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Executive Summary:
Envisage Work Flow

This document summarizes deliverable D5.3 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

Deliverable D5.3 reports on how Envisage technologies may be used in software development processes
by suggesting work flows for using the ABS modeling language and associated tools. Two different and
complementary work flows are discussed in the deliverable and related to existing software development
processes.
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Chapter 1

Introduction

Today, deployment decisions are typically made late in the software development process, after design,
implementation, and testing phases |4]. Virtualized services deployed on the cloud often need to adapt
to different deployment scenarios, e.g., depending on the agreed service level or on demand. To avoid a
potentially costly redesign of a service because of unnecessarily high operational costs or bad scalability,
the Envisage project aims to shift deployment decisions from the service deployment phase into the service
design phase of the software development by integrating deployment decisions into the service models of
the design phase. To enable this shift, the vision of Envisage is that requirements which have so far only
been informally expressed, such as service-level agreements, need to be integrated into an executable formal
modeling language that also captures deployment aspects, which are normally confined to the underlying
infrastructure. In this deliverable, we discuss two approaches to capitalize from this vision in the engineering
of virtualized services.

This deliverable discusses how the outcomes of the Envisage project can contribute to the model-driven
engineering of virtualized services. The deliverable first briefly discusses the model-driven engineering of
virtualized services and surveys the modeling and technology solutions proposed by the Envisage project.
The deliverable then places these solutions in the context of work flows of software engineers. The aim of
this deliverable is not to discuss the details of the proposed solutions, which are detailed in other project
deliverables, but to place them in the context of the working practices of software engineers. We consider
two different kinds of work flow: (1) a model-driven development process and (2) a DevOps enabled work
flow.

1.1 Model-driven Engineering of Virtualized Services

Conceptually, a deployed service on the cloud consists of more than just the code defining its functionality.
The development decisions needed to deliver the service to customers also involve the service-level agreements
associated with the service and the provisioning of resources required to run the service. Figure illustrates
these three layers of a deployed cloud service. Envisage aims to support the developer in making decisions
covering the spectrum from design to deployment.

The Approach of Envisage. Figure illustrates the approach taken by Envisage to enable model-based
analysis to address the three layers of deployed services. Resource-awareness is obtained by allowing the
services to interact with the cloud provisioning layer through the “Cloud API”, which can be adjusted to
offer virtual machine instances with various profiles and provides resource accounting over time for rapid
prototyping of resource management decisions. As shown in the figure, the framework proposed by Envisage
does not aim at covering the Legal Contract Layer, but focusses on non-functional properties related to
deployment decisions and (traditional) correctness properties for the functional behavior of the services.
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Figure 1.1: Conceptual parts of a deployed cloud service
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Figure 1.2: Making services resource-aware

The Envisage Framework. The Envisage framework will consist of an integrated suite of advanced meth-
ods and tools for engineering complex services that enables

e a design-by-contract methodology including service-level agreements,

defining application-level services with resource requirements,

modeling deployment scenarios reflecting elastic, virtualized architectures,

a monitoring system assuring adaptability to failures and to renegotiations of service-level agreements,

the systematic analysis of quality of service behavior of these models at early stages in software
development.

The framework of Envisage is designed such that it allows the systematic combination of static and
dynamic verification:

e formal, executable models

e a symbolic execution engine that can compute strongest post conditions in the form of symbolic
execution states

e a contract-based specification framework

e support for runtime monitoring
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1.2 Work Flows

It is important to notice that the methods and tool suite developed in Envisage do not impose a particular
work flow for using the tools. To highlight this aspect of the Envisage outcomes, we will discuss two possible
work flows in this deliverable.

e Model-driven development of a new service. Chapter [3| describes an iterative work flow for new
services building on the Envisage framework;

e Model-driven deployment of existing services. Chapter [4] describes an iterative work
flow to leverage the approach of Envisage for existing services.

Note that these two work flows are not mutually exclusive, as new services typically build on existing services.

1.3 Dissemination of the Proposed Methodology

This deliverable includes two papers describing the development methodology proposed by Envisage. The
two papers, which are contributions to this deliverable, are:

e The position paper “Engineering Virtualized Services” [4] presents the vision of Envisage on software
development at the start of the project. The paper is included as Appendix [A] to this deliverable.

e The paper “Designing Resource-Aware Cloud Applications” [11] argues why it is important to address
deployment early in the development process in order to ensure a scalable design and reduce over-
provisioning during service deployment, presenting our approach to service engineering. The paper is
included as Appendix [B] to this deliverable.



Chapter 2

Background on Envisage Outcomes

2.1 Approach.

Figure (taken from the DoW) depicts how cloud applications and service-level agreements are linked
together based on formal models in Envisage. This chapter briefly summarizes the modeling artifacts and
tools developed to address different parts of this tool chain.
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Figure 2.1: The Envisage tool chain.

2.2 Overview of the ABS Modeling Language.

ABS is a high-level executable object-oriented modeling language for distributed systems. It has a formal
semantics to enable static analyses. The main features of ABS are:

e Interfaces similar to APIs can be extended to include information about functional and non-functional
behaviors.

e Concurrent objects: Clean concurrency model and support for asynchronous communication
e Deployment components: Built-in modeling concepts for virtual resources
e Separation of concerns between the cost of execution and the capacity of the underlying platform

The formalization and use of ABS has been detailed in a number of papers (e.g., [5,/6,8,/12]). Deliverable
D1.3.1 provides guidelines in using ABS to model both static and dynamic deployment.
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Figure 2.2: The web front-end of the ABS collaboratory.

2.3 Overview of the Analysis Tools Developed for ABS.

ABS is supported by a number of tool-based analysis methods, which are currently being developed in the
Envisage project. We can classify these tools according to the arrows of Fig. [2.1
[conformance checking}

e DF4ABS supports the detection of deadlocks in the call graphs of ABS services [10] (see also Envisage
Deliverable D2.1);

e KeY-ABS supports the verification of behavioral contracts for ABS services [7] (see also Envisage
Deliverable D3.2);

Modeling & model exploration

e Simulation tool supports rapid prototyping and visualization of executable ABS models including
static and dynamic resource management |12] (see also Envisage Deliverable D1.4.1);

e MODDE supports the computation of static deployments for ABS models of services [6] (see also
Envisage Deliverable D1.3.1);

e SACO supports resource analysis of executable ABS models [1] (see also Envisage Deliverable D3.3.1);
e TCG tool to systematically test the ABS models [2,3,/17] (deliverable D3.5 is due at M30);
Code generation & monitoring

e Code generation tools support the generation of code from executable ABS models into either
Haskell or Java [13,[15,/16] (see also Envisage Deliverable D3.1);

¢ Runtime monitoring framework supports the generation of monitors for deployed services from
ABS models [14] (see also Envisage Deliverable D2.3.1).

2.4 Overview of the Collaboratory.

The ABS Collaboratory (depicted in Figure integrates the tools listed above in order to interact with
ABS models and tools in a uniform way. The collaboratory can be installed locally using Vagrant, or accessed
as a service via a web browser (this may limit the available tools to find a reasonable way of the
collaboratory). The Collaboratory is further detailed in Envisage Deliverable D5.2.1.



Chapter 3

A Model-Driven Development
Process with ABS

A central point in the approach taken by Envisage, is that services need to be designed for scalability.
When developing services using the ABS modeling language, modeling constructs to express deployment
are available to the developer. These constructs are to a large extent orthogonal to the modeling of the
functional behavior of a service, but ABS also allows the developer to experiment with customized load
balancers and resource management strategies to ensure SLAs at service endpoints.

Figure [3.1] shows a schematic iterative workflow for the software development lifecycle. We will now
detail the different phases of such an iterative workflow using the ABS tools. When developing new services,
the developer may start from scratch (with “nothing” in terms of existing code) or building on top of legacy
black-box services. In this chapter, we assume the developer starts from scratch, but we point out that
ABS supports the inclusion of black-box external services during model-driven development in terms of
very abstract models and a foreign language interface. hence, the workflow described in this chapter may
integrate with the workflow of Chapter [4] to form “hybrid workflows” in various ways. There are no clear
borders between the two workflows.

SDLC

e/
Life Cycle - SDLC

Figure 3.1: A schematic software development lifecycle emphasizing an iterative workflow.
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3.1 Requirement Analysis

In addition to traditional functional requirements, this phase focusses on service levels and deployment costs.
Since these requirements are internal to the service being developed, the non-functional requirements will
typically relate external service delivery SLAs to the deployment costs of a service instance. Examples of
such requirements could be that the service should be able to offer a portfolio of client SLAs associated
with service endpoints (e.g, delivery times for x clients and scaling between thresholds of client traffic) with
deployment profiles for each of these SLAS, as well as internal requirements including, as encountered in the
ATB case study (Deliverable D4.2.2), the time needed before crawled data has led to updated indices on the
mobile devices.

3.2 Design

The model-driven design phase consists of the development of ABS interfaces and classes, as well as making
static and dynamic deployment decisions. In this phase, different parts of the service will coexist at different
levels of abstraction, from detailed functional models of new and core functionality to abstract interface-level
descriptions of libraries or underlying services expressed in terms of, e.g., best-case / worst-case response
times or constant costs. The model interacts with cloud provisioning via the Cloud API, which is instantiated
based on profiles of the resources available to the service. The developer may plan static deployments based
on deployment constraints and devise dynamic resource management strategies based on interaction with
the monitoring framework. In this phase, the developers may take advantage of many of the tools proposed
in Envisage to help analyze their designs: rapid prototyping, test-case generation support to explore the
model, static deployment analysis, deadlock analysis, cost analysis, as well as functional verification.

3.3 Implementation

An initial implementation can be obtained from the ABS model by means of the code generation tools offered
in the ABS tool suite, in order to provide executable code from ABS models. This allows the developer to
rapidly evaluate the integration with other services and the accuracy of the cloud resource profiles. Specific
ABS libraries allow the developer to link their models directly into existing deployment frameworks such as
Hadoopﬂ its resource manager Yarn [9], or AWSE] resource managers, but the code generation also supports
customized resource management and scaling strategies, for example for hybrid cloud architectures.

3.4 Testing

Testing the deployment is done by means of the monitoring framework provided for ABS models. The tool
suite allows local monitors to be deployed together with the generated code to provide dynamic analysis
support for service delivery in the actual deployment. The monitoring framework gives the service a single
entry point to the monitors associated with a service endpoint; e.g., the service capacity at a given endpoint
can be controlled with respect to the agreed SLA.

3.5 Evolution

The work flow provides a feedback loop from (a) modeled deployment and (b) deployed software back to
the requirement and design phases.

e The static analysis of the ABS model may provide feedback to the requirements; e.g., the resource
requirements for certain service levels may be unrealistic, the service may not compose in a way which

"https://hadoop.apache.org
Zhttps://aws.amazon.com
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supports the required scaling, or the deployment cost requirements cannot be met with the current
resource profiles from the cloud provider. In Envisage, the feedback loop will concretely be made in
terms of system traces violating the generated monitors, which can be rerun on the ABS models.

e The dynamic analysis of the deployed software may reveal errors in the assumptions of systems on
which the service relies; e.g., the cloud provider may not deliver according to the resource profiles, the
cost and timing information for existing services may be too imprecise or even incorrect, and there
may be issues in the deployed service which were overlooked in the model.

11



Chapter 4

A DevOps Enabled Work Flow for ABS

The work flow emphasizes collaboration between software developers, operations personnel and
quality assurance teams, recognizing interdependencies between software design, quality of service (QoS)
and quality assurance. This is achieved by a recurring flow of rapid releases facilitated by automated
configuration and continuous monitoring / testing. A schematic DevOps work flow is depicted in Figure

‘w.h.)r'urh:
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sJopment
veltvl
de
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/-’)

~mall
mall rele.
> (U\Jr‘\,.

Figure 4.1: A DevOps work flow connects development and operations in a continuous iterative process
(illustration source: Gene Kim, HP, and PwC, 2013).

We now propose an ABS DevOps work flow which supports automated configuration by allowing the
modeling at the development level and the deployment at the operations level go hand in hand; in particular,
the Envisage approach allows configuration and deployment choices already at the modeling level for even
very abstract models. This allows early exploration and analysis of different alternative deployments, thereby
supporting the operations team to make informative choices, and supporting developers to quickly detect
the possible need for further development iterations, in case the results are not satisfactory. We first describe
how to set up an initial ABS model and then discuss each phase of the continuous iterative process in the
figure separately.

4.1 Creating the ABS Model

To enable the DevOps work flow, we first need to create an ABS model. Our aim is to make this model as
abstract as possible, omitting details of the behavior of the different parts wherever possible. The model

12
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will consist of three parts:

e Requirements.
e Deployment components and the cloud APIL

o The executable ABS model of the services.

Requirements. Requirements are specified in a high-level declarative language and can come from mul-
tiple stakeholders (e.g., domain knowledge, security, and business strategies). For instance, if two services
are tightly coupled and communicate heavily, it may be beneficial to deploy them on the same virtual ma-
chine for technical (performance) reasons. On the other hand, requirements can also arise from security or
business reasons: for instance, avoiding deploying services that operate on sensitive private customer data
on virtual machines shared with services from other customers. Requirements may also relate to predefined
customer level SLAs such as response times for a given number of users, etc.

Deployment components and the cloud API. The number of available virtual machines, their op-
erational costs (typically determined by the underlying infrastructure provider) and the properties of the
virtual machine can be specified in e.g., JSON format. In a cloud environment there is typically no a pri-
ori fixed number (or even an upper bound) of available machines and the only constraints on the virtual
machines are the total cost of the entire environment (which is minimized) and whether a virtual machine
is sufficiently powerful to offer the service(s). At the ABS level, virtual machines are represented through
DeploymentComponents (see Envisage Deliverable D1.2.1). The properties of the virtual machines are given
as parameters to the ABS Cloud API.

The executable ABS model of the services. The final input for the ABS model consists of the APIs
associated with the services and the number of resources that a service consumes. We assume that we
have available the APIs of the services we are modeling, and their interrelations (for example in the form
of callgraphs). These resources can be specified in the form of annotations for the APIs of the different
services. Dependencies between services (such as that a certain service can only be instantiated given an
instance of another service) can also be expressed using the annotations. This information is sufficient to set
up a coarse-grained executable model, based on stubs with timing, cost annotations, and auxiliary method
calls.

To extract an ABS model the actual low-level implementation of the services is not strictly required,
but only the APIs. If only the APIs are available, the user can choose to specify the resource consumption
based on, for example, measurements taken from the in-production system. For existing or legacy systems
where the implementation sources are available some further automation may be possible. If the system
is implemented in Java (such as the Fredhopper Cloud Services), in principle the APIs can be extracted
automatically due to the close correspondence between ABS and Java at the API level. The implementation
can be made more precise in a stepwise manner by adding cost statements as a stand-in for parts of the
implementation, and refining those iteratively with real implementations if a more detailed modeling is
needed or desired to enable more precise analysis and thereby better deployments.

4.2 Automated Tests

A DevOps team takes advantage of test automation to ensure the quality of increments into the final service.
Every apart from its triggers a series of automated [integrated testsl The integration tests can
be performed in different levels of component integration, system integration and end-to-end testing. In
addition, automated tests can verify the behavior of the system in terms of failure handling and load testing
in a distributed test environment. In the context of the ABS models, testing takes the form of model-
based simulations of given deployment scenarios for given client configurations combined with automatically
generated test cases to explore the models.

13
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Based on the formal semantics of ABS and the executable models, this phase includes the application
of the formal analysis tools of Envisage (see Chapter |2)) to the extent enabled by the level of detail in the
model. The ABS models, which may be coarse-grained and with the possible presence of cost statements,
can be used as an input to both static analyzers and dynamic techniques. For instance, resource analyzers
like SACO (Envisage Deliverable D3.3.1) can statically automatically infer resource consumption based on
the partial implementation. The cost statements are supported by SACO. In general, the presence of a
more detailed implementation can improve accuracy and enables more powerful and fine-grained analyses,
such as conformance checking by applying symbolic execution using KeY-ABS and deadlock detection using
DF4ABS.

4.3 Automated Configuration

Roughly speaking, a resource configuration determines how services or objects are distributed over virtual
machines. The goal is to find an optimal configuration of cloud resources, taking QoS requirements (for
instance, derived from SLAs) and operational cost of the running virtual machines into account. Services
can be deployed in two distinct phases:

1. Statically with MODDE (Deliverable D1.3.1), to find a suitable initial cloud resource configuration.
This static configuration can also integrate dynamic resource managers expressed in ABSﬂ

2. Dynamically, evolving the current configuration in a feedback loop (see Figure [4.1]) through monitoring
to react to changes in the environment, such as peaks in user demand or failing machines.

The configuration framework relies on input from the ABS model and the testing phase with model-based
analysis. In particular, the suitability of a given configuration inherently depends on several factors:

e Are deployment requirements from each stakeholder taken into account?
e How many and what kind of virtual machines are available?

e What is the operational cost for each kind of virtual machine?

e How much resources are consumed by service instances?

Each of the above data forms an input to the framework (Figure [4.2)) that synthesizes fully automatically
an optimal resource configuration: a configuration that satisfies the requirements and in which the total
number of used virtual machines has a minimal cost.

4.4 Continuous Monitoring and Feedback

The current resource consumption and operational cost of the running system can be dynamically retrieved
through the Cloud API (Envisage Deliverable D1.3.1), by calling

e DeploymentComponent.load,
e DeploymentComponent.total, and
e CloudProvider.getAccumulatedCost respectively.

The returned information serves as an input to the monitoring framework (Envisage Deliverable D2.3.1).
Operationally, the semantics of ABS models featuring cost statements is modeled faithfully in back-ends
that support Real-time ABS. Currently Real-time ABS is supported by the Maude and Erlang backends

! Although ABS supports dynamic resource management, MODDE does not currently support automatic configuration of
dynamic resource management so dynamic managers must be selected in the testing phase and given to MODDE.

14
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Figure 4.2: Execution flow to synthesize and analyze statically deployment configurations.

(the simulation backends, Envisage Deliverables D1.4.1 and D3.1). The monitoring framework is used to
generate distributed monitors to be deployed together with the real, deployed services.

When the monitors detect a violation of the expected (non-functional) behavior, the monitoring frame-
work returns an execution trace of the deployed service. We use this trace as a driver at the level of the
ABS model to recreate the violation and refine and adjust the model in order to resolve the violation. Thus,
the ABS model will be detailed and improved as a gradual process driven by feedback from the actual
deployment of the services. An important aspect of this approach is that effort is only spent refining crucial
parts of the ABS models, the other parts will remain at the initial, abstract level.

4.5 Collaborative Development

We see how the development of the ABS model co-exists with development of the code. As code moves to
production, the ABS model evolves correspondingly. All the development team contributes and works on
the same |code repositoryl Every model and/or code change is presented as a|commit|in the |code repository}
Every passes through peer [code reviews, Every after successful [puild and fintegrated tests|is
a candidate for afrelease] either at the modeling or code level. To support ABS for collaborative development,
the ABS Collaboratory is being developed to integrate the Envisage technologies in one common frontend
for the ABS part of the software development process. In addition, we have developed an EclipseE| plug-in
for ABS.

Zhttps://eclipse.org
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4.6 Continuous Integration

Every development team ensures, at the beginning of the cycle of working a service or product, that necessary
continuous integration (CI) tools are in place. Every triggers a new in continuous integration
system. The CI system also supports supplementary phases to further verify the quality of the commit.
Examples include [static code analysis| checks, automatic on a test environment, automatic
management. In addition, automated tests can be triggered via the CI. To try the CI, we have
experimented with an ABS integration into Jenkinsﬂ in order to run integrated tests when revising ABS
models.

3https://jenkins-ci.org
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Glossary

Build A process that compiles and builds the code repository for the software and generates an executable
artifact. Examples include Jenkins, Bamboo, and TravisCI for the Java platform. [15]

Code Repository A software configuration manager (SCM) that maintain the history of the source code
and its configurations.

Code Review The process of reading team members code in the code repository and providing feedback
in terms of comments or updated patches. [I5]

Commit A unique ID referring to a specific point in the history of the code repository.

Conformance checking Checking that an artefact conforms to a given property, in our case that an ABS
model satisfies a given contract or requirement. [§

Deployment The process of shipping a released software package into an environment for execution. The
process might include applying necessary configuration and eventually running the software package.
116l

DevOps DevOps is a software development method that emphasizes the interdependence of software devel-
opment, quality assurance (QA), and IT operations, and aims to help an organization rapidly produce
software products and services and to improve operations performance. [6]

Integrated test A software test that is run to verify if the integration of different components is function-
ally correct after a code change in the system.

Release The process that produces an increment to an executable artifact of the code repository. A release
is commonly identified by a release version. The release process can be performed by the continuous

integration system. [I5] [L6]

Sandboxing Application sandboxing, also called application containerization, is an approach to software
development that limits the environments in which certain code can execute. [§

Static Code Analysis A series of well-established static analysis techniques performed on the source code
to extract code quality measures and anomalies.
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ABSTRACT

To foster the industrial adoption of virtualized services, it
is necessary to address two important problems: (1) the
efficient analysis, dynamic composition and deployment of
services with qualitative and quantitative service levels and
(2) the dynamic control of resources such as storage and
processing capacities according to the internal policies of the
services. The position supported in this paper is to overcome
these problems by leveraging service-level agreements into
software models and resource management into early phases
of service design.

1. INTRODUCTION

Cloud computing is an execution environment with elastic
resource provisioning, several stakeholders, and a metered
service at multiple granularities for a specified level of qual-
ity of service (QoS) [10]. A host of cloud computing presents
a number of services to client applications, including infra-
structure and platform functionalities and software services
for virtualizing the deployment of resources. This virtualiza-
tion provides an elastic amount of resources to application-
level services, thus making it possible to, for example, allo-
cate a changing processing capacity to a service depending
on demand. We say that application-level services are virtu-
alized if they can adapt to the elasticity of cloud computing.

For virtualized services, resource provisioning is regulated by
a legal contract between the service owner and the provider
of the virtualized environment, called a service-level agree-
ment (SLA). However, these legal texts are by their very na-
ture not integrated in the software artifacts. Current mod-
eling and analysis techniques make it extremely difficult for
the software developer to realistically predict the resource re-
quirements of the targeted service at an early design stage.
Languages and tools for software development lack high-

*This position paper is written in the context of the EU
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Services (http://www.envisage-project.eu).
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level support to systematically analyze performance under
varying resource assumptions and to express and compare
different resource management policies. Variations in end-
user scenarios, value-added services, and dynamic service
composition further complicate the picture by extending the
functionalities of an application-level service at the expense
of potentially changing its cost profile.

In traditional engineering processes for services, both the de-
ployment and the SLA regulating the deployment are add-
ons to the software development process. The appropriate
deployment and SLA compliance are determined a posteri-
ori, after the design of the service’s program logic. Virtu-
alization allows deployment and resource provisioning to be
internalized as part of the program’s logic, enabling services
to dynamically scale to accommodate client traffic.

For software development methods to be effective in the en-
gineering of virtualized services, it is our position that

1. SLAs should be part of a design by contract methodol-
ogy for virtualized service engineering and

2. virtualized resources should be managed by explicit
language primitives since the early phases of service
design.

These are key concepts that (i) enable the composition of vir-
tualized services with respect to their quality and (ii) allow
software developers to address the challenges posed by vir-
tualization for the software-as-a-service abstraction already
at early stages of development. Services for virtualized en-
vironments require descriptions of resource-dependent and
resource-aware behaviors that are based on abstract yet de-
tailed executable models. This helps to optimize the usage of
runtime resources, as well as to decrease development costs
and shorten time to market for service developers.

Our position calls for a model-based analysis of quantitative
(non-functional) aspects of SLAs, rather than qualitative as-
pects of SLAs such as security. A major implication of our
position is to enable a coherent tool-based analysis of models
of SLA-aware application-level services in the context of dif-
ferent deployment scenarios. This means that models should

1. capture scalable services through their support for re-
source awareness and resource management, and

2. be analyzed by applying techniques that are based on
scalable methods.

Preprint. To appear in Proc. 2nd Nordic Symposium on Cloud Computing & Internet Technologies (NordiCloud 2013).
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In the sequel, we detail our position on model-based analysis
of SLAs in a design by contract methodology, and discuss
its consequences for a research agenda in formal methods.

2. DESIGN BY CONTRACT

The term design by contract was coined by Bertrand Meyer
referring to the contractual obligations that arise when in-
voking methods in the object-oriented programming lan-
guage Eiffel [23]: only if a caller can ensure that certain be-
havioral conditions hold before the method is activated (the
precondition), it is assured that the method results in a spec-
ified state when it completes (the postcondition). Design by
contract enables software to be organized as encapsulated
services with interfaces specifying the contract between the
service and its clients. Clients can “program to interfaces”;
they need not know how the service is implemented.

Our position necessitates a design by contract methodology
for SLA-aware virtualized services, which is to be integrated
in industrial software development processes. By investigat-
ing the contractual obligations that are present in a PaaS
environment, specific abstractions can be identified that are
suitable for collaboration between platform provider, service
provider, and service client. We build on work on interface
automata [9], typestates [29], user-defined (i.e., application-
level) scheduling policies [3,12], and process contracts [22] to
define service contracts, a novel model of behavioral inter-
faces that specify the QoS and the resource usage in different
deployment scenarios. The service contracts will be embed-
ded in a modeling language for services and will be amenable
to formal analysis.

Our position also implies the need to provide a range of
tools for the analysis of models, based on formal techniques,
that ensure conformance to application-level services. These
tools enable the application of various analyses on the ex-
ecutable models already during the early design phase of
the targeted service. This allows the developer to improve
resource usage and QoS in deployment scenarios spanning
from virtualized services for mobile users to resource provi-
sioning in data centers. Regarding the analysis of the mod-
els, the design by contract approach ensures scalability of
the analyses by compositionality: the encapsulated modules
need only be checked with respect to their service contracts.
To support a coherent and consistent suite of tools, both
the modeling language and the service contracts will have a
formal semantics. We finally remark that the description of
different quantitative aspects in the service contracts drives
both the horizontal verification of developed services, i.e. be-
tween service contracts themselves, and the vertical verifica-
tion, i.e. between service contracts and the actual cost that
can be reliably and automatically estimated for the models.

3. MODELING VIRTUALIZED SERVICES

General-purpose modeling languages exploit abstraction to
reduce complexity [20]: descriptions primarily focus on the
functional behavior and the logical composition of software.
Industry-strength object-oriented programming and model-
ing languages, however, support different concurrency and
interaction paradigms. The most prominent are multithread-
ing and concurrent objects, using interaction mechanisms
such as method calls, message passing, and shared resources.
Researchers, including the authors of this paper, have de-

veloped a number of techniques to enable the compositional
development of modular systems and the flexible reuse of
components. However these techniques still overlook how
a software’s deployment influences its behavior. This is
highly problematic for modern software targeting, for ex-
ample, cloud computing and reflective middleware, where
virtualization technologies allow an application to modify
resources of its deployment scenario during execution [4].

To fully exploit the potential of virtualization, it is impor-
tant to make services both scalable and cost efficient by
leveraging deployment decisions to the software design. A
major challenge in software engineering today is to find a
tradeoff between the two conflicting requirements of abstrac-
tion and deployment control in the application design phase.
In fact, the introduction of low-level deployment in a high-
level modeling language is potentially disruptive in software
engineering, but it is unavoidable due to the new scenario
that is delineated by cloud computing. It is worth noting
that in software design, no general, systematic means exists
today to model and analyze software in the context of a set
of available virtualized resources, nor to analyze redistribu-
tion of virtualized resources in terms of load balancing or
reflective operations. To the best of our knowledge, no cur-
rent research directly addresses these challenges raised by
virtualization, and in particular, the modeling of quantita-
tive virtualized resources as data inside the software itself,
which is a primary property of virtualized resources.

Our starting point is a separation of concerns between the
application model, which requires resources, and the deploy-
ment scenario, which reflects the virtualized computing en-
vironment and elastically provides resources. This allows
the developer to analyze the performance and scalability of
a service for many different deployment scenarios already
at the modeling level. For example, the model of an ap-
plication may be analyzed with respect to deployments on
virtual machines that may vary in a number of features: the
amount of allocated computing or memory resources, the
choice of application-level scheduling policies for client re-
quests, and the distribution of computation over different
virtual machines with fixed bandwidth constraints. Auto-
mated resource analysis [1] can be used to determine the
most appropriate choice of SLA for the application, and to
validate that the abstract system model complies with the
SLA.

Models of virtualized systems in this context need to be
SLA-aware: the modeling language will include primitives to
express resource modeling and to support the virtualization
of resources at an appropriate abstraction level. This way,
the modeling language can express cloud computing soft-
ware, such as SaaS business applications or PaaS abstrac-
tions, and feature an interface through which the application-
level services can inspect and manipulate the virtualized re-
sources of the platform. We see this interface in relation
with standardization efforts in virtualization and cloud pro-
visioning. The abstraction level of the modeling language
also allows virtualized systems to be mapped to different
deployment scenarios which describe the underlying virtu-
alized architecture and to express dynamic load balancing
policies depending on both the SLA and the current deploy-
ment of the service.



Executable models that describe precisely the control and
data flow of the target service are a necessity for the anal-
ysis of the resource needs in different settings. Such exe-
cutable models also allow code generation from the mod-
eling language to different mainstream implementation lan-
guages, such as JAVA, SCALA, or ERLANG. Concrete starting
points for such models are abstract behavioral specification
languages, such as ABS [13]. The ABS language targets
distributed systems based on object-oriented concepts, thus
it may be easily used by software engineers, and service-
level contracts can be naturally integrated into the object-
oriented interfaces. These service contracts follow and ex-
tend the design by contract methodology, and include both
behavioral interfaces and QoS descriptions.

As a proof of concept several models that include deploy-
ment scenarios with parametric resources have been created
in ABS [14,15]. In these models application-level exchange
of virtualized CPU resources is used to model and compare
load balancing strategies between servers. Recently ABS
has been applied to model dynamic resource management on
the cloud [6,16]. These case studies show that our proposed
formal approach compares favorably to custom simulation
tools and that it scales to industrial problems. However,
the proof of concept does not yet permit ABS models to be
parametrized with resource policies in terms of SLAs, nor
does it extend formal analysis to varying resource models
and dynamic deployment.

4. FORMAL LANGUAGES FOR SLAS

The formalization of SLAs is a prerequisite for developing
formal analysis methods that check whether a service con-
forms to an SLA. For this reason, a number of formal SLA
specifications have been developed [2,18,30]. They all de-
fine SLAs in terms of XML schemata. The problem of all
these notations is their lack of a formal semantics: they are
all mark-up languages that rely on an implicit (hence in-
herently ambiguous) understanding of the various concepts
represented. Another problem is that, for virtualized sys-
tems, SLAs will require continuous re-assessment, for the
duration of the SLA, to cope with changing enterprise con-
ditions. It is not clear how this continuous reassessment is
addressed in the above proposals.

Specification languages for SLA are currently being inte-
grated with semantic annotations, e.g., SAWSDL [19] for
service descriptions and SWAPS [25] for WS-Agreement.
Another relevant example is SLAng [21], an object-oriented
language with a precise formal interpretation in terms of
service infrastructure and behaviors. Similarly, Okika for-
malizes BPEL in a rewriting logic framework [24]. These
efforts, however, have limited expressive power and the ex-
tension to elastic resources of virtualized systems has not
been investigated. A different, more abstract SLA formal-
ism is CC-pi [8], a combination of concurrent constraint pro-
gramming and pi-calculus formalisms, which models com-
putational processes for specifying and negotiating QoS re-
quirements, and supports reasoning about resource alloca-
tion. CC-pi only checks for consistency and does not ad-
dress issues as optimization of business values or contrac-
tual norms—topics that are addressed in detail in [27] and
in RBSLA [26].

Today, client-level SLAs do not allow the service’s poten-
tial resource usage to be determined or adapted when un-
foreseen changes to resources occur. This is because user-
level SLAs are not explicitly related to actual performance
metrics and configuration parameters of the services. As
a result the recent EU FP7 project SLAQSOI [28], which
is being continued in the Future Internet PPP project FI-
WARE [11], proposes an informal stepwise mapping between
higher-level SLLAs, such as those specified by clients, and
lower-level SLAs and capabilities. This stepwise mapping is
one of the prerequisites to support automated inference of
resource usage from user-level SLAs.

Our position implies to push this line of research further
and provide a modeling approach which incorporates SLA
requirements at the application-level to ensure the QoS ex-
pectations of clients. This modeling approach will build on
and consolidate the existing work to develop a practical,
integrated SLA formalism for virtualized systems. It can
be realized by investigating the contractual obligations that
are present in, for example, a PaaS environment and provide
specific abstractions that are suitable for the collaboration
between platform provider, service provider, and client. The
outcome of this consolidation effort includes a concrete SLA
modeling language with a formal semantics and the formal
description of (at least basic) enterprise level processes for
SLA design and update. Another outcome is a contracts
language that is embedded in an abstract behavioral mod-
eling language such as ABS and thus amenable to formal
analysis.

5. TOOLS FOR VIRTUALIZED SYSTEMS

Based on the formal semantics of an executable modeling
language with integrated SLA, we envisage the development
of a range of techniques for model-based analysis.

Monitoring and Service Contracts

Our position calls for techniques that address the difficulties
of traditional monitoring tools [17], including fragmented
visibility into the application stack, the lack of user-focused
SLAs, and the absence of a budget perspective. The corre-
sponding framework will provide a user-focused model with
both a budget and cost perspective. Monitoring models
must fill the gap between the negotiations with the client
about SLAs, the service contract, and the deployment model.

Code Generation

Code generation for models of virtualized software should be
instantiated to a deployment model. This will require de-
veloping new techniques, since models are rather high-level.
However, automatic code generation will still be feasible, be-
cause models are executable and because of the constraints
imposed by the deployment model. To prove correctness of
the generated code, our position foresees the need for novel
symbolic execution mechanisms that enable automated ver-
ification. Additionally, information about (asymptotic) re-
source consumption, computed by resource analysis of the
high-level models, can be embedded into the profiles of the
generated code. The correctness of such embedded informa-
tion can be checked against the generated code to prove its
validity, i.e., that the generated code preserves the resource
consumption inferred from the model.



Resource Analysis

The cost analysis framework of virtualized services should be
powerful enough to derive the deployment configuration and
the interactions among services, and to automatically infer
the overall cost from the cost of each service. The fact that
this analysis will be developed at the level of the abstract
models, which combine resource modeling with deployment
modeling, allows these analyses to go beyond traditional cost
models. For example, cost models for data size with band-
width restrictions on communication can be developed for
the underlying deployment scenarios. An important am-
bition (that stems from our overall position and that goes
beyond the current existing technology) is to develop a re-
source analysis framework for determining whether certain
resource usages are possible, given the service contracts of
the component services.

Verification

We envisage an automatic deductive verification tool to en-
sure that a distributed, concurrent model respects a ser-
vice contract. The properties stated in SLAs go beyond
wellformedness of call sequences. For example, they involve
limits imposed on storage space. Consequently, a first-order
program calculus for the abstract modeling language is re-
quired. To achieve full automation, appropriate abstrac-
tions for service contracts need to be identified, following
techniques suggested in [7], together with specialized proof
search strategies and decision procedures. In case of a failed
verification attempt, the developer should be supported by
feedback on the kind of property that has been violated and
under which condition. The developer also needs a concise
rule book for modeling practices that help automation. In
cases where automatic verification is still impossible, hybrid
techniques can be considered, as discussed below.

Test Case Generation

Symbolic execution is the central part of most glassbox test
case generation tools, which typically obtain the test cases
from the branches of the symbolic execution tree. For virtu-
alized services, the symbolic execution mechanisms should
be integrated within a test case generation tool to produce
test cases for the high-level models in a fully automatic way.
The main challenge will be on handling distribution aspects
of the services and the variety of deployment configurations
within symbolic execution. Since information on resource
management is explicitly available in our models it is possi-
ble to generate test cases that are aware of resource usage.
A main research problem to be solved is guidance of the test
case generator towards specific behaviors of the model by
means of appropriate heuristics.

6. CONCLUSIONS

This position paper advocates a software engineering ap-
proach to virtualized services where (1) SLAs are part of a
design by contract methodology and (2) virtualized resources
are managed by explicit language primitives since the early
phases of service design. This involves the extension of
descriptions of virtualized services to encompass resource-
dependent and resource-aware behaviors based on abstract
yet detailed executable models. This new software engineer-
ing approach will render application-specific resource man-
agement policies to become fully integrated with the pro-
gram logic of a service and analyzable already at an early

stage in the development of the service. This in turn leads
to a better exploitation of runtime resources, as well as to
lower development costs and shorter time to market for ser-
vice developers.

The scale of the potential economical benefits inherent to our
proposal can be illustrated by the well-known cost increase
to fix defects in later development phases [5]. IBM Systems
Sciences Institute estimates that a defect which costs one
unit to fix in design, costs 15 units to fix in testing (sys-
tem/acceptance) and 100 units or more to fix in production
(see Figure 1, left), and this cost estimation does not even
consider the impact cost due to, e.g., delayed time to mar-
ket, lost revenue, lost customers, bad public relations, etc.
Now, these ratios are for static infrastructure. Consider-
ing the high additional complexity of resource management
for virtualized services, it is reasonable to expect even more
significant differences; Figure 1 (right) conservatively sug-
gests ratios for virtualized software in dynamic infrastruc-
tures. The modeling and analysis approach proposed in this
paper aims at detecting deployment errors such as the im-
possibility to meet an SLA, already in the design phase. The
associated savings potential clearly justifies any additional
cost that might be incurred from formalisation of SLAs.

The research agenda proposed in this position paper forms
the basis of a new EU FP7 project called ENVISAGE that
includes (1) a behavioral specification language for describ-
ing resource-aware models and deployment choices; (2) a
simulator with visualization facilities; and (3) tool support
for automated resource analysis, validation of SLAs, code
generation, and runtime monitoring of SLAs for deployed
services. As argued above, such a methodology and associ-
ated tools will allow services to be delivered in a more effec-
tive, efficient, and reliable manner than today, accelerating
the development cycle and lowering the operational costs for
innovative networked services that make use of cloud com-
puting.
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Making full usage of the potential of virtualized computation requires nothing
less than to rethink the way in which we design and develop software.

Capitalizing on the Cloud

The planet’s data storage and processing is about to move into the clouds. This has
the potential to revolutionize how we will interact with computers in the future. A
cloud consists of virtual computers that can only be accessed remotely. It is not a
physical computer, you do not necessarily know where it is, but you can use it to
store and process your data and you can access it at any time from your regular
computer. If you still have an old-fashioned computer, that is. You might as well
access your data or applications through your mobile device, for example while
sitting on the bus.

Cloud-based data processing, or cloud computing, is more than just a convenient
solution for individuals on the move. Although challenges remain concerning the
privacy of data stored in the cloud, the cloud is already emerging as an economically
interesting model for a start-up, an SME, or simply for a student who develops an
app as a side project, due to an undeniable added value and compelling business
drivers [1]. One such driver is elasticity: businesses pay for computing resources
when they are needed, instead of provisioning in advance with huge upfront
investments. New resources such as processing power or memory can be added to a
virtual computer on the fly, or an additional virtual computer can be provided to the
client application. Going beyond shared storage, the main potential in cloud
computing lies in its scalable virtualized framework for data processing, which
becomes a shared computing facility for your multiple devices. If a service uses
cloud-based processing, its capacity can be automatically adjusted when new users
arrive. Another driver is agility: new services can be deployed quickly and flexibly
on the market at limited cost, without initial investments in hardware.

The EU believes' that cloud-based data processing will create 2.5 million new jobs
and an annual value of 160 billion euros in Europe by 2020. Another study? predicts

1 Digital Agenda for Europe, http://ec.europa.cu/digital-agenda/en/european-cloud-
computing-strategy



14 million new jobs worldwide until 2015. However, reliability and control of
resources are barriers to the industrial adoption of cloud computing today. To
overcome these barriers and to regain control of the virtualized resources on the
cloud, client services need to become resource-aware.

Challenges

Cloud computing is not merely a new technology for convenient and flexible data
storage and implementation of services. Making full usage of the potential of
virtualized computation requires nothing less than to rethink the way in which we
design and develop software.

Empowering the Designer. The elasticity of software executed in the cloud means
that designers have far reaching control over the resource parameters of the
execution environment: the number and kind of processors, the amount of memory
and storage capacity, and the bandwidth. These parameters can even be changed
dynamically, at runtime. This means that the client of a cloud service not only can
deploy and run software, but is also in full control of the trade-offs between the
incurred cost and the delivered quality-of-service.

To realize these new possibilities, software in the cloud must be designed for
scalability. Nowadays, software is often designed based on specific assumptions
about deployment, including the size of data structures, the amount of RAM, and the
number of processors. Rescaling requires extensive design changes, if scalability has
not been taken into account from the start.

120+
100x
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20 6.5X% =
1x —
Design  Implementation Testing Maintenance

Fig. 1: Relative costs to fix software defects for static infrastructure (source: IBM
Systems Sciences Institute). The columns indicate the phase of the software
development at which the defect is found and fixed.

2 IDC White Paper Cloud Computing’s Role in Job Creation, http://www.microsoft.com/
en-us/news/features/2012/mar12/03-05cloudcomputingjobs.aspx



Deployment Aspects at Design Time. The impact of cloud computing on software
design, however, goes beyond scalability issues: traditionally, deployment is
considered a late activity during software development. In the realm of cloud
computing, this can be fatal. Consider the well-known cost increase for fixing defects
during successive development phases [2]. IBM Systems Sciences Institute estimates
that a defect which costs one unit to fix in design, costs 15 units to fix in testing
(system/acceptance) and 100 units or more to fix in production (see Fig. 1). This
cost estimation does not even consider the impact cost due to, for example, delayed
time to market, lost revenue, lost customers, and bad public relations.
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Fig. 2: Estimate of relative costs to fix software defects for virtualized systems with
elasticity, from [3].

Now, these ratios are for static deployment. Considering the high additional
complexity of resource management in virtualized environments, it is reasonable to
expect even more significant differences; Fig. 2 conservatively suggests ratios for
virtualized software in an elastic environment. This consideration makes it clear
that it is essential to detect and fix deployment errors, for example, failure to meet a
service level agreement (SLA), already in the design phase.

To make full usage of the opportunities of cloud computing, software development
for the cloud demands a design methodology that (a) takes into account deployment
modeling at early design stages and (b) permits the detection of deployment errors
early and efficiently, helped by software tools, such as simulators, test generators,
and static analyzers.

Controlling Deployment In The Design Phase

Our analysis exhibits a software engineering challenge: how can the validation of
deployment decisions be pushed up to the modeling phase of the software
development chain without convoluting the design with deployment details?
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Service Contract
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Fig. 3: Conceptual parts of a deployed cloud service.

When a service is developed today, the developers first design its functionality, then
they determine which resources are needed for the service, and ultimately the
provisioning of these resources is controlled through an SLA, see Fig. 3. The
functionality is represented in the client layer. The provisioning layer makes
resources available to the client layer and determines available memory, processing
power, and bandwidth. The SLA is a legal document that clarifies what resources the
provisioning layer should make available to the client service, what it cost, and
states penalties for breach of agreement. A typical SLA covers two aspects: (i) a legal
contract stating the mutual obligations and the consequences in case of a breach; (ii)
the technical parameters and cost figures of the offered services, which we call the
service contract.

How can the validation of deployment decisions be pushed
up to the modeling phase of the software development chain
without convoluting the design with deployment details?

Legal Contract Layer

Formal Service Contract Formal Methods

“early analysis”

Simulation Executable Model of Client Layer
“early modeling”

Cloud API

Runtime Monitoring

« )
Provisioning Layer late analysis

Fig. 4: Making services resource-aware.



So far, the different parts of a deployed cloud service live in separate worlds, but we
need to connect them. In a first step the provisioning layer is made available to the
client, so that the client can observe and modify resource parameters. We call this
the Cloud API. This is not the same as the APIs that cloud environments provide to
their clients now: our goal is to move deployment aspects into the design phase. We
advocate that client behavior is represented by an abstract behavioral model of the
client application, for example in an executable modeling language such as ABS [4].
Such a model can realistically be created during the design phase. The Cloud API is
then an abstract interface to the provisioning layer, see Fig. 4. Such “early modeling”
of client behavior makes it possible to simulate different client-side provisioning
schemes and observe their impact on cost and performance.

To connect SLAs with the client layer, the key observation is that the service
contract aspects of an SLA can be given a formal semantics. This enables formal
analysis of client behavior with respect to the SLA at design time. Possible analyses
include resource consumption, performance, test case generation, and even
functional verification [3]. For modeling languages such as ABS this is highly
automated [5]. “Early analysis” makes assumptions about the Cloud API explicit and
enables the generation of monitors in the provisioning layer. Runtime monitors then
provide “late analysis”.

Opportunities

Making deployment decisions at design-time shifts control from the provisioning
layer to the client layer. The client service becomes resource-aware. This provides a
number of attractive opportunities.

Fine-grained provisioning. Business models for resource provisioning on the
cloud are becoming similarly fine-grained as those we know from other industry
sectors such as telephony or electricity. It is becoming increasingly complex to
decide which model to select for your software. Design-time analysis and
comparison of deployment decisions allow an application to be deployed according
to the optimal payment model for the expected end-users. Cloud customers can take
advantage of fine-grained provisioning schemes such as spot price.

Tighter provisioning. Better profiles of the resource needs of the client layer help
cloud providers to avoid over-provisioning to meet their SLAs. Better usage of the
resources means more clients can be served with the same amount of hardware in
the data center, without violating SLAs and incurring penalties.

Application-specific resource control. Design-time analysis of scalability enables
the client layer to make better use of the elasticity offered by the cloud, to know
beforehand at what load thresholds it is necessary to scale up the deployment to
avoid breaking SLAs and disappointing the expectations of the end-users.



Application-controlled elasticity. Going one step further, we foresee autonomous,
resource-aware services that run their own deployment strategy. Such a service will
monitor the load on its virtual machine instances as well as the end-user traffic, and
make its own decisions about the trade-offs between the delivered quality of service
and the incurred cost. The service interacts with the provisioning layer through an
API to dynamically scale up or down. The service may even request or bid for virtual
machine instances with given profiles on the virtual resource market place of the
future!

Summary

We argued that the efficiency and performance of cloud-based services are boosted
by moving deployment decisions up the development chain. Resource-aware
services give the client better control of resource usage, to meet SLAs at lower cost.
We identify formal methods, executable models, and deployment modeling as the
ingredients that can make this vision happen. A concrete realization of our ideas is
currently being implemented as part of the EU FP7 project Envisage: Engineering
Virtualized Services (http: //www.envisage-project.eu).
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