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Executive Summary:
Formalisation of Service Contracts and SLAs (Final Report)

This document summarises deliverable D2.2.2 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable reports the final outcome of Task T2.2, where the gap between (parts of) SLAs and
services is bridged by

(i) developing a formal language for modelling SLA documents,

(ii) providing behavioural interfaces with quality of services descriptions that address virtualised resources
and deployment models and

(iii) defining techniques to assess the compatibility between SLAs and service contracts.
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Chapter 1

Introduction

1.1 Objectives

In Cloud Services and in Web Services, in general, resource provisioning is defined by means of legal contracts
agreed upon by service providers and customers, called service level agreements – SLA. Legal contracts
usually include measurement methods and scales that are used to set the boundaries and margins of errors
that apply to the behaviour of the service, as well as the legal requirements under different jurisdictions. The
SLA documents have no standardised format nor terminology, and do not abide by any precise definition,
notwithstanding some recent attempts towards standardisation – see [2] and the references therein.

Because of this informal nature, there is a significant gap between SLAs and the corresponding services
whose quality levels they constrain. As a consequence, SLAs are currently not integrated in the software
artefacts, and assessing whether a service complies with an SLA or not is always a point of concern. As a
consequence, providers very often over-provide resources to services, in order to avoid legal disputes, with
the result of wasting resources and making services more expensive.

This deliverable, as anticipated in the Envisage DOW, reports the final outcome of Task T2.2, where the
gap between (parts of) SLAs and services is bridged by

(i) developing a formal language for modelling SLA documents,

(ii) providing behavioural interfaces with quality of services (QoS) descriptions that address virtualised
resources and deployment models, and

(iii) defining techniques to assess the compatibility between SLAs and service contracts.

To reach goal (i) we make use of simple formal descriptions of SLAs in terms of metric functions suitable
to cover the specific Envisage case studies. We also address the (re)design, the (re)negotiation and/or
termination, and the monitoring of SLAs within the dynamic context of changing business objectives and
resource availability. Regarding goals (ii) and (iii), we define a mathematical framework that is able either
to derive the SLA quality levels from the service programs and to verify possible violations, or to monitor
service behaviours and document SLA quality level mismatches. In particular, we provide behavioural
interfaces that take into account notions such as performance, delivery time, usage of computing resources,
etc. Goal (iii) will precisely define the part of an SLA that may be statically verified to be compatible with
a service contract, and the part that must be enforced by ad hoc monitoring add-ons defined in Task T2.3.
Additionally, given the executable models of ENVISAGE services, all the above goals will be amenable to
automatic verification and validation using the analysis techniques developed in WP3.

Among the properties whose qualities are constrained by SLA documents [12], we focus on performance
by analysing the objectives that set the boundaries and margins of errors of service’s behaviours. In Section 2,
these objectives are formalised in terms of metric functions. Having at hand these functions, we address the
problem to verify whether a given service complies with them or not. Two techniques are developed for
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verifying performance properties of services: the static techniques (discussed in Section 3) and the runtime
ones (which are responsibility of D2.3.2).

In static techniques, the compliance of a service with respect to a metric function is shown by means
of analysis tools that either directly verify the code (static analysis), or an underlying mathematical model
(model checking, simulation, etc.). Whenever the service does not comply with the metric function, the
designer triggers a sequence of code refinements that lead to compliance. As an example, consider resource
capacity that measures how much a critical resource is used by a service. Section 3 reports a static anal-
ysis technique that uses so-called behavioural types. These behavioural types are abstract descriptions of
programs that support compositional reasoning and that retain the necessary information to derive resource
usage. By means of behavioural types, we use either a cost equation evaluator – the solver systems [8, 1] – or
a theorem prover – the KeY system [3] – to prove compliance with the SLA. For instance, we demonstrate
that the response time of a given method does not exceed a certain user-defined threshold.

In runtime techniques, the enforcement of properties is accomplished by using code that is external to
the service and that continuously monitors it. In fact, there are (performance) metric functions that cannot
be (even in principle) fully verified statically, due to factors under external control, such as the requests
per minute by end users and failing machines in the underlying infrastructure. As an example, consider the
percentage of successful requests, namely the number of requests processed by the service without a failure
due to its infrastructure over the total number of received requests. In D2.3.2, we will report a technique
based on an external monitoring system that filters service’s replies, counts them, and records the erroneous
ones. The correctness of the composite system consisting of the service and monitoring code is established
by means of either static analysis techniques or model checking.

Figure 1.1 describes the flow of analysis techniques used in our approach. A feedback loop ensures
corrections and improvements to the system. In particular, if the static analysis reports that a service does

SLA

Resource 
Configuration

Service 
Metrics

Monitor  
Add-on

Static  
Analysis

Runtime 
Analysis

Figure 1.1: Analysis Flow: Resource Configuration refers to the configuration of resource types that are used
for the service; Service Metrics denotes the set of metrics that define the quality of the service. The dashed
lines present a feedback loop to a previous phase of analysis.

not match an SLA constraint, then, during the negotiation phase that constraint can be either relaxed or
the resource configuration can be extended accordingly (with a possible charge for the client). Similarly,
if a monitoring system verifies a runtime violation of an SLA constraint then, in order to avoid expensive
penalties, the service providers trigger the resource configuration system to increase the resources of the
services.

1.2 List of Papers Comprising Deliverable D2.2.2

This section lists all the papers that this deliverable comprises, indicates where they were published, and
explains how each paper is related to the main text of this deliverable. The full papers are made available in
the appendix of this deliverable and on the Envisage web site at the url http://www.envisage-project.eu/
(select “Dissemination”).
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Paper 1: Statically and Dynamically verifiable SLA metrics There is a gap between runtime service
behaviours and the contracted quality expectations with the customers that is due to the informal nature of
service level agreements. This paper explains how to bridge the gap by formalising service level agreements
with metric functions. We therefore discuss an end-to-end analysis flow that can either statically verify
whether a service code complies with a metric function or use runtime monitoring systems to report possible
misbehaviours. In both cases, our approach provides a feedback loop to fix and improve the metrics and
eventually the resource configurations of the service itself.

The paper was written by Elena Giachino, Stijn de Gouw, Cosimo Laneve and Behrooz Nobakht. The
paper is accepted and will appear in the book “Theory and Practice of Formal Methods” (volume 9660 of the
Lecture Notes on Computer Science).

Paper 2: Static analysis of cloud elasticity This paper proposes a static analysis technique that
computes upper bounds of virtual machine usages in a ABS-like language with explicit acquire and release
operations of virtual machines. In particular, the language admits delegation of virtual machine releasing
operations (by passing them as arguments of invocations). The technique is modular and consists of (i) a
type system associating programs with behavioural types that records relevant information for resource usage
(creations, releases, and concurrent operations), (ii) a translation function that takes behavioural types and
returns cost equations, and (iii) an automatic solver for the the cost equations.

The paper was written by Abel Garcia, Cosimo Laneve and Michael Lienhardt. The paper has been
presented at the conference PPDP 2015 and appeared in the proceedings of the conference. A longer and
revised version with proofs has been submitted to a journal.

Paper 3: Time complexity of concurrent programs This paper presents our approach to the problem
of automatically computing the time complexity of concurrent object-oriented programs. To determine this
complexity we use intermediate abstract descriptions that record relevant information for the time analysis
(cost of statements, creations of objects, and concurrent operations), by means of behavioural types. Then,
we define a translation function that takes behavioural types and makes the parallelism explicit into so-called
cost equations, which are fed to an automatic off-the-shelf solver for obtaining the time complexity.

The paper was written by Elena Giachino, Einar Broch Johnsen, Cosimo Laneve, and Ka I Pun. The
paper has been presented at the conference FACS 2015 and appeared in the post-proceedings of the confer-
ence.
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Chapter 2

Formalisation of SLA Metrics

In the “Cloud Service Level Agreement Standardisation Guidelines” document [12], the qualities of services
are assessed with SLAs according to the properties they have, which range from performance to security
and to data management. In this deliverable, we focus on performance. We discuss how performance can be
formalised and evaluated on the source code level.

2.1 Performance Metrics, Informally

The article [12] distinguishes three kinds of performance properties: availability, response time, and capacity.
Availability is the property of a service to be accessible and usable on demand. By detailing the notion of
“usability”, one gets different instances of availability and corresponding service metrics. For instance (i) level
of uptime, is the time in a defined period the service is up, over the total possible available time; (ii) percentage
of successful requests, is the number of requests processed without an error over the total number of submitted
requests; (iii) percentage of timely service provisioning requests, is the number of service provisioning requests
completed within a defined time period over the total number of service provisioning requests. Response
time is the time period between a client request event and a service response event. The service metrics that
are used to constrain response time may return either an average time or a maximum time, given a particular
kind of request. Capacity is the maximum amount of some resource used by a service. It also includes the
service throughput metric, namely the minimum number of requests that can be processed by a service in a
stated time period.

The example below is taken from the FRH case study and discusses its corresponding SLA constraints
about performance. The next section formalises the involved metrics and we show how to verify/enforce
them in the rest of the deliverable.

Example 1 SDL-Fredhopper offers search and targeting facilities on large product databases over cloud com-
puting architectures to e-commerce companies. The offered services are exposed at endpoints and are typically
implemented to accept connections over HTTP. For example, a query API allows users to query over a prod-
uct catalog. Assume that the query API is implemented by means of a number of resources (virtual machines)
that are managed in a mutual exclusive way by a load balancer (each resource is launched to serve exactly one
instance of the query API). When an e-commerce company signs the SLA contract with the Cloud Service
company, the performance properties of the query API are constrained by the following metrics:

– 95% of requests is completed within 1 minute, 2 additional percentage points within 3 minutes and 1
additional percentage points within 5 minutes. This is the “percentage of timely service provisioning
requests” metric and it is used by the operations team of the Cloud Service company to set up an
environment for the customer that includes the necessary resources to match the constraints. It is
additionally used by the support team of the Cloud Service company to manage communications with
the customer during the lifetime of the service for the customer.
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– the service completes 8 queries per minute from 9:00 to 18:00 and 4 queries per minute otherwise. This
is a service throughput metric and forms the basis of many decisions (technical or legal) thereafter, such
as the definition of the necessary resources for the e-commerce company.

– the service replies to a query request (with the result or with a failure) within 7 minutes. This is a
response time metric and may be determined by the database size as well as by the size of the data
managed by the query service.

2.2 Performance Metrics, Formally

To determine the precise level of a metric, and verify whether the service matches the agreed levels, an
indisputable formalisation is needed, rather than the informal descriptions in the previous section. There
have been several attempts to formalise SLAs, using techniques ranging from semantic annotations [14], to
rewriting logics [16] and to constraint programming [4]. In this deliverable, following [15], we present a very
simple formalisation based on service metric functions.

Service metric functions aggregate a set of basic measurements into a single number that indicates the
quality of a certain service characteristic. For instance µ(τ) and ν(τ, δ) are two functions that respectively
take one and two inputs, where

– τ is an interval of the form [d.t, d′.t′], where d, d′ are days (d, d′ ∈ {1, . . . , 366}) and t, t′ are seconds
in the day (t, t′ ∈ {0, . . . , 86399});

– δ can be an upper bound to the size in bytes of client’s requests, a time bound for getting a reply, or
an upper bound to the number of resources used by the service.

We formalise now the informally defined performance metrics from Example 1. In particular,

– the percentage of timely service provisioning requests of a service s can be formalised by the following
function PTSs:

PTSs([1.0, 366.86399], x) =





0, 95 if x = 60s
0, 97 if x = 180s
0, 98 if x = 300s

– the service throughput of a service s can be formalised by the function STs as follows:

STs([1.t, 366.t′], 60) =





4 if t = 0 and t′ = 32399
8 if t = 32400 and t′ = 64800
4 if t = 64801 and t′ = 86399

– the response time of a service s can be defined by the following function RTs:

RTs([1.0, 366.86399]) = 420s

2.3 Composite Metrics

SLA documents may contain (performance) metrics that are not directly defined in terms of those described
so far but are a composition of them. We discuss an example taken from the ATB case study.

Example 2 A mobile search app provides mobile offline search by means of on-device search indices that are
built and distributed by a cloud service. A primary motivations for mobile offline search, besides increasing
search availability and strengthen user privacy, is to reduce search latency by using consistently fast on-device
storage rather than accessing mobile and Wi-Fi network with highly variable latency. As a consequence, the
most relevant aspect for evaluating the quality of the provided service is the freshness of index data on the
mobile device. This property specifies time-related guarantees about the interval between the publication of a
document in the cloud and its indexing and availability on the mobile device.
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The metric freshness of index data on the mobile device, noted FID, actually is the sum of the response
time RTs and the delivery time DTs, namely the time to transfer the data to the devices. This last metric
DTs depends on the data size of the response and the available bandwidth. While the data size δ is a
parameter, the bandwidth metric B(τ) is another basic capacity metric. B(τ) is expressed in Mb/s and defines
the minimum amount of bandwidth required by the service in a particular time frame. It turns out that
DTs(τ, δ) = δ/B(τ) and, therefore, we may define

FID(τ, δ) = DTs(τ, δ) + RTs(τ, δ) .

2.4 Specifying Service Metric Functions with Attribute Grammars

In Section 2.2 we proposed to bridge the gap between SLAs and services through service metric functions.
Intuitively, a service metric function measures the level of a QoS property of the associated service. To
answer the question how service metric functions can be made amenable to analyses we refer to the work to
be presented in D2.3.2 where we propose to formalize a service metric function as an attribute of an attribute
grammar [13].

In general, attributes in a grammar are functions that map words of a language to a value. In our setting,
the events published by the monitoring framework form the terminals of the grammar and the traces of such
events (such as service invocations) are the words. The non-terminals of the grammar specify a protocol over
these events, determining the order in which the events should occur. This can be used to detect invalid
uses of the services. The value of an attribute is defined in the grammar productions, using the functional
data types of ABS. This ensures that the value of the attribute is computable, and that their computation
generates no side-effects that change the state of the underlying system/services.

We successfully applied attribute grammars in a runtime checker, focusing on dynamic deadlock detection
and general functional properties. For more detailed information, and several example attribute grammars
that illustrate these idea’s, we refer to [6] and [5].

We will report in Deliverable D2.3.2 on the concrete specification of service metric functions in ABS
(rather than only mathematical) using attributes in a grammar. The service metric functions can then be
used in the formalization of SLAs. In the same deliverable we will also report on the (automatic) generation
of monitoring add-ons from the grammars. The monitors will be ordinary ABS code. This in principle
also allows leveraging static analyses: simply analyze the original system together with the generated ABS
monitors.
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Chapter 3

Behavioural Interfaces for Performance

Several static analysis techniques are possible in order to verify service properties and, in particular, service
metrics like response time. In this section we discuss two approaches we use in the Envisage Project and
we apply them to the response time metric of Example 1. We refer to the papers [9, 11] (corresponding
to papers in Appendices B and C) for further details on the technique described in Section 3.1. We refer
to [3, 7] for details on the technique discussed in Section 3.3.

3.1 Behavioural Types

Behavioural types are abstract descriptions of programs that highlight the relevant information to derive a
particular property. This derivation usually consists of three steps:

1. an inference system parses the service program and returns a behavioural type;

2. the behavioural types are translated into low-level descriptions that are adequate for a solver;

3. the low-level descriptions are fed to a solver which produces the output.

It turns out that behavioural types support compositional reasoning and are therefore adequate for SLA
compliance, while low-level descriptions are not compositional (and too intensional).

In case of response time analysis, the behavioural types carry information about the cost of operations that
are extracted directly from the source program. This means that the source program retains either resource-
consumption annotations or resource-aware commands. The following code snippets use explicit primitives
for expressing the consumption of resources. In particular, the statement job(e) specifies a requirement of e

CPU resources and is instrumental for modelling the time: depending on the available resources its execution
might take an observable amount of time proportional to its cost. For instance, the execution of job(6) when
only 3 CPU resources are available will be executed within 6/3=2 units of time.

We illustrate our technique with two examples derived from Example 1. We assume a simple setting
where every instance runs in the same machine with a fixed capacity of c CPU resources.

Consider the service that performs a query on a database, in Figure 3.1. The method searchDB sends
a given query to the database and, when the result of the query is returned, it enhances the result with
some information before returning it to the client. The job(h) statement specifies that the local operations
of searchDB require h CPU resources. The query method, which is implemented in a different class DataBase,
receives a query, evaluates it, searches the corresponding item in the database, and returns the result. The
overall cost for these operations is k CPU resources, as specified by job(k). In this example we assume the
methods elaborate and search contain no job statements, thus they do not require any resources. Their resource
requirements are part of the k resources declared for the query method.

An informal argument gives (k+h)/c as the total time required by searchDB to reply to a query, where c are
the available CPU resources. This means that if we have a ResponseTime requirement of completing this
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String searchDB(String s) {

String u, v ;

u = DB.query(s) ;

job(h) ;

v = this.add_info(u) ;

return v; }

class DataBase {

String query(String s) {

String z = this.elaborate(s);

String value = this.search(z);

job(k) ;

return value; }

... }

Figure 3.1: The service searchDB performing a query on a database.

method within a specific number of time units, then we are able to establish the minimum CPU resources
of a configuration that complies with the SLA.

To formalise the above argument, we extract the program features that are relevant for the time analysis.
The resulting descriptions are called behavioural types and primarily highlight cost annotations and method
invocations. For example, the behavioural types of the above methods are

Service.searchDB(a[x], b[y]) { DataBase.query(b[y]) # h/x } : _

Service.addinfo(a[x]) {0} : _

DataBase.query(a[x]) {

DataBase.query(a[x]) #
DataBase.elaborate(a[x]) #
DataBase.search(a[x])#
k/x } : _

DataBase.elaborate(a[x]) {0} : _

DataBase.search(a[x]) {0} : _

where

• the parameter a[x] binds the this object identity to a and the available capacity to x; similarly, b[y] binds
the object identity of the receiver of the query invocation to b and its allocated capacity to y;

• the cost h/x is due to the amount of CPU requested by job(h) and the available CPU resources x (similarly
for k/x);

• the term _ is the time information corresponding to the returned value, which is in this case empty;

• the term 0 is the empty behaviour, meaning that no time units are consumed.

With the behavioural type specifications at hand, we use two techniques for deriving services’ properties:
one is completely automatic and uses solvers of cost equations, and another is semi-automatic (but more
precise) and uses theorem provers. We discuss them in detail in the following two subsections.

3.2 The Cost Equation Solver

To evaluate behavioural types specifications, we translate them into so-called cost equations, which are
suitable for solvers available in the literature [8, 1]. These cost equations are terms of the form:

m(x̄) = exp [se]

where m is a (cost) function symbol, exp is an expression that may contain (cost) function symbols applica-
tions. In some cases, more than one equation may be defined for the same function symbol: for instance the
if-then-else statement has one equation for each branch. In this case, se is an expression representing the
conditions under which the corresponding cost must be taken into account.

Basically, we translate behavioural types of methods into cost equations, where (i) method invocations
are translated into function applications, and (ii) cost expressions occurring in the types are left unmodified.
For example, the translations of the foregoing methods are:
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searchDB(x,y) = query(y) + h/x + addinfo(x)
query(x) = elaborate(x) + search(x) + k/x
addinfo(x) = elaborate(x) = search(x ) = 0

It is worth observing that, in this case, being x = y = c, the solver returns (h+k)/c, as we anticipated
previously.

Let us consider a variation of this example, where the service and the database run on different machines.
In this case the configuration includes at least two different machines, let us call them ms and md with
respectively cs and cd allocated CPU resources. At the time of the creation of the service instance we can
specify on which machine it will be deployed, by using a statement of the form:

Service service = new Service in ms;

Analogously, for the database we have
Database database = new Database in md;

In this setting, all invocations on external machines are to be considered asynchronous, where the caller
and the callee execute simultaneously, and the synchronisation occurs when the caller attempt to access the
result of the invocation. The snippet of the method searchDB is therefore refined into the following code where
the asynchronous invocation is noted with “ !” instead of “ .” and Fut<String> is the type of a future String value.

String searchDB(String s) {

String u, v ; Fut<String> w ;

w = DB!query(s) ;

job(h) ;

u = w.get ;

v = this.add_info(u) ;

return(v);

}

The operation w.get explicitly synchronises the caller with the callee. In this case, the cost equations of the
above methods are

searchDB(x,y) = max(query(y) , h/x) + addinfo(x)
query(x) = elaborate(x) + search(x) + k/x
addinfo(x) = elaborate(x) = search(x ) = 0

Being x =cs and y =cd, the solver returns the total cost of max(h/cs,k/cd).

3.3 The KeY System

The are cases where the cost equations solver either fails to deliver a result or the result is so over-
approximated that it becomes unusable. In particular, the cost equations m(x̄) = exp [se] that the solver
takes as inputs are constrained by the fact that se is a boolean expression in a decidable fragment of Peano
arithmetic – presburger arithmetic which admits only addition and multiplication by integer constants. There-
fore, whenever behavioural types use expressions that are not written in presburger arithmetics, we extend
them by manually adding preconditions and specifying costs and metrics in the postconditions.

We use a semi-interactive theorem prover called KeY [7], which uses symbolic execution to analyse
programs. Properties are specified in KeY using dynamic logic [17] and are demonstrated using the sequent
calculus [10]. It turns out that most proof steps (usually more than 99%) are automatically applied by the
proof search strategies. Behavioural types plus KeY verification support a compositional analysis: each type
can be analysed in isolation, on the basis of its own definition and only the contracts of the other methods
– without knowledge of the underlying definition of the other behavioural types. This is not the case of cost
equations that, once produced, are a monolithic, global specification.

KeY can be leveraged by following the steps below:

1. replace the cost expression c in method bodies by an assignment time = time+c;

2. add method contracts, specifying in the postcondition of each method the expected response time using
the variable time and the capacities of machines;
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3. prove the resulting instrumented program with KeY.

Applying these steps, to the example above, yields the following annotated behavioural types:
//@ ensures time == \old(time) + k/y + h/x;
Service.searchDB(a[x], b[y]) {

DataBase.query(b[y]) # time = time + h/x

} : _

//@ ensures time == \old(time);
Service.addinfo(a[x]) {0} : _

//@ ensures time == \old(time) + k/x;
DataBase.query(a[x]) {

DataBase.query(a[x]) # DataBase.elaborate(a[x]) #
DataBase.search(a[x]) # time = time + k/x

} : _

//@ ensures time == \old(time);
DataBase.elaborate(a[x]) {0} : _

//@ ensures time == \old(time);
DataBase.search(a[x]) {0} : _

For parallel programs with asynchronously executing threads, the above instrumentation might overesti-
mate the actual time and cost consumed: it always sums the cost of tasks. In these cases, the behavioural
type is x.m() ||| y.n(), rather than x.m(); y.n() (the operation “ ||| ” represents parallel composition). KeY derives
the cost of x.m() ||| y.n() by taking the maximum of the costs of x.m() and of y.n().

A useful task that KeY supports is the formal proof that response times of a method are under a defined
threshold. This is achieved by the same instrumentation discussed above. The only change needed is in the
behavioural types of methods: one can adjust the postcondition with an assertion of the form time < d, where
d is a symbolic threshold. This is shown in the contract below.

//@ ensures time < d;
Service.searchDB(a[x], b[y]) {

...

}

3.4 Further Discussion: Runtime Monitoring and Conflicting Metrics

A positive response of the static analysis is not enough to guarantee that all the service metrics will be
satisfied by the service. Factors under external control, such as the underlying infrastructure, may affect
the quality of service. Thus, in order to enforce service metrics that cannot be verified statically we use
code external to the service that continuously monitors it. We are not going to discuss how the monitoring
platform is defined, this will be reported in D2.3.2, but for the sake of discussing the whole analysis flow, we
informally present a scenario in which monitoring plays a central role.

Let us consider again the metrics of Example 1. The static analysis gave an upper bound for searchDB

response time of (k+h)/c time units. Letting the available amount of CPU resources be 2 and k=5 and h=10,
then we have a response time of 7.5 seconds. This satisfies the RTs metrics, since it is well below the maximum
response time imposed by the SLA. Therefore the initial configuration of 2 CPU resources is found to be
well suited for assuring the required QoS. Notice that, considering the time for executing a single request of
searchDB, we can deduce that the STsearchDB value is indeed reasonable.

In addition, assume that a monitor, which observes the execution of the service, has not logged any entry
where the response time is greater then 420 seconds – i.e. the response time is still matched.

However, the launch of a throughput monitor reports that only 4 requests are served per minute, which
violates the SLA (requiring to serve 8 requests per minute during the day) because of latency problems for
scheduling the requests or for connecting to the database. Henceforth, a reaction is triggered which requests
to the monitoring platform and obtains a machine with 2 additional CPU resources. The service is moved
on to the new machine and the throughput monitor does not find any violation anymore. However, during the
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night, half of the resources would have been sufficient for meeting the SLA requirement (which is only 4
requests per minute during the night). The customer is paying for unnecessary resources.

To overcome such issues, we consider an additional metric defining the budget for the service with respect
to particular time windows:

BudgetsearchDB([1.t, 366.t′]) =





40 if t = 0 and t′ = 32399
80 if t = 32400 and t′ = 64800
40 if t = 64801 and t′ = 86399

Namely, BudgetsearchDB specifies that, during the day, the customer is willing to pay up to 80, while only
half for the night.

The static techniques may verify whether a service complies with BudgetsearchDB or not. In particular, an
adequate budget is the cost of the minimum number of resources the program needs to execute, which is the
cost of an upper bound of resources needed by the program. Taking CPUs as relevant resources and assuming
that each CPU resource costs 10, then the analysis will approve BudgetsearchDB, since the allocated money is
enough to pay for 8 resources during the day and 4 during the night. However, a runtime CPU reallocation
has been triggered by the throughput monitor. It turns out that the budget compliance is not met anymore
because the expenses for the resource usage double the nightly budget. In this case, the budget_monitor reacts
by requiring a deallocation of half of the CPU units during the night.

It is worth to notice that the allocations and deallocations required by a monitoring system may lead
to a cyclic behaviour that does not reach any stable point. Therefore, in order to enforce stability, we
also consider the notion of service guarantee time, namely the total amount of time from the start of the
monitoring platform that a service is expected to meet its expectations of the SLA.
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Glossary

QoS The degree to which a provided activity promotes customer satisfaction. For example, quality of ser-
vice (QoS) technologies used in the electronic or telephone networking business typically assists in optimising
network traffic management in order to improve the experience of network users.

SLA Contract between the customer (service consumer) and the service provider which defines (among
other things) the minimal quality of the offered service, and the compensation if this minimal level is not
reached.

Service metrics (functions) Introduced for formalising SLA, the service metric function aggregates basic
measurements into a single number that indicates the quality of a certain service characteristic.

ABS Abstract Behavioural Specification language. An executable class-based, concurrent, object-oriented
modelling language based on Creol, created for the HATS project.

Behavioural Interface The intended behaviour of programs such as functional behaviour and resource
consumption can be expressed in the behavioural interface. Formal specifications of program behaviour is
useful for precise documentation, for the generation of test cases and test oracles, for debugging, and for
formal program verification.

Behavioural Type Abstract specification of a program’s behaviour at runtime, used to perform specific
analyses on the program, like resource consumption analysis.
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Abstract. There is a gap between run-time service behaviours and the
contracted quality expectations with the customers that is due to the
informal nature of service level agreements. We explain how to bridge
the gap by formalizing service level agreements with metric functions.
We therefore discuss an end-to-end analysis flow that can either statically
verify if a service code complies with a metric function or use run-time
monitoring systems to report possible misbehaviours. In both cases, our
approach provides a feedback loop to fix and improve the metrics and
eventually the resource configurations of the service itself.

1 Introduction

In Cloud Services and in Web Services, in general, resource provisioning is de-
fined by means of legal contracts agreed upon by service providers and cus-
tomers, called service level agreements – SLA. Legal contracts usually include
measurement methods and scales that are used to set the boundaries and mar-
gins of errors that apply to the behaviour of the service, as well as the legal
requirements under different jurisdictions. The SLA documents have no stan-
dardized format nor terminology, and do not abide by any precise definition,
notwithstanding some recent attempts towards standardization – see [2] and the
references therein.

Because of this informal nature, there is a significant gap between SLAs
and the corresponding services whose quality levels they constrain. As a conse-
quence, SLAs are currently not integrated in the software artefacts, and assessing
whether a service complies with an SLA or not is always a point of concern. As a
consequence, providers, in order to avoid legal disputes, very often over-provide
resources to services with the result of wasting resources and making services
more expensive.

This paper presents the approach taken in the EU Project Envisage [2] where
the gap between (parts of) SLAs and services is bridged by (i) using simple
formal descriptions of SLAs in terms of metric functions and by (ii) defining

? This paper is funded by the EU project FP7-610582 ENVISAGE: Engineering Vir-
tualized Services, http://www.envisage-project.eu.



a mathematical framework that is able either to derive the SLA quality levels
from the service programs and to verify possible violations or to monitor service
behaviours and document SLA quality levels mismatches.

Among the properties whose qualities are constrained by SLA documents [11],
we focus in Section 2 on performance by analyzing the objectives that set the
boundaries and margins of errors of service’s behaviours. In Section 3, these ob-
jectives are formalized in terms of metric functions. Having at hand these func-
tions, we address the problem to verify whether a given service complies with
them or not. Two techniques are discussed in this paper for verifying perfor-
mance properties of services: the static-time techniques and the run-time ones.

In static-time techniques, the compliance of a service with respect to a metric
function is shown by means of analysis tools that either directly verify the code
(static analysis), or an underlying mathematical model (model checking, simula-
tion, etc.). Whenever the service does not comply with the metric function, the
designer triggers a sequence of code refinements that lead to compliance. As an
example, consider resource capacity that measures how much a critical resource
is used by a service. Section 4 reports a static analysis technique that uses so-
called behavioural types. These behavioural types are abstract descriptions of
programs that support compositional reasoning and that retain the necessary
information to derive resource usage. By means of behavioral types, we use ei-
ther a cost equation evaluator – the solver systems [7,1] – or a theorem prover
– the KeY system [3] – to prove compliance with the SLA. For instance, we
demonstrate that the response time of a given method does not exceed a certain
user-defined threshold.

In run-time techniques, the enforcement of properties is accomplished by
using code that is external to the service and that continuously monitors it. In
facts, there are (performance) metric functions that cannot be (even in principle)
fully verified statically, due to factors under external control, such as the requests
per minute by end users and failing machines in the underlying infrastructure. As
an example, consider the percentage of successful requests, namely the number of
requests processed by the service without a failure due to its infrastructure over
the total number of received requests. In Section 5, we report a technique that
uses an external monitoring system filtering service’s replies, counts them, and
records the erroneous ones. The correctness of the composite system consisting of
the service and monitoring code is established by means of either static analysis
techniques or model checking.

Figure 1 describes the flow of analysis techniques used in our approach. A
feedback loop ensures corrections and improvements to the system. In particular,
if the static analysis reports that a service does not match an SLA constraint,
then, during the negotiation phase that constraint can be either relaxed or the
resource configuration can be extended accordingly (with a possible charge for
the client). Similarly, if a monitoring system verifies a run-time violation of an
SLA constraint then, in order to avoid expensive penalties, the service providers
trigger the resource configuration system to increase service’s resources.
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Fig. 1: Analysis Flow: Resource Configuration refers to the configuration of resource types that are
used for the service; Service Metrics denotes the set of metrics that define the quality of the service.
The dashed lines present a feedback loop to a previous phase of analysis.

In Section 6 we discuss the issue of SLA metrics that have conflicting re-
quirements. In this case, it is necessary to determine an upper bound in time for
reaching a stable resource configuration. We also discuss complex metrics that
actually are compositions of basic metrics discussed in Section 3. We report our
analysis of related works and conclude in Section 7.

2 SLAs and performance properties

In the “Cloud Service Level Agreement Standardisation Guidelines” document [11],
the qualities of services are assessed with SLAs according to the properties they
have, which range from performance to security and to data management. In
this paper, we will focus on performance. We discuss how it can be formalized
and evaluated on source code of services.

The article [11] distinguishes three kinds of performance properties: availabil-
ity, response time, and capacity. Availability is the property of a service to be
accessible and usable on demand. By detailing the notion of “usability”, one gets
different instances of availability and corresponding service metrics. For instance
(i) level of uptime, is the time in a defined period the service is up, over the to-
tal possible available time; (ii) percentage of successful requests, is the number
of requests processed without an error over the total number of submitted re-
quests; (iii) percentage of timely service provisioning requests, is the number of
service provisioning requests completed within a defined time period over the
total number of service provisioning requests. Response time is the time period
between a client request event and a service response event. The service metrics
that are used to constrain response time may return either an average time or
a maximum time, given a particular form of request. Capacity is the maximum
amount of some resource used by a service. It also includes the service through-
put metric, namely the minimum number of requests that can be processed by
a service in a stated time period.

The example below discusses an industrial e-commerce use case and its cor-
responding SLA constraints about performance. The next section formalises the
involved metrics and we show how to verify/enforce them in the rest of the paper.
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Example 1. A Cloud Service company offers search and targeting facilities on
large product databases over cloud computing architectures to e-commerce com-
panies. The offered services are exposed at endpoints and are typically imple-
mented to accept connections over HTTP. For example, a query API allows users
to query over a product catalog. Assume that the query API is implemented by
means of a number of resources (virtual machines) that are managed in a mutual
exclusive way by a load balancer (each resource is launched to serve exactly one
instance of the query API). When an e-commerce company signs the SLA con-
tract with the Cloud Service company, the performance properties of the query
API are constrained by the following metrics:

– 95% of requests is completed within 1 minute, 2% within 3 minutes and
1% within 5 minutes. This is the “percentage of timely service provisioning
requests” metric and it is used by the operations team of the Cloud Ser-
vice company to set up an environment for the customer that includes the
necessary resources to match the constraints. It is additionally used by the
support team of the Cloud Service company to manage communications with
the customer during the lifetime of the service for the customer.

– the service completes 8 queries per minute from 9:00 to 18:00 and 4 queries
per minute otherwise. This is a service throughput metric and forms the
basis of many decisions (technical or legal) thereafter, such as the definition
of the necessary resources for the e-commerce company.

– the service replies to a query request (with the result or with a failure) within
7 minutes. This is a response time metric and may be determined by the size
of database as well as by the size of the data managed by the query service
(whenever the service accepts queries that are unbounded).

3 Metrics’ formalization

To determine the precise level of a metric, and verify whether the service matches
the agreed levels, an indisputable formalisation is needed, rather than the infor-
mal descriptions in the previous section. There have been several attempts to
formalize SLAs, using techniques ranging from semantic annotations [17], to
rewriting logics [19] and to constraint programming [5]. In this paper, follow-
ing [18], we use a very simple formalization based on service metric functions.

Service metric functions aggregate a set of basic measurements into a single
number that indicates the quality of a certain service characteristic. For instance
µ(τ) and ν(τ, δ) are two functions that respectively take one and two inputs,
where

– τ is an interval of the form [d.t, d′.t′], where d, d′ are days (d, d′ ∈ {1, · · · , 366})
and t, t′ are seconds in the day (t, t′ ∈ {0, · · · , 86399});

– δ can be an upper bound to the size in bytes of client’s requests, a time
bound for getting a reply, or an upper bound to the number of resources
used by the service.
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To illustrate how performance metrics that are informally defined in SLA
documents can be formalized, we further elaborate Example 1. In particular,

– the percentage of timely service provisioning requests of a service s can be
formalized by the following function PTSs:

PTSs([1.0, 366.86399], x) =





0, 95 if x = 60s
0, 97 if x = 180s
0, 98 if x = 300s

– the service throughput of a service s can be formalized by the function STs
as follows:

STs([1.t, 366.t′], 60) =





4 if t = 0 and t′ = 32399
8 if t = 32400 and t′ = 64800
4 if t = 64801 and t′ = 86399

– the response time of a service s can be defined by the following function RTs:

RTs([1.0, 366.86399]) = 420s

4 Static-time analysis

Several static-time analysis techniques are possible to verify service properties
and, in particular, service metrics like response time. In this section we discuss
two approaches we use in the Envisage Project and we apply them to the response
time metric of Example 1. We refer to [8,10] for further details on the technique
described in Section 4.1. We refer to [3,6] for details on the technique discussed
in Section 4.3.

4.1 Behavioural types

Behavioural types are abstract descriptions of programs that highlight the rele-
vant informations to derive a particular property. This derivation usually consists
of three steps:

1. an inference system parses the service program and returns a behavioural
type;

2. the behavioural types are translated into low-level descriptions that are ad-
equate for a solver;

3. the low-level descriptions are fed to a solver which produces the output.

It turns out that behavioural types support compositional reasoning and are
therefore adequate for SLA compliance, while low-level descriptions are not com-
positional (and too intensional).

In the case of response time analysis, the behavioural types carry informa-
tions about costs of operations that are extracted directly from the source pro-
gram. This means that the source program retains either resource-consumption
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String searchDB(String s) {
String u, v ;
u = DB.query(s) ;
job(h) ;
v = this.add_info(u) ;
return v; }

class DataBase {
String query(String s) {
String z = this.elaborate(s);
String value = this.search(z);
job(k) ;
return value; }

... }

Fig. 2: The service searchDB performing a query on a database.

annotations or resource-aware commands. The following code snippets use ex-
plicit primitives for expressing the consumption of resources; in particular, the
statement job(e) specifies a requirement of e CPU resources and is instrumental
for modeling the time: depending on the available resources its execution might
take an observable amount of time proportional to its cost. For instance, the
execution of job(6) when only 3 CPU resources are available will be executed
within 6/3=2 units of time.

We illustrate our technique with two examples derived from Example 1. We
assume a simple setting where every instance runs in the same machine with a
fixed capacity of c CPU resources.

Consider the service that performs a query on a database, in Figure 2. The
method searchDB sends a given query to the database and, when the result of
the query is returned, it enhances the result with some information before re-
turning it to the client. The job(h) statement specifies that the local operations
of searchDB require h CPU resources. The query method, which is implemented
in a different class DataBase, receives a query, evaluates it, searches the corre-
sponding item in the database, and returns the result. The overall cost for these
operations is k CPU resources, as specified by job(k). In this example we assume
the methods elaborate and search contain no job statements, thus they do not
require any resources. Their resource requirements are part of the k resources
declared for the query method.

An informal argument gives (k+h)/c as the total time required by searchDB to
reply to a query, where c are the available CPU resources. This means that if we
have a ResponseTime requirement of completing this method within a specific
number of time units, then we are able to establish the minimum CPU resources
of a configuration that complies with the SLA.

To formalise the above argument, we extract the program features that are
relevant for the time analysis. The resulting descriptions are called behavioral
types and primarily highlight cost annotations and method invocations. For ex-
ample, the behavioural types of the above methods are

Service.searchDB(a[x], b[y]) { DataBase.query(b[y]) # h/x
} : _

Service.addinfo(a[x]) {0} : _

DataBase.query(a[x]) { DataBase.query(a[x]) #
DataBase.elaborate(a[x]) # DataBase.search(a[x])
# k/x } : _

DataBase.elaborate(a[x]) {0} : _
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DataBase.search(a[x]) {0} : _

where

– the parameter a[x] binds the this object identity to a and the available
capacity to x; similarly, b[y] binds the object identity of the receiver of the
query invocation to b and its allocated capacity to y;

– the cost h/x is due to the amount of CPU requested by job(h) and the
available CPU resources x (similarly for k/x);

– the term _ is the time information corresponding to the returned value, which
is in this case empty;

– the term 0 is the empty behaviour, meaning that no time units are consumed.

With the behavioural type specifications at hand, we use two techniques for
deriving services’ properties: one is completely automatic and uses solvers of cost
equations, and another is semi-automatic (but more precise) and uses theorem
provers. We discuss them in detail in the following two subsections.

4.2 The cost equation solver

To evaluate behavioural types specifications, we translate them into so-called
cost equations, which are suitable for solvers available in the literature [7,1].
These cost equations are terms

m(x) = exp [se]

where m is a (cost) function symbol, exp is an expression that may contain (cost)
function symbols applications. In some cases, more than one equation may be
defined for the same function symbol: for instance the if-then-else statement has
one equation for each branch. In this case, se is an expression representing the
conditions under which the corresponding cost must be taken into account.

Basically, we translate behavioural types of methods into cost equations,
where (i) method invocations are translated into function applications, and (ii)
cost expressions occurring in the types are left unmodified. For example, the
translations of the foregoing methods are:

searchDB(x,y) = query(y) + h/x + addinfo(x)
query(x) = elaborate(x) + search(x) + k/x
addinfo(x) = elaborate(x) = search(x ) = 0

It is worth to observe that, in this case, being x = y =c, the solver returns
(h+k)/c, as we anticipated previously.

Let us consider a variation of this example, where the service and the database
run on different machines. In this case the configuration will include at least two
different machines, let us call them ms and md with respectively cs and cd allo-
cated CPU resources. At the time of the creation of the service instance we can
specify on which machine it will be deployed, by using a statement of the form:

Service service = new Service in ms;

Analogously, for the database we have
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Database database = new Database in md;

In this setting, all invocations on external machines are to be considered
asynchronous, where the caller and the callee execute simultaneously, and the
synchronization occurs when the caller attempt to access the result of the invo-
cation. The snippet of the method searchDB is therefore refined into the following
code where the asynchronous invocation is noted with “!” instead of “.” and
Fut<String> is the type of a future String value.

String searchDB(String s) {
String u, v ; Fut<String> w ;
w = DB!query(s) ;
job(h) ;
u = w.get ;
v = this.add_info(u) ;
return(v);

}

The operation w.get explicitly synchronizes the caller with the callee. In this
case, the cost equations of the above methods are

searchDB(x,y) = max(query(y) , h/x) + addinfo(x)
query(x) = elaborate(x) + search(x) + k/x
addinfo(x) = elaborate(x) = search(x ) = 0

Being x =cs and y =cd, the solver returns the total cost of max(h/cs,k/cd).

4.3 The KeY system

The are cases where the cost equations solver either fails to deliver a result or
the result is so over-approximated that it becomes unusable. In particular, the
cost equations m(x) = exp [se] that the solver takes as inputs are constrained
by the fact that se is a boolean expression in a decidable fragment of Peano
arithmetic – presburger arithmetic which admits only addition and multiplication
by integer constants. Therefore, whenever behavioural types use expressions that
are not written in presburger arithmetics, we extend them by manually adding
preconditions and in the postconditions specifying costs and metrics.

We use a semi-interactive theorem prover called KeY [6], which uses symbolic
execution to analyze programs. Properties are specified in KeY using dynamic
logic [20] and are demonstrated using the sequent calculus [9]. It turns out that
most proof steps (usually more than 99%) are automatically applied by the proof
search strategies. Behavioral types plus KeY verification support a compositional
analysis: each type can be analyzed in isolation, on the basis of its own defini-
tion and only the contracts of the other methods – without knowledge of the
underlying definition of the other behavioral types. This is not the case of cost
equations that, once produced, are a monolithic, global specification.

KeY can be leveraged by following the steps below:

1. replace the cost expression c in method bodies by an assignment time =

time+c;;
2. add method contracts, specifying in the postcondition of each method the

expected response time using the variable time and the capacities of ma-
chines;
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3. prove the resulting instrumented program with KeY.

Applying these steps yields the following annotated behavioral types:

//@ ensures time == \old(time) + k/y + h/x;
Service.searchDB(a[x], b[y]) {

DataBase.query(b[y]) # time = time + h/x
} : _

//@ ensures time == \old(time);
Service.addinfo(a[x]) {0} : _

//@ ensures time == \old(time) + k/x;
DataBase.query(a[x]) {

DataBase.query(a[x]) # DataBase.elaborate(a[x]) #
DataBase.search(a[x]) # time = time + k/x

} : _

//@ ensures time == \old(time);
DataBase.elaborate(a[x]) {0} : _

//@ ensures time == \old(time);
DataBase.search(a[x]) {0} : _

For parallel programs with asynchronously executing threads, the above in-
strumentation might overestimate the actual time and cost consumed: it always
sums the cost of tasks. In these cases, the behavioural type is x.m() ||| y.n(),
rather than x.m(); y.n() (the operation “|||” represents parallel composition).
KeY derives the cost of x.m() ||| y.n() by taking the maximum of the costs of
x.m() and of y.n().

A useful task that KeY supports is the formal proof that response times of a
method are under a defined threshold. This is achieved by the same instrumen-
tation discussed above. The only change needed is in the behavioural types of
methods: one can adjust the postcondition with an assertion of the form time <

d, where d is a symbolic threshold. This is shown in the contract below.

//@ ensures time time < d;
Service.searchDB(a[x], b[y]) {
...

}

5 Run-time analysis

In order to enforce service metrics that cannot be verified statically (because
of factors under external control, such as the underlying infrastructure) we use
code external to the service that continuously monitors it. We discuss this tech-
nique using two service metrics of Example 1: the percentage of timely service
provisioning requests and the service throughput.

A simple implementation of the function PTSs defined in Section 3 uses a
monitoring method that intercepts all the HTTP invocations to a service and
their corresponding replies. This allows the monitor to record the time taken
by every request to be completed. Consider the following pseudo-code for this
method

9



void monitor_service_time() {
(service,method,msg,client,m_id) = HttpRequest.intercept();
time_start = time();
reply = service.method(msg);
time_end = time();
HttpResponse.send(client,reply,m_id);
log(m_id,time_start,time_end);

}

The method percentage takes as input a time window and returns true if the
percentage of requests complies with the definition of PTSs, is implemented by
the monitor:

boolean percentage(Time t_begin, Time t_end){
boolean v = true ;

/∗ retrieve from the log the total number of messages
served in the time window ∗/

nmb_msg = get_total_messages(t_begin, t_end) ;

/∗ check whether the SLA percentages of served requests
correspond to the observed ones ∗/

nmb_msg_completed = find(t_begin, t_end, 60) ;
v = v && (nmb_msg_completed/nmb_msg <= 0.95) ; //95% in 1 min
nmb_msg_completed = find(t_begin, t_end, 180) ;
v = v && (nmb_msg_completed/nmb_msg <= 0.97) ; //97% in 3 mins
nmb_msg_completed = find(t_begin, t_end, 300) ;
v = v && (nmb_msg_completed/nmb_msg <= 0.98) ; //98% in 5 mins

return v;
}

Similarly, the monitor implementing the service metric STs in Section 3 is
the method:

boolean throughput(Log_file d, Time t_begin, Time t_end){
int daily = 0;
int nightly = 0;

/∗ collects the number of the served requests during the two
specified time−frames ∗/

for each (m_id, time_init, time_end) in d {
if ((time_init >= 32400) && (time_init <= 64800)) // 9:00−18:00

daily = daily + 1 ;
else nightly = nightly + 1 ;

}
/∗ return true if 8 queries per minute are completed in 9:00−18:00

and 4 queries per minute in the remaining time ∗/

return ( ((daily/60*9)>8) && ((nightly/60*15)>4) );
}

The above straightforward development of monitoring systems allows service
providers to report violations of the agreed SLA. However, the ultimate goal
for a provider is to maintain the resource configuration in such a way that
SLA violations remain under a given threshold while minimizing the cost of the
system. The first objective can be achieved by adding resources to the service
(for instance, adding more CPUs).

To this aim, the monitoring platform works in two cyclic phases: observation
and reaction. The observation phase takes measurements on services – the fore-
going methods percentage and throughput. Subsequently, if an SLA mismatch

10



is observed, in the reaction phase, the number of allocated resources are in-
creased. The monitoring platform developed in the Envisage Project also allows
to decrease the number of resources if it is too costly/high [18]. The following
reaction method verifies every 300s whether the percentage of timely service
provisioning requests is reached and, in case of failures, adds one more CPU:

void reaction(Service s) {
Time t ; Bool v ;
t = time() ;
idle(300) ;
v = percentage(d,t, t+300) ;
if (!v) MonitoringPlatform ! allocate(s) ;

}

Correctness of the monitoring framework (i.e. that the monitors converge
within a user-given time towards the service level objectives specified in an SLA)
was investigated in [18]. The idea is to translate the code for the program in-
cluding the monitoring code into timed automata for use with UPPAAL [4].
The service level constraints from SLAs are translated into deadlines for the
automata. The translation can be done automatically, along the lines of [12]. It
is then possible to prove that, if all timed automata are schedulable (no missed
deadline), then the SLA of the service is satisfied in the given timeframe.

6 Further aspects of metrics’ definition and verification

In the previous sections we have discussed basic service metrics used in SLA
documents. In this section we address two additional issues: (i) metrics may be
conflicting: one metric requires an increase of resources allocated to a service,
while another one requires a decrease of the same resources, and (ii) particular
services may require complex service metrics.

Conflicting Metrics. Consider the following SLA constraints for the first example
of Section 4.1:

STsearchDB([1.t, 366.t′], 60) =





4 if t = 0 and t′ = 32399
8 if t = 32400 and t′ = 64800
4 if t = 64801 and t′ = 86399

RTsearchDB([1.0, 366.86399]) = 420s

The analysis of Section 4.2 gave an upper bound for searchDB response time of
(k+h)/c time units. Letting the available amount of CPU resources be 2 and k=5

and h=10, then we have a response time of 7.5 seconds. This satisfies the RTs
metrics, since it is well below the maximum response time imposed by the SLA.
Therefore the initial configuration of 2 CPU resources is found to be well suited
for assuring the required QoS. Notice that, considering the time for executing
a single request of searchDB, we can deduce that the STsearchDB value is indeed
reasonable. In addition, assume that monitor_service_time, which observes the
execution of the service, has not logged any entry where time_end-time_begin is
greater then 420 seconds – i.e. the response time is still matched.
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However, the launch of the throughput monitor reports that only 4 requests
are served per minute, which violates the SLA (requiring to serve 8 requests per
minute during the day) because of latency problems for scheduling the requests
or for connecting to the database. Henceforth, the reaction method requests to
the monitoring platform and obtains a machine with 2 additional CPU resources.
The service is moved on the new machine and the throughput monitor doesn’t
find any violation anymore. However, during the night, half of the resources
would have been sufficient for meeting the SLA requirement (which is only 4
requests per minute during the night). The customer is paying for unnecessary
resources.

To overcome such issues, we consider an additional metric defining the budget
for the service with respect to particular time windows:

BudgetsearchDB([1.t, 366.t′]) =





40 if t = 0 and t′ = 32399
80 if t = 32400 and t′ = 64800
40 if t = 64801 and t′ = 86399

Namely, BudgetsearchDB specifies that, during the day, the customer is willing to
pay up to 80, while only half for the night.

The techniques discussed in Section 4 may verify whether a service complies
with BudgetsearchDB or not. In particular, an adequate budget is the cost of the
minimum number of resources the program needs to execute, which is the cost
of an upper bound of resources needed by the program. Taking CPUs as relevant
resources and assuming that each CPU resource costs 10, then the analysis will
approve BudgetsearchDB, since the allocated money is enough to pay for 8 resources
during the day and 4 during the night. However, a run-time CPU reallocation
has been triggered by the throughput monitor. It turns out that the budget
compliance is not met anymore because the expenses for the resource usage
double the nightly budget. In this case, the budget_monitor reacts by requiring
a deallocation of half of the CPU units during the night.

It is worth to notice that the allocations and deallocations required by a
monitoring system may lead to a cyclic behaviour that does not reach any sta-
ble point. Therefore, in order to enforce stability, we also consider the notion
of service guarantee time, namely the total amount of time from the start of
the monitoring platform that a service is expected to meet its expectations of
the SLA. In facts, we use the following refined version of reaction method of
Section 5:

void reaction(Service s) {
Time t ; Bool v ;
t = time() ; idle(300) ;
v = percentage(d, t, t+300) ;
if (!v) {

if (t > global_time_start + t_G) { // SLA is violated
notify(s, ‘‘SLA violation’’) ;

} else MonitoringPlatform.allocate(s) ;
}

}
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Composite metrics. SLA documents may contain (performance) metrics that are
not directly defined in terms of those in Section 3 but are a composition of them.
We discuss an example.

Example 2. A mobile search app provides mobile offline search by means of on-
device search indices that are built and distributed by a cloud service. A primary
motivations for mobile offline search, besides increasing search availability and
strengthen user privacy, is to reduce search latency by using consistently fast
on-device storage rather than accessing mobile and Wi-Fi network with highly
variable latency. As a consequence, the most relevant aspect for evaluating the
quality of the provided service is the freshness of index data on the mobile device.
This property specifies time-related guarantees about the interval between the
publication of a document in the cloud and its indexing and availability on the
mobile device.

The metric freshness of index data on the mobile device, noted FID, actually
is the sum of the response time RTs and the delivery time DTs, namely the time to
transfer the data to the devices. This last metric DTs depends on the data size of
the response and the available bandwidth. While the data size δ is a parameter,
the bandwidth metric B(τ) is another basic capacity metric (which has not been
discussed in Section 3). B(τ) is expressed in Mb/s and defines the minimum
amount of bandwidth required by the service in a particular time frame. It turns
out that DTs(τ, δ) = δ/B(τ) and, therefore, we may define

FID(τ, δ) = DTs(τ, δ) + RTs(τ, δ) .

7 Conclusions and related works

The methodology we have presented in this paper is being devised in the context
of the EU Project Envisage [2]. The aim of the project is to develop a semantic
foundation for virtualization and SLA that makes it possible to efficiently develop
SLA-aware and scalable services, supported by highly automated analysis tools
using formal methods. SLA-aware services are able to control their own resource
management and renegotiate SLA across the heterogeneous virtualized comput-
ing landscape. The two examples we analyze in this contribution are taken from
industrial case studies in the aforementioned project: the service described in
Example 1 is an actual service provided by Fredhopper Cloud Services 3. The
mobile app presented in Example 2 is the Memkite app by Atbrox 4.

In the Envisage Project we also use other techniques for analyzing services,
such as simulations and test generation covering critical scenarios. We intend to
investigate if these additional techniques can be used for SLA compliance (and
to what extent). For example, if they can provide augmented precision or more
detailed descriptions of misbehaviours.

3 http://www.sdl.com/products/fredhopper/
4 http://atbrox.com/
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Related Work. Several proposals define a language or a framework to formalize
SLAs. However, there is no study how such SLAs can be used to verify or monitor
the service and upgrade it as necessary. In this respect, up-to our knowledge, our
technique that uses both static time analysis and run-time analysis is original.

As regards SLA formalizations, we recall few recent efforts. WSLA [14] in-
troduces a framework that defines SLAs in a technical way and breaks down
customer agreements in terms to be monitored. SLAng [15] introduces a lan-
guage for defining metrics that deal with the problems of networks and studies
a technique to ensure the corresponding service qualities. SLA? [13] introduces
a generic language to specify SLAs with a fine-grained level of detail. In [16], a
method is proposed to translate the SLA specification into an operational mon-
itoring specification. This technique is being used by the EU Project SLA@SOI.
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Abstract
We propose a static analysis technique that computes upper bounds
of virtual machine usages in a concurrent language with explicit ac-
quire and release operations of virtual machines. In our language it
is possible to delegate other (ad-hoc or third party) concurrent code
to release virtual machines (by passing them as arguments of invo-
cations). Our technique is modular and consists of (i) a type system
associating programs with behavioural types that records relevant
information for resource usage (creations, releases, and concurrent
operations), (ii) a translation function that takes behavioural types
and return cost equations, and (iii) an automatic off-the-shelf solver
for the cost equations. A soundness proof of the type system es-
tablishes the correctness of our technique with respect to the cost
equations. We have experimentally evaluated our technique using
a cost analysis solver and we report some results. The experiments
show that our analysis allows us to derive bounds for programs that
are better than other techniques, such as those based on amortized
analysis.

Categories and Subject Descriptors F.3.2 [Logics and meanings
of programs]: Semantics of Programming Languages—Operational
semantics,Program analysis ; F.1.1 [Computation by abstract de-
vices]: Models of Computation—Relations between models

General Terms Static analysis, Resource consumption, Concur-
rent programming, Behavioural type system, Subject reduction.

Keywords Virtual machines creations and releases, transition re-
lation, behavioural types, peak cost, net cost, cost equations.

1. Introduction
The analysis of resource usage in a program is of great interest be-
cause an accurate assessment could reduce energy consumption and
allocation costs. These two criteria are even more important today,
in modern architectures like mobile devices or cloud computing,
where resources, such as virtual machines, have hourly or monthly
rates. In fact, cloud computing introduces the concept of elasticity,
namely the possibility for virtual machines to scale according to
the software needs. In order to support elasticity, cloud providers,
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including Amazon, Google, and Microsoft Azure, (1) have pricing
models that allow one to hire on demand virtual machine instances
and paying them for the time they are in use, and (2) have APIs that
include instructions for requesting and releasing virtual machine
instances.

While it is relatively easy to estimate worst-case costs for sim-
ple code examples, extrapolating this information for fully real-
life complex programs could be cumbersome and highly error-
sensitive. The first attempts about the analysis of resource usage
dates back to Wegbreit’s pioneering work in 1975 [21], which de-
velops a technique for deriving closed-form expressions out of pro-
grams. The evaluation of these expressions would return upper-
bound costs that are parametrised by programs’ inputs.

Wegbreit’s contribution has two limitations: it addresses a sim-
ple functional languages and it does not formalize the connection
between the language and the closed-form expressions. A num-
ber of techniques have been developed afterwards to cope with
more expressive languages (see for instance [4, 9]) and to make the
connection between programs and closed-form expressions precise
(see for instance [10, 15]). A more detailed discussion of the related
work in the literature is presented in Section 8.

To the best of our knowledge, current cost analysis techniques
always address (concurrent) languages featuring only addition of
resources. When removal of resources is considered, it is used in
a very constrained way [6]. On the other hand, cloud computing
elasticity requests powerful acquire operations as well as release
ones. Let us consider the following problem: given a pool of virtual
machine instances and a program that acquires and releases these
instances, what is the minimal cardinality of the pool guaranteeing
the execution of the program without interruptions caused by lack
of virtual machines? A solution to this problem, under the assump-
tion that one can acquire a virtual machine that has been previously
released, is useful both for cloud providers and for cloud customers.
For the formers, it represents the possibility to estimate in advance
the resources to allocate to a specific service. For the latter ones, it
represents the possibility to pay exactly for the resources that are
needed.

It is worth to notice that, without a full-fledged release oper-
ation, the cost of a concurrent program may be modeled by sim-
ply aggregating the sets of operations that can occur in parallel,
as in [5]. By full-fledged release operation we mean that it is pos-
sible to delegate other (ad-hoc or third party) methods to release
resources (by passing them as arguments of invocations). For ex-
ample, consider the following method

Int double_release(Vm x, Vm y) {
release x; release y;
return 0 ;

}

that takes two machines and simply releases them. The cost of this
method depends on the machines in input:



– it may be -2 when x and y are different and active;

– it may be -1 when x and y are equal and active – consider the
invocation double_release(x,x);

– it may be 0 when the two machines have been already released.

In this case, one might over-approximate the cost of double_release
to 0. However this leads to disregard releases and makes the analy-
sis (too) imprecise.

In order to compute a precise cost of methods like double_release,
in Section 4 we associate methods with abstract descriptions that
carry information about resource usages. These descriptions are
called behavioural types and are formally connected to the pro-
grams by means of a type system.

The analysis of behavioural type is defined in Section 5 by trans-
lating them in a code that is adequate for an off-the-shelf solver –
the CoFloCo solver [11]. As discussed in [7], in order to compute
tight upper bounds, we have two functions per method: a function
computing the peak cost – i.e. the worst case cost for the method
to complete – and a function computing the net cost – i.e. the cost
of the method after its completion. In fact, the functions that we
associate to a method are much more than two. The point is that,
if a method has two arguments – see double_release – and it
is invoked with two equal arguments then its cost cannot be com-
puted by a function taking two arguments, but it must be computed
by a function with one argument only. This means that, for every
method and every partition of its arguments, we define two cost
functions: one for the peak cost and the other for the net cost. The
translation of behavioural types into CoFloCo input code has been
prototyped and we are therefore able to automatically compute the
cost of programs. It is worth to notice that our technique (and, con-
sequently, our prototype) allows us to derive bounds for programs
that are better than other techniques, such as those based on amor-
tized analysis. We address this topic in Section 8.

Our technique targets a simple concurrent language with ex-
plicit operations of creation and release of resources. The language
is defined in Section 2 and we discuss restrictions that ease the de-
velopment of our technique in Section 3. In Section 6 we outline
our correctness proof of the type system with respect to the cost
equations. Due to page constraints, the details of the proof are omit-
ted and appear in the full paper. In Section 9 we deliver concluding
remarks.

In this paper we use the metaphor of cloud computing and
virtual machines. We observe that our technique may be also used
for resource analysis of concurrent languages that bear operations
of acquire (or creation) and release (such as heaps).

2. The language vml
The syntax and the semantics of vml are defined in the following
two subsections; the third subsection discusses a number of exam-
ples.

Syntax. A vml program is a sequence of method definitions
T m(T x){F y ; s }, ranged over byM , plus a main body {F z ; s′}.
In vml we distinguish between simple types T which are either in-
tegers Int or virtual machines Vm, and types F , which also include
future types Fut<T>. These future types let asynchronous method
invocations be typed (see below). The notation T x denotes any
finite sequence of variable declaration T x. The elements of the
sequence are separated by commas. When we write T x ; we mean
a sequence T1 x1 ; · · · ; Tn xn ; when the sequence is not empty;
we mean the empty sequence otherwise.

The syntax of statements s, expressions with side-effects z and
expressions e of vml is defined by the following grammar:

s ::= x = z | if e { s } else { s } | return e | s ; s
| release e

z ::= e | e!m(e) | e.get | new Vm
e ::= this | se | nse

A statement s may be either one of the standard operations of
an imperative language plus the release x operation which marks
the virtual machine x for disposal.

An expression z may change the state of the system. In particu-
lar, it may be an asynchronous method invocation that does not sus-
pend caller’s execution: when the value computed by the invocation
is needed then the caller performs a non blocking get operation: if
the value needed by a process is not available then an awaiting pro-
cess is scheduled and executed. Expressions z also include new Vm
that creates a new virtual machine. The intended meaning of oper-
ations taking place on different virtual machines is that they may
execute in parallel, while operations in the same virtual machine
interleave their evaluation (even if in the following operational se-
mantics the parallelism is not explicit). The execution of method
invocations and creations and releases of machines always returns
an erroneous value when executed on a released machine.

A (pure) expression e are the reserved identifier this, the vir-
tual machines identifiers and the integer expressions. Since our
analysis will be parametric with respect to the inputs, we parse inte-
ger expressions in a careful way. In particular we split them into size
expressions se, which are expressions in Presburger arithmetics
(this is a decidable fragment of Peano arithmetics that only con-
tains addition), and non-size expressions nse, which are the other
type of expressions. The syntax of size and non-size expressions is
the following:

nse ::= p | x | nse ≤ nse | nse and nse | nse or nse
| nse+ nse | nse− nse | nse× nse | nse/nse

se ::= ve | ve ≤ ve | se and se | se or se
ve ::= p | x | ve+ ve | p× ve
p ::= integer constants

In the whole paper, we assume that sequences of declarations
T x and method declarations M do not contain duplicate names.
We also assume that return statements have no continuation.

Semantics. vml semantics is defined as a transition relation be-
tween configurations, noted cn and defined below

cn ::= ε | fut(f, v) | vm(o, a, p, q) | invoc(o, f, m, v) | cn cn
p ::= {l | ε} | {l | s}
q ::= ε | p | q q
v ::= integer constants | o | f | ⊥ | > | err
l ::= [· · · , x 7→ v, · · · ]

Configurations are sets of elements – therefore we identify config-
urations that are equal up-to associativity and commutativity – and
are denoted by the juxtaposition of the elements cn cn; the empty
configuration is denoted by ε. The transition relation uses two infi-
nite sets of names: vm names, ranged over by o, o′, · · · and future
names, ranged over by f , f ′, · · · . The function fresh() returns ei-
ther a fresh vm name or a fresh future name; the context will disam-
biguate between the twos. We also use l to range over maps from
variables to values. The map l also binds the special name destiny
to a future value.

Runtime values v are either integers or vm and future names, or
two distinct special values denoting a machine alive (>) or dead
(⊥), or an erroneous value err.

The elements of configurations are

– virtual machines vm(o, a, p, q) where o is a vm name; a is
either > or ⊥ according to the machine is alive or dead, p



is either {l | ε}, representing a terminated statement, or is
the active process {l | s}, where l returns the values of local
variables and s is the continuation; q is a set of processes to
evaluate.

– future binders fut(f, v). When the value v is ⊥ then the actual
value of f has still to be computed.

– method invocation messages invoc(o, f, m, v).

The following auxiliary functions are used in the semantic rules
(we assume a fixed vml program):

– dom(l) returns the domain of l.

– l[x 7→ v] is the function such that (l[x 7→ v])(x) = v and
(l[x 7→ v])(y) = l(y), when y 6= x.

– [[e]]l returns the value of e, possibly retrieving the values of the
variables that are stored in l. As regards boolean operations, as
usual, false is represented by 0 and true is represented by a
value different from 0. Operations in vml are also defined on the
value err: when one of the arguments is err, every operation
returns err. [[e]]l returns the tuple of values of e. When e is a
future name, the function [[·]]l is the identity. Namely [[f ]]l = f .
It is worth to notice that [[e]]l is undefined whenever e contains
a variable that is not defined in l.

– bind(o, f, m, v) = {[x 7→ v, destiny 7→ f ] | s[o/this]}, where
T m(T x){T ′ z; s} belongs to the program.

The transition relation rules are collected in Figure 1. They de-
fine transitions of virtual machines vm(o, a, p, q) according to the
shape of the statement in the active process p. The rules are almost
standard, except those about the management of virtual machines
and the method invocation, which we are going to discuss.

(NEW-VM) creates a virtual machine and makes it active – rule
(NEW-VM). If the virtual machine executing new Vm has been al-
ready released, then the operation returns an error – rule (NEW-
VM-ERR). A virtual machine is disposed by means of the oper-
ation release x: this amounts to update its state a to ⊥ – rules
(RELEASE-VM) and (RELEASE-VM-SELF). If instead the virtual
machine executing the release has been already released, then the
operation has no effect – rule (RELEASE-BOT).

Rule (ASYNC-CALL) defines asynchronous method invocation
x = e!m(e). This rule creates a fresh future name that is assigned
to the identifier x. The evaluation of the called method is then
transferred to the callee virtual machine – rule (BIND-MTD) – and
the caller progresses without waiting for callee’s termination. If the
caller has been already disposed then the invocation returns err –
rule (ASYNC-CALL-ERR) The invocation binds err to the future
name when either the caller has been released – rule (ASYNC-
CALL-ERR) – or the callee machine has been disposed – rule
(BIND-MTD-ERR). Rule (READ-FUT) allows the caller to retrieve
the value returned by the callee.

The initial configuration of a vml program with main function
{F x ; s} is

vm(start ,>, {[destiny 7→ fstart ] | s},∅)

where start is a special virtual machine and fstart is a fresh future
name. As usual, let −→∗ be the reflexive and transitive closure of
−→.

Examples. In order to illustrate the features of vml we discuss
few examples. For every example we also examine the type of out-
put we expect from our cost analysis. We begin with two methods
computing the factorial function:

Int fact(Int n){
Fut<Int> x ; Int m ;
if (n==0) { return 1 ; }

else { x = this!fact(n-1) ; m = x.get ;
return m*n ; }

}
Int costly_fact(Int n){

Fut<Int> x ; Int m ; Vm z ;
if (n==0) { return 1 ; }
else { z = new Vm; x = z!fact(n-1) ; m = x.get ;

release z; return m*n; }
}

The method fact is the standard definition of factorial with the re-
cursive invocation fact(n-1) always performed on the same ma-
chine. That is, to compute fact(n) one needs one virtual machine.
On the contrary, the method costly_fact performs the recursive
invocation on a new virtual machine z. The caller waits for its re-
sult, let it be m, then it releases the machine z and delivers the value
m*n. Notice that every vm creation occurs before any release oper-
ation. As a consequence, costly_fact will create as many virtual
machines as the argument n. That is, if the application has only k
virtual machines then costly_fact cab compute factorials up-to
k − 1 (1 is the virtual machine executing the method).

The analysis of costly_fact has been easy because the
release operation is applied on a locally created virtual ma-
chine. Yet, in vml, release may also apply to method arguments
and the presence of this feature in concurrent codes is the major
source of difficulties for the analysis. A paradigmatic example is
the double_release method discussed in Section 1 that may have
either a cost of -2 or of -1 or of 0. It is worth to observe that, while
over-approximations (e.g not counting releases) return (too) im-
precise costs, under-approximations may return wrong costs. For
example, the following method

Int fake_method(Int n) {
if (n=0) return 0 ;
else { Vm x ; Fut<Int> f ;

x = new Vm ; x = new Vm ;
f = this!double_release(x,x) ; f.get ;
f = this!fake_method(n-1) ; f.get ;
return 0 ; }

}

creates two virtual machines and releases the second one with
this!double_release(x,x) before the recursive invocation.
We notice that fake_method(n) should have cost n. However

– an under-approximation of double_release (cost -2) gives 0
as cost of fake_method(n).

The aim of the following sections is to define a technique for
determining the cost of method invocations that makes these costs
depend on the identity and on the state of method’s arguments, as
well as on those arguments that are released.

3. Determinacy of releases of method’s arguments
Our cost analysis of virtual machines uses abstract descriptions
that carry informations about method invocations and creations and
removals of virtual machines. In order to ease the compositional
reasonings, method’s descriptions also defines the arguments the
method releases upon termination. In this contribution we stick
to method descriptions that are as simple as possible, namely we
assume that the arguments a method releases upon termination are a
set. In turn, this requires that methods’ behaviours are deterministic
with respect to such releases. To enforce this determinacy, we
constrain the language vml as follows.

Restriction 1: the branches in a method body always release the
same set of method’s arguments.
For example, methods like



(ASSIGN)
v = [[e]]l

vm(o, a, {l | x = e; s}, q)
→ vm(o, a, {l[x 7→ v] | s}, q)

(READ-FUT)
f = [[e]]l v 6= ⊥

vm(o, a, {l | x = e.get; s}, q) fut(f, v)
→ vm(o, a, {l | x = v; s}, q) fut(f, v)

(ASYNC-CALL)
o′ = [[e]]l v = [[e]]l f = fresh( )
vm(o,>, {l | x = e!m(e); s}, q)

→ vm(o,>, {l | x = f ; s}, q) invoc(o′, f, m, v) fut(f,⊥)

(BIND-MTD)
{l | s} = bind(o, f, m, v)

vm(o,>, p, q) invoc(o, f, m, v)
→ vm(o,>, p, q ∪ {l | s})

(COND-TRUE)
[[e]]l 6= 0 [[e]]l 6= err

vm(o, a, {l | if e then {s1} else {s2}; s}, q)
→ vm(o, a, {l | s1; s}, q)

(COND-FALSE)
[[e]]l = 0 or [[e]]l = err

vm(o, a, {l | if e then {s1} else {s2}; s}, q)
→ vm(o, a, {l | s2; s}, q)

(NEW-VM)
o′ = fresh(VM)

vm(o,>, {l | x = new Vm; s}, q)
→ vm(o,>, {l | x = o′; s}, q) vm(o′,>, {∅|ε},∅)

(RELEASE-VM)
o′ = [[e]]l o 6= o′

vm(o,>, {l | release e; s}, q) vm(o′, a′, p′, q′)
→ vm(o,>, {l | s}, q) vm(o′,⊥, p′, q′)

(RELEASE-VM-SELF)
o = [[e]]l

vm(o, a, {l | release e; s}, q)
→ vm(o,⊥, {l | s}, q)

(ACTIVATE)
vm(o, a, {l′ | ε}, q ∪ {l | s})
→ vm(o, a, {l | s}, q)

(ACTIVATE-GET)
f = [[e]]l′

vm(o, a, {l′ | x = e.get; s}, q ∪ {l | s}) fut(f,⊥)
→ vm(o, a, {l | s}, q ∪ {l′ | x = e.get; s}) fut(f,⊥)

(RETURN)
v = [[e]]l f = l(destiny)

vm(o, a, {l | return e}, q) fut(f,⊥)
→ vm(o, a, {l | ε}, q) fut(f, v)

(NEW-VM-ERR)
vm(o,⊥, {l | x = new Vm; s}, q)
→ vm(o,⊥, {l[x 7→ err]; s}, q)

(ASYNC-CALL-ERR)
f = fresh( )

vm(o,⊥, {l | x = e!m(e); s}, q)
→ vm(o,⊥, {l | x = f ; s}, q) fut(f, err)

(RELEASE-BOT)
vm(o,⊥, {l | release e; s}, q)
→ vm(o,⊥, {l | s}, q)

(BIND-MTD-ERR)
vm(o,⊥, p, q) invoc(o, f, m, v) fut(f,⊥)

→ vm(o,⊥, p, q) fut(f, err)

(BIND-PARTIAL)
invoc(err, f, m, v) fut(f,⊥)

→ fut(f, err)

(CONTEXT)
cn→ cn′

cn cn′′ → cn′ cn′′

Figure 1. Semantics of vml.

Int foo1(Vm x, Int n) {
if (n = 0) return 0 ;
else { release x ; return 0; }

}

cannot be handled by our analysis because the else-branch
releases the argument x while the then-branch does not release
anything.

Restriction 2: method invocations are always synchronized within
caller’s body. In this way every effect of a method is computed
before its termination. For example, methods like

Int foo2(Vm x, Vm y) {
this!double_release(x,y) ; return 0 ;

}

cannot be handled by our analysis because it is not possible
to determine that the arguments x and y of foo2 will be re-
leased or not upon its termination because the invocation to
double_release is asynchronous.

Restriction 3: machines that are executing methods that release
arguments must be alive. (This includes the carrier machine,
e.g. method bodies cannot release the this machine.) Here
(we are at static time) “alive” means that the machine is either
the caller or has been locally created and has not been/being
released. For example, in foo3

Int simple_release(Vm x) { release x; return 0; }
Int foo3(Vm x) {

Vm z ; Fut<Int> f ;
z = new Vm ; f = z!simple_release(x) ;
release z ; f.get ; return 0;

}

the machine z is released before the synchronisation with the
simple_release – statement f.get. This means that the dis-
posal of x depends on scheduler’s choice, which means that it
is not possible to determine whether foo3 will release x or not.
A similar issue arises when the callee of a method releasing
arguments is itself an argument. For example, in foo4

Int foo4(Vm x, Vm y) {
Fut<Int> f ;
f = x!simple_release(y) ;
f.get ; return 0 ;

}

it is not possible to determine whether y is released or not
because the state of x cannot be determined.

Restriction 4: if a method returns a machine, the machine must be
new. For example, consider the following code:

Vm identity(Vm x) { return x; }
{

Vm x ; Vm y ; Vm z ; Fut<Vm> f ; Fut<Int> g ; Int m ;
x = new Vm ; y = new Vm ;
f = x!identity(y) ; g = this!simple_release(x);
z = f.get ; m = g.get ;
release z ;

}

In this case it is not possible to determine whether the value of
z is x or err and, therefore, it is not clear whether the cost of
release z is 0 or -1. The problem is identity, which returns
the argument that is going to be released by a parallel method.
The Restriction 4 bans methods like identity because it does
not return a fresh machine. In fact, such machines cannot be
released by a parallel method.



Restrictions 1, 3, and 4 are enforced by the type system in
Section 4, in particular by rules (T-METHOD), (T-INVOKE) and
(T-RELEASE), and (T-INVOKE) and (T-RETURN), respectively.
Restriction 2 is a programming constraint; it may be released by
using a continuation passing style that entangles a lot both the type
system and the analysis (see [12] for a possible solution that has
been designed for deadlock analysis).

4. The behavioural type system of vml
Behavioural types are abstract codes highlighting the features of
vml programs that are relevant for the cost analysis in Section 5.
These types support compositional reasonings and are associated to
programs by means of a type system that is defined in this section.

The syntax of behavioural types uses vm names α, β, γ, · · · ,
and future names f , f ′, · · · . Sets of vm names will be ranged over
by S, S′, R, · · · , and sets of future names will be ranged over by F,
F′, · · · . The syntactic rules are presented in Figure 2.

Behavioural types express creations of virtual machines (να)
and their removal (αX), method invocations (νf : m α(s)→ o)
and the corresponding retrieval of the value (fX), and the condi-
tionals (respectively (se){c} + (¬se){c′} or c + c

′, according to
whether the boolean guard is a size expressions that depends on the
arguments of a method or not). We will always shorten the type
νf : m α(s)→ o into νf : m α(s) whenever o = .

In order to have a more precise type of continuations, the leaves
of behavioural types are labelled with environments, ranged over by
Γ, Γ′, · · · . Environments are maps from method names m to terms
α(r) : o, R, from variables to extended values x, from future names
to future values, and from vm names to extended values Ft, which
are called vm states in the following. These environments occurring
in the leaves are only used in the typing proofs and are dropped in
the final types (method types and the main statement type).

Vm states Ft are a collection of future names F plus the value t
of the virtual machines. This F specifies the set of parallel methods
that are going to release the virtual machine; t defines whether the
virtual machine is alive >, or it has been already released (⊥) or,
according to scheduler’s choices, it may be either alive or released
(∂). Vm values also include terms α and α↓. The value α is given
to the argument machines of methods (they will be instantiated by
the invocations – see the cost analysis in Section 5), the value α↓ is
given to argument values that are returned by methods and can be
released by parallel methods (α↓ will be also evaluated in the cost
analysis). Vm values are partially ordered by the relation≤ defined
by

∂ ≤ > ∂ ≤ ⊥ α↓ ≤ ⊥ α↓ ≤ α .
In the following we will use the partial operation t u t′ returning,
whenever it exists, the greatest lower bound between t and t′. For
example > u⊥ = ∂, but ∂ u α↓ is not defined.

The type system uses judgments of the following form:

– Γ ` e : x for pure expressions e, Γ ` f : z for future names f ,
and Γ ` mα(r) : o, R for methods.

– Γ `S z : x, c . Γ′ for expressions with side effects z, where
x is the value, c is the behavioural type for z and Γ′ is the
environment Γ with updates of variables and future names.

– Γ `S s : c, in this case the updated environments are inside the
behavioural type Γ′, in correspondence of every branch of its.

Since Γ is a function, we use the standard predicates x ∈
dom(Γ) or x 6∈ dom(Γ) and the environment update

Γ[x 7→ x](y)
def
=

{
x if y = x
Γ(y) otherwise

With an abuse of notation (see rule (T-RETURN)), we let Γ[ 7→
x]

def
= Γ (because does not belong to any environment). We will

also use the operation and notation below:

– Ft⇓ is defined as follows:

Ft⇓ def
=





t if F = ∅
∂ if F 6= ∅ and t = >
⊥ if F 6= ∅ and t = ⊥
α ↓ if F 6= ∅ and t = α

and we write (F1t1, · · · , Fntn) ⇓ for (F1t1 ⇓, · · · , Fntn ⇓).

– the multihole contexts C[ ] defined by the following syntax:

C[ ] ::= [ ] | a # C[ ] | C[ ] + C[ ] | (se){C[ ]}
and, whenever c = C[a1 . Γ1] · · · [an . Γn], then c[x 7→ x] is
defined as C[a1 . Γ1[x 7→ x]] · · · [an . Γn[x 7→ x]].

The type system for expressions is reported in Figure 3. It
is worth to notice that this type system is not standard because
(size) expressions containing method’s arguments are typed with
the expressions themselves. This is crucial in the cost analysis of
Section 5.

The type system for expressions with side effects and statements
is reported in Figure 4. We discuss rules (T-INVOKE), (T-GET),
(T-RELEASE), and (T-NEW).

Rule (T-INVOKE) types method invocations e!m(e) by using a
fresh future name f that is associated to the method name, the vm
name of the callee and the arguments. The relevant point is the
value of f in the updated environment. This value contains the
returned value, the vm name of the callee and its state, and the
set of the arguments that the method is going to remove. The vm
state of the callee will be used when the method is synchronized to
update the state of the returned object, if any (see rule (T-GET)).
It is important to observe that the environment returned by (T-
INVOKE) is updated with information about vm names released
by the method: every such name will contain f in its state. Next
we discuss the constraints in the second line and third line of the
premise of (T-INVOKE). Assuming that the callee has not been
already released (Γ(α) 6= F⊥), there are two cases:

(i) either Γ(α) = ∅> or α is the caller object α′: namely the
callee is alive because it has been created by the caller or it is
the caller itself,

(ii) or Γ(α) 6= ∅>: this case has two subcases, namely either (ii.a)
the callee is being released by a parallel method or (ii.b) it is an
argument of the caller method – see rule (T-METHOD).

While in (i) we admit that the invoked method releases vm names,
in case (ii) we forbid any release, as we discussed in Restriction 3
in Section 3. We observe that, in case (ii.b), being α an argument
of the method, it may retain any state when the method is invoked
and, for reasons similar to (ii.a), it is not possible to determine at
static time the exact subset of R that will be released. This constraint
enforces Restriction 3 in Section 3. The constraint in the third line
of the premise of (T-INVOKE) enforces Restriction 3 to the other
invocations in parallel and to the object executing e!m(e).

Rule (T-GET) defines the synchronisation with a method invo-
cation that corresponds to a future f . Let (o, α, Ft, R) be the value
of f in the environment. Since R defines the resources of the caller
that are released, we record in the returned environment Γ′ that
these resources are no more available. Γ′ also records the state of
the returned vm name. If the returned value is a virtual machine
that has been created by the method of f , its state is the same of
the callee vm name (which may have been updated since the invo-
cation), namely the value of t u (Γ(α)⇓).



o ::= | α basic value
t ::= α | α↓ | ∂ | ⊥ | > vm value

se ::= integer constant | x | (t ≤ ⊥) | (t ≤ >) | se op′ se size expression
op′ ::= + | − | = | ≤ | ≥ | ∧ | ∨ linear operation
r, s ::= o | se typing value
z ::= (o, α, Ft, R) | o future value
x ::= | Ft | f | z extended value
a ::= 0 | να | νf : m α(s)→ o | αX | fX atom
c ::= a . Γ | a # c | c + c | (se){c} behavioural type

Figure 2. Behavioural Types Syntax

(T-VAR)
x ∈ dom(Γ)

Γ ` x : Γ(x)

(T-PRIMITIVE)
Γ ` p : p

(T-OP)
Γ ` e1 : se1 Γ ` e2 : se2

Γ ` e1 op′ e2 : se1 op′ se2

T-UNIT
Γ ` e : se

Γ ` e :

(T-OP-UNIT)
Γ ` e1 : or Γ ` e2 : or op ∈ {∗, /}

Γ ` e1 op e2 :

(T-PURE)
Γ ` e : x

Γ ` e : x, 0 . Γ

(T-METHOD-SIG)
Γ(m) = α(r) : o, R β ⊆ fv(α, r,o)

σ is a vm renaming such that o /∈ fv(α, r) implies σ(o) fresh
Γ ` m σ(α)(σ(r)) : σ(o), σ(R)

Figure 3. Typing rules for expressions

(T-ASSIGN-VAR)
Γ(x) = x Γ `S z : x′, c

Γ `S x = z : c[x 7→ x
′]

(T-INVOKE)
Γ ` e : α Γ ` e : s Γ ` mα(s) : o, R Γ ` this : α′

Γ(α) 6= F⊥ and ((Γ(α) 6= ∅> and α 6= α′) implies R = ∅)

R ∩
(
{α′} ∪ {β | f ′ ∈ dom(Γ) and Γ(f ′) = (o′, β,x, R′) and R′ 6= ∅}

)
= ∅

f fresh Γ′ = Γ[β 7→ ({f} ∪ F′)t]β∈R,Γ(β)=F′t

Γ `S e!m(e) : f, νf : m α(s)→ o . Γ′[f 7→ (o, α,Γ(α), R)]

(T-INVOKE-BOT)
Γ ` e : α Γ(α) = F⊥ f fresh

Γ `S e!m(e) : f, 0 . Γ′[f 7→ ]

(T-GET)
Γ ` x : f Γ ` f : (o, α, Ft, R)

R′ = fv(o) \ R t
′ = t u (Γ(α)⇓)

Γ′ = Γ[β 7→ ∅⊥]β∈R[β′ 7→ ∅t′]β
′∈R′

Γ `S x.get : o, fX . Γ′[f 7→ o]

(T-GET-DONE)
Γ ` x : f Γ ` f : o

Γ `S x.get : o, 0 . Γ

(T-NEW)
β fresh

Γ `S new Vm : β, νβ . Γ[β 7→ ∅>]

(T-RELEASE)
Γ ` x : α

α 6∈ {β | f ′ ∈ dom(Γ) and Γ(f ′) = (o′, β,x, R′) and R′ 6= ∅}
Γ `S release x : αX . Γ[α 7→ ∅⊥]

(T-IF)
Γ ` e : se Γ `S s1 : c1 Γ `S s2 : c2

Γ `S if e { s1 } else { s2 } : (se){ c1 }+ (¬se){ c2 }

(T-IF-ND)
Γ ` e : Γ `S s1 : c1 Γ `S s2 : c2

Γ `S if e { s1 } else { s2 } : c1 + c2

(T-SEQ)
Γ `S s1 : C[a1 . Γ1] · · · [an . Γn] (Γi `S s2 : c′i)

i∈1..n

Γ `S s1; s2 : C[a1 # c′1] · · · [an # c′n]

(T-RETURN)
Γ ` e : o Γ ` destiny : o′

o /∈ S

Γ `S return e : 0 . Γ[o′ 7→ Γ(o)]

Figure 4. Type rules for expressions with side effects and statements.

Rule (T-RELEASE) models the removal of a vm name α. The
premise in the second line verifies that the disposal do not address
machines that are executing methods, as discussed in Restriction 3
of Section 3.

The type system of vml is completed with the rules for method
declarations and programs, given in Figure 5.

Without loss of generality, rule (T-METHOD) assumes that for-
mal parameters of methods are ordered: those of Int type occur
before those of Vm type. We observe that the environment typing

the method body binds integer parameters to their same name,
while the other ones are bound to fresh vm names (this lets us
to have a more precise cost analysis in Section 5). We also ob-
serve that the returned value o may be either or a fresh vm name
(o /∈ {α} ∪ β) as discussed in Restriction 4 of Section 3. The
constraints in the third line of the premises of (T-METHOD) im-
plement Restriction 1 of Section 3. We also observe that (Γi(γ) =
Γj(γ))i,j∈1..n, γ∈S∪fv(o) guarantees that every branch of the be-



(T-METHOD)
Γ(m) = α(x, β) : o, R S = {α} ∪ β o /∈ S

Γ[this 7→ α][destiny 7→ o][x 7→ x][z 7→ β][α 7→ ∅α][β 7→ ∅β] `S s : C[a1 . Γ1] · · · [an . Γn](
Γi(γ) = Γj(γ)

)i,j∈1..n, γ∈S∪fv(o)
R = (S ∪ fv(o)) ∩ {γ | Γ1(γ) = F⊥}

Γ ` T m (Int x, Vm z){F y ; s} : m α(x, β) { C[a1 . ∅] · · · [an . ∅] } : o, R

(T-PROGRAM)
Γ `M : C Γ `start s : C[a1 . Γ1] · · · [an . Γn]

Γ `M {F x ; s} : C, C[a1 . ∅] · · · [an . ∅]

Figure 5. Behavioural typing rules of method and programs.

havioural type creates a new vm name and, by rule (T-RETURN),
the state of the chosen vm name must be always the same.

We display behavioural types examples by using codes from
Sections 1 and 2. Actually, the following types do not abstract a
lot from codes because the programs of the previous sections have
been designed for highlighting the issues of our technique.

The behavioural types of fact and costly_fact are the fol-
lowing ones

fact α(n) {
(n==0){ 0 }

+(n>0){ ν y :factα(n− 1) # yX}
} - , { }

costly_fact α(n) {
(n==0){ 0 }
+(n>0){ νβ #

ν x : costly fact β(n− 1) #
xX # βX }

} - , { }

and it is worth to highlight that the type of costly_fact records
the order between the recursive invocation and the release of the
machine.

The behavioural type of double_release is the following one

double_release α(β, γ) {βX # γX } - , {β, γ}

It is worth to notice that the releases βX and γX in double_release
are conditioned by the values of β and γ when the method is in-
voked.

5. The analysis of behavioural types
The types returned by the system in Section 4 are used to compute
the resource cost of a vml program. This computation is performed
by an off-the-shelf solver – the CoFloCo solver [11] – that takes in
input a set of so-called cost equations. CoFloCo cost equations are
terms

m(x) = exp [se]

where m is a (cost) function symbol, exp is an expression that may
contain (cost) function symbols applications (we do not define the
syntax of exp, which may be derived by the following equations;
the reader is referred to [11]), and se is a size expression whose
variables are contained in x.

Basically, our translation maps method types into cost equa-
tions, where

• method invocations are translated into function applications,
• virtual machine creations are translated into a +1 cost,
• virtual machine releases are translated into a -1 cost,

There are two function calls for every method invocation: one re-
turns the maximal number of resources needed to execute a method
m, called peak cost of m and noted mpeak, and the other returns the

number of resources the method m creates without releasing, called
net cost of m and noted mnet. These functions are used to define the
cost of sequential execution and parallel execution of methods. For
example, omitting arguments of methods, the cost of the sequential
composition of two methods m and m′ is the maximal value between
mpeak, mnet + m′peak, and mnet + m′net; while the cost of the parallel ex-
ecution of m and m′ is the maximal value between mpeak + m′peak,
mnet + m′peak, mnet + m′peak, and mnet + m′net.

There are two difficulties that entangle our translation, both re-
lated to method invocations: the management of arguments’ identi-
ties and of arguments’ values.

Arguments’ identities. Consider the code

Int simple_release(Vm x) { release x ; return 0 ; }

Int m(Vm x, Vm y) {
Fut<Int> f; f = this!simple_release(x); release y; f.get;
return 0;

}

The behavioural types of these methods are

simple release α(β){ βX } , {β}
m α(β, γ){ν f : simple releaseα(β) # γX # fX} , {β, γ}

We notice that, in the type of m, there is not enough information to
determine whether γX will have a cost equal to -1 or 0. In fact,
while in typing rules of methods the arguments are assumed to be
pairwise different – see rule (T-METHOD) –, it is not the case for
invocations. For instance, if m is invoked with two arguments that
are equal – β = γ – then γ is going to be released by the invocation
free(β) and therefore it counts 0. To solve this problem of argu-
ments’ identity, we refine even more the translation of a method
type, which now depends on an equivalence relation telling which
of the vm names in parameter are actually equal or not. Hence, the
above method m is translated in four cost functions: m{ 1 },{ 2 }

peak (x, y)

and m
{ 1 },{ 2 }
net (x, y), which correspond to the invocations where

x 6= y, and m
{ 1,2 }
peak (x) and m

{ 1,2 }
net (x), which correspond to the

invocations where x = y. (The equivalence relation in the super-
script never mention this, which is also an argument, because, in
this case this cannot be identified with the other arguments, see
below.)

The following function EqRel computes the equivalence rela-
tion corresponding to a specific method call; EqRel takes a tuple
of vm names and returns an equivalence relation on indices of the
tuple:

EqRel(α0, · · · , αn) =
⋃

i∈0..n

{ {j | αj = αi} }

Let EqRel(α0, · · · , αn)(β0, · · · , βn) be the tuple (βi1 , · · · , βik ),
where i1, · · · , ik are canonical representatives of the sets in



EqRel(α0, · · · , αn) (we take the vm name with the least index in
every set). We observe that, by definition, EqRel(α0, · · · , αn)(α0,
· · · , αn) is a tuple of pairwise different vm names (inα0, · · · , αn).

Without loosing in generality, we will always assume that the
canonical representative of a set containing 0 is always 0. This
index represents the this object and we remind that, by Restriction
3 in Section 3, such an object cannot be released. This is the reason
why, in the foregoing discussion about the method m, we did not
mentioned this. Additionally, in order to simplify the translation
of method invocations, we also assume that the argument this
is always different from other arguments (the general case just
requires more details).

(Re)computing argument’s states. In Section 4 we computed
the state of every machine in order to enforce the restrictions in
Section 3. In this section we mostly compute them again for a
different reason: obtaining a (more) precise cost analysis. Of course
one might record the computation of vm states in behavioural
types. However, this solution has the drawback that behavioural
types become unintelligible because they carry informations that
are needed by the analyser.

Let a translation environment, ranged over Ψ,Ψ′, be a mapping
from vm names to vm states and from future names to triples
(Ψ′, R, m β(se, β) → o), where Ψ′ is a translation environment
defined on vm names only, called vm-translation environment. We
define the following auxiliary functions

– let Ψ be a vm-translation environment. Then

Ψ|X(α)
def
=

{
Ψ(α) if α ∈ X
undefined otherwise

– the update of a vm-translation environment Ψ with respect to f
and Ψ′, written Ψ↘f Ψ′, returns a vm-translation environment
defined as follows:

(Ψ↘f Ψ′)(α)
def
=





(F′ \ {f})(t u t′) if Ψ(α) = Ft
and Ψ′(α) = F′t′

undefined otherwise

This operation Ψ ↘f Ψ′ updates the vm-translation environ-
ment Ψ of a method invocation, which is stored in the future
f , with respect to the translation environment at the synchro-
nisation point. It is worth to observe that, by definition of our
type system and the following translation function, the values of
Ψ(α) and Ψ′(α) are related. In particular, if t = α then t′ can
be either α or α↓ (the machine is released by a method that has
been invoked in parallel) or ⊥ (the machine has been released
before the get operation on the future f ); if t = > then t′ can
be either > or ∂ (the machine is released by a method that has
been invoked in parallel) or ⊥ (the machine has been released
before the get operation).

– the merge operation, noted Ψ(∆), where Ψ is a vm-translation
environment and ∆ is an equivalence relation, returns a substi-
tution defined as follows. Let

t⊗α t′ def
=





⊥ if t = ⊥ or t′ = ⊥
α if t and t′ are variables
α↓ otherwise

F1t1 ⊗α F2t2
def
= (F1 ∪ F2)(t1 ⊗α t2)

Then
Ψ(∆) : α 7→

⊗
∆(α){Ψ(β) | β ∈ dom(Ψ) and ∆(β) = ∆(α)}

for every α ∈ dom(Ψ).
The operator ⊗α has not been defined on vm values as ∂ or >
because we merge vm names whose image by Ψ can be either

Fβ or Fβ↓ or F⊥. As a notational remark, we observe that Ψ(∆)
is noted as a map [α1 7→ F1t1, · · · , αn 7→ Fntn] instead of the
standard notation [F1t1, · · · , Fntn/α1, · · · , αn]. These two no-
tations are clearly equivalent: we prefer the former one because
it will let us to write Ψ(∆)(α) or even Ψ(∆)(α1, · · · , αn) with
the obvious meanings.

To clarify the reason for a merge operator, consider the atom fX

within a behavioural type that binds f to fooα(β, γ). Assume to
evaluate this type with ∆ = {β, γ}. That is, the two arguments are
actually identical. What are the values of β and γ for evaluating
foo∆

peak and foo∆
net? Well, we have

1. to select the representative between β and γ: it will be ∆(β)
(which is equal to ∆(γ);

2. to take a value that is smaller than Ψ(β) and Ψ(γ) (but greater
than any other value that is smaller);

3. to substitute β and γ with the result of 2.

For instance, let Ψ = [α 7→ ∅α, β 7→ ∅β↓, γ 7→ ∅γ] and
∆(β) = ∆(γ) = β. We expect that a value for the item 2
above is ∅β↓ and the substitution of the item 3 is [∅β↓,∅β↓/β, γ].
Formally, the operation returning the value for 2 is ⊗β and the the
substitution of item 3 is the output of the merge operation.

The translation function. The translation function, called translate,
is structured in three parts that respectively correspond to simple
atoms, full behavioural types, and method types and full programs.
translate carries five arguments:

1. ∆ is the equivalence relation on formal parameters identifying
those that are equal. We assume that ∆(x) returns the unique
representative of the equivalence class of x. Therefore we can
use ∆ also as a substitution operation.

2. Ψ is the translation environment which stores temporary infor-
mation about futures that are active (unsynchronised) and about
the state of vm names;

3. α is the name of the virtual machine of the current behavioural
type;

4. e is the sequence of (over-approximated) costs of the current
execution branch;

5. the behavioural type being translated; it may be either a, c or
C.

In the definition of translate we use the two functions

CNEW(α) =

{
0 α = ⊥
1 otherwise

CREL(α) =

{
-1 α = >
0 otherwise

The left-hand side function is used when a virtual machine is cre-
ated. It returns 1 or 0 according to the virtual machine that is ex-
ecuting the code can be alive (α 6= ⊥) or not, respectively. The
right-hand side function is used when a virtual machine is released
(in correspondence of atoms βX). The release is effectively com-
puted – value -1 – only when the virtual machine that is executing
the code is alive (α = >).

Finally, we will assume the presence of a lookup function
lookup that takes method invocations m α(r, β) and returns tu-
ples c : o, R. This function is left unspecified.

The definition of translate follows. We begin with the trans-
lation of atoms.



translate[∆,Ψ, α](e; e)(a) =



(Ψ, e; e)

when a = 0

(Ψ[β 7→ ∅>], e; e; e+ CNEW(t))

when a = νβ and Ψ(α) = Ft

(Ψ[∆(β) 7→ ∅⊥], e; e; e+ CREL(t))

when a = βX and Ψ(∆(β)) = Ft

(Ψ′[f 7→ (Ψ|∆(β,β), R, m ∆(β)(r,∆(β)→ o))], e; e; e+ f)

when a = νf : m β(r, β)→ o

and Ψ′ = Ψ[β 7→ (F ∪ {f})t]β∈R,Ψ(β)=Ft

and lookup(m ∆(β)(se,∆(β))) = c : o, R

(Ψ′′ \ f, (e; e)σ; (e)σ′ +
∑
γ∈∆(R),Θ(γ)=Ft,F 6=∅ CREL(t)

when a = fX and Ψ(f) = (Ψ′, R, m β(r, β)→ o)

and EqRel(β, β) = Ξ and Θ = Ψ′ ↘f Ψ

and σ = [m
Ξ
peak(r,Θ(Ξ(β, β)) ⇓)/f ]

and σ′ = [m
Ξ
net(r,Θ(Ξ(β, β)) ⇓)/f ]

and Ψ′′ = Ψ[γ 7→ ∅⊥]γ∈R[γ′ 7→ Θ(β)]γ
′∈fv(o)\R

In the definition of translate we always highlight the last ex-
pression in the sequence of costs of the current execution branch
(the fourth input). This is because the cost of the parsed atom ap-
plies to it, except for the case of fX. In this last case, let e; e be the
expression. Since the atom expresses the synchronisation of f , e; e
will have occurrences of f . In this case, the function translate
has to compute two values: the maximum number of resources used
by (the method corresponding to) f during its execution – the peak
cost used in the substitution σ – and the resources used upon the ter-
mination of (the method corresponding to) f – the net cost used in
the substitution σ′. In particular, this last value has to be decreased
by the number of the resources released by the method. This is
the purpose of the addend

∑
γ∈∆(R),Θ(γ)=Ft,F 6=∅ CREL(t) that re-

move machines that are going to be removed by parallel methods
(the constraint F 6= ∅) because the other ones have been already
counted both in the peak cost and in the net cost. We observe that
the instances of the method mpeak and mnet that are invoked are those
corresponding to the equivalence relation of the tuple (β, β).

The of behavioural types is given by composing the definitions
of the atoms. In this case, the output of translate is a set of cost
equations.

translate(∆,Ψ, α, (se){ e }, c) =



{(se′){ e′ }} when c = a . ∅
and translate(∆,Ψ, α, (se){ e },a) = (Ψ′, (se′){ e′ })

C′′ when c = a # c′
and translate(∆,Ψ, α, (se){ e },a) = (Ψ′, {(se′){ e′ }})
and dom(Ψ′) \ dom(Ψ) = S

and translate(∆ ∪ {S},Ψ′, α, (se′){ e′ }, c′) = (Ψ′′, C′′)

C′ ∪ C′′ when c = c1 + c2

and translate(∆,Ψ, α, (se){ e }, c1) = (Ψ′, C′)
and translate(∆,Ψ, α, (se){ e }, c2) = (Ψ′′, C′′)

C′ when c = (se′){c′}
and translate(∆,Ψ, α, (se ∧ se′){ e }, c′) = (Ψ′, C′)

C′ when c = (e′){c′} and e′ contains
and translate(∆,Ψ, α, (se){ e }, c′) = (Ψ′, C′)

The translation of method types and behavioural type programs
is given below. Let P be the set of partitions of 1..n. Then

translate(m α1(x, α2, . . . , αn) { c } : o, R) =⋃
Ξ∈P translate(Ξ, m α1(x, α2, . . . , αn) { c } : o, R)

where translate(Ξ, m α1(x, α2, . . . , αn) { c } : o, R) is defined
as follows. Let

∆ = { {αi1 , . . . , αim } | { i1, . . . , im } ∈ Ξ }

[∆] = {α 7→ ∅α | α = ∆(α)}

translate(∆,[∆], α1)(0)(c) =
⋃n
i=1(sei){ e1,i; . . . ; ehi,i }

Then
translate(Ξ, m α1(x, α2, . . . , αk) { c } : o, R) =




mΞ
peak(x,Ξ[α1, α2, . . . , αk]) = 0 [α1 = ⊥]

mΞ
peak(x,Ξ[α1, α2, . . . , αk]) = e1,1 [se1 ∧ α1 6= ⊥]

...
mΞ

peak(x,Ξ[α1, α2, . . . , αk]) = eh1,1 [se1 ∧ α1 6= ⊥]

mΞ
peak(x,Ξ[α1, α2, . . . , αk]) = e1,2 [se2 ∧ α1 6= ⊥]

...
mΞ

peak(x,Ξ[α1, α2, . . . , αk]) = ehn,n [sen ∧ α1 6= ⊥]

mΞ
net(x,Ξ[α1, α2, . . . , αk]) = 0 [α1 = ⊥]

mΞ
net(x,Ξ[α1, α2, . . . , αk]) = mΞ

peak(x,Ξ[α1, . . . , αn]) [α1 = ∂]

mΞ
net(x,Ξ[α1, α2, . . . , αk]) = eh1,1 [se1 ∧ α1 = >]

...
mΞ

net(x,Ξ[α1, α2, . . . , αk]) = ehn,n [sen ∧ α1 = >]

Let (C1 . . . Cn, c) be a behavioural type program and let
translate(∅,∅, α, (true){ 0 }, c) =

⋃m
j=1(sej){ e1,j ; · · · ; ehj ,j }.

Then

translate(C1 . . . Cn, c) =





translate(C1) · · · translate(Cn)
main() = 1 + e1,1 [se1]

...
main() = 1 + eh1,1 [se1]
main() = 1 + e1,2 [se2]

...
main() = 1 + ehm,m [sem]

As an example, we show the output of translate when ap-
plied to the behavioural type of double_release computed in
Section 4. Since double_release has two arguments, we gen-
erate two sets of equations, as discussed above. In order to ease
the reading, we omit the equivalence classes of arguments that
label function names: the reader may grasp them from the num-
ber of arguments. For the same reason, we represent a partition
{{1}, {2}, {3}} corresponding to vm names α1, α2 and α3 by
[α1, α2, α3] and {{1}, {2, 3}} by [α1, α2] (we write the canoni-
cal representatives). For simplicity we do not add the partition to
the name of the method.

translate([α1, α2, α3], double release α1(α2, α3) { c } : , {α2, α3})

=





double releasepeak(α1, α2, α3) = 0 [α1 = ⊥]
double releasepeak(α1, α2, α3) = 0 [α1 6= ⊥]
double releasepeak(α1, α2, α3) = CREL(α2) [α1 6= ⊥]
double releasepeak(α1, α2, α3) = CREL(α2) + CREL(α3)[α1 6= ⊥]

double releasenet(α1, α2, α3) = 0 [α1 = ⊥]
double releasenet(α1, α2, α3) = double releasepeak(α1, α2, α3)

[α1 = ∂]
double releasenet(α1, α2, α3) = CREL(α2) + CREL(α3) [α1 = >]



translate([α1, α2], double release α1(α2) { c } : , {α2}) =




double releasepeak(α1, α2) = 0 [α1 = ⊥]
double releasepeak(α1, α2) = 0 [α1 6= ⊥]
double releasepeak(α1, α2) = CREL(α2) [α1 6= ⊥]
double releasepeak(α1, α2) = CREL(α2) + CREL(⊥) [α1 6= ⊥]

double releasenet(α1, α2) = 0 [α1 = ⊥]
double releasenet(α1, α2) = double releasepeak(α1, α2) [α1 = ∂]
double releasenet(α1, α2) = CREL(α2) + CREL(⊥) [α1 = >]

To highlight a cost computation concerning double_release,
consider the following two potential users

Int user1() {
Vm x ; Vm y ; Fut<Int> f ;
x = new Vm ; y = new Vm;
f = this!double_release(x, y);
f.get ; return 0 ; }

Int user2() {
Vm x ; Fut<Int> f ;
Vm x = new Vm ;
f = this!double_release(x, x);
f.get ; return 0 ; }

which have corresponding behavioural types

user1 α( ){
νβ # νγ #
ν f : double releaseα(β, γ) # fX

} - , { }

user2 α( ){
νβ #
ν f : double releaseα(β, β) # fX

} - , { }

The translations of the foregoing types give the set of equations
translate([α1], user1 α1() { cuser1 } : , {}) =



user1peak(α1) = 0 [α1 = ⊥]
user1peak(α1) = 0 [α1 6= ⊥]
user1peak(α1) = CNEW(α1) [α1 6= ⊥]
user1peak(α1) = CNEW(α1) + CNEW(α1) [α1 6= ⊥]
user1peak(α1) = CNEW(α1) + CNEW(α1)

+ double releasepeak(α1,>,>) [α1 6= ⊥]
user1peak(α1) = CNEW(α1) + CNEW(α1)

+ double releasenet(α1,>,>) [α1 6= ⊥]

user1net(α1) = 0 [α1 = ⊥]
user1net(α1) = user1peak(α1) [α1 = ∂]
user1net(α1) = CNEW(α1) + CNEW(α1)

+ double releasenet(α1,>,>) [α1 = >]

translate([α1], user2 α1() { cuser2 } : , {}) =




user2peak(α1) = 0 [α1 = ⊥]
user2peak(α1) = 0 [α1 6= ⊥]
user2peak(α1) = CNEW(α1) [α1 6= ⊥]
user2peak(α1) = CNEW(α1) + double releasepeak(α1,>) [α1 6= ⊥]
user2peak(α1) = CNEW(α1) + double releasenet(α1,>) [α1 6= ⊥]

user2net(α1) = 0 [α1 = ⊥]
user2net(α1) = user2peak(α1) [α1 = ∂]
user2net(α1) = CNEW(α1) + double releasenet(α1,>) [α1 = >]

If we compute the cost of user1peak(α) and user1net(α) we
obtain 2 and 0, respectively. That is, in this case, double_release
being invoked with two different arguments has cost -2. On the
contrary, the cost of user2peak(α) and user2net(α) is 1 and 0,
respectively. That is, in this case, double_release being invoked
with two equal arguments has cost -1.

6. Outline of the proof of correctness
The proof of correctness of our technique is long even if almost
standard (see [12] for a similar proof). In this section we overview
it by highlighting the main difficulties.

The first part of the proof addresses the correctness of the type
system in Section 4. As usual with type systems, the correctness
is represented by a subject reduction theorem expressing that if
a configuration cn of the operational semantics is well typed and

cn → cn′ then cn′ is well-typed as well. It is worth to observe
that we cannot hope to demonstrate a statement guaranteeing type-
preservation because our types are “behavioural” and change dur-
ing the evolution of the systems. However, it is critical for the cor-
rectness of the cost analysis that there exists a relation between the
type of cn, let it be c, and the type of cn′, let it be c′.

Therefore, a subject reduction for the type system of Section 4
requires

1. the extension of the typing to configurations;

2. the definition of an evaluation relation between behavioural
types.

Once 1 and 2 above have been defined, it is possible to demon-
strate (let ∗ be the reflexive and transitive closure of ):

Theorem 6.1 (Subject Reduction). Let cn be a configuration of a
vml program and let c be its behavioural type. If cn → cn′ then
there is c′ typing cn′ such that c ∗ c′.

The proof of this theorem is by case on the reduction rule ap-
plied and it is usually not complex because the relation mimics
the vml transitions in Section 2.

The second part of the proofs relies on the definition of the
notion of direct cost of a behavioural type (of a configuration),
which is the number of virtual machines occurring in the type. The
basic remark here is that the number of alive virtual machines in a
configuration is identical to the direct cost of the corresponding a
behavioural type. This requires

3. the extension of the function translate to compute the cost
equations for behavioural types of configurations. These equa-
tions allow us to compute the peak cost of a behavioural type
(of a configuration).

The proofs of the following two properties are preliminary to
the correctness of our technique:

Lemma 6.2 (Basic Cost Inclusion). The direct cost of a be-
havioural type of a configuration is less or equal to its peak cost.

Lemma 6.3 (Reduction Cost Inclusion). If c  c
′ then the peak

cost of c′ is less or equal to the peak cost of c.

It is important to observe that the proofs of Lemmas 6.2 and 6.3
are given using the (theoretical) solution of cost equations in [11].
This lets us to circumvent possible errors in implementations of
the theory, such as CoFloCo [11] or PUBS [1]. Given the basic cost
and reduction cost inclusions, we can demonstrate the correctness
theorem for our technique.

Theorem 6.4 (Correctness). Let M {F z ; s′} be a well-typed
program and let C, c be its behavioural type. Let also n be a
solution of the function translate(C, c). Then n is an upper
bound of the number of virtual machines used during the execution
of cn.

The proof outline is as follows. Since the cost of the initial
configuration cn is the direct cost of c then, by Lemma 6.2, this
value is less or equal to the peak cost of c. Let n be a solution of
this cost. The argument proceeds by induction on the number of
reduction steps:

• for the base case, when the program doesn’t reduce, it turns out
that n ≥ 1;
• for the inductive case, let cn → cn′. By applying Theorem 6.1

and Lemma 6.3, one derives that n is bigger than the peak cost
of the behavioural type of cn′. Thus, by Lemma 6.2, we have
that n is larger than the number of alive virtual machines in cn′.



7. Integration with a cost analysis tool
We briefly discuss technical details about the translation of the
recurrence relations in Section 5 into the CoFloCo analyser [11]
and we examine the outputs obtained by running examples of this
paper.

In order to comply with usual input formats of tools, we need
to define encodings for vm values and for the functions CNEW and
CREL. We therefore define

– > is modelled by 1, ∂ is modelled by 2, ⊥ is modelled by 3,
and α by α. As regards α ↓, it is modelled by the conditional
value [α = 3]3 + [1 ≤ α ≤ 2]2;

– the auxiliary functions CNEW and CREL are translated in recur-
rence relations as follows:

eq(CNEW(A), 0, [], [A = 3]).
eq(CNEW(A), 1, [], [A < 3]).

eq(CREL(A), -1, [], [A = 1]).
eq(CREL(A), 0, [], [A > 1]).

We begin our experiments with the translation of double_release
when used by user1. In this case, the arguments of double_release
are all different, therefore we use double releasepeak(α1, α2, α3)
and double releasenet(α1, α2, α3). We write these functions in
CoFloCo as doubleRelease123_peak(A,B,C) and doubleRe-
lease123_net(A,B,C). The input code for the cost analyser is
omitted. The following table report the output of CoFloCo

Entry Point Cost
entry(user1_net(1):[]). 0

entry(user1_peak(1):[]). 2

which is exactly what we anticipated in Section 5.
When double_release is invoked used by user2 then its ar-

guments are equal. That is double releasepeak(α1, α2) and
double releasenet(α1, α2) are used, which are written in CoFloCo
as doubleRelease12_peak(A,B) and doubleRelease12_net(A,B).
The table below shows the output of the cost analyzer for the given
equations, where, again, we consider only the case when the first
argument is alive, that is, it is equal to 1.

Entry Point Cost
entry(user2_net(1):[]). 0

entry(user2_peak(1):[]). 1

As before, the cost is exactly what computed in Section 5.

8. Related Work
After the pioneering work by Wegbreit in 1975 [21] that discussed
a method for deriving upper-bounds costs of functional programs,
a number of cost analysis techniques have been developed. Those
ones that are closely related to this contribution are based either on
cost equations (solvers) or on amortized analysis.

The techniques based on cost equations address cost analysis
in three steps by: (i) extracting relevant information out of the
original programs by abstracting data structures to their size and
assigning a cost to every program expression, (ii) converting the
abstract program into cost equations, and (iii) solving the cost
equations with an automatic tool. Recent advances have been done
for improving the accuracy of upper-bounds for cost equations [1,
4, 9, 11, 13] and we refer to [11] for a comparison of these tools.
The main advantage of these techniques is that cost equations may
carry Presburger arithmetic conditions thus supporting a precise
cost analysis of conditional statements. The main drawback is that
they extract control flow graphs from programs to perform their
analysis, using abstract interpretations and control flow refinement
techniques [4, 5]. It turns out that the above techniques do not

provide the alias analysis and the name identity management that
we have done in Section 4, which are essential for function or
procedure abstraction, thus jeopardising compositional reasoning
when large programs are considered.

The techniques based on amortized analysis [20] associate so-
called potentials to program expressions by means of type systems
(these potential determine the resources needed for each expression
to be evaluated). The connection between the original program
and the cost equations can be indeed demonstrated by a standard
subject-reduction theorem [10, 15–18]. While the techniques based
on types are intrinsically compositional and, more importantly,
type derivations can be seen as certificates of abstract descriptions
of functions, type based methods do not model the interaction of
integer arithmetic with resource usage, thus being less accurate in
some cases. An emblematic example is the following function:

Int foo(Int n, Int m, Vm x) {
Fut<Int> f ;
if (n==0) return 0;
else if (n>m) { Vm v = new Vm ;

f = x!foo(n-1,m,v) ; f.get ; return 0 ;
} else { Vm v = new Vm ; Vm w = new Vm ;

f = v!foo(n-1,m,w) ; f.get ; return 0 ; }
}

{
Vm x = new Vm ; Fut<Int> f = this!foo(2*n, n, x) ;
f.get ;

}

which recursively invokes itself 2*n times, and half the times ex-
ecutes the second branch – the case (n>m) – with cost 1 and half
the times executes the else branch (with cost 2). The techniques
based on amortized analysis give a cost for the function foo that
is 2*(2*n)=4*n – without recognizing that the most costly branch
is executed only half of the times – because they always assign the
same cost to every branch. On the contrary, a more accurate analy-
sis should derive that the actual cost of foo is 2*n + n = 3*n. In
fact, this is the case of solvers based cost equations, such as [11].

The technique proposed in this paper combines the advantages
of the two approaches discussed above. It is modular, like the
techniques based on cost equations, our one also consists of three
steps, and it extracts the relevant information of programs by means
of a behavioural type system, like the technique based on amortized
analysis. Therefore, our technique is compositional and can be
proved sound by means of a standard subject-reduction theorem. At
the same time it is accurate in modelling the interaction of integer
arithmetic with resource usage.

A common feature of cost analysis techniques in the literature
is that they analyze cumulative resources. That is, resources that
do not decrease during the execution of the programs, such as
execution time, number of operations, memory (without an explicit
free operation). As already discussed, this assumption eases the
analysis because it permits to compute over-approximated cost. On
the contrary, the presence of an explicit or implicit release operation
entangles the analysis. In [2], a memory cost analysis is proposed
for languages with garbage collection. It is worth to say that the
setting of [2] is not difficult because, by definition of garbage
collection, released memory is always inactive. The impact of the
release operation in the cost analysis is thoroughly discussed in [7]
by means of the notions of peak cost and net cost that we have also
used in Section 5. It is worth to notice that, for cumulative analysis,
this two notions coincide while, in non-cumulative analysis (in
presence of a release operation), they are different and the net cost
is key for computing tight upper bounds.

Recently [6] has analysed the cost of a language with explicit
releases. We observe that the release operation studied in [6] is
used in a very restrictive way: only locally created resources can



be released. This constraint guarantees that costs of functions are
always not negative, thus permitting the (re)use of non-negative
cost models of cumulative analysis.

We conclude by discussing cost analysis techniques for con-
current systems, which are indeed very few [3, 5, 14]. In order to
reduce the imprecision of the analysis caused by the nondetermin-
ism, [3, 5] use a clever technique for isolating sequential code from
parallel code, called may-happen-in-parallel [8]. We notice that no
one of these contributions consider a concurrent language with a
powerful release operation that allows one remove the resources
taken in input. In fact, without this operation, one can model the
cost by simply aggregating the sets of operations that can occur
in parallel, as in [5], and all the theoretical development is much
easier.

9. Conclusion
This paper presents the first (to the best of our knowledge) static
analysis technique that computes upper bound of virtual machines
usages in concurrent programs that may create and, more impor-
tantly, may release such machines. Our analysis consists of a type
system that extracts relevant information about resource usages in
programs, called behavioural types; an automatic translation that
transforms these types into cost expressions; the application of
solvers, like CoFloCo [11], on these expressions that compute up-
per bounds of the usage of virtual machines in the original pro-
gram. A relevant property of our technique is its modularity. For
the sake of simplicity, we have applied the technique to a small lan-
guage. However, by either extending or changing the type system,
the analysis can be applied to many other languages with primi-
tives for creating and releasing resources. In addition, by changing
the translation algorithm, it is possible to target other solvers that
may compute better upper bounds.

For the future, we consider at least two lines of work. First, we
intend to alleviate the restrictions introduced in Section 3 on the
programs we can analyse. This may be pursued by retaining more
expressive notations for the effect of a method, i.e. by considering
R as a set of sets instead of a simple set. Such a notation is more
suited for modelling nondeterministic behaviours and it might be
made even more expressive by tagging all the different effects in
R with a condition specifying when such effect is yielded. Clearly,
the management of these domains becomes more complex and the
trade-off between simplicity and expressiveness must be carefully
evaluated. Second, we intend to implement our analysis targeting a
programming language with a formal model as ABS [19], of which
vml is a very basic sub-calculus. The current prototype translates
a behavioural type program into cost equations and we expect to
define an inference system that returns behavioural types in the
same style of [12].
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Abstract. We study the problem of automatically computing the time
complexity of concurrent object-oriented programs. To determine this
complexity we use intermediate abstract descriptions that record rele-
vant information for the time analysis (cost of statements, creations of
objects, and concurrent operations), called behavioural types. Then, we
define a translation function that takes behavioural types and makes
the parallelism explicit into so-called cost equations, which are fed to an
automatic off-the-shelf solver for obtaining the time complexity.

1 Introduction

Computing the cost of a sequential algorithm has always been a primary question
for every programmer, who learns the basic techniques in the first years of their
computer science or engineering curriculum. This cost is defined in terms of the
input values to the algorithm and over-approximates the number of the executed
instructions. In turn, given an appropriate abstraction of the CPU speed of a
runtime system, one can obtain the expected computation time of the algorithm.

The computational cost of algorithms is particularly relevant in mainstream
architectures, such as the cloud. In that context, a service is a concurrent pro-
gram that must comply with a so-called service-level agreement (SLA) regulat-
ing the cost in time and assigning penalties for its infringement [3]. The service
provider needs to make sure that the service is able to meet the SLA, for example
in terms of the end-user response time, by deciding on a resource management
policy and determining the appropriate number of virtual machine instances (or
containers) and their parameter settings (e.g., their CPU speeds). To help service
providers make correct decisions about the resource management before actu-
ally deploying the service, we need static analysis methods for resource-aware
services [6]. In previous work by the authors, cloud deployments expressed in
the formal modeling language ABS [8] have used a combination of cost analysis
and simulations to analyse resource management [1], and a Hoare-style proof
system to reason about end-user deadlines has been developed for sequential
executions [7]. In contrast, we are here interested in statically estimating the

? Supported by the EU projects FP7-610582 Envisage: Engineering Virtualized Ser-
vices (http://www.envisage-project.eu).



computation time of concurrent services deployed on the cloud with a given
dynamic resource management policy.

Technically, this paper proposes a behavioural type system expressing the
resource costs associated with computations and study how these types can be
used to soundly calculate the time complexity of parallel programs deployed
on the cloud. To succinctly formulate this problem, our work is developed for
tml, a small formally defined concurrent object-oriented language which uses
asynchronous communications to trigger parallel activities. The language defines
virtual machine instances in terms of dynamically created concurrent object
groups with bounds on the number of cycles they can perform per time interval.
As we are interested in the concurrent aspects of these computations, we abstract
from sequential analysis in terms of a statement job(e), which defines the number
of processing cycles required by the instruction – this is similar to the sleep(n)

operation in Java.

The analysis of behavioural types is defined by translating them in a code that
is adequate for an off-the-shelf solver – the CoFloCo solver [4]. As a consequence,
we are able to determine the computational cost of algorithms in a parametric
way with respect to their inputs.

Paper overview. The language is defined in Section 2 and we discuss restric-
tions that ease the development of our technique in Section 3. Section 4 presents
the behavioural type system and Section 5 explains the analysis of computation
time based on these behavioural types. In Section 6 we outline our correctness
proof of the type system with respect to the cost equations. In Section 7 we dis-
cuss the relevant related work and in Section 8 we deliver concluding remarks.

2 The language tml

The syntax and the semantics of tml are defined in the following two subsections;
the third subsection discusses a few examples.

Syntax. A tml program is a sequence of method definitions T m(T x){F y ; s },
ranged over by M , plus a main body {F z ; s′ } with k. In tml we distinguish
between simple types T which are either integers Int or classes Class (there
is just one class in tml), and types F , which also include future types Fut<T>.
These future types let asynchronous method invocations be typed (see below).
The notation T x denotes any finite sequence of variable declarations T x. The
elements of the sequence are separated by commas. When we write T x ; we
mean a sequence T1 x1 ; · · · ; Tn xn ; when the sequence is not empty; we
mean the possibly empty sequence otherwise.

The syntax of statements s, expressions with side-effects z and expressions e
of tml is defined by the following grammar:

s ::= x = z | if e { s } else { s } | job(e) | return e | s ; s
z ::= e | e!m(e) | e.m(x) | e.get | new Class with e | new local Class

e ::= this | se | nse



A statement s may be either one of the standard operations of an imperative
language or the job statement job(e) that delays the continuation by e cycles of
the machine executing it.

An expression z may change the state of the system. In particular, it may be
an asynchronous method invocation of the form e!m(e), which does not suspend
the caller’s execution. When the value computed by the invocation is needed,
the caller performs a non-blocking get operation: if the value needed by a pro-
cess is not available, then an awaiting process is scheduled and executed, i.e.,
await-get. Expressions z also include standard synchronous invocations e.m(e)
and new local Class, which creates a new object. The intended meaning is to
create the object in the same machine – called cog or concurrent object group
– of the caller, thus sharing the processor of the caller: operations in the same
virtual machine interleave their evaluation (even if in the following operational
semantics the parallelism is not explicit). Alternatively, one can create an object
on a different cog with new Class with e thus letting methods execute in paral-
lel. In this case, e represents the capacity of the new cog, that is, the number of
cycles the cog can perform per time interval. We assume the presence of a special
identifier this.capacity that returns the capacity of the corresponding cog.

A pure expression e can be the reserved identifier this or an integer expres-
sion. Since the analysis in Section 5 cannot deal with generic integer expressions,
we parse expressions in a careful way. In particular we split them into size ex-
pressions se, which are expressions in Presburger arithmetics (this is a decid-
able fragment of Peano arithmetics that only contains addition), and non-size
expressions nse, which are the other type of expressions. The syntax of size and
non-size expressions is the following:

nse ::= k | x | nse ≤ nse | nse and nse | nse or nse
| nse + nse | nse − nse | nse × nse | nse/nse

se ::= ve | ve ≤ ve | se and se | se or se
ve ::= k | x | ve+ ve | k × ve
k ::= rational constants

In the paper, we assume that sequences of declarations T x and method declara-
tions M do not contain duplicate names. We also assume that return statements
have no continuation.

Semantics. The semantics of tml is defined by a transition system whose states
are configurations cn that are defined by the following syntax.

cn ::= ε | fut(f, val) | ob(o, c, p, q) | invoc(o, f, m, v) act ::= o | ε
| cog(c, act, k) | cn cn val ::= v | ⊥

p ::= { l | s } | idle l ::= [· · · , x 7→ v, · · · ]
q ::= ∅ | { l | s } | q q v ::= o | f | k

A configuration cn is a set of concurrent object groups (cogs), objects, invo-
cation messages and futures, and the empty configuration is written as ε. The
associative and commutative union operator on configurations is denoted by
whitespace. A cog is given as a term cog(c, act, k) where c and k are respectively
the identifier and the capacity of the cog, and act specifies the currently active



(Cond-True)
true = [[e]]l

ob(o, c, { l | if e { s1 } else { s2 } ; s }, q)
→ ob(o, c, { l | s1 ; s }, q)

(Cond-False)
false = [[e]]l

ob(o, c, { l | if e { s1 } else { s2 } ; s }, q)
→ ob(o, c, { l | s2 ; s }, q)

(New)
c′ = fresh( ) o′ = fresh( ) k = [[e]]l

ob(o, c, { l | x = new Class with e ; s }, q)
→ ob(o, c, { l | x = o′ ; s }, q)
ob(o′, c′, idle,∅) cog(c′, o′, k)

(New-Local)
o′ = fresh( )

ob(o, c, { l | x = new local Class ; s }, q)
→ ob(o, c, { l | x = o′ ; s }, q)

ob(o′, c, idle,∅)

(Get-True)
f = [[e]]l v 6= ⊥

ob(o, c, { l | x = e.get ; s }, q) fut(f, v)
→ ob(o, c, { l | x = v ; s }, q) fut(f, v)

(Get-False)
f = [[e]]l

ob(o, c, { l | x = e.get ; s }, q) fut(f,⊥)
→ ob(o, c, idle, q ∪ { l | x = e.get ; s }) fut(f,⊥)

(Self-Sync-Call)
o = [[e]]l v = [[e]]l f ′ = l(destiny)

f = fresh( ) { l′ | s′ } = bind(o, f, m, v)
ob(o, c, { l | x = e.m(e) ; s }, q)

→ ob(o, c, { l′ | s′ ; cont(f ′) }, q ∪ { l | x = f.get ; s })
fut(f,⊥)

(Self-Sync-Return-Sched)
f = l′(destiny)

ob(o, c, { l | cont(f) }, q ∪ { l′ | s })
→ ob(o, c, { l′ | s }, q)

(Cog-Sync-Call)
o′ = [[e]]l v = [[e]]l f ′ = l(destiny)

f = fresh( ) { l′ | s′ } = bind(o′, f, m, v)
ob(o, c, { l | x = e.m(e) ; s }, q)
ob(o′, c, idle, q′) cog(c, o, k)

→ ob(o, c, idle, q ∪ { l | x = f.get ; s }) fut(f,⊥)
ob(o′, c, { l′ | s′ ; cont(f ′) }, q′) cog(c, o′, k)

(Cog-Sync-Return-Sched)
f = l′(destiny)

ob(o, c, { l | cont(f) }, q) cog(c, o, k)
ob(o′, c, idle, q′ ∪ { l′ | s′ })
→ ob(o, c, idle, q) cog(c, o′, k)

ob(o′, c, { l′ | s′ }, q′)

(Async-Call)
o′ = [[e]]l v = [[e]]l f = fresh( )
ob(o, c, { l | x = e!m(e) ; s }, q)

→ ob(o, c, { l | x = f ; s }, q) invoc(o′, f, m, v) fut(f,⊥)

(Bind-Mtd)
{ l | s } = bind(o, f, m, v)

ob(o, c, p, q) invoc(o, f, m, v)
→ ob(o, c, p, q ∪ { l | s })

(Context)
cn→ cn′

cn cn′′ → cn′ cn′′

(Release-Cog)
ob(o, c, idle, q) cog(c, o, k)
→ ob(o, c, idle, q) cog(c, ε, k)

(Activate)
ob(o, c, idle, q ∪ { l | s }) cog(c, ε, k)
→ ob(o, c, { l | s }, q) cog(c, o, k)

(Return)
v = [[e]]l f = l(destiny)

ob(o, c, { l | return e }, q) fut(f,⊥)
→ ob(o, c, idle, q) fut(f, v)

(Job-0)
[[e]]l = 0

ob(o, c, { l | job(e) ; s }, q)
→ ob(o, c, { l | s }, q)

(Assign-Local)
x ∈ dom(l) v = [[e]]l

ob(o, c, { l | x = e ; s }, q)
→ ob(o, c, { l [x 7→ v] | s }, q)

Fig. 1. The transition relation of tml – part 1.

object in the cog. An object is written as ob(o, c, p, q), where o is the identifier of
the object, c the identifier of the cog the object belongs to, p an active process,
and q a pool of suspended processes. A process is written as { l | s }, where l de-
notes local variable bindings and s a list of statements. An invocation message is
a term invoc(o, f, m, v) consisting of the callee o, the future f to which the result
of the call is returned, the method name m, and the set of actual parameter
values for the call. A future fut(f, val) contains an identifier f and a reply value
val, where ⊥ indicates the reply value of the future has not been received.

The following auxiliary function is used in the semantic rules for invocations.
Let T ′ m(T x){F x′; s } be a method declaration. Then

bind(o, f, m, v) = { [destiny 7→ f, x 7→ v, x′ 7→ ⊥] | s{o/this} }



(Tick)

strongstable t(cn)

cn→ Φ(cn, t)

where

Φ(cn, t) =





ob(o, c, {l′ | job(k′) ; s}, q) Φ(cn′, t) if cn = ob(o, c, {l | job(e) ; s}, q) cn′

and cog(c, o, k) ∈ cn′

and k′ = [[e]]l − k ∗ t

ob(o, c, idle, q) Φ(cn′, t) if cn = ob(o, c, idle, q) cn′

cn otherwise.

Fig. 2. The transition relation of tml – part 2: the strongly stable case

The transition rules of tml are given in Figures 1 and 2. We discuss the most
relevant ones: object creation, method invocation, and the job(e) operator. The
creation of objects is handled by rules New and New-Local: the former creates
a new object inside a new cog with a given capacity e, the latter creates an object
in the local cog. Method invocations can be either synchronous or asynchronous.
Rules Self-Sync-Call and Cog-Sync-Call specify synchronous invocations
on objects belonging to the same cog of the caller. Asynchronous invocations
can be performed on every object.

In our model, the unique operation that consumes time is job(e). We notice
that the reduction rules of Figure 1 are not defined for the job(e) statement,
except the trivial case when the value of e is 0. This means that time does
not advance while non-job statements are evaluated. When the configuration
cn reaches a stable state, i.e., no other transition is possible apart from those
evaluating the job(e) statements, then the time is advanced by the minimum
value that is necessary to let at least one process start. In order to formalize
this semantics, we define the notion of stability and the update operation of a
configuration cn (with respect to a time value t). Let [[e]]l return the value of e
when variables are bound to values stored in l.

Definition 1. Let t > 0. A configuration cn is t-stable, written stable t(cn), if
any object in cn is in one of the following forms:

1. ob(o, c, { l | job(e); s }, q) with cog(c, o, k) ∈ cn and [[e]]l/k ≥ t,
2. ob(o, c, idle, q) and

i. either q = ∅,
ii. or, for every p ∈ q, p = { l | x = e.get; s } with [[e]]l = f and fut(f,⊥),

iii. or, cog(c, o′, k) ∈ cn where o 6= o′, and o′ satisfies Definition 1.1.

A configuration cn is strongly t-stable, written strongstable t(cn), if it is t-
stable and there is an object ob(o, c, { l | job(e); s }, q) with cog(c, o, k) ∈ cn and
[[e]]l/k = t.

Notice that t-stable (and, consequently, strongly t-stable) configurations cannot
progress anymore because every object is stuck either on a job or on unresolved



get statements. The update of cn with respect to a time value t, noted Φ(cn, t) is
defined in Figure 2. Given these two notions, rule Tick defines the time progress.
The initial configuration of a program with main method {F x; s } with k is

ob(start , start, { [destiny 7→ fstart , x 7→ ⊥] | s },∅)
cog(start, start , k)

where start and start are special cog and object names, respectively, and fstart
is a fresh future name. As usual, →∗ is the reflexive and transitive closure of →.

Examples. To begin with, we discuss the Fibonacci method. It is well known that
the computational cost of its sequential recursive implementation is exponential.
However, this is not the case for the parallel implementation. Consider

Int fib(Int n) {
if (n<=1) { return 1; }
else { Fut<Int> f; Class z; Int m1; Int m2;

job(1);
z = new Class with this.capacity ;
f = this!fib(n-1); g = z!fib(n-2);
m1 = f.get; m2 = g.get;
return m1 + m2; } }

Here, the recursive invocation fib(n-1) is performed on the this object while
the invocation fib(n-2) is performed on a new cog with the same capacity (i.e.,
the object referenced by z is created in a new cog set up with this.capacity),
which means that it can be performed in parallel with the former one. It turns
out that the cost of the following invocation is n.

Class z; Int m; Int x; x = 1;
z = new Class with x;
m = z.fib(n);

Observe that, by changing the line x = 1; into x = 2; we obtain a cost of n/2.
Our semantics does not exclude paradoxical behaviours of programs that

perform infinite actions without consuming time (preventing rule Tick to apply),
such as this one

Int foo() { Int m; m = this.foo(); return m; }

This kind of behaviours are well-known in the literature, (cf. Zeno behaviours)
and they may be easily excluded from our analysis by constraining recursive
invocations to be prefixed by a job(e)-statement, with a positive e. It is worth to
observe that this condition is not sufficient to eliminate paradoxical behaviours.
For instance the method below does not terminate and, when invoked with
this.fake(2), where this is in a cog of capacity 2, has cost 1.

Int fake(Int n) {
Int m; Class x;
x = new Class with 2*n; job(1); m = x.fake(2*n); return m; }

Imagine a parallel invocation of the method Int one() { job(1); } on an
object residing in a cog of capacity 1. At each stability point the job(1) of the



latter method will compete with the job(1) of the former one, which will win
every time, since having a greater (and growing) capacity it will require always
less time. So at the first stability point we get job(1−1/2) (for the method one),
then job(1− 1/2− 1/4) and so on, thus this sum will never reach 0.

In the examples above, the statement job(e) is a cost annotation that spec-
ifies how many processing cycles are needed by the subsequent statement in the
code. We notice that this operation can also be used to program a timer which
suspends the current execution for e units of time. For instance, let

Int wait(Int n) { job(n); return 0; }

Then, invoking wait on an object with capacity 1

Class timer; Fut<Class> f; Class x;
timer = new Class with 1;
f = timer!wait(5); x = f.get;

one gets the suspension of the current thread for 5 units of time.

3 Issues in computing the cost of tml programs

The computation time analysis of tml programs is demanding. To highlight the
difficulties, we discuss a number of methods.

Int wrapper(Class x) {
Fut<Int> f; Int z;
job(1) ; f = x!server(); z = f.get;
return z; }

Method wrapper performs an invocation on its argument x. In order to determine
the cost of wrapper, we notice that, if x is in the same cog of the carrier, then its
cost is (assume that the capacity of the carrier is 1): 1+cost(server) because the
two invocations are sequentialized. However, if the cogs of x and of the carrier
are different, then we are not able to compute the cost because we have no clue
about the state of the cog of x.

Next consider the following definition of wrapper

Int wrapper_with_log(Class x) {
Fut<Int> f; Fut<Int> g; Int z;
job(1) ; f = x!server(); g = x!print_log(); z = f.get;
return z; }

In this case the wrapper also asks the server to print its log and this in-
vocation is not synchronized. We notice that the cost of wrapper_with_log is
not anymore 1 + cost(server) (assuming that x is in the same cog of the car-
rier) because print_log might be executed before server. Therefore the cost of
wrapper_with_log is 1 + cost(server) + cost(print log).

Finally, consider the following wrapper that also logs the information received
from the server on a new cog without synchronising with it:



Int wrapper_with_external_log(Class x) {
Fut<Int> f; Fut<Int> g; Int z; Class y;
job(1) ; f = x!server(); g = x!print_log(); z = f.get;
y = new Class with 1;
f = y!external_log(z);
return z; }

What is the cost of wrapper_with_external_log? Well, the answer here is
debatable: one might discard the cost of y!external_log(z) because it is use-
less for the value returned by wrapper_with_external_log, or one might count
it because one wants to count every computation that has been triggered by a
method in its cost. In this paper we adhere to the second alternative; however,
we think that a better solution should be to return different cost for a method:
a strict cost, which spots the cost that is necessary for computing the returned
value, and an overall cost, which is the one computed in this paper.

Anyway, by the foregoing discussion, as an initial step towards the time
analysis of tml programs, we simplify our analysis by imposing the following
constraint:

– it is possible to invoke methods on objects either in the same cog of the caller
or on newly created cogs.

The above constraint means that, if the callee of an invocation is one of the
arguments of a method then it must be in the same cog of the caller. It also
means that, if an invocation is performed on a returned object then this object
must be in the same cog of the carrier. We will enforce these constraints in the
typing system of the following section – see rule T-Invoke.

4 A behavioural type system for tml

In order to analyse the computation time of tml programs we use abstract de-
scriptions, called behavioural types, which are intermediate codes highlighting the
features of tml programs that are relevant for the analysis in Section 5. These
abstract descriptions support compositional reasoning and are associated to pro-
grams by means of a type system. The syntax of behavioural types is defined as
follows:

t ::= -- | se | c[se] basic value
x ::= f | t extended value

a ::= e | νc[se] | m(t)→ t | νf : m(t)→ t | fX atom
b ::= a . Γ | a # b | (se){b } | b + b behavioural type

where c, c′, · · · range over cog names and f , f ′, · · · range over future names.
Basic values t are either generic (non-size) expressions -- or size expressions se
or the type c[se] of an object of cog c with capacity se. The extended values add
future names to basic values.

Atoms a define creation of cogs (νc[se]), synchronous and asynchronous
method invocations (m(t)→ t and νf : m(t)→ t, respectively), and synchroniza-
tions on asynchronous invocations (fX). We observe that cog creations always
carry a capacity, which has to be a size expression because our analysis in the



next section cannot deal with generic expressions. Behavioural types b are se-
quences of atoms a #b′ or conditionals, typically (se){b }+(¬se){b′ } or b+b′,
according to whether the boolean guard is a size expression that depends on
the arguments of a method or not. In order to type sequential composition in a
precise way (see rule T-Seq), the leaves of behavioural types are labelled with
environments, ranged over by Γ , Γ ′, · · · . Environments are maps from method
names m to terms (t)→ t, from variables to extended values x, and from future
names to values that are either t or tX.

The abstract behaviour of methods is defined by method behavioural types
of the form: m(tt, t){b } : tr, where tt is the type value of the receiver of the
method, t are the type value of the arguments, b is the abstract behaviour of
the body, and tr is the type value of the returned object. The subterm tt, t of
the method contract is called header ; tr is called returned type value. We assume
that names in the header occur linearly. Names in the header bind the names
in b and in tr. The header and the returned type value, written (tt, t) → tr,
are called behavioural type signature. Names occurring in b or tr may be not
bound by header. These free names correspond to new cog creations and will be
replaced by fresh cog names during the analysis. We use C to range over method
behavioural types.

The type system uses judgments of the following form:

– Γ ` e : x for pure expressions e, Γ ` f : t or Γ ` f : tX for future names f ,
and Γ ` m(t) : t for methods.

– Γ ` z : x, [a . Γ ′] for expressions with side effects z, where x is the value,
a .Γ ′ is the corresponding behavioural type, where Γ ′ is the environment Γ
with possible updates of variables and future names.

– Γ ` s : b, in this case the updated environments Γ ′ are inside the behavioural
type, in correspondence of every branch of its.

Since Γ is a function, we use the standard predicates x ∈ dom(Γ ) or x 6∈
dom(Γ ). Moreover, we define

Γ [x 7→ x](y)
def
=

{
x if y = x
Γ (y) otherwise

The multi-hole contexts C[ ] are defined by the following syntax:

C[ ] ::= [ ] | a # C[ ] | C[ ] + C[ ] | (se){ C[ ] }
and, whenever b = C[a1 . Γ1] · · · [an . Γn], then b[x 7→ x] is defined as C[a1 .
Γ1[x 7→ x]] · · · [an . Γn[x 7→ x]].

The typing rules for expressions are defined in Figure 3. These rules are not
standard because (size) expressions containing method’s arguments are typed
with the expressions themselves. This is crucial to the cost analysis in Section 5.
In particular, cog creation is typed by rule T-New, with value c[se], where
c is the fresh name associated with the new cog and se is the value associ-
ated with the declared capacity. The behavioural type for the cog creation is
νc[se] . Γ [c 7→ se], where the newly created cog is added to Γ . In this way, it is
possible to verify whether the receiver of a method invocation is within a locally
created cog or not by testing whether the receiver belongs to dom(Γ ) or not,



(T-Var)

x ∈ dom(Γ )

Γ ` x : Γ (x)

(T-Se)

Γ ` se : se

(T-Nse)

Γ ` nse : --

(T-Method)

Γ (m) = (t)→ t′

fv(t′) \ fv(t) 6= ∅ implies σ(t′) fresh

Γ ` m(σ(t)) : σ(t′)

(T-New)

Γ ` e : se c fresh

Γ ` new Class with e : c[se], [νc[se] . Γ [c 7→ se]]

(T-New-Local)

Γ ` this : c[se]

Γ ` new local Class : c[se], [0 . Γ]

(T-Invoke-Sync)

Γ ` e : c[se] Γ (this) = c[se]

Γ ` e : t Γ ` m(c[se], t) : t′

Γ ` e.m(e) : t′, [m(c[se], t)→ t′ . Γ]

(T-Invoke)

Γ ` e : c[se] (c ∈ dom(Γ ) or Γ (this) = c[se])

Γ ` e : t Γ ` m(c[se], t) : t′ f fresh

Γ ` e!m(e) : f, [νf : m(c[se], t)→ t′ . Γ [f 7→ t′]]

(T-Get)

Γ ` e : f Γ (f) = t

Γ ` e.get : t, [fX . Γ [f 7→ tX]]

(T-Get-Top)

Γ ` e : f Γ (f) = tX

Γ ` e.get : t, [0 . Γ]

Fig. 3. Typing rules for expressions

respectively (cf. rule T-Invoke). Object creation (cf. rule T-New-Local) is
typed as the cog creation, with the exception that the cog name and the ca-
pacity value are taken from the local cog and the behavioural type is empty.
Rule T-Invoke types method invocations e!m(e) by using a fresh future name
f that is associated to the method name, the cog name of the callee and the
arguments. In the updated environment, f is associated with the returned value.
Next we discuss the constraints in the premise of the rule. As we discussed in
Section 2, asynchronous invocations are allowed on callees located in the current
cog, Γ (this) = c[se], or on a newly created object which resides in a fresh cog,
c ∈ dom(Γ ). Rule T-Get defines the synchronization with a method invocation
that corresponds to a future f . The expression is typed with the value t of f in
the environment and behavioural type fX. Γ is then updated for recording that
the synchronization has been already performed, thus any subsequent synchro-
nization on the same value would not imply any waiting time (see that in rule
T-Get-Top the behavioural type is 0). The synchronous method invocation in
rule T-Invoke-Sync is directly typed with the return value t′ of the method
and with the corresponding behavioural type. The rule enforces that the cog of
the callee coincides with the local one.

The typing rules for statements are presented in Figure 4. The behavioural
type in rule T-Job expresses the time consumption for an object with capacity
se ′ to perform se processing cycles: this time is given by se/se ′, which we observe
is in general a rational number. We will return to this point in Section 5.

The typing rules for method and class declarations are shown in Figure 5.



(T-Assign)

Γ ` rhs : x, [a . Γ ′]
Γ ` x = rhs : a . Γ ′[x 7→ x]

(T-Job)

Γ ` e : se Γ ` this : c[se′]

Γ ` job(e) : se/se′ . Γ

(T-Return)

Γ ` e : t Γ ` destiny : t

Γ ` return e : 0 . Γ

(T-Seq)

Γ ` s : C[a1 . Γ1] · · · [an . Γn]

Γi ` s′ : b′
i

Γ ` s ; s′ : C[a1 # b′
1] · · · [an # b′

n]

(T-If-Nse)

Γ ` e : -- Γ ` s : b Γ ` s′ : b′

Γ ` if e { s } else { s′ } : b+ b′

(T-If-Se)

Γ ` e : se Γ ` s : b Γ ` s′ : b′

Γ ` if e { s } else { s′ } : (se){b}+ (¬se){b′}

Fig. 4. Typing rules for statements

(T-Method)

Γ (m) = (tt, t)→ tr

Γ [this 7→ tt][destiny 7→ tr][x 7→ t] ` s : C[a1 . Γ1] · · · [an . Γn]

Γ ` T m (T x) { s } : m(tt, t){ C[a1 . ∅] · · · [an . ∅] } : tr

(T-Class)

Γ `M : C Γ [this 7→ start[k]][x 7→ t] ` s : C[a1 . Γ1] · · · [an . Γn]

Γ `M {T x ; s } with k : C, C[a1 . ∅] · · · [an . ∅]

Fig. 5. Typing rules for declarations

Examples The behavioural type of the fib method discussed in Section 2 is

fib(c[x],n) {

(n ≤ 1){ 0 .∅ }

+ (n ≥ 2){

1/x # d[x] # νf : fib(c[x],n-1)→ -- # νg: fib(d[x],n-2)→ -- #
fX# gX#0 .∅ } } : --

5 The time analysis

The behavioural types returned by the system defined in Section 4 are used to
compute upper bounds of time complexity of a tml program. This computation
is performed by an off-the-shelf solver – the CoFloCo solver [4] – and, in this
section, we discuss the translation of a behavioural type program into a set of
cost equations that are fed to the solver. These cost equations are terms

m(x) = exp [se]



where m is a (cost) function symbol, exp is an expression that may contain (cost)
function symbol applications (we do not define the syntax of exp, which may be
derived by the following equations; the reader may refer to [4]), and se is a size
expression whose variables are contained in x. Basically, our translation maps
method types into cost equations, where (i) method invocations are translated
into function applications, and (ii) cost expressions se occurring in the types are
left unmodified. The difficulties of the translation is that the cost equations must
account for the parallelism of processes in different cogs and for sequentiality of
processes in the same cog. For example, in the following code:

x = new Class with c; y = new Class with d;
f = x!m(); g = y!n(); u = g.get; u = f.get;

the invocations of m and n will run in parallel, therefore their cost will be
max(t, t′), where t is the time of executing m on x and t′ is the time execut-
ing n on y. On the contrary, in the code

x = new local Class; y = new local Class;
f = x!m(); g = y!n(); u = g.get; u = f.get;

the two invocations are queued for being executed on the same cog. Therefore
the time needed for executing them will be t + t′, where t is time needed for
executing m on x, and t′ is the time needed for executing n on y. To abstract away
the execution order of the invocations, the execution time of all unsynchronized
methods from the same cog are taken into account when one of these methods
is synchronized with a get-statement. To avoid calculating the execution time
of the rest of the unsynchronized methods in the same cog more than necessary,
their estimated cost are ignored when they are later synchronized.

In this example, when the method invocation y!n() is synchronized with
g.get, the estimated time taken is t+ t′, which is the sum of the execution time
of the two unsynchronized invocations, including the time taken for executing m

on x because both x and y are residing in the same cog. Later when synchronizing
the method invocation x!m(), the cost is considered to be zero because this
invocation has been taken into account earlier.

The translate function. The translation of behavioural types into cost equations
is carried out by the function translate, defined below. This function parses
atoms, behavioural types or declarations of methods and classes. We will use the
following auxiliary function that removes cog names from (tuples of) t terms:

b c = bec = e bc[e]c = e bt1, . . . , tnc = bt1c, . . . , btnc

We will also use translation environments, ranged over by Ψ , Ψ ′, · · · , which map
future names to pairs (e, m(t)) that records the (over-approximation of the) time
when the method has been invoked and the invocation.

In the case of atoms, translate takes four inputs: a translation environ-
ment Ψ , the cog name of the carrier, an over-approximated cost e of an execution
branch, and the atom a. In this case, translate returns an updated translation
environment and the cost. It is defined as follows.



translate(Ψ, c, e,a) =



(Ψ, e+ e′) when a = e′

(Ψ, e) when a = νc[e′]

(Ψ, e+ m(btc)) when a = m(t)→ t
′

(Ψ [f 7→ (e, m(t))], e) when a = (νf : m(t)→ t
′)

(Ψ \ F, e+ e1))) when a = fX and Ψ(f) = (ef , mf (c[e′], tf ))
let F = { g | Ψ(g) = (eg, mg(c[e′], tg)) } then
and e1 =

∑ { mg(bt′gc) | (eg, mg(t′g)) ∈ Ψ(F ) }
(Ψ \ F,max(e, e1 + e2)) when a = fX and Ψ(f) = (ef , mf (c′[e′], tf )) and c 6= c′

let F = { g | Ψ(g) = (eg, mg(c′[e′], tg)) } then
e1 =

∑ { mg(bt′gc) | (eg, mg(t′g)) ∈ Ψ(F ) }
and e2 = max{ eg | (eg, mg(t′g)) ∈ Ψ(F ) }

(Ψ, e) when a = fX and f /∈ dom(Ψ)

The interesting case of translate is when the atom is fX. There are three cases:

1. The synchronization is with a method whose callee is an object of the same
cog. In this case its cost must be added. However, it is not possible to know
when the method will be actually scheduled. Therefore, we sum the costs
of all the methods running on the same cog (worst case) – the set F in the
formula – and we remove them from the translation environment.

2. The synchronization is with a method whose callee is an object on a different
cog c′. In this case we use the cost that we stored in Ψ(f). Let Ψ(f) =
(ef , mf (c′[e′], tf )), then ef represents the time of the invocation. The cost of
the invocation is therefore ef +mf (e′, btfc). Since the invocation is in parallel
with the thread of the cog c, the overall cost is max (e, ef + mf (e′, btfc)). As
in case 1, we consider the worst scheduler choice on c′. Instead of taking
ef +mf (e′, btfc), we compute the cost of all the methods running on c′ – the
set F in the formula – and we remove them from the translation environment.

3. The future does not belong to Ψ . That is the cost of the invocation which
has been already computed. In this case, the value e does not change.

In the case of behavioural types, translate takes as input a translation
environment, the cog name of the carrier, an over-approximated cost of the
current execution branch (e1)e2, where e1 indicates the conditions corresponding
to the branch, and the behavioural type a.

translate(Ψ, c, (e1)e2,b) =



{ (Ψ ′, (e1)e′2) } when b = a . Γ and translate(Ψ, c, e2,a) = (Ψ ′, e′2)

C when b = a # b′ and translate(Ψ, c, e2,a) = (Ψ ′, e′2)
and translate(Ψ ′, c, (e1)e′2,b

′) = C

C ∪ C′ when b = b1 + b2 and translate(Ψ, c, (e1)e2,b1) = C
and translate(Ψ, c, (e1)e2,b2) = C′

C when b = (e){b′ } and translate(Ψ, c, (e1 ∧ e)e2,b′) = C

The translation of the behavioural types of a method is given below. Let dom(Ψ)

= { f1, · · · , fn }. Then we define ΨX def
= f1

X # · · · # fnX.



translate(m(c[e], t){b } : t) =




m(e, e) = e′1 + e′′1 [e1]
...

m(e, e) = e′n + e′′n [en]

where translate(∅, c, 0,b) = {Ψi, (ei)e
′
i | 1 ≤ i ≤ n }, and e = btc, and e′′i =

translate(Ψi, c, 0, Ψi
X.∅). In addition, [ei] are the conditions for branching the

possible execution paths of method m(e, e), and e′i +e′′i is the over-approximation
of the cost for each path. In particular, e′i corresponds to the cost of the syn-
chronized operations in each path (e.g., jobs and gets), while e′′i corresponds to
the cost of the asynchronous method invocations triggered by the method, but
not synchronized within the method body.

Examples We show the translation of the behavioural type of fibonacci presented
in Section 4. Let b = (se){0 . ∅} + (¬se){b′}, where se = (n ≤ 1) and b′ =
1/e # νf : fib(c[e], n− 1)→ -- # νg: fib(c′[e], n− 2)→ -- # fX # gX # 0 . ∅}.
Let also Ψ = Ψ1 ∪ Ψ2, where Ψ1 = [f 7→ (1/e, fib(e, n − 1))] and Ψ2 = [g 7→
(1/e, fib(e, n− 2))].

The following equations summarize the translation of the behavioural type
of the fibonacci method.

translate(∅, c, 0,b)
= translate(∅, c, 0, (se) { 0 . ∅ }) ∪ translate(∅, c, 0, (¬se) {b′ })
= translate(∅, c, (se)0, { 0 . ∅ }) ∪ translate(∅, c, (¬se)0, { 1/e # . . . })
= { (se)0 } ∪ translate(∅, c, (¬se)(1/e), { νf : fib(c[e], n− 1)→ -- # . . . })
= { (se)0 } ∪ translate(Ψ1, c, (¬se)(1/e), { νg: fib(c′[e], n− 2)→ -- # . . . })
= { (se)0 } ∪ translate(Ψ, c, (¬se)(1/e), { fX # gX # . . . })
= { (se)0 } ∪ translate(Ψ2, c, (¬se)(1/e+ fib(e, n− 1)), { gX # . . . })
= { (se)0 } ∪ translate(∅, c, (¬se)(1/e+max(fib(e, n− 1), fib(e, n− 2))), { 0 . ∅ })
= { (se)0 } ∪ { (¬se)(1/e+max(fib(e, n− 1), fib(e, n− 2))) }

translate(∅, c, 0, 0) = (∅, 0)
translate(∅, c, 0, 1/e) = (∅, 1/e)
translate(∅, c, 1/e, νf : fib(c[e], n− 1)→ -- ) = (Ψ1, 1/e)

translate(Ψ1, c, 1/e, νg: fib(c′[e], n− 2)→ -- ) = (Ψ, 1/e)

translate(Ψ, c, 1/e, fX) = (Ψ2, 1/e+ fib(e, n− 1))

translate(Ψ2, c, 1/e+ fib(e, n− 1), gX) = (∅, 1/e+max(fib(e, n− 1), fib(e, n− 2)))

translate(fib (c[e], n){b } : --) =


fib(e, n) = 0 [n ≤ 1]

fib(e, n) = 1/e+max(fib(e, n− 1), fib(e, n− 2)) [n ≥ 2]

Remark 1. Rational numbers are produced by the rule T-Job of our type sys-
tem. In particular behavioural types may manifest terms se/se ′ where se gives
the processing cycles defined by the job operation and se ′ specifies the number
of processing cycles per unit of time the corresponding cog is able to handle.
Unfortunately, our backend solver – CoFloCo – cannot handle rationals se/se ′



where se ′ is a variable. This is the case, for instance, of our fibonacci example,
where the cost of each iteration is 1/x, where x is a parameter. In order to anal-
yse this example, we need to determine a priori the capacity to be a constant –
say 2 –, obtaining the following input for the solver:

eq(f(E,N),0,[],[-N>=1,2*E=1]).
eq(f(E,N),nat(E),[f(E,N-1)],[N>=2,2*E=1]).
eq(f(E,N),nat(E),[f(E,N-2)],[N>=2,2*E=1]).

Then the solver gives nat(N-1)*(1/2) as the upper bound. It is worth to
notice that fixing the fibonacci method is easy because the capacity does not
change during the evaluation of the method. This is not always the case, as in
the following alternative definition of fibonacci:

Int fib_alt(Int n) {
if (n<=1) { return 1; }
else { Fut<Int> f; Class z; Int m1; Int m2;

job(1);
z = new Class with (this.capacity*2) ;
f = this!fib_alt(n-1); g = z!fib_alt(n-2);
m1 = f.get; m2 = g.get;
return m1+m2; } }

In this case, the recursive invocation z!fib alt(n-2) is performed on a cog with
twice the capacity of the current one and CoFloCo is not able to handle it. It
is worth to observe that this is a problem of the solver, which is otherwise very
powerful for most of the examples. Our behavioural types carry enough infor-
mation for dealing with more complex examples, so we will consider alternative
solvers or combination of them for dealing with examples like fib alt.

6 Properties

In order to prove the correctness of our system, we need to show that (i) the
behavioural type system is correct, and (ii) the computation time returned by
the solver is an upper bound of the actual cost of the computation.

The correctness of the type system in Section 4 is demonstrated by means
of a subject reduction theorem expressing that if a runtime configuration cn is
well typed and cn → cn′ then cn′ is well-typed as well, and the computation
time of cn is larger or equal to that of cn′. In order to formalize this theorem we
extend the typing to configurations and we also use extended behavioural types
k with the following syntax

k ::= b | [b]cf | k ‖ k runtime behavioural type

The type [b]cf expresses the behaviour of an asynchronous method bound to
the future f and running in the cog c; the type k ‖ k′ expresses the parallel
execution of methods in k and in k′.

We then define a relation Dt between runtime behavioural types that relates
types. The definition is algebraic, and k Dt k

′ is intended to mean that the
computational time of k is at least that of k′+t (or conversely the computational
time of k′ is at most that of k− t). This is actually the purpose of our theorems.



Theorem 1 (Subject Reduction). Let cn be a configuration of a tml program
and let k be its behavioural type. If cn is not strongly t-stable and cn→ cn′ then
there exists k′ typing cn′ such that k D0 k

′. If cn is strongly t-stable and cn→ cn′

then there exists k′ typing cn′ such that k Dt k
′.

The proof of is a standard case analysis on the last reduction rule applied. The
second part of the proof requires an extension of the translate function to run-
time behavioural types. We therefore define a cost of the equations Ek returned
by translate(k) – noted cost(Ek) – by unfolding the equational definitions.

Theorem 2 (Correctness). If k Dt k
′, then cost(Ek) ≥ cost(Ek′) + t.

As a byproduct of Theorems 1 and 2, we obtain the correctness of our technique,
modulo the correctness of the solver.

7 Related work

In contrast to the static time analysis for sequential executions proposed in [7],
the paper proposes an approach to analyse time complexity for concurrent pro-
grams. Instead of using a Hoare-style proof system to reason about end-user
deadlines, we estimate the execution time of a concurrent program by deriving
the time-consuming behaviour with a type-and-effect system.

Static time analysis approaches for concurrent programs can be divided into
two main categories: those based on type-and-effect systems and those based on
abstract interpretation – see references in [9]. Type-and-effect systems (i) collect
constraints on type and resource variables and (ii) solve these constraints. The
difference with respect to our approach is that we do not perform the analy-
sis during the type inference. We use the type system for deriving behavioural
types of methods and, in a second phase, we use them to run a (non compo-
sitional) analysis that returns cost upper bounds. This dichotomy allows us to
be more precise, avoiding unification of variables that are performed during the
type derivation. In addition, we notice that the techniques in the literature are
devised for programs where parallel modules of sequential code are running. The
concurrency is not part of the language, but used for parallelising the execution.

Abstract interpretation techniques have been proposed addressing domains
carrying quantitative information, such as resource consumption. One of the
main advantages of abstract interpretation is the fact that many practically
useful optimization techniques have been developed for it. Consequently, several
well-developed automatic solvers for cost analysis already exist. These techniques
either use finite domains or use expedients (widening or narrowing functions) to
guarantee the termination of the fix-point generation. For this reason, solvers
often return inaccurate answers when fed with systems that are finite but not
statically bounded. For instance, an abstract interpretation technique that is
very close to our contribution is [2]. The analysis of this paper targets a language
with the same concurrency model as ours, and the backend solver for our analysis,
CoFloCo, is a slightly modified version of the solver used by [2]. However the two



techniques differ profoundly in the resulting cost equations and in the way they
are produced. Our technique computes the cost by means of a type system,
therefore every method has an associated type, which is parametric with respect
to the arguments. Then these types are translated into a bunch of cost equations
that may be composed with those of other methods. So our approach supports a
technique similar to separate compilation, and is able to deal with systems that
create statically an unbounded but finite number of nodes. On the contrary,
the technique in [2] is not compositional because it takes the whole program
and computes the parts that may run in parallel. Then the cost equations are
generated accordingly. This has the advantage that their technique does not
have any restriction on invocations on arguments of methods that are (currently)
present in our one.

We finally observe that our behavioural types may play a relevant role in a
cloud computing setting because they may be considered as abstract descriptions
of a method suited for SLA compliance.

8 Conclusions

This article presents a technique for computing the time of concurrent object-
oriented programs by using behavioural types. The programming language we
have studied features an explicit cost annotation operation that define the num-
ber of machine cycles required before executing the continuation. The actual
computation activities of the program are abstracted by job-statements, which
are the unique operations that consume time. The computational cost is then
measured by introducing the notion of (strong) t-stability (cf. Definition 1),
which represents the ticking of time and expresses that up to t time steps no
control activities are possible. A Subject Reduction theorem (Theorem 1), then,
relates this stability property to the derived types by stating that the consump-
tion of t time steps by job statements is properly reflected in the type system.
Finally, Theorem 2 states that the solution of the cost equations obtained by
translation of the types provides an upper bound of the execution times provided
by the type system and thus, by Theorem 1, of the actual computational cost.

Our behavioural types are translated into so-called cost equations that are
fed to a solver that is already available in the literature – the CoFloCo solver [4].
As discussed in Remark 1, CoFloCo cannot handle rational numbers with vari-
ables at the denominator. In our system, this happens very often. In fact, the
number pc of processing cycles needed for the computation of a job(pc) is divided
by the speed s of the machine running it. This gives the cost in terms of time
of the job(pc) statement. When the capacity is not a constant, but depends on
the value of some parameter and changes over time, then we get the untreatable
rational expression. It is worth to observe that this is a problem of the solver
(otherwise very powerful for most of the examples), while our behavioural types
carry enough information for computing the cost also in these cases. We plan to
consider alternative solvers or a combination of them for dealing with complex
examples.



Our current technique does not address the full language. In particular we are
still not able to compute costs of methods that contain invocations to arguments
which do not live in the same machine (which is formalized by the notion of cog
in our language). In fact, in this case it is not possible to estimate the cost
without any indication of the state of the remote machine. A possible solution
to this issue is to deliver costs of methods that are parametric with respect to the
state of remote machines passed as argument. We will investigate this solution
in future work.

In this paper, the cost of a method also includes the cost of the asynchronous
invocations in its body that have not been synchronized. A more refined analysis,
combined with the resource analysis of [5], might consider the cost of each ma-
chine, instead of the overall cost. That is, one should count the cost of a method
per machine rather than in a cumulative way. While these values are identical
when the invocations are always synchronized, this is not the case for unsynchro-
nized invocation and a disaggregated analysis might return better estimations
of virtual machine usage.
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