typical concurrent systems.
Specifically, QSort is a distributed version of the Quicksort algorithm, PSort is
a modified version of the sorting algorithm used in the dCUTE study [21], RSim
is a server registration simulation, DHT is a distributed hash table, Mail is an
email client-server simulation, Cons resp. Prod is the consume resp. produce
method in the classical producer-consumer protocol, and, Fact is the distributed
factorial in Fig. 2. All sources are available at the above website.

Table 1 shows the results of our experimental evaluation. For each bench-
mark, we perform the symbolic execution and TCG of its most relevant method(s)
with different values for k of the criteria in Sec. 5.1 (resp. loop-k, task-level and
actor-number), shown in parenthesis right after the benchmark name. We con-
sider combinations so that we can observe the impact of each criterion in the
overall process. E.g., for QSort, the impact of look-k is observed comparing ex-
ecutions with parameters (2, , 1) and (3, , 1); and the impact of actor-number
comparing executions with parameters (2, , 1) and (2, , 2). An underscore in-
dicates that it does not affect the computation, provided it is above a certain
minimum (typically 1 or 2). Also, for each benchmark and combination, we
perform the TCG both ignoring and exploiting the independency information
among tasks. After the name and criteria parameters, the first (resp. second) set
of columns show the results ignoring (resp. exploiting) task independency infor-
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mation. For each run, we measure: the number of obtained test cases (column
Tests); the total time taken and number of states generated by the whole explo-
ration (columns Time and States); and the number of explorations, which have
been cut resp. by criteria loop-k, task-level and actor-number (column L/T/O).

A relevant point, which is not shown in the table, is that our sufficient condi-
tion for temporal stability is able to determine a stable actor in all states of all
benchmarks except for some states in benchmark PSort. This demonstrates that
our sufficient condition for stability is very effective also in symbolic execution.
Another important point to observe is the huge pruning of redundant execu-
tions performed when the task independency information is exploited. Last two
columns show the reduction in number of tests and TCG time obtained when
exploiting task independency information. In general, the more complex the pro-
grams and the deeper the exploration, the bigger is the reduction.

7 Related Work and Conclusions

We have presented a novel approach to automate TCG for actor systems, which
ensures completeness of the test cases w.r.t. several interesting criteria. In order
to ensure completeness in a concurrent setting, the symbolic execution tree must
consider all possible task interleavings that could happen in an actual execution.
The coverage criteria prune the tree in several dimensions: (1) limiting the num-
ber of iterations of loops at the level of tasks, (2) limiting the number of task
switches allowed in each concurrency unit and (3) limiting the number of con-
currency units created. Besides, our TCG framework tries to avoid redundant
computations in the exploration of different orderings among tasks. This is done
by leveraging and improving existing techniques to further reduce explorations
in dynamic testing actor systems to the more general setting of static testing.
Most related work is developed in the context of dynamic testing. The stream
of papers devoted to further reduce the search space [1, 10, 18, 22] is compatible
with our work and the TCG framework can use the same algorithms and tech-
niques, as we showed for the actor’s stability of [3]. Dynamic symbolic execution
consists in computing in parallel with symbolic execution a concrete test run.
In [13] a dynamic symbolic execution framework is presented, however, there
is no calculus for symbolic execution. In particular, the difficulties of handling
asynchronous calls and the constraints over the field data are not considered.

Acknowledgments. This work was funded partially by the EU project FP7-
ICT-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu), by the Spanish MINECO project TIN2012-38137, and by the CM
project S2013/ICE-3006.
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Abstract We present a range of testing techniques for
the Abstract Behavioral Specification (ABS) language
and apply them to an industrial case study. ABS is a for-
mal modeling language for highly variable, concurrent,
component-based systems. The nature of these systems
makes them susceptible to the introduction of subtle
bugs that are hard to detect in the presence of steady
adaptation. While static analysis techniques are avail-
able for an abstract language such as ABS, testing is
still indispensable and complements analytic methods.
We focus on fully automated testing techniques includ-
ing blackbox and glassbox test generation as well as run-
time assertion checking, which are shown to be effective
in an industrial setting.

1 Introduction

Model-based testing is of particular importance in the
context of complex concurrent and highly variable soft-
ware systems. The nature of these systems makes them
susceptible to the introduction of subtle bugs that are
hard to spot and easy to overlook in the presence of
steady adaptation. When developing software systems
with high variability, for example, in the context of prod-
uct line engineering [27], typically different products are
generated that compute the same result (commonality)
but which have differing non-functional requirements (vari-
ability), such as security levels, performance, etc. The
availability of test cases with a good degree of code cov-
erage is essential to ensure that these different products
compute the same result.

? This research is partially funded by the EU project FP7-
231620 HATS: Highly Adaptable and Trustworthy Software using
Formal Models (http://www.hats-project.eu).

In this paper we work with a model-centric ap-
proach based on the Abstract Behavioral Specification
(ABS) language [18,15]. ABS is an industry-strength,
executable modeling language intended for highly vari-
able, concurrent, component-based systems. ABS soft-
ware models abstract away from implementation de-
tails, but retain essential behavioral aspects. ABS has
an easy-to-understand concurrency model, yet permits
to model precisely synchronous as well as asynchronous
operations with state changes. It has been carefully de-
signed to make static analysis techniques feasible, in-
cluding type checking, deadlock analysis, resource anal-
ysis, and even functional verification [12]. Static analy-
ses provide formal assurances of the quality, correctness
and trustworthiness of ABS models. Yet they do not
render testing obsolete: functional verification is often
expensive and non-automatic—formal verification can-
not keep up with frequent changes that typically occur
during development. In addition, analysis techniques ad-
dress the correctness of source code or bytecode, but
do not cover compilation to machine executable code or
possible bugs in runtime environments. This is where
model-based testing becomes important. A selection of
tests with good coverage that are run on a regularly (e.g.,
nightly) basis, help to discover bugs at an early stage. In
addition, to guard against regression, one may generate
test cases from one product variant to validate the be-
havior of other or later versions. Variability in software
systems clearly increases the need for testing. For this
reason it is very valuable that the primitives provided
by ABS to describe variability also allow one to cleanly
separate testing code from production code as illustrated
in the ABSUnit framework in Sect. 5 below.

Testing and glassbox test generation require the sys-
tem under test to be executable. This renders testing a
product-level rather than a family-level activity in prod-
uct line engineering [27]. In this paper we do not discuss
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Figure 1. An overview of ABS testing techniques

testing at the family level, which is still an open research
challenge. The issue is discussed further in Sect. 9.

Fig. 1 gives an overview of the ABS testing tech-
niques and how they complement each other. Glassbox
testing and test generation are realised on top of the
ABSUnit framework and the aPET automatic test gen-
erator [1]. Glassbox techniques need access to the source
code under test and are mainly suitable for testing state-
based functional properties. In contrast to this, black-
box testing is used to test whether an ABS model satis-
fies trace-based safety or liveness properties. For this the
learning-based testing tool LBTest [23] is used. LBTest
does not require access to the source code and incre-
mentally learns instead a model by observing system
runs. Finally, runtime assertion checking (RAC) is used
to complement glassbox and blackbox testing. It allows
to check safety properties as well as state-based func-
tional properties. Runtime assertion checking does not
need explicit test cases, but instruments ABS models
with assertions derived from given requirements.

Both static and dynamic analysis techniques are made
available through the ABS tool suite [30]. The tool suite
provides compiler backends that take ABS models and
generate either executable programs in implementation
languages such as Java and Scala, or rewriting systems
in the language of Maude for simulation-based analyses.

In the following sections, we illustrate our testing
techniques and the associated tools with an industrial
case study that has been modelled with ABS [31]. The
case study is described in Sect. 2. An overview of the
ABS language is provided in Sect. 3. In Sect. 4 we fo-
cus on a language feature of ABS called Delta Modeling
that permits modular and incremental specification of
variability as well as systematic code reuse. The subse-
quent sections each cover one of our three testing tech-
niques for ABS: Sect. 5 describes glassbox test genera-
tion; Sect. 6 describes run-time assertion checking, and
Sect. 7 describes blackbox testing.

The purpose of this paper is not a detailed presen-
tation of the theoretical foundations or the tools them-
selves, but to show how they are applied to a common
case study and how they complement each other to in-

crease confidence in the correctness of a model. For the
theory behind the employed testing techniques and de-
tailed tool descriptions we refer to [1,2,11,10,24,23].

Together, the technologies discussed in this paper
constitute a comprehensive tool box for test automa-
tion suitable for a wide range of scenarios. While most
testing approaches focus on one class of properties or on
one testing approach, in this paper we demonstrate that
the ABS platform plus Delta Modeling allow tightly in-
tegrated blackbox and glassbox, state-based and trace-
based, static and dynamic testing. In Sect. 8 we show
this to be the basis for a concerted usage of different
testing approaches that exploits their complementarity.

2 An Industrial Case Study

The Fredhopper Access Server (FAS) is a distributed,
concurrent OO system that provides search and mer-
chandising services to e-Commerce companies. FAS pro-
vides to its clients structured search and navigation ca-
pabilities within the client’s data. Fig. 2(a) shows the
architecture used to deploy FAS at a customer site.

FAS consists of a set of live environments and a sin-
gle staging environment. A live environment processes
queries from client web applications via web services.
A staging environment is responsible for receiving data
updates in XML format, indexing the XML, and dis-
tributing the resulting indices across all live environ-
ments according to a Replication Protocol. The Replica-
tion Protocol is implemented by a Replication System,
which consists of a SyncServer at the staging environ-
ment and one SyncClient for each live environment. The
SyncServer determines the schedule of replication jobs,
as well as their contents, while SyncClient receives data
and configuration updates according to the schedule.

Fig. 2(b) shows the interactions in the Replication
System. Informally, the Replication Protocol is as fol-
lows: the SyncServer begins by listening for connections
from SyncClients. A SyncClient creates and schedules a
ClientJob object that connects to the SyncServer. The
SyncServer then creates a ConnectionThread to commu-
nicate with the SyncClient’s ClientJob. The ClientJob
asks the ConnectionThread for a replication, receives a
sequence of file updates according to the schedule from
the ConnectionThread and terminates. A complete de-
scription of the protocol can be found in [31]. In this
paper we focus on the behavior of SyncClient and Clien-
tJob.

Previously we have modeled the Replication System
in ABS [31]. In this paper we specify some high-level
behavioral properties about the model from which test
cases, test runs and assertions are derived. The model
and the specifications are provided by software engi-
neers at SDL Fredhopper. We have also taken this case
study as a usability exercise of ABS language and its tool
suite [30]. While the current production version of the
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Figure 2. (a) An example FAS deployment and (b) Interactions in the Replication System

Replication System is implemented in Java, our aim is
to conduct analyses on the ABS model and to generate
executable production code of the Replication System
from ABS. By conducting analyses on the ABS model,
the generated production code would have much better
guarantees over both verified and tested properties than
the existing system.

3 Abstract Behavioral Modeling

ABS is an abstract, executable, object-oriented modeling
language with a formal SOS-style semantics [18], target-
ing distributed systems with a high degree of variability.
Many complex software systems, such as distributed ser-
vices and consumer appliance software fall in this cate-
gory.

Fig. 3 shows those parts of the layered architecture
of ABS that are used throughout this paper: at the
base are functional abstractions around a standard no-
tion of parametric algebraic data types (ADTs). Next
we have an OO-imperative layer similar to (but much
simpler than) Java. The concurrency model of ABS is
two-tiered: at the lower level it is similar to that of
JCoBox [29] that generalizes the concurrency model of
Creol [19] from single concurrent objects to concurrent
object groups (COGs). COGs encapsulate synchronous,
multi-threaded, shared state computation on a single
processor. On top of this is an actor-based model with
asynchronous calls, message passing, active waiting, and
future types. An essential difference to thread-based con-
currency is that task scheduling is cooperative, i.e., switch-
ing between tasks of the same object happens only at
specific scheduling points during the execution, which
are explicit in the source code and can be syntactically
identified. This allows to write concurrent programs in a
much less error-prone way than in a thread-based model
and makes ABS models suitable for static analysis. Specif-
ically, the ABS concurrency model excludes race condi-
tions on shared data.

Fig. 4 shows some data types and interfaces used in
the case study. The interface ClientJob models a Client-

Delta Modeling Language

Local Contracts, Assertions

Asynchronous Communication

Concurrent Object Groups (COGs)

Imperative Language

Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Figure 3. Layered Architecture of ABS

Job, while interface DataBase models the database of the
underlying file system of the SyncClient. The algebraic
data type (ADT) Content models the file system of FAS
environments in ABS. ADTs allow specifying immutable
values in functional expressions and to abstract away
from implementation details such as hardware environ-
ment, file content, or operating system specifics. Specifi-
cally, Content is either a File, where an integer (e.g., its
size) is taken to represent the content of a single file, or
it is a directory Dir with a mapping of names to Content,
thereby, modeling a file system structure with hierarchi-
cal name space.

Interface ClientJob has two methods: register(sid)
takes an integer parameter that identifies the version
of the data the replication would update the live en-
vironment to; it tests whether the live environment al-
ready contains this update (it also prepares the under-
lying database for a possible new incoming update, but
this is irrelevant for our presentation). Method file(id)

takes a String value specifying the absolute path to a file
stored in the live environment and returns a Maybe value
which is either an integer representing the file content or
the value Nothing if no such file exists.

In interface DataBase the method hasFile(id) takes
the absolute path to a file and tests whether this file
exists in the live environment; getContent(id) also takes
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1 data Content =

2 File(Int content) | Dir(Map<String,Content>);

3

4 interface ClientJob {

5 Bool register(Int sid);

6 Maybe<Int> file(String id);

7 }

8

9 interface DataBase {

10 Bool hasFile(String id);

11 Content getContent(String id);

12 }

Figure 4. Data types and Interfaces

1 def Bool isFile(Content c) =

2 case { File(_) => True; _ => False; };

3

4 class ClientJobImpl(DataBase db)

5 implements ClientJob {

6 Maybe<Int> file(String id) {

7 Fut<Bool> he = db!hasFile(id); await he?;

8 Bool hasfile = he.get;
9 Maybe<Int> result = Nothing;

10 if (hasfile) { // if1
11 Fut<Content> f = db!getContent(id);

12 await f?; Content c = f.get;
13 if (isFile(c)) { //if2
14 result = Just(content(c));

15 }

16 }

17 return result;

18 }

19 }

Figure 5. Method file and auxiliary function

a path to a file and returns a Content value representing
the content of the file identified by the input parameter.

Fig. 5 shows the implementation of method file(id)

in class ClientJobImpl. It has an instance field db of
type DataBase. The ADT function isFile(c) takes a
Content value and returns True iff value c records a file;
content(c) is a partial selector function that returns the
argument of the constructor File (line 14).

Method file is implemented using the ABS features
of asynchronous calls, message passing, active waiting,
and future types. It first calls hasFile(id) on object db

asynchronously to access the underlying file system (line
7). This call spawns a new task and returns a future
variable he as a place-holder for the result of the call to
hasFile(id). The statement “await he?” suspends the
current task until he is resolved. The result can now
safely (without blocking) be accessed with he.get (line
8).

1 delta AlternativePath;

2 modifies class ClientJobImpl {

3 modifies Maybe<Int> file(String id) {

4 id = "data2/" + id;

5 Maybe<Int> res = original(id);
6 return res;

7 }

8 }

Figure 6. Delta AlternativePath

4 Delta Modeling

ABS classes do not admit code inheritance and do not
define types: all object type declarations are strictly to
interfaces. Code reuse is, instead, realized in the para-
digm of Delta-Oriented Programming [28]. The ABS Delta
Modeling Language (DML) feature [7] implements delta-
oriented programming in ABS. Deltas are named enti-
ties that describe the code changes associated with the
realization of new features. The result is a separation
of concern between variabilty at the architecural/design
level and algorithmic/data type aspects. This helps early
prototyping and avoids a disconnect between a system’s
architecture and its implementation.

For example, suppose we provide an alternative im-
plementation of ClientJobImpl that accesses replication
data at a different top-level directory. Fig. 6 shows a
code delta AlternativePath that modifies the method
file of class ClientJobImpl. Here the method takes a
String value specifying the absolute path to a file and
a new top-level directory as its prefix. The call original
invokes the original implementation of file shown in
Fig. 5, thereby achieving code reuse.

Deltas have similarities to aspects, however, their
granularity is coarser (it is at the method level), they
are more structured, and their application is explicitly
invoked. This makes it possible to reason about the ef-
fect of changes to behavior caused by delta application
[16].

Apart from addressing code reuse and variability, the
DML also helps glassbox testing, in particular, for ob-
taining the preconditions (and invariants) of the system
under test as well as for asserting its postconditions (and
invariants). In the next section we shall see how deltas
help to implement unit tests without code cluttering.

5 Glassbox Testing

Glassbox testing takes the software’s internal structure
into account, which is typical for unit testing or regres-
sion testing. We present an approach for (automated)
test case generation (TCG) of glassbox tests for ABS.
This comprises the tools ABSUnit—a JUnit-like testing
framework—and aPET, a TCG tool.
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1 [Suite] interface AbsUnitTest {

2 [Before] Unit setup();

3 [DataPoint] Set<Pair<Int,Int>> inputData();

4 [Test] Unit testMethod1(Pair<Int,Int> comp);

5 }

Figure 7. Typical ABSUnit test interface

5.1 Fundamental Approach

5.1.1 The ABSUnit Framework

ABSUnit is an instance of the well-known XUnit test
framework [17]. As usual, the first step is to implement
the ABSUnit tests and to group them into test suites.
ABSUnit provides the annotations [DataPoint], [Before],
[After] and [Test] to indicate the purpose of a method
as data input provider for parametric tests, as a fixture
to set up or shut down the test environment, or as an
actual unit test. The annotation [Suite] is used for an
interface representing a test collection.

Fig. 7 shows a typical annotated interface for a test
suite. The actual test is provided by a class implementing
the interface. To specify test oracles, ABSUnit provides
assertion methods such as assertEquals(Comparator) or
assertThat(Matcher) (inspired by Hamcrest, see http:

//code.google.com/p/hamcrest/).
As explained in Sect. 4, ABS strictly separates sub-

typing and code reuse. Only interfaces declare types and
can subtype each other. For testing this has two main
consequences: first, there is no root object and thus one
cannot rely on a common interface and the presence of,
for example, an equals method. Instead, assertEquals
uses a comparator that knows how to compare two in-
stances of a specific kind. Second, and more importantly,
implementing tests often requires to access or to change
class internals (e.g., to check intermediate results or to
shortcut complex initialization procedures). Here, the
DML of the previous section provides an elegant solu-
tion: instead of cluttering the code base with auxiliary
code, all test-related changes are organized into separate
test deltas. Those deltas are only selected during prod-
uct testing, but are absent from the actually shipped
product. In short, in ABS test code becomes a product
feature that is selectable at product generation time.

ABSUnit generates glue code which is responsible for
test creation, test invocation (with the input provided
by datapoint methods) and for setting up the test envi-
ronment using fixtures. The ABSUnit test executor runs
the tests and records events such as test start, passed in-
put parameters, scheduling decisions and the test status
(pass, violated assertion, or deadlock). This information
is used to present and explain the test outcome.

5.1.2 Automatic TCG with aPET

Automatic test generation is done with aPET. By ana-
lyzing the source code, glassbox TCG aims at automat-
ically obtaining a small set of tests with a high code
coverage degree. This is in contrast to random input
data generators requiring an impractically large num-
ber of inputs to reach acceptable coverage. Moreover,
the maintenance of vast test suites is also impractical.

Glassbox TCG is usually done by means of symbolic
execution [20], which represents all program execution
paths up to a certain threshold, obtaining a constraint
system for each symbolic path. Constraints can be seen
as path conditions whose fulfillment by input data en-
sures that execution takes such path. Hence, solutions
to path constraints can be considered as test cases.

The system aPET realizes the Constraint Logic
Programming (CLP)-based approach to TCG [14].
The backtracking-based evaluation mechanism and con-
straint solving facilities of CLP are well matched to the
purpose of symbolic execution. The core schema consists
of two independent phases: (i) the ABS program under
test is translated into an equivalent CLP program, and
(ii) the CLP program is symbolically executed in CLP
relying on CLP’s execution mechanism. This schema has
the important property of being flexible and generic, in
the sense that the second phase is essentially indepen-
dent of the language for which symbolic execution has
to be performed. The concrete features of the target lan-
guage are abstracted in the translation and uniformly
represented in CLP.

Application of this schema to the concurrent lan-
guage ABS involves four steps:

1. Define an ABS to CLP compiler.
2. Implement the ABS concurrency-related operations

in CLP. The scheduling policy definition is left para-
metric.

3. Define an appropriate coverage criterion for concur-
rent objects, with independent limits on both the
number of task interleavings allowed and the num-
ber of loop unwindings performed in each parallel
component.

4. Implement the generation of interleavings with tasks
that could be initially present in the object’s queue
and whose execution can affect the execution of the
method under test in case it suspends. See [1] for
details.

5.2 Tool Description

The aPET engine is implemented in the Prolog CLP
system. It is packaged as a binary executable with a
command-line interface. Its integration within the ABS
tool suite, which is implemented in Java as an Eclipse
plugin, is realized as follows: In the ABS tool suite, a
handler is activated when the user requests to generate
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tests for a selected set of methods in the current ABS file.
The handler collects a set of user-defined parameters and
the abstract syntax tree of the ABS program under-test,
and invokes the aPET engine. The parameters include
among others, the coverage criterion, the scheduling pol-
icy and the level of task interleavings to be considered.
The aPET engine then compiles the provided ABS pro-
gram into a CLP program and symbolically executes it
according to the the provided parameters. As a result, a
set of tests is generated automatically for each requested
method via XML. The aPET handler finally generates
ABSUnit executable tests from the XML.

Let us observe that each test exercises a different
path of execution and include an automatically synthe-
sized test oracle. As no specifications are used, aPET
generates the test oracles from the actual results of the
program induced by the corresponding path constraints.
With such test oracles all tests will trivially pass. There-
fore, the test oracles can be seen as templates that the
user has to confirm or to modify.

5.3 Case Study

Let us consider method file of class ClientJobImpl (see
Fig. 5), and as coverage criterion, path-coverage limited
to paths with at most one loop iteration or recursive call.
Note that several functions involved in the computation
of method file are recursive. Using this coverage cri-
terion, aPET generates 6 tests, that correspond to the
following situations:
(i) a file named “” is searched in an empty file system;
(ii) file “a” is searched in an empty file system;
(iii) file “a” is searched in a file system with just an empty

folder named “a”;
(iv) file “a” is searched in a file system with a folder

named “a” that contains a file named “a”;
(v) file “a” is searched in a file system with a folder

named “” that contains a file named “”; and
(vi) file “a” is searched in a file system that just contains

a file named “a”.
In the first 5 tests the return value is Nothing, whereas
in the last one the return value is Just(0) (0 being the
content of the file). Strings are generated starting with
the empty string, then generating alphabetically strings
of length 1, etc.

Fig. 8 shows the test method testFile that is auto-
matically generated for test case (vi) above. Its imple-
mentation first invokes setHeap (line 10) to set up the
initial heap, which consists of two objects c and b of
types ClientJob and DataBase. Next, method file(id)

is called on c and asserts that the return value is as ex-
pected. It also invokes the generated method assertHeap

to assert that the invocation of file(id) changed the
heap as expected.

In addition, two delta modules are automatically cre-
ated to provide additional infrastructure for executing

1 [Fixture] interface JobTest {

2 [Test] Unit testFile();

3 }

4

5 [Suite]

6 class JobTestImpl implements JobTest {

7 ClientJob c; DataBase b; ABSAssert aut;

8 { aut = new ABSAssertImpl(); }

9 Unit testFile() {

10 this.setHeap();
11 Maybe<Int> r = c.file("a");

12 aut.assertTrue(Just(0) == r);

13 this.assertHeap();
14 }

15 Unit setHeap() { }

16 Unit assertHeap() { }

17 }

Figure 8. Generated test case

1 delta MDeltaForClientJob;

2 adds interface MClientJob extends ClientJob {

3 Unit setDB(DataBase b);

4 DataBase getDB();

5 }

6 modifies class ClientJobImpl adds MClientJob {

7 adds Unit setDB(DataBase b) { this.db = b; }

8 adds DataBase getDB() { return db; }

9 }

Figure 9. Modification Delta

1 delta TestDelta;

2 modifies class JobTestImpl {

3 modifies Unit setHeap() {

4 b = new DataBase();

5 b.setRdir(Pair("r", Entries(InsertAssoc(

6 Pair("a",Content(0)),EmptyMap))));

7 c = new ClientJobImpl(null);
8 c.setDB(b);

9 }

10 modifies Unit assertHeap() {

11 DataBase x = c.getDB();

12 Pair<String,Content> p = x.getRdir();

13 aut.assertTrue(p == Pair("r", Entries(InsertAssoc(

14 Pair("a",Content(0)),EmptyMap))));

15 }

16 }

Figure 10. Test Delta
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test cases. Delta module MDeltaForClientJob, displayed
in Fig. 9, completes existing interfaces and classes to
permit easy setup of their initial state. For example, it
provides getter and setter methods for the database ob-
ject. Similar delta modules exist for the other interfaces.
The delta TestDelta, depicted in Fig. 10, modifies the
methods setHeap (lines 3 – 9) and assertHeap (lines 10
- 15) to set up the initial heap and check the final heap.
Here TestDelta initializes the underlying file system to a
pair of String value “r” and Entries(...), where “r” is
the name of the top level directory of the file system and
the Entries value models a file named “a” with content
0 (lines 5 – 8). The delta also asserts that this value does
not change when file(id) is executed (lines 11 – 14).

6 Run-Time Assertion Checking

Run-time assertion checking (RAC) is a very useful tech-
nique for detecting faults, and it is applicable during any
program execution context, including debugging, test-
ing, and production. Compared to program logics, RAC
emphasizes executable specifications. While program log-
ics statically cover all possible execution paths, RAC is
a fully automated, on-demand validation process which
applies to the actual program runs.

Assertions are inherently state-based in that they de-
scribe properties of the program variables, i.e., fields of
classes and local variables of methods. As such, asser-
tions in general cannot be used to specify the interaction
protocol or history (i.e., the trace of incoming and outgo-
ing method calls or returns) between objects. This is in
contrast to other formalisms such as message sequence
charts and sequence diagrams. Nor do assertions support
interface specifications (fundamental in ABS, as all ob-
ject references are typed by interfaces), since interfaces
are stateless and contain only method signatures. There
exist many interesting approaches to run-time monitor-
ing of histories, including PQL [22], Tracematches [3],
JmSeq [25], LARVA [8], Jass [4], and JavaMOP [5]. How-
ever, none of these address the integration into the gen-
eral context of run-time assertion checking: they allow
specifying protocol-oriented properties, but do not pro-
vide a systematic solution to specify the data-flow of the
valid histories. Hence, the question arises how to inte-
grate protocol-oriented properties and assertions into a
single formalism, in a manner amenable to automated
verification, in particular to run-time checking.

6.1 Fundamental Approach

In [11] we identified attribute grammars with conditional
productions and annotated with assertions as power-
ful and user-friendly specifications of histories. This ap-
proach was extended to coboxes in [10]. Grammars spec-
ify invariant properties of the ongoing behavior (of a

single object, a COG, or an entire ABS model) and
as such must be prefix-closed. Context-free grammars
express the protocol structure (i.e., orderings between
events) of the valid histories in a declarative manner.
Context-free grammars, however, do not take data into
account, such as actual parameters and return values
of method calls. The question arises how to specify the
data flow of the valid histories. To this end we extend
the grammars with attributes. Terminals in the grammar
have built-in attributes such as the actual parameters,
return value and the identity of the caller and callee.
Non-terminals have user-defined attributes which define
data properties of sequences of terminals. Assertions an-
notating this attribute grammar then provide a natu-
ral way to express user-defined properties of these at-
tributes. In other words, assertions specify the allowed
attribute values of histories. This does not yet allow to
directly express data-dependent protocols. Such proto-
cols are quite common in practice, for example, the next

method of a Java Iterator may not be called, whenever
method hasNext was called directly before and returned
false. Conditional productions address this problem.

To support focussing on a particular behavioral as-
pect of communication involving data-dependent proto-
cols, we use the general mechanism of a communication
view. A communication view is a partial mapping from
events to grammar terminals. Events not associated to
terminals are projected away and play no role in the
grammar. This reduces the size of the histories, allows
using intuitive names for the selected events and keeps
the size and complexity of the grammars low. Moreover,
communication views enable the introduction of abstrac-
tions of the communication by identifying two distinct
events with the same grammar terminal.

In summary, the valid event histories are represented
as words generated by an extended attribute grammar.
Grammar productions (possibly conditional) specify the
valid protocol structure of histories, while assertions ex-
press the valid data-flow of histories.

6.2 Tool Description

Our RAC combines three components: the parser gener-
ator ANTLR, the ABS compiler, and the meta program-
ming system Rascal [21]. The ABS compiler generates
Java code for the attribute definitions in the attribute
grammar. The result is an attribute grammar defined
in the syntax of ANTLR [26]. ANTLR, a Java parser
generator, then generates a lexer and a parser for the
grammar in Java.

Rascal is a general meta-programming language tai-
lored for program transformations. We extended Rascal
with support for ABS. Our RAC uses Rascal for several
tasks: it first parses the communication view, the ABS
method signatures, and the attribute grammar. Based
on the parsing results, it generates code for a history
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1 local view ClientJobProtocol specifies ClientJob {

2 return Bool register(Int sid) r,

3 call Maybe<Int> file(String id) f,

4 call Content DataBase.getContent(String id) c

5 }

Figure 11. Communication View

class (a datatype suitable to represent the communica-
tion history of an ABS object or COG) and instruments
ABS source code around method calls and returns to
update the current history. The history class calls the
Java parser (which was generated by ANTLR) when
the history is updated to obtain new attribute values.

6.3 Case Study

We consider the ClientJob interface in Fig. 4 introduced
in Sect. 3 with the following property: in a replication
session, the register(sid)method is called initially with
sid indicating the version of data the replication would
update the client to. The method returns a Bool value
indicating whether the client accepts this replication. If
the returned value is True then the method file(id)may
be called one or more times, each time with a unique
String value representing the absolute path of a file. Af-
ter each invocation of file(id), an outgoing method in-
vocation on getContent(id) of Database may be made
with a value that must be the same absolute path as
that supplied in the preceding method file(id).

The communication view in Fig. 11 introduces the
relevant events which can be referred to in the gram-
mar by the terminals r, f, and c. Fig. 12 shows the at-
tribute grammar formalizing the property stated infor-
mally above. Attribute definitions are written between
normal brackets ‘(’ and ‘)’. The first production for-
malizes the call to register(sid), where the inherited
attribute rg stores the return value and the attribute
ns contains the List of file names processed so far by
file(id) (initially, Nil). Note that epsilon productions
are used to make the grammar prefix-closed, and that
all attributes are inherited (i.e. passed down the parse
tree) since the attributes of the non-terminals on the
right-hand side of each grammar production are defined
in terms of the attributes of the non-terminals on the
left-hand side. The second production captures a call
to file(id) and checks that the current id is new in
ns. The condition “{ T.rg == True }?” formalizes that
the value returned by register(sid) was True. The third
production handles the outgoing call and checks that the
filenames match. It also allows to call file(id) again via
the non-terminal T .

Some data types used in the grammar are defined
in Fig. 13. Function contains(ss,e) checks whether the
list ss contains the element e, while head(ss) is a partial

1 data List<A> = Nil | Cons(A head,List<A> tail);

2 def Bool contains<A>(List<A> ss, A e) =

3 case ss {

4 Nil => False ;

5 Cons(e, _) => True;

6 Cons(_, xs) => contains(xs, e);

7 };

Figure 13. List data type

selector function that returns the first element of a non-
empty list ss.

We have developed two versions of our RAC ap-
proach for Java and ABS. Using the Java version we
have successfully integrated runtime assertion checking
into the software lifecycle at SDL Fredhopper. Full detail
can be found in [9]. Using the ABS version we have con-
ducted experiments with the ABS model of the Repli-
cation System and have consequently detected crucial
protocol violation in the model. Full detail of this case
study can be found in [10].

7 Blackbox Testing

7.1 Fundamental Approach

Learning-based testing (LBT) [23] is an emerging
paradigm for black-box requirements-testing that encom-
passes the three steps of: (i) automated test case gener-
ation (ATCG), (ii) test execution, and (iii) test verdict
(the oracle step). LBT is related to model-based test-
ing (MBT). However, where MBT starts from a system
design model which is then used to generate test cases,
in LBT a model is inferred automatically from an SUT
implementation using computational learning methods
(reverse engineering). This approach has advantages for
testing systems which are undocumented, and for agile
development methods where the cost of model develop-
ment and model synchronisation with code updates is
considered too high.

LBT is an iterative procedure that attempts to gen-
erate a large volume of high quality test cases. On each
iteration, the currently inferred model is checked against
a user requirement to search for a counterexample to
requirement correctness. For this process, requirements
must be formalised within a logic, such as first-order or
temporal logic. This allows constraint solving or model
checking technology to be used in the search for coun-
terexamples. If a counterexample to correctness can be
found, this must be executed on the system under test to
determine whether it is a true negative or a false nega-
tive. True negatives can be returned as failed test cases.
False negatives can be integrated, via a learning algo-
rithm, into the inferred model to refine its accuracy. In



Wong et al.: Testing Abstract Behavioral Specifications 9

S ::= ε | r T (T.rg = r.result; T.ns = Nil;)
T ::= ε | { T.rg == True }? f { assert ! contains(T.ns, f.id); }

V (V.ns = Cons(f.id, T.ns); V.rg = T.rg;)
V ::= ε | c { assert head(V.ns) == c.id; }

T (T.ns = V.ns; T.rg = V.rg;)

Figure 12. Attribute Grammar for the ClientJob Behavior

this way, the inferred model will converge to a complete
and correct model of the system under test, as increas-
ing numbers of test cases are executed. Note that in the
case that no counterexample can be found, some other
test case generation method must be used to proceed
with the iteration (see below). If the learning algorithm
always converges correctly, and if counterexample search
is a decidable problem, then LBT is a sound and com-
plete method of testing. However, for large industrial
SUTs, complete learning may not be feasible in the time
available. For this reason, many optimisations of learning
must be considered. One such optimisation is incremen-
tal learning, which can infer an incomplete model from
relatively little test data. Such incomplete models can
nevertheless uncover SUT errors. Further details about
learning optimisation can be found in [23].

The Fredhopper access server is an example of a re-
active system that can be learned as a state machine.
Indeed any client-server architecture can be modeled
and learned in this way. In this case, an automata in-
ference algorithm is needed to reverse engineer models,
and temporal logic is widely considered to be the most
useful logic to formalise user requirements. Then efficient
model checking algorithms can be employed to search for
counterexamples. An early application of LBT to testing
reactive systems was given in [24], and since then other
classes of reactive systems have also been tested in this
way (see e.g. [13]).

To interpret the testing results obtained for the Fred-
hopper access server, it will be helpful to consider in
more detail the abstract LBT algorithm used. An LBT
architecture automatically generates a large number of
high-quality test cases by combining a model checking
algorithm with a learning algorithm and a random test
case generator. Note that active learning algorithms, which
can generate their own queries are both appropriate (i.e.
they can generate test cases) and efficient (i.e. in polyno-
mial time). These three algorithms are integrated with
the system under test (SUT) in an iterative feedback
loop (see Fig. 14). On each iteration of this loop, a new
test case is generated by one of the three TCG methods,
i.e.: (i) model checking the most recent learned model
mn of the SUT against a formal user requirement Φ and
choosing any counter example to correctness; (ii) using
the active learning algorithm to generate a membership
query; (iii) random test case generation. The LBT tool
must interleave these three TCG methods to achieve an
overall testing strategy that is efficient.

Whichever TCG method is used, the new test case in
is then executed on the SUT with outcome on. The out-
come of a test case is judged as a pass, fail or warning.
This is done after each model checking step, by gener-
ating a predicted output pn (obtained from mn) that
can be compared with the observed output on (from the
SUT). Each new input/output pair (in, on) is used to
update the current model mn to a refined model mn+1,
which ensures that the iteration can proceed again. The
overall LBT architecture is illustrated by the diagram in
Fig. 14.

7.2 Tool Description

A platform for learning-based testing known as LBTest
(see [?]) has been developed for blackbox testing of ABS
and other reactive systems models. The LBTest tool sup-
ports the integration of different model inference algo-
rithms with different model checkers to conduct experi-
ments in learning-based testing. The main inputs to the
tool are the SUT and a set of formal user requirements to
be tested. For formal requirements modeling, the main
language currently supported is propositional linear tem-
poral logic (PLTL). LTL is chosen, since it naturally
models the black-box (input/output) behaviour of reac-
tive systems. The restriction of LTL to propositions only
(i.e. PLTL rather than full first-order LTL) is because:
(i) PLTL model checking is decidable, and (ii) there exist
fast algorithms for model checking PLTL formulas such
as BDD based methods.

Note that PLTL formulas can express both safety
properties which may not be violated, and liveness prop-
erties, including use cases, which specify intended be-
haviors. Some liveness properties cannot be refuted in fi-
nite time (for example termination properties). For such
types of properties, LBTest is able to issue a warning ver-
dict that a test case has never been seen to have passed.
Therefore, both types of requirements are amenable to
testing using LBTest.

Currently in LBTest, only one model checker is sup-
ported, which is NuSMV [6]. This model checker has
been adopted mainly for its stability and wide user base.
In principle, any other model checker or even a bounded
model checker for PLTL could also be used. The learning
algorithm currently available in LBTest is the IKL learn-
ing algorithm described in [24], which is an algorithm for
learning deterministic Boolean-valued Kripke structures.
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Figure 14. Architecture of learning-based testing

Other automata learning algorithms are currently being
investigated for their performance in testing.

7.3 Tool Interface

For practical testing, propositional linear temporal logic
is much too low level to express user requirements suc-
cinctly. Therefore, the language PLTL is augmented with
finite symbolic data types, which support user defined
data type declarations. A data type declaration Σ in-
cludes type declarations and value declarations. A type
declaration defines a finite set of output types t1, ..., tn.
(Note that a single input type, with the reserved type
name in, is always assumed.) A value declaration for each
type input, t1, ..., tn consists of a finite set of constant
symbols c1, ..., cm of that type. This data type declara-
tion constitutes the only interface specification needed
for the system under test. Each symbolic data value
(both input and output) must be mapped into a con-
crete native data value according to the programming
language used for the SUT. This mapping code is stored
in a thin wrapper between the SUT and LBTest, which
also acts as a communication manager between LBTest
as a server and the SUT as a client.

We were interested to test the interaction between a
SyncClient and a ClientJob by learning the SyncClient
as a deterministic Kripke structure (Moore machine)
over the input data type

Σin = {setAcceptor, schedule, searchjob,

businessJob, dataJob, connectThread,

noConnectionThread}
Four relevant output data types were identified as fol-
lows:

Σschedules = {φ, {search}, {business},

{business, search}, {data}, {data, search},

{data, business}, {data, business, search}}.
Σstate = {Start,WaitToBoot,Boot,WaitToReplicate,

WorkOnReplicate,End},
Σjobtype = {nojob,Boot,SR,BR,DR},

Σfiles = {readonly,writeable}.

7.4 Case Study

The LBTest tool was applied to the problem of black-
box testing an ABS model of the Fredhopper FAS case
study described in Sect. 2. An executable SUT was ob-
tained by compiling the ABS model into Java code,
and writing a thin wrapper to encode the symbolic in-
put and output data types in Java. A total of 11 user
requirements were modeled in PLTL. For example, re-
quirement 9 was: “The SyncClient cannot modify its un-
derlying file system (files = readonly) unless it is in
state WorkOnReplicate.” A PLTL formalisation is:

G (state = WorkOnReplicate →
X (files = writable U state ∈ {End,WaitToReplicate})

∧ state 6= WorkOnReplicate →
X (files = readonly U state = WorkOnReplicate))

Table 1 gives the results obtained by running LBTest
to test these 11 user requirements on the FAS Sync-
Client. For each requirement, Table 1 breaks down the
total number of test cases used into three figures (columns
5, 6 and 7) which count the test cases generated by
each of the three different TCG methods: model checker,
learner and random. The total testing time (column 3)
is the total time taken to execute all three types of
test cases, which were interleaved. For each requirement,
Table 1 gives the final verdict (column 2) i.e. pass/-
fail/warning. Column 4 gives the size of the learned hy-
pothesis model at test termination. To terminate each
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experiment, a maximum time bound of 5 hours was cho-
sen. However, if the hypothesis model size had not changed
over 10 consecutive random tests, then testing was ter-
minated earlier than this.

Thus for example: Requirement 1 was tested for a
total of 5 hours using 50,942 test cases, of which 50,897
were generated by the learning algorithm, 45 were gen-
erated randomly, and 0 were generated by the model
checker. We see that learner generated queries dominate,
though generally this is influenced by the kind of learn-
ing algorithm used (here IKL). In fact, looking across all
requirements we can see that the ratio of random plus
model checker queries to learner queries is about 1:1000.
This means that each new model mn+1 is inferred from
mn after intervals of about 1000 learner queries. This
ratio is a property of the IKL learning algorithm itself,
and can only be influenced by choosing other learning
algorithms.

Around 10,000 test cases per hour were generated,
executed and evaluated. We can see that this test through-
put does not vary much across the 11 different require-
ments. On large SUTs, test throughput is mainly deter-
mined by the average execution speed of a single test
case. Since Requirement 1 was passed, while 45 random
and 0 model checker test cases were used, we can infer
that the model checker was called 45 times, but on each
occasion it failed to find a counterexample, so that a
random test case was used instead.

Finally notice that the number of states in the fi-
nal hypothesis automaton is rather small (8 states). The
other requirements yield hypothesis automata of simi-
lar sizes. These figures suggest that while the total state
space of the access server is almost certainly very large
(a completely accurate model would have an infinite
state space), the system abstraction learned by LBTest
to analyse each specific property can be quite small.
Nevertheless, it is not clear whether complete learning
of the state space has been achieved for any require-
ment. Complete learning is not only difficult to achieve,
in a black-box testing regime it is even difficult to de-
tect. For we have no direct access to the SUT code, and
in any case equivalence checking the SUT code (an ar-
bitrary program) with the learned model is infeasible.
This highlights the importance of incremental learning
in black-box testing context. The development of ap-
propriate coverage models, to answer this question in a
relative way, is an important open problem for the field.

Nine out of eleven requirements were passed. For re-
quirements 8 and 9, LBTest gave warnings correspond-
ing to tests of liveness requirements that were never seen
to have passed. A careful analysis of these requirements
showed that both involved using the U (strong until)
operator. When this was replaced with a W (weak un-
til) operator no warnings for Requirement 9 were seen.
Recall that under the strong interpretation of p until q,
written pUq, then q must eventually become true. How-
ever under the weak interpretation of p until q, written

Table 2. Metrics of Java and ABS of the Replication System

Metrics Java ABS
Nr. of lines of code 6400 3300
Nr. of classes 44 40
Nr. of interfaces 2 43
Nr. of data types N/A 17

pWq, then q may never become true if p holds forever.
Thus using W instead of U usually gives a weaker user
requirement that is easier to satisfy, i.e. less likely to
yield test errors.

After replacing U by W , LBTest continued to pro-
duce warnings for Requirement 8. The final conclusion is
that LBTest had successfully identified one error in the
requirements and one error in the SUT.

8 Discussion

The ABS model of the Replication System considered in
the case studies forms a part of the Fredhopper Access
Server (FAS) whose current in-production Java imple-
mentation has over 150,000 lines of code, of which over
6,000 lines constitute the Replication System. Due to its
concurrent behavior and the presence of numerous fea-
tures, the Replication System is one of the most complex
parts of FAS.

Table 2 shows metrics for the actual implementation
and the ABS model of the Replication System. When
comparing the numbers it is important to know that
the ABS model includes modeling-level aspects such as
deployment components and simulation of external in-
puts in the ABS model, which the Java implementation
lacks. The ABS model includes also scheduling informa-
tion, as well as models of file systems and data bases,
whereas the Java implementation leverages libraries and
its API. This accounts for >1,000 lines of ABS code. The
construction of the first version of the ABS model took
around 3 person months. The model was subsequently
revised and extended to capture other behavioral aspects
of the Replication System, such as timing information
and variability. Furthemore, while the Java implemen-
tation is a relatively stable part of FAS, bugs had been
identified and fixed. When there was a change in the
Java implementation, the ABS model was then updated
accordingly.

The quality assurance process at Fredhopper (as
in many other software companies) includes automated
testing. Unit tests are written manually to validate the
behavior of methods and to detect regressions. A con-
tinuous integration server executes all unit tests every
time a change is done to the code base of the product.
To leverage the results reported in this paper, manually
defined unit tests can be replaced by high coverage test
cases automatically generated by aPET. System tests, on
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Table 1. Performance of LBTest on the FAS case study

PLTL Total testing Hypothesis MC Learner Random
Req Verdict time (hours) size (states) queries queries queries
Req 1 pass 5.0 8 0 50,897 45
Req 2 pass 5.0 15 2 49,226 13
Req 3 pass 1.7 11 0 16,543 17
Req 4 pass 2.1 11 0 20,114 14
Req 5 pass 2.5 11 0 24,944 17
Req 6 pass 2.3 11 0 23,215 16
Req 7 pass 2.1 11 0 18,287 17
Req 8 warning 1.9 8 15 18,263 12
Req 9 warning 3.8 15 18 35,831 18
Req 10 pass 2.7 11 0 26,596 19
Req 11 pass 4.6 11 0 45,937 21

the other hand, are executed twice a day on instances of
FAS on a server farm. Two types of system tests are sce-
nario and functional testing. Scenario testing executes a
set of programs that emulate a user and interact with
the system in predefined sequences of steps (scenarios).
At each step they perform a configuration change or a
query to FAS, make assertions about the response from
the query, etc. Function testing executes sequences of
queries, where each query-response pair is used to de-
cide on the next query and the assertion to make about
the response. Both types of tests require a running FAS
instance and can be augmented with RAC techniques
described in Sect. 6. Moreover, by formalising scenar-
ios using PLTL, scenario testing can be augmented with
blackbox testing using LBTest. In summary, the various
testing approaches provided for ABS models have the
potential to substantially increase automation and cov-
erage at the unit, scenario, and function testing level.

The three test approaches discussed here should be
used in concertation in such a way that their comple-
mentarity can be exploited. To give one example, given a
high-level specification with ABS interfaces, one can gen-
erate test cases from class implementations using aPET
to validate whether the implementations match the spec-
ification. We demonstrated this in Sect. 5 when we gen-
erated tests for the ClientJobImpl that cover all paths
specified by a given coverage criteria. Another example
is the combined application of LBTest and RAC during
system testing. RAC makes assertions about object in-
teraction which are specified in terms of attribute gram-
mars as exemplified by our specification of a property of
the ClientJob protocol. However, RAC checks those as-
sertions only if corresponding execution paths are visited
during a system run. Conversely, LBTest actively inter-
acts with the SUT to learn a model that is then checked
against PLTL formulae. This means LBTest attempts to
trigger the execution paths corresponding to the formu-
lae. Restricting the specification of properties to PLTL
makes proving such properties on the model decidable.
Note that LBTest checks both safety and liveness prop-

erties while run-time assertion checking aims merely at
safety properties.

To achieve scalability and full automation at the same
time, it was essential to work in a model-based frame-
work. Our results would not have been possible at the
level of implementation languages, such as Java or C++.
On the other hand, it is perfectly possible to compile
ABS test cases and runtime assertion checks into any of
the target languages supported by ABS code generation,
which includes Java.

We stress that, while ABS is a modeling language, it
implements such concepts as interfaces, shared heap ac-
cess, and asynchronous concurrent execution. This per-
mits precise modeling and realistic simulation [30]. Delta
modeling not only permits to factor out the commonal-
ity in modeled software, but is pragmatically very useful
to achieve a clean separation between test code and pro-
ductive code at proudct build time.

9 Conclusion

We presented a modeling framework based on the lan-
guage ABS that enables extensive test automation for
a complementary, yet fully integrated set of testing ap-
proaches. All techniques are fully implemented and were
evaluated with an industrial case study. The different
testing techniques cover different kinds of properties and
complement each other with respect to their require-
ments such as having access to source code, or the avail-
ability of specifications in the form of assertions or tem-
poral logic formulas (see also Fig. 1). We showed in par-
ticular that testing can be performed on models of highly
distributed systems, and, even further, how formal meth-
ods enable us to automate large parts of testing and test
case generation.

As future work, we would like to lift automated test-
ing techniques from the product to the family level in
product line engineering [27]. First ideas on how to ap-
proach this exist, such as sharing test cases (and test
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runs) between products in case the products are identi-
cal or overlap with respect to the executed code. Work
in the direction of compositionality [2] of glassbox test
generation exhibits further potential to produce reusable
test cases. In black box requirements testing, it becomes
important to integrate product variability points into
formal requirements languages such that during applica-
tion engineering [27], when variability points are being
instantiated for specific products, requirements may also
be instantiated for those products.
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Abstract
We present the concepts, usage and prototypical implementation of
SYCO: a SYstematic testing tool for Concurrent Objects. The sys-
tem receives as input a program, a selection of method to be tested,
and a set of initial values for its parameters. SYCO offers a visual
web interface to carry out the testing process and visualize the re-
sults of the different executions as well as the sequences of tasks
scheduled as a sequence diagram. Its kernel includes state-of-the-
art partial-order reduction techniques to avoid redundant computa-
tions during testing. Besides, SYCO incorporates an option to ef-
fectively catch deadlock errors. In particular, it uses advanced tech-
niques which guide the execution towards potential deadlock paths
and discard paths that are guaranteed to be deadlock free.

1. Motivation
Testing is the most widely-used methodology for software valida-
tion in industry. Several studies point out that it requires at least
half of the total cost of a software project. Software testing tools
urge especially in the context of concurrent programming. This is
because writing correct concurrent programs is more difficult than
writing sequential ones as with concurrency come additional haz-
ards not present in sequential programs such as race conditions,
deadlocks, and livelocks. In order to catch such errors, the testing
tool must consider the non-determinism caused by the fact that an
execution can lead to different solutions depending on the way that
the involved tasks interleave, and, ideally, all possible interleavings
must be considered. A systematic exploration of the state space is
usually not feasible. A lot of research has been done in the context
of testing and model checking with the aim of avoiding redundant
state exploration as much as possible [1, 2, 5, 10, 11]. SYCO is a
testing tool that targets the ABS concurrent objects language [8]
and that incorporates state-of-the-art partial-order-reduction (POR)
techniques to avoid redundant exploration.

Essentially, a concurrent object is a monitor that allows at most
one active task to execute within the object. Scheduling among
the tasks of an object is cooperative, or non-preemptive, meaning
that the active task has to release the object lock explicitly (using
the await or return instructions). Each object has an unbounded
set of pending tasks. When the lock of an object is free, any task
in the set of pending tasks can grab the lock and start executing.
Each object has a local heap or memory (set of fields) which can
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only be accessed from the owner object. The instruction f = ob!
m() creates an asynchronous task to execute method m on object
ob. Synchronization can be performed using the future variable
f, namely the instruction await f? checks if the execution of the
asynchronous task has finished. It not, the object lock is released
and the task suspends until the value of f is ready. In contrast, the
instruction v = f.get blocks the task until f is ready retaining the
object lock. Once the execution of the task finishes, it assigns the
obtained value to v.
Running Example. The following example simulates a sim-
ple communication protocol between a database and a worker.

1 {\\main block
2 DB db = new DB();
3 Worker w = new Worker();
4 db!register(w);
5 w!work(db);
6 }
7 class DB{
8 Data data = ...;
9 Worker cl = null;

10 void register(Worker w){
11 Fut〈Int〉 f = w!ping(5);
12 if (f.get == 5) cl = w;
13 }

14 Int getD(Worker w){
15 if (cl == w) return data;
16 else return null;
17 }
18 }// end class DB
19 class Worker{
20 Data data;
21 void work(DB db){
22 Fut〈Data〉 f = db!getD(this);
23 data = f.get;
24 }
25 Int ping(Int n){return n;}
26 }// end of class Worker

The main method creates the two objects and invokes methods
register and work resp. The work method of the worker simply
accesses the database (invoking asynchronously method getD) and
then blocks until it gets the result, which is assigned to its data field.
The register method of the database, first checks that the worker is
online (invoking asynchronously method ping), then blocks until
it gets the result, and finally it registers the worker by storing its
reference in its cl field. Method getD of the database returns its
data field if the caller worker is registered, otherwise it returns null.

Depending on the sequence of interleavings, the execution of
this program can finish: (i) as expected, i.e., with w.data having
the same value as db.data, (ii) with w.data = null, or, (iii) in a
deadlock. (i) happens when the worker is registered in the database
(assignment in L12) before getD is executed. (ii) happens when
getD is executed before the assignment at L12. A deadlock is
produced if both register and work start executing before getD and
ping. Sect. 2 and App. A illustrate how SYCO shows these different
execution scenarios.

2. The SYCO Tool
The figure above shows the main architecture of SYCO. Boxes
with dash lines are internal components of SYCO whereas boxes
with regular lines are external components. The user interacts with
SYCO through its web interface which is provided by EasyInter-
face [7]. Basically EasyInterface provides a generic IDE which can
be instantiated to different languages and compilers and where ex-
ternal plugins can be easily added. The SYCO engine receives an
ABS program and a selection of parameters. The ABS compiler



compiles the program into an abstract-syntax-tree (AST) which is
then transformed into the SYCO intermediate representation (IR).
The DPOR engine carries out the actual systematic testing process.
It comprises the ABS semantics, the DPOR algorithm of [2] and
the stability and dependencies analyses of [2]. The output manager
then generates the output in the format which is required by Easy-
Interface, including an XML file containing all the EasyInterface
commands and actions and the SVG diagrams. In case a deadlock-
guided testing is requested (see the corresponding parameter be-
low), the DECO deadlock analyzer [6] is invoked, which returns a
set of potential deadlock cycles that are then fed to the DPOR en-
gine to guide the testing process (discarding non-deadlock execu-
tions) [4]. Let us note that other actor-based languages with similar
features could be handled by SYCO just by providing a compiler
to the SYCO IR.

The web interface of SYCO is available at costa.ls.fi.upm.
es/syco. In App. A we detail how to use it with screenshots.
Essentially, once the input program is ready, either selected from
the available library of ABS programs or supplied by the user, a set
of parameters are provided (or just left with by-default values), the
SYCO engine is run and the output is obtained.

Parameters. The following parameters can be set:
• Partial-order reduction: It enables/disables POR.
• Dependency over-approximation: In case POR is applied, a cen-

tral operation is the detection of independent tasks, which has to
be over-approximated. SYCO includes the over-approximation
of [11] which considers as dependent tasks those in the same
actor, and, also, the enhancement of [2] for actors with local
memory, which looks at field accesses within the involved tasks
and considers as dependent only tasks belonging to the same
actor and accessing at least a common field.
• Deadlock-guided testing: If this parameter is selected, the test-

ing process is guided with the cycles inferred by DECO towards
deadlocks, discarding non-deadlock executions, with the corre-
sponding state space reduction This is useful in the context of
deadlock detection and debugging.

Output. As a result, SYCO outputs a set of executions. For each
one, SYCO shows the output state and the sequence of tasks/in-
terleavings and concrete instructions of the execution (highlight-
ing the source code). Also, it allows showing a sequence diagram
from which it can be observed the task/object executing and the
asynchronous calls made (with arrows from caller to callee) at each
time of the simulation, the waiting and blocking dependencies, the
deadlock cycles, etc. See App. A for details. SYCO produces 6 ex-
ecutions for the running example with POR disabled. That covers
all possible task interleavings that may occur. SYCO reports that
2 executions are deadlock executions corresponding to sequences
main→register→work and main→work→register. Those correspond
to scenario (iii) at the end of Sect. 1. Within the remaining 4 exe-
cutions, two of them correspond to scenario (i) and the other two
to scenario (ii). According to POR theory [2, 11], the remaining

4 executions can be grouped in two different equivalence classes,
therefore 2 executions are redundant and only two different results
are obtained. When POR is enabled, SYCO produces these 4 ex-
ecutions, the two deadlock executions, and, the executions corre-
sponding to scenarios (i) and (ii).

3. Discussion and Related Work
We have presented a systematic tester for an actor-based concur-
rency model which incorporates state-of-the-art POR methods. The
tool can be used online through its web interface and provides in-
formation about all possible (non-redundant) behaviors that the in-
put concurrent program may have, including trace highlighting and
detailed sequence diagrams. It also has support for deadlock detec-
tion and debugging, incorporating novel techniques for deadlock-
guided testing [4] in which an external deadlock analyzer [6] is
embedded. We claim that the tool is very useful for testing and de-
bugging models of concurrent systems.

Several related tools exist, being the most relevant Microsoft’s
CHESS [9] for .NET, Concuerror [5] for Erlang and Basset [10]
for ActorFoundry. All of them incorporate state-of-the-art POR
techniques. The most advanced in this sense is Concuerror which is
equipped with the most recent Optimal DPOR algorithm [1]. Also,
Concuerror is the only one providing graphical output similar to our
sequence diagrams. None of them provides a web interface. Many
other related tools exist in the context of model-checking that are
left out of this comparison.

As regards future work, we are currently studying the most ad-
vanced POR techniques of [1] and the possibility of adapting them
to our context. Also, we are in the process of incorporating the sym-
bolic execution engine of [3] so that SYCO also allows performing
static testing. Finally, we plan to work on other visualizations of the
output like execution trees and step-by-step timelines.
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A. Tool Demonstration
We start describing the basic elements of the web interface of
SYCO. We then show how to test the running example, analyzing
the reported information and demonstrating the tool’s potential to
help the programmer understanding the deadlock situations and
finding a solution to avoid them. We finally show how to use the
SYCO parameters.

A.1 The SYCO Web Interface
Figure 1 shows the main window of the SYCO web interface
provided by EasyInterface [7]. It comprises 5 main components:
(1) the file manager, that contains a list of predefined examples as
well as the files uploaded by the user; (2) the code area, where
the user can edit the selected program; (3) the outline view, which
includes an outline (list of classes, methods, etc.) of the selected
file and module; (4) the tools bar, which includes several buttons to
execute the main actions; and (5) the console area where the results
and information of the execution are printed.

Let us go to the file manager, located at the left-hand side, and
open the folder syco examples. The subfolder deadlocks contains
the code of our running example, cc2016.abs. If we click over
it, the code appears at the code area. Later, we will modify the
code to obtain different results, specifically to remove the deadlock
situations. By now, let us refresh the outline. This updates the right-
hand side with the class and module information of our running
example.

In the tools bar, next to the Apply button, there is a combo-
box that contains all the applications available in this instance
of EasyInterface. In this case, the only available application is
SYCO, but let us note that we could add other tools that may
co-exist with SYCO, e.g., the DECO deadlock analyzer [6]. With
SYCO selected, we press on the Apply button. This produces the
invocation of the SYCO engine with by-default parameters. Later,
we will see how to configure the SYCO parameters. The main
output information is then shown at the console area (see Figure 1).

A.2 Analyzing the SYCO Output
SYCO first prints the number of executions explored in the sys-
tematic testing of the program under test. Then, it prints the output
state and the execution trace for each execution. The output state
(in blue color) contains all the objects created during the execu-
tion. Each object is represented as a term with three arguments:
the object identifier, the object type or class, and the final values
of the object fields. The execution trace (in red color) shows, for
each time or macro-step of the execution, the object and task exe-
cuting at this time. If we click over one time of the trace, the source
program lines which are exercised at this time are highlighted (in
yellow color) at the code area. This is shown in Figure 1 where the
first time of the trace has been clicked.

To see the sequence diagram of a concrete execution, we press
over ”Click here to see the sequence diagram” which is found next
to the execution number in the console view. A dialog box con-
taining the sequence diagram shows up. Figure 2 (right) shows the
sequence diagram of the first execution for our running example,
which correspond to scenario (i), i.e., we get the expected result
(see end of Sect. 1). At the left-hand side, a timeline is shown with
the times of the execution, in both cases 7 times (0-6). Each vertical
cluster corresponds to the activities performed by each object, and
each node corresponds to the task executing at the corresponding
object in the corresponding time. Objects are of the form class id,
where class is the object type and id a unique object identifier.
Tasks are of the form id:method(pp), where id is a unique task
identifier, method is the name of the method and pp the program
point of the method from which the execution starts. Nodes also
indicate why the execution of the associated task stopped. Nodes in

green color labeled with return correspond to tasks that have reach
their return instruction; nodes in orange color label-led with wait-
ing for taskId are tasks which have been suspended waiting for task
taskId; and nodes in red color labeled with blocked for taskId are
tasks which block the object waiting for task taskId. Finally, ar-
rows from nodes to clusters indicate asynchronous calls or object
creations.

The first sequence diagram can be understood as follows: Dur-
ing time 0, the object main 2 creates objects DBimp 0 and Worker-
Imp 1, and spawns tasks 0:register and 2:work, respectively. Then,
main 2 finishes its execution reaching its return statement (green
color). During time 1, DBimp 0 tries to register WorkerImp 1 as its
client. It executes lines 19, 20 and 21, where it gets blocked wait-
ing for WorkerImp 1 to execute task 1:ping. This node is in red
color, since its execution finishes due to a blocking waiting. During
times 2 and 3, WorkerImp 1 executes ping (in green color) and it
gets blocked (in red color) waiting for 3:getData to be executed by
DBimp 0. During times 4 and 5, DBimp 0 resumes the execution of
method register from line 21, registers DBimp 0 as its client, and
returns the stored data which is finally received by WorkerImp 1 at
time 6. According to POR theory, the two first executions are re-
dundant, see Figures 2 (right) and 3 (top), since the only difference
between them is the order of tasks 0:register(21) and 2:work(35)
which are independent. We are getting both because no POR is ap-
plied by default.

Let us now focus on the fourth execution. The output state
shows that the worker data field ends with null value, which is not
the expected value, corresponding to scenario (ii). Let us look at
the associated sequence diagram which is shown at the bottom of
Fig. 3. It can be observed that DBimp 0 is executing task 3:getData
before registering the worker as its client. Hence, the getData’s
condition evaluates to false and, as a result, it returns null.

Looking at the sequence diagram of the third execution (see
middle of Figure 3, we can observe a deadlock situation, since both
DBimp 0 and WorkerImp 1 are blocked and, as we can see, they are
squared in red color. During time 1, DBimp 0 gets blocked waiting
for WorkerImp 1 to execute task 1:ping. During the next time,
instead of letting WorkerImp 1 executing, it gets blocked waiting
for DBimp 0 to execute getData. Therefore, none of them can make
any progress. Both tasks are shown by means of red solid edges to
indicate that these are the ones responsible for the deadlock.

The main problem with this implementation, is that we are not
in control of when the database registers the worker as its client. A
possible solution to overcome these unexpected situations could be
to write the main as follows:

27 {\\main block
28 DB db = new DB();
29 Worker w = new Worker();
30 Fut<Unit> f = db!register(w);
31 await f?;
32 w!work(db);
33 }

If we execute SYCO again, we only get one execution whose
output state is the expected one, i.e., we only produce scenario (i).

A.3 The SYCO Parameters
If we press over the “Settings” button at the tool bar, the Easy-
Interface parameters window shows up (see Figure 2), which al-
lows configuring the available SYCO parameters of the available
applications. The first SYCO parameter is Partial-order reduction
whose by-default value is No. Hence, by default, SYCO explores
all possible executions. In our running example, those are the ob-
tained 6 executions. As already noted, the first two executions are
redundant since the only difference between them is the order of
tasks 0:register(21) and 2:work(35) which are independent. If we



Figure 1. Main window of the SYCO web interface

Figure 2. The SYCO parameters window and 1st sequence diagram

select value “yes” for this parameter, then SYCO applies POR, ob-
taining just 4 executions, one for scenario (i), one for scenario (ii)
and the two possible deadlocks of scenario (iii).

The parameter Deadlock-guided testing activates the guided
search towards deadlocks. This is useful in case we are interested
in proving deadlock freedom or finding a concrete deadlock trace.
If we select this option, we then obtain just the two deadlock traces
among the 6 possible executions. It is important to highlight that
this is not a post-process. SYCO invokes the DECO deadlock an-
alyzer and used its results to detect when a deadlock cycle is un-
feasible in an execution stopping it, gaining time and reducing in
part the combinatorial explosion. In the running example, deadlock
situations only happen when both DBimp 0 and WorkerImp 1 get
blocked. As we can see in Figure 2 (right), WorkerImp 1 executes
task 1:ping, so DBimp 0 will eventually resume task 0:register.
From this point on, the deadlock cycle obtained by DECO is un-
feasible and SYCO stops this execution at time 2.

The effect of parameter Dependency over-approximation can-
not be observed with our running example in its present form. Let
us modify the code by adding instructions await f? before the in-
structions v = f.get. This allows avoiding deadlocks and having a
greater parallelism than the one in the previous modification. With
this modification, if we run SYCO with by-default parameters, we
obtain 20 executions. Activating the option Partial-order reduction
downsizes it up to 8 executions.

Nevertheless, we can observe that some of them lead to the same
final state, even though these executions have different partial-
orders. This kind of redundancy is based on the concept of task
independence. Two tasks are independent when the order in which
they are executed does not affect the final result. In this new
example, we have two independent tasks in WorkerImp 1: ping
and work.await (work.await being the resumption task once get-
Data has been executed by DBimp 0). The 2nd parameter over-
approximates the independent tasks and allows the explored execu-
tions to be reduced up to 6.



Figure 3. 2nd, 3rd and 4th sequence diagrams
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Combining Static Analysis and Testing
for Deadlock Detection

Technical Report (including Proofs)

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel

Complutense University of Madrid (UCM), Spain

Abstract. Static deadlock analyzers might be able to verify the absence
of deadlock, but when they detect a potential deadlock cycle, they pro-
vide little (or even none) information on their output. Due to the complex
flow of concurrent programs, the user might not be able to find the source
of the anomalous behaviour from the abstract information computed by
static analysis. This paper proposes the combined use of static analysis
and testing for effective deadlock detection in asynchronous programs.
Our main contributions are: (1) We present an enhanced semantics which
allows an early detection of deadlocks during testing and that can give to
the user a precise description of the deadlock trace. (2) We combine our
testing framework with the abstract descriptions of potential deadlock
cycles computed by an existing static deadlock analyzer. Namely, such
descriptions are used by our enhanced semantics to guide the execution
towards the potential deadlock paths (while other paths are pruned).
When the program features a deadlock, our combined use of static anal-
ysis and testing provides an effective technique to find deadlock traces.
While if the program does not have deadlock, but the analyzer inaccu-
rately spotted it, we might be able to prove deadlock freedom.

1 Introduction

In concurrent programs, deadlock is one of the most common programming errors
and, thus, a main goal of verification and testing tools for concurrent programs
is, respectively, proving deadlock freedom and deadlock detection. We consider an
asynchronous language which allows spawning asynchronous tasks at distributed
locations, and has two operations for blocking and non-blocking synchronization
with the termination of asynchronous tasks. In this setting, in order to detect
deadlocks, all possible interleavings among tasks executing at the distributed
locations must be considered. Basically, each time that the processor can be
released, any of the available tasks can start its execution, and all combinations
among the tasks must be tried, as any of them might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks that
often complement each other and thus it seems quite natural to combine them.
As static analysis examines all possible execution paths and variable values, it
can reveal deadlocks that could not manifest until weeks, months or years after
releasing the application. This aspect of static analysis is especially important



in security assurance, because security attacks try to exercise an application in
unpredictable and untested ways. However, when a deadlock is found, state-of-
the-art analysis tools [11, 12, 9, 17] provide little (and often none) information on
the source of the deadlock. In particular, for deadlocks that are complex (involve
many tasks and locations), it is essential to know the task interleavings that
have occurred and the locations involved in the deadlock, i.e., provide a concrete
deadlock trace that allows the programmer to identify and fix the problem. In
contrast, testing consists in executing the application for concrete input values.
The primary advantage of testing for deadlock detection is that it can provide
the deadlock trace with all information that the user needs in order to fix the
problem. There are two shortcomings though: (1) Since not all inputs can be
tried, there is no guarantee of deadlock freedom. (2) Although recent research
tries to avoid redundant exploration as much as possible [10, 20, 8, 1, 4, 1], the
search space (without redundancies) can be huge. This is a threaten to the
application of testing in concurrent programming.

This paper proposes a seamless combination of static analysis and testing for
effective deadlock detection as follows: an existing static deadlock analysis [11]
is first used to obtain abstract descriptions of potential deadlock cycles which
are then used to guide a testing tool in order to find associated deadlock traces
(or discard them). Technically, the main contributions of the paper are:

1. We extend a standard semantics for asynchronous programs with information
about the task interleavings made, and the status of tasks (i.e., awaiting,
blocked, or finished). The extended semantics will allow us: (1) to provide
deadlock traces when a deadlock is found, (2) an early detection of deadlock
states during execution and (3) its combined use with static analysis.

2. We provide a formal characterization of deadlock state which can be checked
along the execution, and allows us to early detect deadlocks even in complex
situations in which there are one or several locations that keep on executing
(maybe even go into an infinite computation) while, due to blocking call
chains in other locations, the execution will eventually lead to deadlock.

3. We present a new methodology to detect deadlocks which combines testing
and static analysis as follows: the deadlock cycles inferred by static analysis
are used by our extended semantics to guide the testing process towards
paths that might lead to a deadlock cycle and discard deadlock-free paths.

4. The implementation in the aPET system [5], the definition of several deadlock-
based testing criteria, and a thorough experimental evaluation. Our experi-
ments show that we can find deadlock traces for the potential deadlock cycles
with a significant reduction of the required state exploration.

2 Asynchronous Programs: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered buffer
of pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its
own processor’s global storage, each task can post tasks to the buffers of any
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(mstep) selectLoc(S) = loc(o,⊥, h,Q),Q 6= ∅, selectTask(o) = tsk(tk ,m, l, s),

S � ρ∅
o·tk
;∗ S′ � ρ

S
o·tk−→ S′

(newloc) tk = tsk(tk ,m, l, x = new D; s), fresh(o′), h′ = newheap(D), l′ = l[x→ o′]
loc(o, tk , h,Q∪ {tk}) � ρ0 ; loc(o, tk , h,Q∪ {tsk(tk ,m, l′, s)}) · loc(o′,⊥, h′, {}) � ρ0

(async) tk = tsk(tk ,m, l, y=x!m1(z); s), l(x)=o1, fresh(tk1), l1=buildLocals(z̄,m1, l)

loc(o, tk , h,Q∪ {tk}) · loc(o1, , ,Q′) � ρ0 ; loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)})·
loc(o1, , ,Q′ ∪ {tsk(tk1,m1, l1, body(m1))}) · fut(y, o1, tk1, ini(m1)) � ρ0

(return)
tk = tsk(tk ,m, l, return; s),ρ1 = return

loc(o, tk , h,Q∪ {tk}) � ρ0 ; loc(o,⊥, h,Q∪ {tsk(tk ,m, l, ε)}) � ρ1

(await1)
tk = tsk(tk ,m, l, y.await; s), tsk(tk1, , , s1) ∈ Ob, s1 = ε

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ;

loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1, ) � ρ0

(await2)
tk = tsk(tk ,m, l, pp:y.await; s), tsk(tk1, , , s1) ∈ Ob, s1 6= ε,ρ1 = pp : y.await

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ;

loc(o,⊥, h,Q∪ {tk}) · fut(y, , tk1, ) � ρ1

(block1)
tk = tsk(tk ,m, l, y.block; s), tsk(tk1, , , s1) ∈ Ob, s1 = ε

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ;

loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1, ) � ρ0

(block2) tk=tsk(tk ,m, l, pp:y.block; s), tsk(tk1, , , s1) ∈ Ob, s1 6= ε,ρ1 = pp:y.block

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ0 ; loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1, ) � ρ1

Fig. 1. Semantics of Asynchronous Programs

processor, including its own, and synchronize with the termination of tasks. The
language uses future variables to check if the execution of an asynchronous task
has finished. An asynchronous call m(z̄) spawned at location x is associated with
a future variable f as follows f = x ! m(z̄). Instructions f.block and f.await allow,
respectively, blocking and non-blocking synchronization with the termination of
m. When a task completes, or when it is awaiting with a non-blocking await
for a task that has not finished yet, its processor becomes idle again, chooses
the next pending task, and so on. The number of distributed locations need
not be known a priori (e.g., locations may be virtual). Syntactically, a location
will therefore be similar to a concurrent object and can be dynamically cre-
ated using the instruction new. The program consists of a set of methods of
the form M ::=T m(T̄ x̄){s}, where statements s take the form s::=s; s | x=e |
if e then s else s | while e do s | return | b=new | f = x ! m(z̄) | f.await | f.block.
For the sake of generality, the syntax of expressions e and types T is left open.

Fig. 1 presents the semantics of the language. The information about ρ in
bold font is part of the extensions for testing in Sec. 4 and should be ignored by
now. A state or configuration is a set of locations and future variables o0 · · · on ·
fut0 · · · futm. A location is a term loc(o, tk , h,Q) where o is the location identifier,
tk is the identifier of the active task that holds the location’s lock or ⊥ if the
location’s lock is free, h is its local heap, and Q is the set of tasks in the location.
A future variable is a term fut(id, o, tk ,m) where id is a unique future variable
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identifier, o is the location identifier that executes the task tk awaiting for the
future, and m is the initial program point of tk . A task is a term tsk(tk ,m, l, s)
where tk is a unique task identifier, m is the method name executing in the
task, l is a mapping from local variables to their values, and s is the sequence
of instructions to be executed or ε if the task has terminated. We assume that
the execution starts from a main method without parameters. The initial state
is St={loc(0, 0, ⊥, {tsk(0,main, l, body(main))} with an initial location with
identifier 0 executing task 0. Here, l maps local variables to their initial values
(null in case of reference variables) and ⊥ is the empty heap. body(m) is the
sequence of instructions in method m, and we can know the program point pp
where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
macro-step semantics [19] (defined by means of the transition “−→”) in which
the evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it gets to an await or return instruction. In this case, we
apply rule mstep to select an available task from a location, namely we apply the
function selectLoc(S) to select non-deterministically one active location in the
state (i.e., a location with a non-empty queue) and selectTask(o) to select non-
deterministically one task of o’s queue. The transition ; defines the evaluation
within a given location. newloc creates a new location without tasks, with a
fresh identifier and heap. async spawns a new task (the initial state is created
by buildLocals) with a fresh task identifier tk1, and it adds a new future to the
state. ini(m) refers to the first program point of method m. We assume o 6= o1,
but the case o = o1 is analogous, the new task tk1 is added to Q of o. The
rules for sequential execution are standard and are thus omitted. Await1: If the
future variable we are awaiting for points to a finished task, the await can be
completed. The finished task t1 is only looked up but it does not disappear from
the state as its status may be needed later on. Await2: Otherwise, the task yields
the lock so that any other task of the same location can take it. Return: When
return is executed, the lock is released and will never be taken again by that
task. Consequently, that task is finished (marked by adding the instruction ε).
Block2: A y.block instruction waits for the future variable but without yielding
the lock. Then, when the future is ready, Block1 allows continuing the execution.

In what follows, a derivation or execution E ≡ St0 −→ · · · −→ Stn is a
sequence of macro-steps (applications of rule mstep). The derivation is complete
if St0 is the initial state and @ Stn+1 6= Stn such that Stn−→ Stn+1. Since the
execution is non-deterministic, multiple derivations are possible from a state.
Given a state St, exec(St) denotes the set of all possible derivations starting at
St. We sometimes label transitions with o · tk , the name of the location o and
task tk selected (in rule mstep) or evaluated in the step (in the transition ;).

3 Motivating Example

Our running example is a simple version of the classical sleeping barber problem
where a barber sleeps until a client arrives and takes a chair, and the client wakes
up the barber to get a haircut. Our implementation has a main method showed
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1 main() {
2 Ba barber = new Ba();
3 Cl client = new Cl();
4 Ch chair = new Ch();
5 client!wakeup(barber,chair);
6 barber!sleeps(client,chair);
7 }
8 class Ba{
9 Unit sleeps(Cl cl, Ch ch){

10 Fut f=ch!taken(cl);
11 f.block;}
12 Unit cuts(){}
13 }

14 class Ch{
15 Unit taken(Cl cl){
16 Fut f=cl!sits();
17 f.await;}
18 Unit isClean(){}
19 }
20 class Cl{
21 Unit wakeup(Ba b, Ch ch){
22 Fut f=b!cuts();
23 ch!isClean();
24 f.block;}
25 Unit sits(){}
26 }

ba.spcl.wk

ch.tkcl.wkba.sp

ch.tk cl.st

ba.cut

cl.wk

62

1

9733

8

5

4

ch.tk

10 11

Fig. 2. Classical Sleeping Barber Problem (left) and Execution Tree (right)

to the left and three classes Ba, Ch and Cl implementing the barber, chair and
client, respectively. The main creates three locations barber, client and chair and
spawns two asynchronous tasks to start the wakeup task in the client and sleeps

in the barber, both tasks can run in parallel. The execution of sleeps spawns an
asynchronous task on the chair to represent the fact that the client takes the
chair, and then blocks at L11 (L11 for short) until the chair is taken. The task
taken first adds the task sits on the client, and then awaits on its termination at
L17 without blocking, so that another task on the location chair can execute. On
the other hand, the execution of wakeup in the client spawns an asynchronous
task cuts on the barber and one on the chair, isClean, to check if the chair is
clean. The execution of the client blocks until cuts has finished. We assume that
all methods have an implicit return at the end.

Fig. 2 summarizes the execution tree of the main by showing some of the
macro-steps taken. Derivations that contain a dotted node are not deadlock,
while those with a gray node are deadlock. A main motivation of our work is
to detect as early as possible that the dotted derivations will not lead us to
deadlock and prune them. Let us see two selected derivations in detail. In the
derivation ending at node 5, the first macro-step executes cl.wakeup and then b.

cuts. Now, it is clear that the location cl will not deadlock, since the block at L24
will succeed and the other two locations will be also able to complete their tasks,
namely the await at L17 of location ch can finish because the client is certainly
not blocked, and also the block at L11 will succeed because the task in taken

will eventually finish as its location is not blocked. However, in the branch of
node 4, we first select wakeup (and block client), then we select sleeps (and block
barber), and then select taken that will remain in the await at L17 and will never
succeed since it is awaiting for the termination of a task of a blocked location.
Thus, we certainly have a deadlock. Let us outline five states of this derivation:

St0 ≡ loc(ini, ..)·loc(cl, .., {tsk(1, wk, ..)})·loc(ba, .., {tsk(2, sp, ..)})·loc(ch, ..)
cl,1−→

St1 ≡ loc(cl, .., {tsk(1, wk, f0.block)})·loc(ba, .., {tsk(3, cut, ..), ..})·fut(f0, ba, 3, 12)·.. ba,2−→
St2 ≡ loc(ba, .., {tsk(2, sp, f1.block)})·loc(ch, .., {tsk(5, tk, ..), ..})·fut(f1, ch, 5, 15)·.. ch,5−→
St3 ≡ loc(ch, .., {tsk(5, tk, f2.await), ..})·loc(cl, .., {tsk(6, st, ..), ..})·fut(f2, cl, 6, 25)·..
ch,4−→ St4 ≡ loc(ch, ..{tsk(4, isClean, return), ..})·..
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(mstep2)

selectLoc(S) = loc(o,⊥, h,Q),Q 6= ∅, selectTask(o) = tsk(tk ,m, l, pp : s),

checkC(S, table), S � ρ0
o·tk
;∗ S′ � ρ, S 6= S′,not(deadlock(S′))

clock(n), table ′ = table ∪ to,tk,pp 7→ 〈n, ρ〉
(S, table)

o·tk−→ (S′, table ′)

Fig. 3. mstep2 rule for combined testing and analysis

The first state is obtained after executing the main where we have the initial lo-
cation ini, three locations created at L3, L2 and L4, and two tasks at L5 and
L6 added to the queues. Note that each location and task is assigned a unique
identifier (we use numbers as identifiers for tasks and short names as identifiers
for locations). In the next state, the task wakeup has been selected and fully exe-
cuted (we have shortened the name of the methods, e.g., wk for wakeup). Observe
at St1 the addition of the future variable created at L22. In St2 we have exe-
cuted task sleeps in the barber and added a new future term. In St3 we execute
task taken in the chair (this state is already deadlock as we will see in Sec. 4.2),
however location chair can keep on executing an available task isClean. From now
on, we use the location and task names instead of numeric identifiers for clarity.

4 Testing for Deadlock Detection

The goal of this section is to present a framework for early detection of dead-
locks during testing. This is done by enhancing the standard semantics for asyn-
chronous programs with information which allows us to easily detect dependen-
cies among tasks, i.e., when a task is awaiting for the termination of another
one. These dependencies are necessary to detect in a second step deadlock states.

4.1 An Enhanced Semantics for Deadlock Detection

In the following we define the interleavings table whose role is twofold: (1) It
stores all decisions about task interleavings made during the execution. This way,
at the end of a concrete execution, the exact ordering of the performed macro-
steps can be observed. (2) It will be used to detect deadlocks as early as possible,
and, also to detect states from which a deadlock cannot occur, therefore allowing
to prune the execution tree when we are looking for deadlocks. The interleavings
table is a mapping with entries of the form tido,idt,pp 7→ 〈n, ρ〉, where:

– tido,idt,pp is a macro-step identifier, or time identifier, that includes: the iden-
tifiers of the location ido and task idt that have been selected in the macro-
step, and the program point pp of the first instruction that will be executed;

– n is a (non-negative) integer representing the time when the macro-step
starts executing;

– ρ is the status of the task after the macro-step and it can take three values
as it can be seen in Fig. 1: block or await when executing these instructions on
a future variable that is not ready (we also annotate in ρ the information on
the associated future); return that allows us to know that the task finished.

We use a function clock(n) to represent a clock that starts at 0, is increased
by one in every execution of clock, and returns the current value n. The initial
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entry is t0,0,1 7→ 〈0, ρ0〉, being 0 the identifier for the initial location and task,
and 1 the first program point of main. The clock also assigns the value 0 as the
first element in the tuple and a fresh variable in the the second element ρ0. The
next macro-step will be assigned clock value 1, next 2, and so on. As notation,
we define the relation t ∈ table if there exists an entry t 7→ 〈n, ρ〉 ∈ table, and the
function status(t , table) which returns the status ρt such that t 7→ 〈n, ρt〉 ∈ table.
The semantics is extended by changing rule mstep as in Fig. 3. The function
deadlock will be defined in Thm. 1 to stop derivations as soon as deadlock is
detected. Function checkC should be ignored by now, it will be defined in Sec. 5.2.
Essentially, there are two new aspects: (1) The state is extended with the status
ρ, namely all rules include a status ρ attached to the state using the symbol
�. The status is showed in bold font in Fig. 1 and can get a value in rules
block2, await2 and return. The initial value ρ0 is a fresh variable. (2) The state
for the macrostep is extended with the interleavings table table, and a new entry
to,tk ,pp 7→ 〈n, ρ〉 is added to table in every macrostep if there has been progress
in the execution, i.e., S′ 6= S, being n the current clock time.

Example 1. The interleavings table below (left) is computed for the derivation
in Sec. 3. It has as many entries as macro-steps in the derivation. We can observe
that subsequent time values are assigned to each time identifier so that we can
then know the order of execution. The right column shows the future variables
in the state that store the location and task they are bound to.

St0 tini,main,1 7→ 〈1, return〉 ∅
St1 tcl,wakeup,21 7→ 〈2, 24:f0.block〉 fut(f0, ba, cuts, 12)
St2 tba,sleeps,9 7→ 〈3, 11:f1.block〉 fut(f1, ch, taken, 15)
St3 tch,taken,15 7→ 〈4, 17:f2.await〉 fut(f2, cl, sits, 25)

4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-
tion selectLoc so that only locations that can proceed are selected. If, at a given
state, no location is selected but there is at least a location with a non-empty
queue then there is a deadlock. However, deadlocks can be detected earlier. We
present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other termina-
tion and none of them can make any progress. Note that, from a deadlock state,
there might be tasks that keep on progressing until the deadlock is finally made
explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock
will not be captured using this naive extension. The early detection of deadlocks
is crucial to reduce state exploration as our experiments show in Sec. 6.

We first introduce the auxiliary notion of waiting interval which captures the
period in which a task is waiting for another one to terminate. In particular, it is
defined as a tuple (tstop, tasync, tresume) where tstop is the macro-step at which the
location stops executing a task due to some block/await instruction, tasync is the
macro-step at which the task that is being awaited is selected for execution, and,
tresume is the macro-step at which the task will resume its execution. tstop, tasync
and tresume are time identifiers as defined in Sec. 4.1. tresume will also be written
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as next(tstop). When the task stops at tstop due to a block instruction, we call it
blocking interval, as the location remains blocked between tstop and next(tstop)
until the awaited task, selected in tasync, has already finished. The execution of
a task can have several points at which macro-steps are performed (e.g., if it
contains several await or block the processor may be lost several times). For this
reason, we define the set of successor macro-steps of the same task from a macro-
step: suc(to,tk ,pp0

, table) = {to,tk ,ppi
: to,tk ,ppi

∈ table, to,tk ,ppi
≥ to,tk ,pp0

}.

Definition 1 (Waiting/Blocking Intervals). Let St = (S, table) be a state,
I = (tstop, tasync, tresume) is a waiting interval of St, written as I ∈ St, iff:

1. ∃ tstop = to,tk0,pp0
∈ table, ρstop = status(tstop) ∈ {pp1 : x.await, pp1:x.block},

2. tresume ≡ to,tk0,pp1 , fut(x, ox, tkx, pp(M)) ∈ S,

3. tasync ≡ tox,tkx,pp(M),@ t ∈ suc(tasync, table) with status(t) = return.

If ρstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at tasync has finished, then
it is not a waiting interval. This is known by checking that this task has not
reached return, i.e., @ t ∈ suc(tasync, table) such that status(t) = return. In
condition 1, we see that in ρstop we have the name of the future we are awaiting
(whose corresponding information is stored in fut, condition 2). In order to
define tresume in condition 2, we search for the same task tk0 and same location
o that executes the task starting at program point pp1 of the await/block, since
this is the point that the macro-step rule uses to define the macro-step identifier
to,tk0,pp1

associated to the resumption of the waiting task.

Example 2. Let us consider again the derivation in Sec. 3. We have the fol-
lowing blocking interval (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24) ∈ St1 with St1 ≡
(S1, table1), since tcl,wakeup,21 ∈ table1, status(tcl,wakeup,21, table1) = [24:f.block],
(f, ba, cuts, 12) ∈ St1 and tba,cuts,12 6∈ table1. This blocking interval captures the
fact that the task at tcl,wakeup,21 is blocked waiting for task cuts to terminate.
Similarly, we have the following two intervals in St4: (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) and (tch,taken,15, tcl,sits,25, tch,taken,17).

The following notion of deadlock chain relies on the waiting/blocking intervals
of Def. 1 in order to characterize chains of calls in which intuitively each task is
waiting for the next one to terminate until the last one which is waiting on the
termination of a task executing on the initial location (that is blocked). Given
a time identifier t, we use loc(t) to obtain its associated location identifier.

Definition 2 (Deadlock Chain). Let St = (S, table) be a state. A chain of
time identifiers t0, ..., tn is a deadlock chain in St, written as dc(t0, ..., tn) iff ∀ti ∈
{t0, ..., tn−1} s.t. (ti, t

′
i+1, next(ti))∈St one of the following conditions holds:

1. ti+1 ∈ suc(t′i+1, table), or

2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking.

and for tn, we have that tn+1 ≡ t0, and condition 2 holds.
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Let us explain the two conditions in the above definition: In condition (1), we
check that when a task ti is waiting for another task to terminate, the waiting
interval contains the initial time t′i+1 in which the task will be selected. However,
we look for any waiting interval for this task ti+1 (thus we check that ti+1 is a
successor of time t′i+1). As in Def. 2, this is because such task may have started
its execution and then suspended due to a subsequent await/block instruction.
Abusing terminology, we use the time identifier to refer to the task executing. In
condition (2), we capture deadlock chains which occur when a task ti is waiting
on the termination of another task t′i+1 which executes on a location loc(t′i+1)
which is blocked. The fact that is blocked is captured by checking that there is a
blocking interval from a task ti+1 executing on this location. Finally, note that
the circularity of the chain, since we require that tn+1 ≡ t0.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if
and only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations. Cor-
rectness proofs can be found in the Appendix. We prove that our definition of
deadlock is equivalent to the standard definition of deadlock in [11, 9].

Example 3. Following Ex. 1, St4 is a deadlock state since there exists a deadlock
chain dc(tcl,wakeup,21, tba,sleeps,9, tch,taken,15). For the second element in the chain
tba,sleeps,9, condition 1 holds as (tba,sleeps,9, tch,taken,15, tba,sleeps,11) ∈ St4 and
tch,taken,15 ∈ suc(tch,taken,15, table4). For the first element tcl,wakeup,21, condition
2 holds since (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24)∈St4 and (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) is blocking. Condition 2 holds analogously for tch,taken,15.

5 Combining Static Deadlock Analysis and Testing

This section proposes a deadlock detection methodology that combines static
analysis and testing as follows. First, a state-of-the-art deadlock analysis is run,
in particular that of [11], which provides a set of abstractions of potential dead-
lock cycles. If the set is empty, then the program is deadlock-free. Otherwise,
using the inferred set of deadlock cycles, we test the program using our en-
hanced semantics with two goals: (1) finding concrete deadlock traces associated
to the different cycles, and, (2) discarding deadlock cycles, and in case all cycles
are discarded, ensure deadlock freedom for the considered input or, in our case,
for the main method under test.

5.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [11] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. Three kinds of arrows can be distinguished, namely,
task-task (a task is awaiting for the termination of another one), task-location
(a task is awaiting for a location to be idle) and location-task (the location is
blocked due the task). Location-location arrows cannot happen. The abstrac-
tions for tasks and locations can be performed at different levels of accuracy
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during the analysis: the simple abstraction that we will use for our formalization
abstracts each concrete location o by the program point at which it is created
opp, and each task by the method name executing. They are abstractions since
there could be many locations created at the same program point and many
tasks executing the same method. Both the analysis and the semantics can be
made object-sensitive [3] by keeping the k ancestor abstract locations (where k
is a parameter of the analysis). For the sake of simplicity of the presentation, we
assume k = 0 in the formalization (our implementation uses k = 1).

Example 4. In our working example there are three abstract locations, o2, o3

and o4, corresponding to locations barber, client and chair, created at lines 2, 3
and 4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean. The

following cycle is inferred by the deadlock analysis: o2
11:sleeps−−−−−−→ taken

17:taken−−−−−→
sits

25:sits−−−−→ o3
24:wakeup−−−−−−−→ cuts

12:cuts−−−−→ o2. The first arrow captures that the location
created at L2 is blocked waiting for the termination of task taken because of the
synchronization at L11 of task sleeps. Observe that cycles contain dependencies
also between tasks, like the second arrow, where we capture that taken is waiting
for sits. Also, a dependency between a task (e.g., sits) and a location (e.g., o3)
captures that the task is trying to execute on that (possibly) blocked location.
Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies
arise, and in particular the interleavings scheduled to lead to this situation.

5.2 Guiding Testing towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the
execution towards paths that might contain a representative of that abstract
deadlock cycle, by discarding paths that are guaranteed not to contain such a
representative. The main idea is as follows: (1) From the abstract deadlock cycle,
we generate deadlock-cycle constraints, which must hold in all states of deriva-
tions leading to the given deadlock cycle. (2) We extend the execution semantics
to support deadlock-cycle constraints, with the aim of stopping derivations as
soon as cycle-constraints are not satisfied. Uppercase letters in constraints de-
note variables to allow representing incomplete information.

Definition 3 (Deadlock-cycle constraints). Given a state St = (S, table),
a deadlock-cycle constraint takes one of the following three forms:

1. ∃tO,T,PP 7→ 〈N, ρ〉, which means that there exists or will exist an entry of
this form in table (time constraint)

2. ∃fut(F,O ,Tk , p), which means that there exists or will exist a future variable
of this form in S (fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function φ computes the set of deadlock-cycle constraints associ-
ated to a given abstract deadlock cycle.
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Definition 4 (Generation of deadlock-cycle constraints). Given an ab-

stract deadlock cycle e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ . . .
pn:tkn−−−−→ e1, and two fresh variables

Oi,Tk i, φ is defined as φ(ei
pi:tki−−−→ ej

pj :tkj−−−−→ . . . ,Oi,Tk i) =

{
{∃tOi,Tki, 7→〈 , sync(pi,Fi)〉, ∃fut(Fi,Oj ,Tk j , pj)} ∪ φ(ej

pj :tkj−−−−→ . . . ,Oj ,Tk j) if ej=tk j

{pending(Tk i)} ∪ φ(ej
pj :tkj−−−−→ . . . ,Oi,Tk j) if ej = o

Notation sync(pi, Fi) is a shortcut for pi:Fi.block or pi:Fi.await. Uppercase let-
ters appearing for the first time in the constraints are fresh variables. The first
case handles location-task and task-task arrows (since ej is a task abstraction),
whereas the second case handles task-location arrows (ej is an abstract location).
Let us observe the following: (1) The abstract location and task identifiers of
the abstract cycle are not used to produce the constraints. This is because con-
straints refer to concrete identifiers. Even if the cycle contains the same identifier
on two different nodes or arrows, the corresponding variables in the constraints
cannot be bound (i.e., we cannot use the same variables) since they could refer
to different concrete identifiers. (2) The program points of the cycle (pi and pj)
are used in time and fut constraints. (3) Location and task identifier variables of
fut constraints and subsequent time or pending constraints are bound (i.e., the
same variables are used). This is done using the 2nd and 3rd parameters of func-
tion φ. (4) In the second case, Tk j is a fresh variable since the location executing
Tk i can be blocked due to a (possibly) different task. Intuitively, deadlock-cycle
constraints characterize all possible deadlock chains representing the given cycle.

Example 5. The following deadlock-cycle constraints are computed for the cycle
in Ex. 4: { ∃tO1,Tk1, 7→ 〈 , 11:F1.block〉, ∃ fut(F1,O2,Tk2, 15), ∃tO2,Tk2, 7→〈 ,
17:F2.await〉,∃ fut(F2,O3,Tk3, 25), pending(Tk3), ∃tO3,Tk4, 7→〈 , 24:F3.block〉,
∃fut(F3,O4,Tk5, 12), pending(Tk5)}. They are shown in the order in which they
are computed by φ. The first four constraints require table to contain a concrete
time in which some barber sleeps waiting at L11 for a certain chair to be taken at
L15 and, during another concrete time, this one waits at L17 for a certain client
to sit at L25. The client is not allowed to sit by the 5th constraint. Furthermore,
the last three constraints require a concrete time in which this client waits at
L24 to get a haircut by some barber at L12 and that haircut is never performed.
Note that, in order to preserve completeness, we are not binding the first and
the second barber. If the example is generalized with several clients and barbers,
there could be a deadlock in which a barber waits for a client which waits for
another barber and client, so that the last one waits to get a haircut by the
first one. This deadlock would not be found if the two barbers are bound in the
constraints (i.e., if we use the same variable name). In other words, we have to
account for deadlocks which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle con-
straints for the given cycle, with the aim of stopping derivations at states that
do not satisfy the constraints. The following boolean function checkC checks the
satisfiability of the constraints at a given state.

11



Definition 5. Given a set of deadlock-cycle constraints C, and a state St =
(S, table), check holds, written checkC(St), if ∀tOi,Tki,PP 7→ 〈N, sync(pi, Fi)〉 ∈
C, fut(Fi,Oj ,Tk j , pj) ∈ C, one of the following conditions holds:

1. reachable(tOi,Tki,pi
, S)

2. ∃toi,tki,pp 7→ 〈n, sync(pi, fi)〉 ∈ table ∧ fut(fi, oj , tk j , pj) ∈ S ∧
(pending(Tk j) ∈ C⇒ getTskSeq(tk j , S) 6= ε)

Function reachable checks whether a given task might arise in subsequent states.
We over-approximate it syntactically by computing the transitive call relations
from all tasks in the queues of all locations in S. Precision could be improved us-
ing more advanced analyses. Function getTskSeq gets from the state the sequence
of instructions to be executed by a task (which is ε if the task has terminated).
Intuitively, check does not hold if there is at least a time constraint so that: (i) its
time identifier is not reachable, and, (ii) in the case that the interleavings table
contains entries matching it, for each one, there is an associated future variable
in the state and a pending constraint for its associated task which is violated,
i.e., the associated task has finished. The first condition (i) implies that there
cannot be more representatives of the given abstract cycle in subsequent states,
therefore if there are potential deadlock cycles, the associated time identifiers
must be in the interleavings table. The second condition (ii) implies that, for
each concrete potential cycle in the state, there is no deadlock chain since at
least one of the blocking tasks has finished. This means there cannot be deriva-
tions from this state leading to the given deadlock cycle, therefore this derivation
can be stopped. Function checkC is used in the semantics to prune deadlock-free
derivations as showed in Figure 3.

The following definition presents the notion of deadlock-cycle guided testing.

Definition 6 (Deadlock-cycle guided-testing (DCGT)). Consider an ab-
stract deadlock cycle c, and an initial state St0. Let C = φ(c,Oinit,Tk init) with
Oinit,Tk init fresh variables. We define DCGT, written execc(St0), as the set
{d : d ∈ exec(St0), deadlock(Stn)}, where Stn is the last state in d.

Example 6. Let us consider the DCGT of our working example with the deadlock-
cycle of Ex. 4, and hence with the constraints C of Ex. 5. The interleavings table
at St5 contains the entries tini,main,1 7→〈1, return〉, tcl,wakeup,21 7→〈2, 24:f0.block〉
and tba,cuts,12 7→〈3, return〉}. checkC does not hold since tO1,Tk1,24 is not reach-
able from St5 and constraint pending(Tk5) is violated (task cuts has already
finished at this point). The derivation is hence pruned. Similarly, the rightmost
derivation is stopped at St11. Also, derivations at St4, St8 and St10 are stopped
by function deadlock of Th. 1. Our deadlock guided testing methodology gener-
ates 16 states instead of the 181 generated by the standard exhaustive execution.

Theorem 2 (Soundness). Given a program P, a set of abstract cycles C in P
and an initial state St0, ∀d ∈ exec(St0) if d is a derivation whose last state is
deadlock, then ∃c ∈ C such that d ∈ execc(St0).
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5.3 Deadlock-based Testing Criteria

In the application of testing for deadlock detection, and in a general setting
where there could arise many potential deadlock cycles, the following practical
questions arise: is a user interested in just finding the first deadlock trace? or do
we rather need to obtain all deadlock traces? For the purpose of the programmer
to identify and fix the sources of the deadlock error(s), it could be more useful to
find a deadlock trace per abstract deadlock cycle. This is the kind of questions
that test adequacy criteria answer. Using our methodology, we are able to provide
the following deadlock-based adequacy criteria:

– first-deadlock, which requires exercising at least one deadlock execution,
– all-deadlocks, which requires exercising all deadlock executions,
– deadlock-per-cycle, which, for each abstract deadlock cycle, requires exercis-

ing at least one deadlock execution representing the given cycle (if exists)

We have developed concrete testing schemes for each criteria above relying on our
DCGT methodology. For first-deadlock, DCGT is called for each abstract dead-
lock cycle until finding the first deadlock. For both all-deadlocks and deadlock-
per-cycle, DCGT is also called for each abstract cycle, but with the difference
that the different DCGTs can be run in parallel since they are completely in-
dependent. In the case of deadlock-per-cycle, each DCGT finishes as soon as
a deadlock representing the corresponding cycle is found. It can also be very
practical to set a time-limit per DCGT to prevent that the state explosion on a
certain DCGT degrades the efficiency of the whole exploration.

6 Experimental Evaluation

We have implemented our approach within the tool aPET [5], a test case gen-
erator for concurrent objects which is available at http://costa.ls.fi.upm.es/apet,
where the benchmarks in this paper can also be found. Concurrent objects com-
municate via asynchronous method calls and use await and block, resp., as instruc-
tions for non-blocking and blocking synchronization. Therefore, the language in
Sec. 2 fully captures their concurrency model. This section summarizes our ex-
perimental results which have been performed using as benchmarks: (i) classical
concurrency patterns containing deadlocks, namely SB is an extension of the
sleeping barber with several clients, UL is a loop that creates asynchronous
tasks and locations, PA the pairing problem, FA is a distributed factorial, WM
making a water molecule, HB the hungry birds problem, and, (ii) deadlock free
versions of some of the above, named fX for the X problem, for which deadlock
analyzers give false positives. We include here a peer-to-peer system P2P.

Table 1 shows the results obtained using three different settings: (1) the first
set of columns Exh corresponds to building the whole search tree, (2) the second
to the first-deadlock criterion, and (3) the third to the deadlock-per-cycle criterion.
For each setting i, we measure the total time taken (column Ti) and the number
of states generated (column Si). Column Ans contains the solutions obtained by
the whole execution tree. Column D/F/C in the third setting shows “number of
deadlock executions”/“number of unfeasible cycles”/“number of abstract cycles”
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(1) Exh (2) first-deadlock (3) deadlock-per-cycle S-up

Bm. Ans T1 S1 T2 S2 D/F/C T3 TMax S3 SMax Tup Sup

SB 103k ∞ >584k 62 23 1/0/1 59 11 23 23 ∞ ∞
UL 90k ∞ >489k 150 5 1/0/1 133 3 5 5 ∞ ∞
PA 121k ∞ >329k 40 6 2/0/2 42 4 12 6 ∞ ∞
WM 82k ∞ >380k 248 15 1/0/2 ∞ ∞ >258k >258k - -
HB 35k 32k 114k 82 15 2/3/5 44k 15k 103k 34k 2.15 3.33
FA 11k 11k 41k 786 1k 2/1/3 2k 759 3k 2k 15.07 22.19

fFA 5k 7k 25k 5k 11k 0/1/1 5k 5k 11k 11k 1.61 2.35
fP2P 25k 66k 118k 34k 52k 0/1/1 34k 34k 52k 52k 1.96 2.28
fUL 102k ∞ >527k 435 236 0/1/1 410 230 236 236 ∞ ∞
fPA 7k 7k 30k 4k 9k 0/2/2 4k 2k 9k 4k 3.73 6.98

Table 1. Experimental evaluation

found by the analysis. For instance, for HB we have 2/3/5 that shows that the
analysis has found five abstract cycles, but we only found a deadlock execution
for two of them, therefore 3 of them were unfeasible. Since the DCGTs in setting
3 can be performed in parallel, columns Tmax and Smax show the maximum time
and number of states measured among all of them. Columns in S-up show the
gain of setting 3 w.r.t. 1 computed as Tup = T1/Tmax (the gain is ∞ when T1
is ∞ and Tmax is not, or none “−” when Tmax is ∞ too), and analogously for
states. Times are in milliseconds and are obtained on an Intel(R) Core(TM) i7
CPU at 2.3GHz with 8GB of RAM, running Mac OS X 10.8.5. A timeout of
150.000ms (written 150k) is used. When the timeout is reached we write ∞.

When comparing setting 2 w.r.t. 1, we see that, if the program features a
deadlock, our guided-testing is very effective, e.g., by just exploring 6 states in
40ms the deadlock is found in PA. When the program is deadlock free, we need
to explore the whole execution also in setting 2. Although the (spurious) infor-
mation provided by the analysis does not allow much pruning in these cases,
still there is a notable gain (e.g., in fPA we explore about one third of the states
explored in setting 1 and the time is almost halved). Importantly, we are able
to prove deadlock freedom in all examples while exhaustive exploration times
out in fUL. As regards setting 3, we achieve significant gains w.r.t. exhaustive
exploration for deadlock-free examples (e.g., by just exploring 23 states in SB
we found one representative per cycle in 59ms. while setting 1 times out). The
gains are much larger in the examples in which the deadlock analysis does not
give false positives (namely, in SB, UL, PA). For WM, we have failed to find
a representative of a potential cycle within the timeout. This is because ev-
ery abstract cycle produces different constraints, some of them allow important
pruning during testing as they impose very restrictive conditions, whereas others
can hardly guide because most of derivations fulfill the constraints. When this
happens, the number of states explored is slightly smaller than with exhaustive
execution. However, when we consider that each DCGT is computed in parallel
for each cycle (columns S-up), we achieve further gains (in SB, UL, HB and PA
we decrease the time notably) and in WP we perform slightly better than in set-
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ting 1. Finally, for the examples that are deadlock free, the number of explored
states for settings 2 and 3 is the same. This is because in order to ensure that
a deadlock representative cannot be found, it is necessary to make exhaustive
exploration with every abstract cycle. All in all, we argue that our experiments
show that our methodology is very effective for programs that contain deadlock,
and it is able also to prove deadlock freedom for some cases in which a static
analysis reports false positives.

7 Conclusions and Related Work

There is a large body of work on deadlock detection including both dynamic
and static approaches. Much of the existing work, both for asynchronous pro-
grams [11, 12, 9] and thread-based programs [16, 18], is based on static analysis
techniques. Static analysis can ensure the absence of errors, however it works
on approximations (especially for handling iteration and pointer aliasing) which
might lead to a “don’t know” answer. Our work complements static analysis
techniques and can be used to look for deadlock paths when static analysis is
not able to prove the absence of deadlock. Using our method, if there might
be a deadlock, we try to find it by exploring the paths given by our deadlock
detection algorithm that relies on the static information.

Deadlock detection has been also studied in the context of dynamic testing
and model checking [15, 14, 8, 7], where sometimes has been combined with static
information [13, 2]. As regards combined approaches, the approach in [13] first
performs a transformation of the program into a trace program that only keeps
the instructions that are relevant for deadlock and then dynamic testing is per-
formed on such program. The approach is fundamentally different from ours: in
their case, since model checking is performed on the trace program (that over-
approximates the deadlock behaviour), this method can detect deadlocks that do
not exist in the program, while in our case this is not possible since the testing is
performed on the original program and the analysis information is only used to
drive the execution. In [2], the information inferred from a type system is used to
accelerate the detection of potential cycles. This work shares with our work that
information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for
Java threads captures deadlocks due to the use of locks and cannot handle wait-
notify, while our technique is not developed for specific patterns but rather works
on a general characterization of deadlock of asynchronous programs; their un-
derlying static analysis is a type inference algorithm which infers deadlock types
and the checking algorithm needs to understand these types to take advantage
of them, while we base our method on an analysis which infers descriptions of
chains of tasks and a formal semantics is enriched to interpret them; additional
contributions of our work are the deadlock-based testing criteria.

Finally, although we have presented our technique in the context of dynamic
testing, our approach would be applicable also in static testing where the execu-
tion is performed on constraints variables rather than on concrete values. This
extension will require the use of termination criteria which provide the desired
degree of coverage. This remains as subject for future research.
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8 Appendix

Proof (Proof of Theorem 1).
Given a program state St = (S, table), its dependency graph GS and its

abstract dependency graph G are formalized in [11]. Let us define the function γ
that transforms a sequence of times that each of them fulfills (1) or (2) in Def. 2
into a path in GS .

Definition 7 (γ). Given a state St=(S, table) and a sequence of times {t0, ..., tn}
in St, satisfying (1) or (2) in Def. 2. The one-to-one function γ({t0, ...tn})=e1→e2
→· · ·→en in GS is defined as follows:

γ({t0, ..., tn})=
{
{loc(t0)→ tsk(t1)} ∪ γtk({t1, ..., tn}) if t0 holds (1)
{loc(t0)→ tsk(t′1)→ loc(t′1)} ∪ γ({t1, ..., tn}) if t0 holds (2)∧¬(1)

where γtk is the following auxiliar function:

γtk({t0, ..., tn})=
{
{tsk(t0)→ tsk(t1)} ∪ γtk({t1, ..., tn}) if t0 holds (1)
{tsk(t0)→ tsk(t′1)→ loc(t′1)} ∪ γ({t1, ..., tn}) if t0 holds (2)∧¬(1)

We need to distinguish between functions γ and γtk, as in [11], a location blocked
in a task could be represented in GS by both the location identifier and the
blocked task identifier, depending on the previous context. The intuition of func-
tion γ (γtk) is: given a sequence of times {t0, ..., tn} ∈ St, we define a path whose
edges are obtained as follows: ∀ti ∈ {t0, .., tn} such that (ti, t

′
i+1, next(ti)) ∈ St.

if (1) is held, then there exists an edge t-t between tsk(ti) and tsk(ti+1) (an edge
edge o-t between loc(ti) and tsk(ti+1)), as tsk(t′i+1) = tsk(ti+1) by definition
of function suc. On the other hand, if 2 and ¬1 are held, then there exist two
edges in GS : an edge t-o between tsk(t′i+1) and loc(t′i+1), as this task belongs
to a location which is blocked and an edge t-t (edge o-t), between tsk(ti) and
tsk(t′i+1), (between loc(ti) and tsk(t′i+1)).

Lemma 1 ([3]). Let S be a reachable state and Gtt
S the dependencies graph

taking only task-task dependencies. If future variables cannot be stored in fields,
Gtt

S is acyclic.

Theorem 3 (equivalence). Let St be a program state,

∃ dc({t0, ..., tn}) ∈ St⇐⇒ ∃ cycle γ({t0, ..., tn}) ∈ GS

Proof.
⇒ . Let dc({t0, ..., tn}) be a deadlock chain, then we could apply the function
γ, as ∀ti ∈ {t0, ..., tn}, ti satisfies (1) or (2). So, we obtain a path in GS and
using the last condition in Def. 2, both γ({tn}) and γtk({tn}) add the edge
tk(t′0)→ loc(t0) causing the path becomes a cycle.
⇐. Given a cycle in GS , by the lemma 1 , this one contains at least one object
node, which is required by the function γ. Now, This case is analogous to the
previous one.
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The proof of Theorem 2 relies on the soundness of both the points-to and the
deadlock analyses that we state below. We first define an auxiliary operation
that performs the union between to disjunct partial maps:

Definition 8 (l+a). Let l and a be two partial maps such that dom(l)∩dom(a) =
∅:
– (l + a)(x) = l(x) iff x ∈ dom(l)
– (l + a)(x) = a(x) iff x ∈ dom(a)

Definition 9 (points-to soundness [3]). Soundness of the points-to analysis
amounts to requiring the existence a partial map α, that maps location and task
identifiers to corresponding abstract ones, such that for any task tsk(tk ,m, o, l, s),
where o is the object identifier that executes the task tk, and location loc(o, tkh,Q)
in any reachable state S, we have that:

1. α(tk) = α(o).m
2. Let x be an location variable x ∈ dom(l + h), if α((l + h)(x)) = ob then

ob ∈ A(α(o), pp(s), x).
3. Let x be future variable, x∈dom(l+h), (l+h)(x)=tk2 and tsk(tk2,m2, o2, l2, ε(v))∈T

(i.e., x is a variable that points to a finished task). Then, given α(tk2) = tk ,
either the task identifier or the ready task identifier belong to the points-to
result. {tk , tkr} ∩ A(α(o), pp(s), x) 6= ∅.

4. Let x be future variable, x ∈ dom(l+h), (l+h)(x) = tk2, tsk(tk2,m2, o2, l2, s2) ∈
T and s2 6= ε(v) (i.e., the pointed task tk2 is not finished). Then, given
α(tk2)=tk , the task identifier belongs to the points-to result, tk∈A(α(o), pp(s), x).

Let α be the extension of α over the paths in Gs that applies the function α
in every node contained by the path.

Definition 10 (deadlock soundness [3]). Let S be a reachable state. If there

is a cycle γ = e1 → e2 → · · · → e1 in GS, then α(γ) = α(e1)
p1:tk1−−−−→ α(e2)

p2:tk2−−−−→
· · · pn:tkn−−−−→ α(e1) is an abstract cycle of G.

Lemma 2. Given an initial state St0 and an abstract cycle c, ∀d ∈ exec(St0),
d ≡ St0 −→∗ Stn, if ∃ dc({t0, ..., tn}) ∈ Stn such that α◦γ({t0, ..., tn}) ∈ c, then
d ∈ execc(St0).

Proof. By contradiction, let us suppose that ∃d ∈ exec(St0) and d 6∈ execc(St0).
Hence, ∃Sti ∈ d such that checkC(Sti) returns false and, consequently, the deriva-
tion St0 −→∗ Sti stops, where C = φ(c,O ,Tk) and O ,Tk are fresh variables.
Therefore, at Sti ∃{tOi,Tki,PP 7→ 〈N, sync(pi, Fi)〉 ∈ C, fut(Fi,Oj ,Tk j , pj)} ⊂ C
doesn’t hold neither (1) nor (2) in Def. 5. However, this cannot happen, as C
imposes necessary constraints for the existence of some representative of c and
Stn contains a cycle that is representative of c, then (1) or (2) must be fulfilled
in every state of d. As a result, we get a contradiction.

Proof (Proof of Theorem 2). If the last state is deadlock, then ∃dc({t0, ..., tn})∈Stn,
by Th. 1. Using the soundness of deadlock analysis over the cycle γ({t0, ..., tn}),
the existence of c is ensured. Now, by Lemma 2, we obtain the result.
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