
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D5.2.1
Envisage Virtual Collaboratory (Initial Version)

Date of document: T24

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: UCM

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Envisage Virtual Collaboratory (Initial Version)

This document summarises deliverable D5.2.1 of project FP7-610582 (Envisage), a Collaborative Project
supported by the 7th Framework Programme of the EC. within the Information & Communication Tech-
nologies scheme. Full information on this project is available online at http://www.envisage-project.eu.

Deliverable D5.2.1 is a prototype documenting the initial version of the Envisage Virtual Collaboratory1

as part of the activities of Task T5.2. This task aims at making tools and technologies developed in the context
of Envisage available for the general public as online services. This report supplements the prototype by
documenting background work to realize the collaboratory.

List of Authors

Samir Genaim (UCM)
Einar Broch Johnsen (UIO)

1http://abs-models.org/laboratory

2

http://www.envisage-project.eu
http://abs-models.org/laboratory

Contents

1 Introduction 4

2 ABS Web Site 5
2.1 Arriving at the web site . 5
2.2 Vision . 6
2.3 The Collaboratory . 6
2.4 Documentation . 7
2.5 Discussion Forums . 8
2.6 Mailing Lists . 8

3 Overview of the EasyInterface Framework 9
3.1 The Architecture of EasyInterface . 9

3.1.1 The Server Side . 10
3.1.2 The Client Side . 10

3.2 Web-site of the Envisage Virtual Collaboratory . 12
3.3 Source Code . 12

4 Conclusions and Future Work 13

Glossary 14

A EasyInterface User Manual 15

3

Chapter 1

Introduction

Deliverable D5.2.1 is a prototype documenting the initial version of the Envisage Virtual Collaboratory, as
part of the activities of task T5.2. This task aims at making tools and technologies developed in the context
of Envisage available for the general public as online services, without any need for downloading and
installing tools locally. This report supplements the prototype by documenting background work to realize
the collaboratory.

We are in the process of developing a web site

http://www.abs-models.org,

of which the collaboratory itself is one component, which also features documentation about ABS and its
associated tools, tutorials, examples, a discussion forum, etc.

The Envisage Virtual Collaboratory is available at:

http://abs-models.org/laboratory.

The Envisage Virtual Collaboratory is built around a framework that we call EasyInterface. This framework
allows developers to develop their applications once, and get several interfaces for free, e.g., a web-interface,
an Eclipse-interface, a remote shell, etc. EasyInterface has been released as open source, and is available at
http://github.com/abstools/easyinterface. This framework is described in Chapter 3, and the current
version of its user manual is attached to this report as Appendix A. In Chapter 4 we finish this report with
some concluding remarks and future plans.

4

http://www.abs-models.org
http://abs-models.org/laboratory
http://github.com/abstools/easyinterface

Chapter 2

ABS Web Site

We develop a web site http://www.abs-models.org which will make the ABS tools available as a service
through the Envisage Virtual Collaboratory, and additionally document the vision and approach of the
Envisage project, the modeling language and tools. We have opted to build this web site around ABS
rather than Envisage in order to make the language and tools less project specific. This chapter documents
the current state of the web site, which is under on-going development, by a visual tour.

2.1 Arriving at the web site

Figure 2.1: ABS web site: Compositionality in the clouds.

5

http://www.abs-models.org

Envisage Deliverable D5.2.1 Envisage Virtual Collaboratory (Initial Version)

2.2 Vision

Figure 2.2: ABS web site: A vision for the clouds.

2.3 The Collaboratory

Figure 2.3: ABS web site: the Virtual Collaboratory.

6

Envisage Deliverable D5.2.1 Envisage Virtual Collaboratory (Initial Version)

2.4 Documentation

Figure 2.4: ABS web site: Documentation.

7

Envisage Deliverable D5.2.1 Envisage Virtual Collaboratory (Initial Version)

2.5 Discussion Forums

Figure 2.5: ABS web site: Discussion forums.

2.6 Mailing Lists

Figure 2.6: ABS web site: Mailing lists.

8

Chapter 3

Overview of the EasyInterface Framework

The EasyInterface framework provides a simple way to build interfaces, e.g., a web-interface or an Eclipse
plugin, for tools written in (almost) any programming language. Moreover, it does not require the pro-
grammer to be familiar with any GUI library or web programming. Roughly, the only requirement is that
the application can be executed from a command-line and that its output goes to the standard output.

The goal of EasyInterface is to provide developers with a toolkit to build their applications once and get
several interfaces for free. EasyInterface is developed as part of the Envisage project, for building a common
frontend for its corresponding tools, however we designed it in very generic way so other projects can make
use of it in the future. In the rest of this chapter we overview the different components of EasyInterface,
and explain how they are combined to achieve the above goal.

EasyInterface
 Server

PHP scripts on top of HTTP server

App1

App2

App1.cfg

WebInterface

Eclipse Plugin

Remote Shell

Server Side
(A machine with Linux, Windows or OSX)

Client Side

The server executes applications
through command-line

C
lients com

m
unicate

w
ith the server using

H
TTP

 P
O

S
T requests

App2 AppN

app2.cfg
App2.cfg

AppN.cfg

Figure 3.1: The Architecture of the EasyInterface Framework

3.1 The Architecture of EasyInterface

The architecture of EasyInterface is depicted in Figure 3.1. It includes two main components: (1) server
side: a machine with several applications (the circles App1, App2, etc., in Figure 3.1) that can be executed
from a command-line and their output goes to the standard output. These are the applications that we
want to make available for the outside world, i.e., execute them as services on the internet; and (2) client
side: several clients that make it easy to communicate with the server side to execute an application, etc. In
what follows, we first explain the inner components of the server side and which problems they solve, and
then we explain the client side.

9

Envisage Deliverable D5.2.1 Envisage Virtual Collaboratory (Initial Version)

3.1.1 The Server Side

The problem that we want to solve at the server side is:

Provide a uniform way for remotely accessing locally installed applications as services.

This problem is solved by the EasyInterface server, which is collection of PHP programs that run on
top of an HTTP server. This server allows specifying how a local application can be executed and which
parameters it takes using simple configuration files (App1.cfg, App2.cfg, etc., Figure 3.1). For example, the
following is a snippet of such configuration file:

<app id="myapp" visible="true">

...

<execinfo method="cmdline">

<cmdlineapp>/path-to/myapp.sh _ei_parameters </cmdlineapp>
</execinfo>
<parameters prefix = "-" check="false">

...

<selectone name="c">

<option value="1" />

<option value="2" />

</selectone>
</parameters>

</app>

This XML defines an application that has a unique identifier myapp. The cmdlineapp tag is a template
that describes how to execute the application from a command-line. Here _ei_parameters is a template
parameter that will be replaced by an appropriate value. The parameters tag includes a list of parameters
accepted by the application. For example, there is a parameter called “c” that can take one of the values 1
or 2. Once the configuration file is installed on the EasyInterface server, anyone can access the application
using an HTTP POST request that includes the following text:

{

command: "execute",

app_id: "myapp",

parameters: {

c: ["1"],

...

},

...

}

When the EasyInterface server receives such a request, it generates a corresponding command-line (ac-
cording to what is specified in the configuration file), executes it, and redirect the standard output back to
the client.

3.1.2 The Client Side

Although we now have a relatively easy way to execute applications on the server side, it is still not as easy
as we aimed at. Our aim is to simplify this process further by providing (graphical) user interfaces that
automatically (1) connect to the EasyInterface server and ask for the list of available applications; (2) let
the user choose an application to execute and set the values of the corresponding parameters; (3) generate
a corresponding request and send it to the EasyInterface server; and (4) shows the returned output to the
user. The EasyInterface framework provides three such interfaces: a web-interface that can be executed in a
browser and looks like a developing environment; an Eclipse-plugin that runs within the Eclipse IDE; and

10

Envisage Deliverable D5.2.1 Envisage Virtual Collaboratory (Initial Version)

File-Manager

Console

Outline

Code Editor

Figure 3.2: EasyInterfaceWeb Client

a remote-shell that can be used from a command-line. Currently, the web-client is the only mature one, the
other clients are under development.

The web-client is a JavaScript program that runs in a web browser, a screenshot can be seen in Figure 3.2.
It has 5 main components: (1) the code area, where users can edit programs; (2) the file-manager that contains
a list of predefined examples as well as user files; (3) the outline that includes an outline of one or more
files; (4) the console area where the results of executing an application is printed; (5) the tools bar that
includes several buttons to execute an application, etc. The web-client is flexible, it has a configuration file
to control (a) which applications to include in the applications menu and from server to fetch them; (b)
which examples to show in the file-manager; and (c) how to generate the outline for a set of programs. In
addition, to facilitate sharing programs between users, the file-manager allows importing ABS programs
from public and private GitHub repositories.

Since the web-client and the Eclipse plugin are GUI based developing environments, EasyInterface
provide also, to an application, the possibility to generate output that has some graphical effects, e.g.,
open dialog-boxes, highlight code lines, add markers, etc. To use this feature, the applications should be
modified to use the EasyInterface output language. The following is a snippet of such output:

<highlightlines dest="/Examples/cost/CostCenter.abs">

<lines> <line from="5" to="10"/> </lines>
</highlightlines>
...

<oncodelineclick dest="/Examples/cost/CostCenter.abs" outclass="info" >

<lines><line from="17" /></lines>
<eicommands>

11

Envisage Deliverable D5.2.1 Envisage Virtual Collaboratory (Initial Version)

<dialogbox boxtitle="Hey!">

<content format="text">

Click on the marker again to close this window

</content>
</dialogbox>

</eicommands>
</oncodelineclick>

The highlightlines indicates that lines 5–10 of the file /Examples/cost/CostCenter.abs should be high-
lighted. The oncodelineclick tag indicates that when clicking on line 17 of CostCenter.abs, a dialog-box
with a corresponding message should be opened. Note that the application is only modified once to
produce such output, and will have similar effect in all interfaces that support this output language.

3.2 Web-site of the Envisage Virtual Collaboratory

A version of EasyInterface that is deployed as the Envisage Virtual Collaboratory is available at the
following address: http://abs-models.org/laboratory. It currently includes the following tools:

• ABS compiler (to be used as a syntax checker)

• Resource Usage Analysis

• Termination Analysis

• May-Happen-in-Parallel Analysis

• Deadlock analysis

Currently we are working on integrating more tools, in particular the ErLang backend that we expect to
have ready soon. In addition, the GitHub repository http://github.com/abstools/absexamples includes
ABS examples that are automatically imported into the file-manager area of the web-client.

3.3 Source Code

The source code of EasyInterface is publicly available at the following GitHub repository: http://github.
com/abstools/easyinterface.

12

http://abs-models.org/laboratory
http://github.com/abstools/absexamples
http://github.com/abstools/easyinterface
http://github.com/abstools/easyinterface

Chapter 4

Conclusions and Future Work

During the first two years of the project, the main effort of Task T1.4 has been directed to develop an
initial version of the EasyInterface framework, which is the central component of the Envisage Virtual
Collaboratory. EasyInterface is now mature enough, and includes a comprehensive user manual, to allow
Envisage’s developers to integrate their tools in the collaboratory and test them through the web-client.

For future work, the main effort will be directed to integrate more tools in the Envisage Virtual Col-
laboratory, in particular, to integrating the ErLang backend to allow executing ABS programs through the
web-client as well. In addition, we plan to progress in the development of other clients of EasyInterface, in
particular the Eclipse Plugin, and to expand and organize the ABS examples repository which is imported
automatically into to the web-client’s file-manager.

For the web site itself, we are planning a continuous process of populating the different sections with
further material.

13

Glossary

GitHub is a powerful collaboration, code review, and code management for open source and private
projects – https://github.com

JavaScript is a high level, dynamic, untyped, and interpreted programming language, that is commonly
used for web programming – https://en.wikipedia.org/wiki/JavaScript

JSON (JavaScript Object Notation) is a lightweight data-interchange format – http://www.json.org

PHP is a server-side scripting language designed for web development but also used as a general-purpose
programming language – http://www.php.net/

POST (HTTP) is one of many request methods supported by the HTTP protocol used by the World Wide
Web – https://en.wikipedia.org/wiki/POST_(HTTP)

14

https://github.com
https://en.wikipedia.org/wiki/JavaScript
http://www.json.org
http://www.php.net/
https://en.wikipedia.org/wiki/POST_(HTTP)

Appendix A

EasyInterface User Manual

In this appendix we attach the current version of the user manual of EasyInterface.

15

EasyInterface User Manual
http://github.com/abstools/easyinterface

Jesus Doménech
Samir Genaim

http://www.envisage-project.eu/

Preface

How to Read this User Manual

Start with Chapter 1 in order to understand the overall architecture of the EasyInterface framework and
the role of each component. Next read Chapter 2 and implement all the steps of the incremental example,
after which you will probably have enough knowledge to integrate your own applications without further
reading.

2

Contents

1 Overview of the EasyInterface Framework 4
1.1 The Architecture of EasyInterface . 4
1.2 The Server Side . 4
1.3 The Client Side . 5

2 Quick Guide to EasyInterface 7
2.1 Add Your First Application to the EasyInterface Server . 7
2.2 Passing Input Files to Your Application . 9
2.3 Passing Outline Entities to Your Application . 10
2.4 Passing Parameters to Your Application . 10
2.5 Using the EasyInterface Output Language in Your Application 13

2.5.1 Printing in the Console Area . 13
2.5.2 Adding Markers . 14
2.5.3 Highlighting Code Lines . 15
2.5.4 Adding Inline Markers . 16
2.5.5 Opening a Dialog Box . 16
2.5.6 Adding Code Line Actions . 17
2.5.7 Adding OnClick Actions . 18

3 EasyInterface Server 19
3.1 Configuring the EasyInterface Server . 19

3.1.1 Name and Path of the Configuration File . 19
3.1.2 The Syntax of the Configuration File . 19

3.2 Communicating with the EasyInterface Server . 28
3.2.1 Retrieve Information on Available Applications . 29
3.2.2 Execute an Application . 29
3.2.3 Retrieve Example Sets . 30

4 EasyInterface Clients 31
4.1 The Web-Client . 31

4.1.1 The Applications Menu . 32
4.1.2 The File-Manger . 32
4.1.3 The Outline . 32

4.2 Eclipse Plugin . 33
4.3 Remote shell . 33

5 The EasyInterface Output Language 34
5.1 Syntax and Semantics . 34

3

1 | Overview of the EasyInterface Framework

The EasyInterface framework provides a simple way to build interfaces, e.g., a web-interface or an Eclipse
plugin, for tools written in (almost) any programming language. Moreover, it does not require the pro-
grammer to be familiar with any GUI library or web programming. Roughly, the only requirement is that
the application can be executed from a command-line and that its output goes to the standard output.

The goal of EasyInterface is to provide developers with a toolkit to build their applications once and
get several interfaces for free. EasyInterface was originally developed for building a common frontend for
program analysis tools developed in the Envisage1 project. This is why, as the reader will notice later, its
graphical user interfaces are basically developing environments that allow editing programs, etc.

In the rest of this chapter we overview the different components of EasyInterface, and explain how
they are combined to achieve the above goal.

EasyInterface
 Server

PHP scripts on top of HTTP server

App1

App2

App1.cfg

WebInterface

Eclipse Plug-In

Remote Shell

Server Side
(A machine with Linux, Windows or OSX)

Client Side

Server execute apps
through command-line

C
lients com

m
unicate w

ith
server using P

O
S

T request

App2 AppN

app2.cfg
App2.cfg

AppN.cfg

Figure 1.1: The Architecture of the EasyInterface Framework

1.1 The Architecture of EasyInterface

The architecture of EasyInterface is depicted in Figure 1.1. It includes two main components: (1) server
side: a machine with several applications (the circles App1, App2, etc., in Figure 1.1) that can be executed
from a command-line and their output goes to the standard output. These are the applications that we
want to make available for the outside world, i.e., execute them as services on the internet; and (2) client
side: several clients that make it easy to communicate with the server side to execute an application, etc. In
what follows, we first explain the inner components of the server side and which problems they solve, and
then we explain the client side.

1.2 The Server Side

The problem that we want to solve at the server side is:

Provide a uniform way for remotely accessing locally installed applications as services.

This problem is solved by the EasyInterface server, which is collection of PHP programs that run on
top of an HTTP server. This server allows specifying how a local application can be executed and which
parameters it takes using simple configuration files (App1.cfg, App2.cfg, etc., Figure 1.1). For example, the
following is a snippet of such configuration file:

1http://www.envisage-project.eu

4

<app id="myapp" visible="true">
...
<execinfo method="cmdline">

<cmdlineapp>/path-to/myapp.sh _ei_parameters </cmdlineapp>
</execinfo>
<parameters prefix = "-" check="false">

...
<selectone name="c">

<option value="1" />
<option value="2" />

</selectone>
</parameters>

</app>

This XML defines an application that has a unique identifier myapp. The cmdlineapp tag is a template
that describes how to execute the application from a command-line. Here _ei_parameters is a template
parameter that will be replaced by an appropriate value. The parameters tag includes a list of parameters
accepted by the application. For example, there is a parameter called “c” that can take one of the values 1
or 2. Once the configuration file is installed on the EasyInterface server, anyone can access the application
using an HTTP POST request that includes the following text:

{
command: "execute",
app_id: "myapp",
parameters: {

c: ["1"],
...

},
...

}

When the EasyInterface server receives such a request, it generates a corresponding command-line (ac-
cording to what is specified in the configuration file), executes it, and redirect the standard output back to
the client.

1.3 The Client Side

Although we now have a relatively easy way to execute applications on the server side, it is still not as easy
as we aimed at. Our aim is to simplify this process further by providing (graphical) user interfaces that
automatically (1) connect to the EasyInterface server and ask for the list of available applications; (2) let
the user choose an application to execute and set the values of the corresponding parameters; (3) generate
a corresponding request and send it to the EasyInterface server; and (4) shows the returned output to the
user. The EasyInterface framework provides three such interfaces: a web-interface that can be executed in
a browser and looks like a developing environment (see Figure 4.1 on Page 31); an Eclipse-plugin that runs
within the Eclipse IDE; and a remote-shell that can be used from a command-line.

Since the web-client and the Eclipse plugin are GUI based developing environments, EasyInterface
provide also, to an application, the possibility to generate output that has some graphical effects, e.g.,
open dialog-boxes, highlight code lines, add markers, etc. To use this feature, the applications should be
modified to use the EasyInterface output language. The following is a snippet of such output:

<highlightlines dest="/Examples_1/iterative/sum.s">
<lines> <line from="5" to="10"/> </lines>

</highlightlines>
...
<oncodelineclick dest="/Examples_1/iterative/sum.c" outclass="info" >

<lines><line from="17" /></lines>
<eicommands>

<dialogbox boxtitle="Hey!">
<content format="text">
Click on the marker again to close this window

</content>
</dialogbox>

</eicommands>
</oncodelineclick>

The highlightlines indicates that lines 5–10 of the file /Examples_1/iterative/sum.s (which is opened
in the editor) should be highlighted. The oncodelineclick tag indicates that when clicking on line 17, a
dialog-box with a corresponding message should be opened. Note that the application is only modified
once to produce such output, and will have similar effect in all interfaces that support this output language.

2 | Quick Guide to EasyInterface

This chapter provides a quick introduction on how to integrate an application in the EasyInterface framework.
In particular, we develop a simple application, integrate it in the EasyInterface server, and try it out through
the web-client. The presentation is incremental, we start with a simple application and in each step we
add more features to demonstrate the different parts of the EasyInterface framework. In our explanation
we assume that a Unix based operating system is used, however, we comment on how to do the analog
operations on Windows when they are different. Note that in this chapter we only use the web-client, for
other clients refer to Chapter 4. We assume that EasyInterface is already installed and working, which can
be done following the instructions available in INSTALL.md.

Let us start by trying some demo applications that are available by default in the web-client. If you
visit http://localhost/ei/clients/web, you should get a page similar to the one shown in Figure 4.1
on Page 31. At the top part of this page you can see a button with the label Apply, and to its right a
combo-box with several items Test-0, Test-1, etc. These items correspond to applications available in the
web-client, and we will refer to it as the applications menu. To the left of Apply there is a button with the
label Settings, if you click it you will see that each Test-i has also some parameters that can be set to
some values. Note that, by default, the web-client is configured to connect to the EasyInterface server at
http://localhost/ei/server and ask for all applications, together with their corresponding parameters,
that are available at that server. Note also that application Test-i actually corresponds to the bash-script
server/bin/default/test-i.sh, and that its configuration file is server/config/default/test-i.cfg
(later you will understand the details of such configuration files).

If you select an application, from the combo-box, and click on Apply, the web-client sends a request
to the server to execute this application. The request includes also the current values of the parameters
(those in the settings section) and the file that is currently active in the code editor area. The server, in turn,
executes the corresponding program, i.e., the bash-script server/bin/default/test-i.sh in this case, and
redirects its output back to the web-client. The web-client will either print this output in the console area,
or view it graphically if it uses the EasyInterface output language. Execute the demo applications just to
get an idea on which graphical output we are talking about (e.g., highlight text, markers). In the rest of this
chapter we explain, step by step, how to add your own application to EasyInterface.

2.1 Add Your First Application to the EasyInterface Server

When we add an application to the EasyInterface server it will appear automatically in the applications
menu of the web-client (unless you have changed the configuration of the web-client already!). Let us add
a simple “Hello World” application.

We start by creating a bash-script that represents the executable of our application (it could be any
other executable). We will place this bash-script in the directory server/bin/default together with the
test-i.sh scripts, however, this is not obligatory and it can be placed anywhere in the file system as far as
the HTTP server can access it. Create a file myapp.sh in server/bin/default with the following content:

1 #!/bin/bash
2

3 echo "Hello World!"

As you can see, it is a simple program that prints "Hello World!" on the standard output. Later we will
see how to pass input to this application and how to generate more sophisticated output. Change the
permissions of myapp.sh by executing the following (on Windows this is typically not needed):

> chmod -R 755 myapp.sh

7

Execute myapp.sh (in a shell) to make sure that it works correctly before proceeding to the next step.
Next we will configure the server to recognize our application. Create a file myapp.cfg in the di-

rectory server/config/default with the following content (we could place this file anywhere under
server/config not necessarily in default):

<app visible="true">
<appinfo>

<acronym>MFA</acronym>
<title>My First Application</title>
<desc>

<short>A simple EI application</short>
<long>A simple application that I've done using the EasyInterface Framework</long>

</desc>
</appinfo>
<apphelp>

<content format='html'>
This is my first EasyInterface application!

</content>
</apphelp>
<execinfo>

<cmdlineapp>./default/myapp.sh</cmdlineapp>
</execinfo>

</app>

Let us explain the meaning of the different elements of this configuration file. The app tag is used to
declare an EasyInterface application, and its visible attribute tells the server to list this application when
someone asks for the list of installed applications. Changing this value to "false" will make the application
“hidden” so only those who know its identifier can use it. The appinfo tag provides general information
about the application, this will be used by the clients to show the application name, etc. The apphelp tag
provides some usage information about the application, or simply provide a link to another page where
such information can be found. The actual content goes inside the content tag, which is HTML as indicated
by the format attribute (use ’text’ for plain text). The most important part is the execinfo tag, which provides
information on how to execute the application. The text inside cmdlineapp is interpreted as a command-line
template, such that when the server is requested to execute the corresponding application it will simply
execute this command-line and redirect its output back to the client. Later you will understand why we call
it template. Note that before executing the script, the server changes the current directory to server/bin
and thus the command-line should be relative to server/bin.

Next we add the above configuration file to the server. This is done by adding the following line to
server/config/default/apps.cfg (inside the apps tag):

<app id="myapp" src="default/myapp.cfg" />

Here we tell the server that we want to install an application as defined in myapp.cfg, and we want to
assign it the unique identifier "myapp". This identifier will be mainly used by the server and the clients
when they communicate, we are not going to use it anywhere else. Note that in default/apps.cfg
we used "default/myapp.cfg" and not "myapp.cfg". This is because the server looks for configuration
files starting in server/config. Note also that the main configuration file of the EasyInterface server
is server/config/eiserver.default.cfg, and that default/apps.cfg is imported into that file (open
server/config/eiserver.default.cfg to see this).

Let us test our application. Go back to the web-client and reload the page, you should see a new
application named MFA in the applications menu. If you click on the Help button you will see the text
provided inside the apphelp tag above. Select this application and click on the Apply button, the message
"Hello World!" will printed in the console area.

2.2 Passing Input Files to Your Application

Applications typically receive input files (e.g., programs) to process. You must have noticed that the web-
client provides the possibility of creating and editing such files. In this section we explain how to pass these
files, via the server, to our application when the Apply button is clicked.

When you click on the Apply button the web-client passes the currently opened file (i.e., the content of
the active tab) to the server, and if you use the Apply option from the context menu of the file-manager
(select an element from the files tree-view on the left, and use the mouse right-click to open the context
menu) it passes all files in the corresponding sub-tree. What is left is to tell the server how to pass these
files to our application. Let us assume that myapp.sh is prepared to receive input files as follows:

> myapp.sh -f file1.c file2.c file3.c

In order to tell the server to pass the input files (that were received from the client) to myapp.sh, open
myapp.cfg and change the command-line template to the following:

<cmdlineapp>./bin/default/myapp.sh -f _ei_files </cmdlineapp>

When the server receives the files from the client, it stores them in a temporary directory, e.g., in /tmp,
replaces _ei_files by the list of their names, and then execute the resulting command-line (this is why we
call it command-line template!). It is important to note that only _ei_files changes in the above template,
the rest remain the same. Thus, the parameter “-f” means nothing to the server, we could replace it by
anything else or even completely remove it — that depends only on how our application is programmed
to receive input files.

Let us now change myapp.sh to process the received files in some way, e.g., to print the number of lines
in each file. For this, replace the content of myapp.sh by the following:

1 #!/bin/bash
2

3 . default/parse_params.sh
4

5 echo "I've received the following command-line parameters:"
6 echo ""
7 echo " $@"
8

9 echo ""
10 echo "File statistics:"
11 echo ""
12 for f in $files
13 do
14 echo " - $f has " `wc -l $f | awk '{print $1}'` "lines"
15 done

Let us explain the above code. At line 3 we executes an external bash-script to parse the command-line
parameters, the details are not important and all you should know is that it leaves the list of files (that
appear after -f) in the variable files. Lines 5-7 print the command-line parameters, just to give you an idea
how the server called myapp.sh, and the loop at lines 12-15 traverses the list of files and prints the number
of lines in each one.

Let us test our application. First run myapp.sh from a shell passing it some existing text files, just to check
that it works correctly. Then go back to the web-client, reload the page, select MFA from the applications
menu, open a file from the file-manager, and finally click the Apply button. Alternatively, you can also
select an entry from the file-manager and choose Apply from its context menu. You should see the output
of the application in the console area.

2.3 Passing Outline Entities to Your Application

In the web-client, the area on the right is called the outline area (see Figure 4.1 on Page 31). Since
EasyInterface was designed mainly for applications that process programs, e.g., program analysis tools,
this area is typically dedicated for a tree-view of program entities, e.g., method names, class names, etc. The
idea is that, in addition to the input files, the user will select some of these entities to indicate, for example,
where the analysis should start from or which parts of the program to analyze, etc. Next we explain how
we can pass these selected entities to an application.

By default the web-client is configured to work with C programs, and thus if you open such a program
(from the file-manager) and then click on the Refresh Outline button, you will get a tree-view of this
program entities, e.g., method names (if you use Refresh Outline from the context menu in the file-
manager you will get a tree-view of program entities for all files in the sub-tree). Note that to generate this
tree-view the web-client actually executes a “hidden” application that is installed on the server, namely
server/bin/default/coutline.sh, but this is not relevant to our discussion now (see Section 4.1.3 for
more details). Note also that coutline.sh is limited and will not works perfectly for any C program: it
simply looks for lines that start with int or void followed by something of the form name(...). This script
is provided just explain how an application that generates an outline is connected to the web-client (see
Section 4.1.3 for more details).

As in the case of input files, the web-client always passes the selected entities to the server when the
Apply button is clicked, and it is our responsibility to indicate how these entities should be passed to our
application. Let us assume that myapp.sh is prepared to receive entities using a “-e” parameter as follows:

> myapp.sh -f file1.c file2.c file3.c -e sum.c:main sum.c:sum

In order to tell the server to pass the entities (that were received from the client) to our application, open
myapp.cfg and change the command-line template to the following:

<cmdlineapp>./bin/myapp.sh -f _ei_files -e _ei_outline </cmdlineapp>

As in the case of files, before executing the above command-line the server will replace _ei_outline by the
list of received entities. Let us now change myapp.sh to process these entities in some way, e.g., printing
them on the standard output. Open myapp.sh and add the following lines at the end:

1 echo ""
2 echo "Selected entities:"
3 echo ""
4 for e in $entities
5 do
6 echo "- $e"
7 done

This code simply print the entities in separated lines. Again, the external script parse_params.sh parses
the command-line and stores the list of entities in the variable entities.

Go back to the web-client, reload the page, select some files and entities and execute the MFA application
to see the result of the last changes. It is always recommended to check that the application works correctly
from a shell first.

2.4 Passing Parameters to Your Application

In addition to input files and outline entities, real applications receive other parameters to control different
aspects. In this section we explain how to declare parameters in the EasyInterface framework such that
(1) they automatically appear in the web-client (or any other client) so the user can set their values; and (2)
the selected values are passed to the application when executed.

Let us start by modifying myapp.sh to accept some command-line parameters: we add a parameter
“-s” to indicate if the received outline entities should be printed; and “-c W” that takes a value W to indicate
what to count in each file — here W can be “lines”, “words” or “chars”. For example, myapp.sh could then
be invoked as follows:

> myapp.sh -f file1.c file2.c file3.c -e sum.c:main sum.c:sum -s -c words

To support these parameters, change the content of myapp.sh to the following:

1 #!/bin/bash
2

3 . default/parse_params.sh
4

5 echo "I've received the following command-line parameters:"
6 echo ""
7 echo " $@"
8

9 echo ""
10 echo "File statistics:"
11 echo ""
12

13 case $whattocount in
14 lines) wcparam="-l"
15 ;;
16 words) wcparam="-w"
17 ;;
18 chars) wcparam="-m"
19 ;;
20 esac
21

22 for f in $files
23 do
24 echo " - $f has " `wc $wcparam $f | awk '{print $1}'` $whattocount
25 done
26

27 if [$showoutline == 1]; then
28 echo ""
29 echo "Selected entities:"
30 echo ""
31 for e in $entities
32 do
33 echo "- $e"
34 done
35 fi

Compared to the previous script, you can notice that: we added lines 13-20 to take the value of “-c” into
account when calling wc at line 24; and in lines 27-35 we wrapped the loop that prints the outline entities
with a condition. Note that parse_params.sh sets the variable whattocount to the value of “-c”, and sets
showoutline to 1 if “-s” is provided in the command-line and to 0 otherwise. Before proceeding to the
next step, execute the script from a shell to make sure that it works correctly.

Our goal is to show these parameters in the web-client (or any other client), so the user can select the
appropriate values before executing the application. The EasyInterface framework provides an easy way
to do this, all we have to do is to modify myapp.cfg to include a description of the supported parameters.
Open myapp.cfg and add the following inside the app tag (e.g., immediately after execinfo):

<parameters prefix = "-" check="false">
<selectone name="c">

<desc>

<short>What to count</short>
<long>Select the elements you want to count in each input file</long>

</desc>
<option value="lines">
<desc>

<short>Lines</short>
<long>Count lines</long>

</desc>
</option>
<option value="words">
<desc>

<short>Words</short>
<long>Count words</long>
</desc>

</option>
<option value="chars" >
<desc>

<short>Chars</short>
<long>Count characters</long>

</desc>
</option>
<default value="lines"/>

</selectone>
<flag name="s">

<desc>
<short>Show outline</short>
<long>Show the selected outline entities</long>

</desc>
<default value="false"/>

</flag>
</parameters>

Let us explain the different elements of the above XML snippet. The tag parameters includes the definition
of all parameters. The attribute prefix is used to specify the symbol to be attached to the parameter name
when passed to the application, for example, if we declare a parameter with name “c” the server will pass
it to the application as “-c”. Note that this attribute can be overridden by each parameter. The attribute
check tells the server to check the correctness of the parameters before passing them to the application, i.e.,
that they have valid values, etc. The tag selectone defines a parameter with name “c” that can take one value
from a set of possible ones. For example, the web-client will view it as a ComboBox. The desc environment
contains a text describing this parameter and is used by the client when viewing this parameter graphically.
The option tags define the valid values for this parameter, from which one can be selected, and the default
tag defines the default value. The desc environment of each option contains a text describing this option, e.g.,
the short description is used for the text in the corresponding ComboBox. The tag flag defines a parameter
with name “s”. This parameter has no value, it is either provided in the command-line or not, and its
default value is "false", i.e., not provided. For the complete set of parameters supported in EasyInterface
see [PARAMETERS] in Chapter 3.

Go to the web-client, reload the page, and click on the Settings button and look for the tab with the title
MFA. You will now see the parameters declared above in a graphical way where you can set their values as
well. When you click on the Apply button, the web-client will pass these parameters to the server, however,
we still have to tell the server how to pass these parameters to myapp.sh. Open myapp.cfg and change the
cmdlineapp template to the following:

<cmdlineapp>./bin/myapp.sh -f _ei_files -e _ei_outline _ei_parameters </cmdlineapp>

As in the case of _ei_files and _ei_outline , the server will replace _ei_parameters by the list of received
parameters before executing the command-line. Execute the MFA application from the web-client with
different values for the parameters to see how the output changes.

2.5 Using the EasyInterface Output Language in Your Application

In the example that we have developed so far, the web-client simply printed the output of myapp.sh in the
console area. This is the default behavior of the web-client if the output does not follow the EasyInterface
Output Language (EIOL), which is a text-based is language that allows generating more sophisticated
output such as highlighting lines, adding markers, etc. In this section we will explain the basics of this
language by extending myapp.sh to use it, for more details see Chapter 5.

An output in EIOL is an XML structure of the following form:

<eiout>
<eicommands>

[EICOMMAND]*
</eicommands>
<eiactions>

[EIACTION]*
</eiactions>

</eiout>

where (1) eiout is the outermost tag that includes all the output elements; (2) [EICOMMAND]* is a list of
commands to be executed; and (3) [EIACTION]* is a list of actions to be declared. An [EICOMMAND] is an
instruction like: print a text on the console, highlight lines 5-10, add marker at line 5, etc. An [EIACTION] is an
instructions like: when the user clicks on line 13, highlight lines 20-25, etc. In the rest of this section we discuss
some commands and actions that are supported in EIOL, for the complete list see Chapter 5.

2.5.1 Printing in the Console Area

Recall that when the EIOL is used, the web-client does not redirect the output to the console area and thus
we need a command to print in the console area. The following is an example of a command that prints
“Hello World” in the console area:

<printonconsole consoleid="1" consoletitle="Welcome">
<content format="text">

Hello World
</content>

</printonconsole>

The value of the consoleid attribute is the console identifier in which the given text should be printed
(e.g., in the web-client the console area has several tabs, so the identifier refers to one of those tabs). If
a console with such identifier does not exist yet, a new one, with a title as specified in consoletitle, is
created. If consoleid is not given the output goes to the default console. Inside printonconsole we can have
several content tags which include the content to be printed (in the above example we have only one). The
attribute format indicates the format of the content. In the above example it is plain ’text’, other formats are
supported as well, e.g., ’html’.

Let us change myapp.sh to print the different parts of its output in several consoles. Open myapp.sh
and change its content to the following:

1 #!/bin/bash
2

3 . default/parse_params.sh
4

5 echo "<eiout>"
6 echo "<eicommands>"
7 echo "<printonconsole>"
8 echo "<content format='text'>"
9 echo "I've received the following command-line parameters:"

10 echo ""
11 echo " $@"

12 echo "</content>"
13 echo "</printonconsole>"
14

15 echo "<printonconsole consoleid='stats' consoletitle='Statistics'>"
16 echo "<content format='html'>"
17 echo "File statistics:"
18 echo "<div>"
19 echo ""
20

21 case $whattocount in
22 lines) wcparam="-l"
23 ;;
24 words) wcparam="-w"
25 ;;
26 chars) wcparam="-m"
27 ;;
28 esac
29

30 for f in $files
31 do
32 echo " $f has " `wc $wcparam $f | awk '{print $1}'` $whattocount ""
33 done
34 echo ""
35 echo "</div>"
36 echo "</content>"
37 echo "</printonconsole>"
38

39 if [$showoutline == 1]; then
40 echo "<printonconsole consoleid='outline' consoletitle='Outline'>"
41 echo "<content format='html'>"
42 echo ""
43 echo "Selected entities:"
44 echo ""
45 echo ""
46 for e in $entities
47 do
48 echo " $e "
49 done
50 echo ""
51 echo "</content>"
52 echo "</printonconsole>"
53 fi
54 echo "</eicommands>"
55 echo "</eiout>"

The output of myapp.sh is given in EIOL, because at Line 5 we start the output with the tag eiout which
we close at line 55. At Line 6 we start an eicommands tag, inside eiout, which we close at Line 54. Inside
eicommands we have 3 printonconsole commands: the first one is generated by lines 7-13; the second by
lines 15-37; and the last one by lines 40-52. Note that the first command uses the default console, while
the last two use different consoles. Note also that the content in the last two is given in HTML. Execute
myapp.sh in a shell first to check that it works correctly, and then execute the MFA application from the
web-client to see the effect of these changes.

2.5.2 Adding Markers

Next we explain a command for adding a marker next to a code line in the editor area. The following is an
example of such command:

<addmarker dest="path" outclass="info">

<lines>
<line from="4" />

</lines>
<content format='text'>

text to associated to the marker
</content>

</addmarker>

The attribute dest indicates the full path of the file in which the marker should be added (as received from the
server). The attribute outclass indicates the nature of the marker, which can be ’info’, ’error’, or ’warning’.
This value typically affects the type/color of the icon to be used for the marker. The tag lines includes the
lines in which markers should be added, each line is given using the tag line where the from attribute is the
line number (line can be used to define a region in other commands, this is why the attribute is called from).
The text inside the content tag is associated to the marker (as a tooltip, a dialog box, etc., depending on the
client).

Let us modify myapp.sh to add a marker at Line 1 of each file that it receives. Open myapp.sh and add
the following code snippet immediately before 54 of the previous script (i.e., immediately before closing
the eicommands tag):

1 for f in $files
2 do
3 echo "<addmarker dest='$f' outclass='info'>"
4 echo "<lines><line from='1'/></lines>"
5 echo "<content format='text'> text for info marker of $f</content>"
6 echo "</addmarker>"
7 done

Lines 3-6 generate the actual command to add a marker for each file passed to myapp.sh. Execute myapp.sh
in a shell first to check that it works correctly, and then execute the MFA application from the web-client to
see the effect of these changes.

2.5.3 Highlighting Code Lines

The following command can be used to highlight code lines:

<highlightlines dest="path" outclass="info" >
<lines>

<line from="5" to="10"/>
</lines>

</highlightlines>

Attributes dest and outclass are as in the addmarker command. Each line tag defines a region to be
highlighted. E.g., in the above example it highlights lines 5-10. You can also use the attributes fromch and
toch to indicate the columns in which the highlight starts and ends respectively.

Let us modify myapp.sh to highlight lines 5-10 of each file that it receives. Open myapp.sh and add the
following code snippet immediately before the instruction that closes the eicommands tag:

1 for f in $files
2 do
3 echo "<highlightlines dest='$f' outclass='info'>"
4 echo "<lines><line from='5' to='10'/></lines>"
5 echo "</highlightlines>"
6 done

Execute myapp.sh in a shell first to check that it works correctly, and then execute the MFA application from
the web-client to see the effect of these changes.

2.5.4 Adding Inline Markers

Inline markers are widgets placed inside the code. They typically include some read-only text. The
following command adds an inline marker:

<addinlinemarker dest="path" outclass="info">
<lines><line from="15" /></lines>
<content format="text">

Text to be viewed in the inline marker
</content>

</addinlinemarker>

Attributes dest and outclass are as in the addmarker command. Each line tag defines a line in which a
widget, showing the text inside the content, is added. Note that some clients, e.g., the web-client, allow
only plain ’text’ content.

Let us modify myapp.sh to add an inline marker at line 15 of each file that it receives. Open myapp.sh
and add the following code snippet immediately before the instruction that closes the eicommands tag:

1 do
2 echo "<addinlinemarker dest='$f' outclass='info'>"
3 echo " <lines><line from='15' /></lines>"
4 echo " <content format='text'> Awesome line of code!!</content>"
5 echo "</addinlinemarker>"
6 done

Execute myapp.sh in a shell first to check that it works correctly, and then execute the MFA application from
the web-client to see the effect of these changes.

2.5.5 Opening a Dialog Box

The following command can be used to open a dialog box with some content:

<dialogbox outclass="info" boxtitle="Done!" boxwidth="100" boxheight="100">
<content format="html">

text to be shown in the dialog box
</content>

</dialogbox>

The dialog box will be titled as specified in boxtitle, and it will include the content as specified in the
content environments. The attributes boxwidth and boxheight are optional, they determine the initial size of
the window.

Let us modify myapp.sh to open a dialog box with some message. Open myapp.sh and add the following
code snippet immediately before the instruction that closes the eicommands tag:

1 echo "<dialogbox outclass='info' boxtitle='Done!' boxwidth='300' boxheight='100'>"
2 echo " <content format='html'>"
3 echo " The MFA analysis has been applied."
4 echo " You can see the output in the result in the text area and the corresponding"
5 echo " program files."
6 echo " </content>"
7 echo "</dialogbox>"

Execute myapp.sh in a shell first to check that it works correctly, and then execute the MFA application from
the web-client to see the effect of these changes.

2.5.6 Adding Code Line Actions

A code line action defines a list of commands to be executed when the user clicks on a line of code (more
precisely, on a marker placed next to the line). The commands can be any of those seen above. The following
is an example of such action:

<oncodelineclick dest="/Examples_1/iterative/sum.c" outclass="info" >
<lines><line from="17" /></lines>
<eicommands>

<highlightlines>
<lines>
<line from="17" to="19"/>

</lines>
</highlightlines>
<dialogbox boxtitle="Hey!">

<content format="html">
Click on the marker again to close this window

</content>
</dialogbox>

</eicommands>
</oncodelineclick>

First note that the above XML should be placed inside the eiactions tag (that we have ignored so far).
When the above action is executed, by the web-client for example, a marker (typically an arrow) will be
shown next to line 17 of the file /Examples_1/iterative/sum.c. Then, if the user clicks on this marker
the commands inside the eicommands tag will be executed, and if the user clicks again the effect of these
commands is undone. In the above case a click highlights lines 17-19 and opens a dialog box, and another
click removes the highlights and closes the dialog box. Note that the commands inside eicommands inherit
the dest and outclass attributes of oncodelineclick, but one can override them, e.g., if we add dest="/
Examples_1/iterative/fact.c" to the highlightlines command then a click highlights lines 17-19 of fact.c
instead of sum.c.

Let us modify myapp.sh to add a code line action, as the one above, for each file that it receives. Open
myapp.sh and add the following code snippet immediately before the instruction that closes the eiout tag
(i.e., after closing eicommands):

1 echo "<eiactions>"
2

3 for f in $files
4 do
5 echo "<oncodelineclick dest='$f' outclass='info' >"
6 echo "<lines><line from='17' /></lines>"
7 echo "<eicommands>"
8 echo "<highlightlines>"
9 echo "<lines><line from='17' to='19'/></lines>"

10 echo "</highlightlines>"
11 echo "<dialogbox boxtitle='Hey!'> "
12 echo "<content format='html'>"
13 echo "Click on the marker again to close this window"
14 echo "</content>"
15 echo "</dialogbox>"
16 echo "</eicommands>"
17 echo "</oncodelineclick>"
18 done
19

20 echo "</eiactions>"

Note that at line 1 we open the tag eiactions and at line 20 we close it. The rest of the code simply prints
a code line action as the one above for each file. Execute myapp.sh in a shell first to check that it works
correctly, and then execute the MFA application from the web-client to see the effect of these changes.

2.5.7 Adding OnClick Actions

OnClick actions are similar to code line actions. The difference is that instead of assigning the action to a
line of code, we can assign it to any HTML tag that we have generated. For example, suppose that at some
point the application has generated the following content in the console area:

<content format="html"/>
10 errors were found in the file sum.c

</content>

Note that the text “10 errors” is wrap by a span tag with an identifier err1. The OnClick action can assign
a list of commands to be executed when this text is clicked as follows:

<onclick>
<elements>

<selector value="#err1"/>
</elements>
<eicommands>

<dialogbox boxtitle="Errors">
<content format="html">
There are some variables used but not declated

</content>
</dialogbox>

</eicommands>
</onclick>

It is easy to see that this action is very similar to oncodelineclick, the difference is that instead of lines we
now use elements to identify those HTML elements a click on which should execute the commands.

Let us modify myapp.sh to add an OnClick action assigned to the list of files that it prints on the console.
First look for the first occurrence of

1 echo ""

which should be at line 19, and replace it by

1 echo "<ul style='background: yellow;' id='files'>"

This change will give the list of files that we print in the console (i.e., the corresponding HTML) the identifier
files, and will change its background color to yellow. Next add the following code immediately before
the instruction that closes eiactions:

1 echo "<onclick>"
2 echo "<elements>"
3 echo "<selector value='#files'/>"
4 echo "</elements>"
5 echo "<eicommands>"
6 echo "<dialogbox boxtitle='Errors'> "
7 echo "<content format='html'>"
8 echo "There are some variables used but not declated"
9 echo "</content>"

10 echo "</dialogbox>"
11 echo "</eicommands>"
12 echo "</onclick>"

This defines an OnClick actions such that when clicking on the list of files in the console area (anywhere
in the yellow region) should open a dialog box. Execute myapp.sh in a shell first to check that it works
correctly, and then execute the MFA application from the web-client to see the effect of these changes.

3 | EasyInterface Server

This chapter describes the server side of the EasyInterface framework, that we refer to as the EasyInterface
server (or simply the server). As explained in Section 1.2, the goal of this server is to provide a uniform
way to access local applications and examples (i.e., those installed on the machine where the server runs).

The EasyInterface server achieves the above goal by: (1) providing a way to describe, using XML based
configuration files, how to execute a local application and which parameters it takes, as well as define sets
of related examples; and (2) providing a JSON based protocol that can be used to request information on
those applications and examples, execute applications, etc. Section 3.1 describes the syntax of the server
configuration file; and Section 3.2 describes the protocol that can be used to communicate with the server.
This chapter does not cover issues related to installation, for such documentation see INSTALL.md.

3.1 Configuring the EasyInterface Server

This section describes how to configure the EasyInterface server. Section 3.1.1 explains where the configu-
ration file should be placed, and Section 3.1.2 describes the (valid) content of this file. Before proceeding to
the next sections, it is very recommended to read Chapter 2 to get a general idea on how the configuration
file looks like, etc.

3.1.1 Name and Path of the Configuration File

By default the server looks for the configuration file server/config/eiserver.cfg, and if no such file
exists it uses server/config/eiserver.default.cfg. The default installation comes with a predefined
sever/config/eiserver.default.cfg that includes some demo applications and corresponding exam-
ples. It is very recommended not make substantial changes to eiserver.default.cfg, and instead create
your own eiserver.cfg. This way you can always have a correct configuration file at hand from which
you can copy, etc.

3.1.2 The Syntax of the Configuration File

The content of the configuration file should adhere to the [EISERVER] XML structure that is described below.
Inside this tag you can define applications, examples, etc. The best way to understand how to do so is
follow the links in the definition of [EISERVER].

General Comments about XML Structures

For the purpose of better organization of the configuration files, we provide a way to split them into several
files and import one file into another one. Any XML structure

<tagname ...>
....

</tagname>

can be also written as

<tagname src=[CFGFILENAME]/>

where the file [CFGFILENAME] includes the actual XML structure (of the first form above). It will be automat-
ically imported when needed. However, if the XML structure (the first form) has an attribute id then it
must appear as an attribute in the second form as well.

19

The Main XML Tag of the Configuration File

EISERVER

<eiserver>
[SETTINGS]?
[EXAMPLES]?
[APPS]?

</eiserver>

Description:

This XML tag is the root of the configurations file. The [SETTINGS] section is used for setting some
global parameters; [EXAMPLES] defines which sets of examples are available on the server; and the [APPS]
section defines which applications are available on the server.

General Settings

SETTINGS

<settings>
</settings>

Description:

This tag does not include anything yet. It is reserved for future use, where we plan to put general
settings.

Examples Settings

EXAMPLES

<examples>
[EXSET]*

</examples>

Description:

This tag is used to declare sets of examples that are available in the server, where each such set is
defined by one [EXSET].

EXSET

<exset id=[EXSETID]>
[EXELEMENT]*

</exset>

Description:

This tag declare a set of examples, which are defined a collection of [EXELEMENT] (a file, a directory, or a
link to a github repository). The attribute id is a unique identifier that is used to refer to this set when
communicating with the server.

EXELEMENT

([FILE] | [FOLDER] | [GITHUB])

Description:

An example element, which can be a file [FILE], a folder [FOLDER], or a link to a github repository
[GITHUB].

FILE

<file name=[FILENAME] url=[URL] />

Description:

This tags declares a file, where the name attribute is its name and url is a link to its content. Note that
name is not necessarily the same as the one in url.

FOLDER

<folder name=[FOLDERNAME]>
[EXELEMENT]*

</folder>

Description:

This tags declares a folder with name as its name. The content of this tag is a list of [EXELEMENT] tags,
which in turn declare the inner files, folders, etc.

GITHUB

<github repo=[GITHUBREPO] owner=[GITHUBUSER] branch=[GITHUBBRANCH]? path=[GITHUBPATH]?/>

Description:

Declares a reference to the public github repository repo which is owned by the user owner. Optionally
one can also refer to a specific branch, which master by default, and to a specific path githubpath (a
directory or a single file) which is a the root directory by default.

Applications Settings

APPS

<apps>
[APP]*

</apps>

Description:

This tag declares a list of applications (to be added to the server). Each such application is defined by
one [APP] environment.

APP

<app id=[APPID] visible=[BOOL]?>
[APPINFO]
[APPHELP]?
[EXECINFO]
[PARAMETERS]

</app>

Description:

This tag defines an application, where the meaning of the different parts is as follows:

• id is a unique identifier used to refer to this application when communicating with the server.
• visible indicates if this application should be listed when the list of available applications is

requested — by default it is true. Note that even if an application is not visible, it can be used like
any other application by those who know its id.

• [APPINFO] provides some general information about the application, e.g., title, logo, etc.
• [APPHELP] provides enough information on how the application can be used, etc. It is mainly used

in the help sections of the different clients.
• [EXECINFO] defines how the application can be executed (e.g., from a command-line).
• [PARAMETERS] defines the set parameters accepted by the application.

APPINFO

<appinfo>
[ACRONYM]?
[TITLE]?
[LOGO]?
[DESC]?

</appinfo>

Description:

This tag provides general information about an application:

• [ACRONYM] is an acronym for the application, e.g., COSTA;
• [TITLE] is the full name of the application;
• [LOGO] is an image corresponding to the logo of the application; and
• [DESC] is a description of the tool.

ACRONYM

<acronym>[TEXT]</acronym>

Description:

Plain text to be used as an acronym, e.g., COSTA.

TITLE

<title>[TEXT]</title>

Description:

Plain text describing a title, e.g., for an application. It is typically more informative than an acronym
(see [ACRONYM]).

LOGO

<logo url=[URL] />

Description:

A link to an image — in some standard format, .e.g., png, jpg or gif — to be used by clients as a logo
(e.g., for an application).

DESC

<desc>
<short>[TEXT]</short>
<long>[TEXT]</long>

</desc>

Description:

This is a description of some entities, e.g., of an application, a parameter, a parameter option, etc. It
consists of two parts, the first one is a short description, and the second is a detailed description. In
both cases it should be plain text. Clients will select one of them depending on the intended use.

APPHELP

<apphelp>
[CONTENT]+

</apphelp>

Description:

A (formatted) text that provides enough information on how an application can be used, etc. It can
be provided in several formats, e.g., html or plain text, by using several [CONTENT] tags. Clients are
supposed to pick the appropriate format if more than one is available. It is recommended to always
include a content in plain text since it can be viewed in any client.

CONTENT

<content format=[TEXTFORMAT]? >
[TEXT]

</content>

Description:

A text given in a specific format, e.g., "text", "html", etc. If the attribute format is not provided, then it
is assumed to be "text" format (plain text).

EXECINFO

<execinfo>
[CMDLINEAPP]

</execinfo>

Description:

Provides information on how to execute an application. Currently it includes only the command-line
template [CMDLINEAPP].

CMDLINEAPP

<cmdlineapp> [CMDTEMPLATE] </cmdlineapp>

Description:

Describes how to run an application from a command-line, where [CMDTEMPLATE] is a template describing
the command-line. It is best explained by an example. Consider the following template example

/path-to/app _ei_files -m _ei_outline _ei_parameters

In this template, anything that starts with _ei is a template parameter that will be replaced by some
corresponding value, and /path-to/app is the application executable. When the server receives a
request for executing the corresponding application, the request includes several data that should
passed to the application. For example, the following are typical data that should be passed to an
application:

1. files to be processed (e.g., program to be analyzed);
2. entities selected from the program outline (e.g., methods); and
3. values for the different parameters.

The server passes this data to the application by replacing the template parameters with corresponding
data as follows:

1. the files are stored locally (e.g., in /tmp), and _ei_files is replaced by a list file names (each with
an absolute path, separated by a space);

2. _ei_outline is replaced by a list of selected entities (e.g., method names); and
3. _ei_parameters is replaced by the list of parameters generated from those provided in the request.

This result in, for example, the following instance of the template:

/path-to/app /tmp/ei_FAJw1B/a.c /tmp/ei_FAJw1B/b.c -m a.main -v 1 -d 3 -a

which is then executed and its output is redirected to the client. The server does some security checks
to guarantee that the command-line is not harmful.

The following is a list of template parameters that can be used:

• _ei_files is replaced by a list of file names (separated by space) in the local file system;
• _ei_root is replaced by the local temporary directory name, where all files have been saved;
• _ei_outline is replaced by a list of selected entities (separated by space);
• _ei_parameters is replaced by a corresponding list of parameters (see [PARAMETERS]);
• _ei_sessionid is replaced by a session identifier, this makes it possible to track the information

of a user along several request;

• _ei_clientid is replaced by the client identifier, i.e., webclient, eclipse, etc., which makes it
possible to provide output depending on the client. See Chapter 4 for a list of clients and their
corresponding identifiers.

Application Parameters

PARAMETERS

<parameters prefix=[PARAMPREFIX]? check=[BOOL]?>
[PARAM]*

</parameters>

Description:

Defines a list of parameters that are accepted by a corresponding application. Each parameter is defined
by one [PARAM] environment. The prefix attribute is used to specify a string that will be attached to each
parameter name when passed to the application. For example, if prefix="--" and there is a parameter
called ’level’ with value X, then ’--level X’ will be passed to the application. The default value of prefix
is "-". It can also be set to an empty string if there is no need for a prefix. The check attribute is used
to indicate if the server should verify that the values of the parameters are valid (w.r.t. the specified
values). The default value of check is "true". The attributes prefix and check are inherited by each
parameter [PARAM], which in turn can override then as well.

PARAM

([SELECTONE] | [SELECTMANY] | [FLAG] | [TEXTFIELD])

Description:

Defines a parameter accepted by a corresponding application. There are several types of parameters
supported:

• [SELECTONE] defines a parameter that takes one value from a predefined set;
• [SELECTMANY] defines a parameter that takes several values from a predefined set;
• [FLAG] defines a Boolean parameter; and
• [TEXTFIELD] defines a parameter that takes a free-text value.

SELECTONE

<selectone name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]? widgetid=[WIDGETID]? >
[DESC]
[OPTION]+
[DEFAULTVALUE]?

</selectone>

Description:

Defines a parameter that takes a single value out of a given list:

• name is the name of the parameter, it must be unique among all parameters of an application;
• prefix and check can be used to override the corresponding attributes of [PARAMETERS];
• [DESC] provides a description of this parameter;
• [OPTION]+ is a list of possible values for this parameter;

• [DEFAULTVALUE] specifies the default value. If not specified then the first [OPTION] is considered as
the default one; and

• widgetid specifies the preferred layout when used in a client with a graphical interface (e.g.,
combo-box, radio button, etc.). This is client dependent, see Chapter 4 for more information.

SELECTMANY

<selectmany name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]? widgetid=[WIDGETID]? >
[DESC]
[OPTION]+
[DEFAULTVALUE]*

</selectmany>

Description:

Defines a parameter that takes several values out of a given list. The meaning of the attributes and
inner environments is as in [SELECTONE], except that in this case we can specify several [DEFAULTVALUE].

FLAG

<flag name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]?
explicit=[BOOL]? trueval=[PARAMVALUE]? falseval=[PARAMVALUE]?
widgetid=[WIDGETID]? >

[DESC]
[DEFAULTVALUE]?

</flag>

Description:

Defines a parameter that can take true or false values. The meaning of the attributes and inner
environments is as in [SELECTONE]. The attribute explicit is used to specify how this parameter should
be passed to the application. For example, assume the parameter name is f, then:

• when explicit is false, the parameter is passed as “-f” if its value is true and not passed at all if
its value is false.

• when explicit is true the parameter is explicitly passed to the application, i.e., using “-f X”
where X is the selected value. The posible values are true and false. However, they you can
redefine them overwritten (only when explicit is true) using the attributes trueval and falseval.

The default value of explicit is false.

TEXTFIELD

<textfield name=[PARAMNAME] prefix=[PARAMPREFIX]? check=[BOOL]? widgetid=[WIDGETID]?
passinfile=[BOOL]? multiline=[BOOL]? >

[DESC]
<initialtext>[TEXT]</initialtext>

</textfield>

Description:

Defines a parameter that can take free-text value. The initialtext tag includes a text to be shown in the
corresponding text-area by default. The meaning of the attributes is as follows:

• multiline is used to specify if the free-text should be single- or multi-line. By default its values is
false, i.e., single-line.

• passinfile is used to indicate that the actual value should be saved into a file, and what is passed
to the application is the file name instead of the actual text. This should be used for safety, when
there is a risk that the free-text can be harmful to the command-line (although the server does
some checks to avoid this).

The meaning of the other attributes and inner environments is as in [SELECTONE].

OPTION

<option value=[PARAMVALUE]>[DESC]</option>

Description:

Defines an option (i.e., a possible value) for a parameter.

DEFAULTVALUE

<default value=[PARAMVALUE] />

Description:

Defines a default value for a parameter.

TEXTFORMAT
("text" | "html" | "svg")

PARAMVALUE
[a-z,A-Z,0-9,-,_]+

PARAMNAME
[a-z,A-Z,0-9,-,_]+

BOOL
("true" | "false")

APPID
[a-z,A-Z,0-9,-,_]+

EXSETID
[a-z,A-Z,0-9,-,_]+

WIDGETID
[a-z,A-Z,0-9,-,_]+

URL
A valid http or https URL.

PARAMPREFIX
Can be any string that matches [a-z,A-Z,0-9,-,_]+, typically "-" or "--".

TEXT

Free text.

GITHUBPATH
A path to a file or a directory in a github repository (relative to the root of the repository).

GITHUBBRANCH
A valid branch name for a github repository.

GITHUBUSER
A valid github username.

GITHUBREPO
A valid github repository.

FOLDERNAME
[a-z,A-Z,0-9,-,.,_]+

FILENAME
[a-z,A-Z,0-9,-,.,_]+

CFGFILENAME
A path to a configuration file. Should be relative to server/config.

CMDTEMPLATE
The explanation is given in [CMDLINEAPP].

3.2 Communicating with the EasyInterface Server

This section describes the protocol to be used for communicating with the EasyInterface server. If you are
not developing an EasyInterface client, then this section is not relevant for you.

The EasyInterface server is a collection of PHP scripts running on top of an HTTP server. Communi-
cating with the server is done through HTTP POST requests. In particular, the request should include an
attribute called “eirequest” (the actual value of “eirequest” is a JSON record that we will described in
the next sections). The following is an example of how one can communicate with the server using jQuery:

var req = ...; // the actual JSON record of the request
$.post("http://localhost/ei/server/eiserver.php",
{

eirequest: req
},
function(data) {

// do something with data
});

The response of the server is an XML of the following form:

<ei_response>
<ei_server_output> ... </ei_server_output>
<ei_output> ... </ei_output>
<ei_error> ... </ei_error>

</ei_response>

Where

• ei_server_output includes messages printed by the server. These messages are not the response to the
request, but rather debugging messages that can be useful when developing clients, debugging the
server, etc. Most users should ignore this environment.

• ei_output includes the response to the request, i.e., if we request to execute an application the output
of that application goes inside this tag.

• ei_error includes error messages that are related to the request.

Typically, ei_output and ei_error are mutually exclusive, i.e., only one can appear in the response.

In the next section we describe the format of the request to (1) obtain information on the available
applications; (2) execute an application; and (3) retrieve example sets.

3.2.1 Retrieve Information on Available Applications

To retrieve information on a given application, or all visible applications on the server, use the following
request:

{
command: CMD,
app_id: ID

}

where (1) CMD can be app_info, app_parameters, or app_details; and (2) ID is either the special value
_ei_all (i.e., all applications) or an application identifier as specified in [APP]. A successful request will
return (inside the ei_output tag) the XML structure [APPS] (that is defined in the configuration file) after
filtering out some information as we explain next. First any application that does not match ID is removed
(if ID is _ei_all then only non-visible applications are removed). Then, for the remaining applications:

• if CMD equals app_info, it returns only the [APPINFO] of each application;
• if CMD equals app_parameters, it returns only the [PARAMETERS] of each application; and
• if CMD equals app_details, it returns everything except [EXECINFO] of each application.

Note that [EXECINFO] is never returned as it reveals information on how to execute an application locally.

3.2.2 Execute an Application

Next we describe, by mean of an example, the form of a request for executing an application. Suppose we
are interested in executing an application with identifier myapp where, in addition, we would like to pass
it some values for the parameters, files to process, outline entities, and the identifier of the client who is
making the request. Such a request has the following form:

{
command: "execute",
app_id: "myapp",
parameters: {

"l": ["true"],
"f": ["false"],
"s": ["yes"],
"x": ["1", "2"],
"_ei_clientid": "webclient",
"_ei_outline": ["ent1", "ent2", ...],
"_ei_files": [

{
path: "dir1",
type: "dir",

},

{
path: "dir2/file1.c",
type: "text",
content: "This is the content of dir2/file1.c"

},
{

path: "dir2/file2.c",
type: "text",
content: "This is the content of dir2/file2.c"

},
{

path: "dir3/file1.c",
type: "text",
content: "This is the content of dir3/file1.c"

}
]

}
}

Let us explain the different parts of this request:

• command must have the value “execute”;
• app_id should refer to the identifier of the application that we want to execute (it can be visible or not);
• parameters is a JSON record that includes all the information, e.g., application parameters and files,

that we want to pass over, as we explain below.

Before explaining the details of the parameters record, it is recommend that you refresh your memory with
the details of the command-line template as described in [CMDLINEAPP]. The parameters record includes the
following information:

• Application parameters: any field (of the JSON record) whose name does not start with _ei is a parameter
that is supposed to be defined in the [PARAMETERS] environment of the corresponding application. The
value of such field is a list of elements that represent the value of the parameter. If the parameter is
supposed to take a single value then the list must have a single element.

• Files: the field _ei_files represent the files that we want to pass to the application. Its value is an array
of JSON records where each record represent a text file or a directory (binary files are not supported
yet). The path field of the record refers to the file or directory name, it is relative to the root of the
temporary directory where the server saves these files. The type field indicates the type of the file. In
the case of text files, the field content represent the actual content of the file.

• Outline entities: the filed _ei_outline is a list of elements representing the selected entities from the
outline.

• Client identifier: the field _ei_clientid indicates the identifier of the client who has performed the
request.

3.2.3 Retrieve Example Sets

To retrieve the example sets use the following request:

{
command: "exset_details",
app_id: ID

}

where ID is either the special value _ei_all (i.e., all example sets) or an examples set identifier as specified
in [EXSET]. A successful request will return (inside the ei_output tag) the XML structure [EXAMPLES] (that is
defined in the configuration file) after filtering out those example sets that do not match the value of ID, i.e,
if ID is _ei_all then it returns all example sets, otherwise only the indicated one.

4 | EasyInterface Clients

This chapter describes the different clients available in the EasyInterface framework. Currently the only
mature one is the web-client that we describe in Section 4.1. The Eclipse and remote shell clients are under
development.

4.1 The Web-Client

File-Manager

Console

Outline

Code Editor

Figure 4.1: EasyInterfaceWeb Client

The web-client of EasyInterface is a JavaScript program that runs in a web browser. To access it simply
visit http://localhost/ei/clients/web and you will get a page similar to that of Figure 4.1. This page
has 5 main components: (1) the code area, where users can edit programs; (2) the file-manager that contains
a list of predefined examples as well as user files; (3) the outline that includes an outline of one or more files;
(4) the console area where the results of executing an application is printed; (5) the tools bar that includes
several buttons to execute an application, etc.

The web-client can be configured to fit your needs, it has a configuration file to control (1) which
applications to include in the applications menu; (2) which examples to show in the file-manager; and
(3) how to generate the outline for a set of programs. The web-client first looks for the configuration
file clients/web/webclient.cfg, and if it does not exists it uses clients/web/webclient.default.cfg.
It is recommended not to substantially change webclient.default.cfg, and instead create your own
webclient.cfg. Next we explain the different components of the configuration file. In what follows,
when we refer the default server we mean the one that is available at the same address as web-client, i.e.,

31

if the web-client was accessed using the URL “http://somedomain/.../ei/client/web” then the URL of the
default server is “http://somedomain/.../ei/server”.

The configuration file is a text file that includes a single JSON record with several fields. Let us explain
it using the following complete record:

{
title: "Easy Interface",
apps: [{server: "http://domain/.../ei/server, apps: ["myapp", "costa", "mhp"]}, ...],
examples: [{server: "http://domain/.../ei/server, examples: ["mhpex","costex"]}, ...],
outlineserver: "http://domain/.../ei/server",
outlineapp: "coutline"

}

All fields in the above record are optional, the web-client assigns default values for those that are not
available. The field title is used to set the window title (see Figure 4.1), where its default value is “Easy
Interface”. The field apps is used to change the set of application to be listed in the applications menu, it is
explained in Section 4.1.1. The field examples is used to change the set of examples that are shown in the
file-manager, it is explained in Section 4.1.2. The fields outlineserver and outlineapp are used to indicate
which application to use for generating the content of the outline, it is explained in Section 4.1.3.

4.1.1 The Applications Menu

The application menu, the combo-box next to the Apply button in Figure 4.1, includes a list of applications
that can be executed by the user. This list can be modified by setting the value of the filed apps in the
configuration file. This value is a list of JSON records of the form

{ server: SRV, apps: APPSLIST }

where SVR is a URL to an EasyInterface server and APPSLIST is a list of application identifiers (see [APP]).
APPSLIST can also be the special value _all which refers to all application of the corresponding server. The
default value of this field is a list with a record that refers to all applications of the default server.

4.1.2 The File-Manger

In the file-manager area, of Figure 4.1, you can see a tree-view that represents programs on which the
applications can be applied, etc. The one with the name User_Projects corresponds to programs that are
created by the user; and the rest are predefined set of examples. This set of example can be modified by
setting the value of the field examples in the configuration file. This value is a list of JSON records of the
form

{ server: SRV, examples: EXLIST }

where SVR is a URL to an EasyInterface server and EXLIST is a list of example set identifiers (see [EXSET]).
EXLIST can also be the special value _all which refers to all example sets of the corresponding server. The
default value of this field is a list with a record that refers to all example sets of the default server.

4.1.3 The Outline

The outline area of Figure 4.1 includes a tree-view that represents information on some programs, e.g.,
methods, classes, etc. The actual values in this tree and its structure depend very much on the intended
use of EasyInterface, and thus, it is completely configurable. The idea is that the user will select some
of the entries in this tree, and then they will be passed to the application that we apply (see Section 2.3
and [CMDLINEAPP]).

The actual content of the outline is not generated by the web-client, but rather by an external application
that is installed on some EasyInterface server that we refer to as the outline application. It like any other
application but typically non-visible. The exact work-flow for generating an outline is as follows:

1. the user clicks on the Refresh Outline button to generate an outline for the currently opened tab (in
the code editor), or select the Refresh Outline option from the context menu of the file-manager to
generate an outline for all programs in the corresponding sub-tree;

2. the web-client request to execute the outline application, passing it all files of interest;
3. the outline application process the input files and generates some XML structure that represents the

content of the outline;
4. the web-client converts this XML into a tree view as shown in Figure 4.1.

The fields outlineserver and outlineapp in the configuration file can be used to indicate which application
to use for generating the outline content. The default value of outlineserver is the default server, and the
one of outlineapp is coutline. As for the outline content, it is a sequence of XML environments that adhere
to the following syntax, each element (i.e., tree) in this sequence will be show at the root level in the outline
area:

OUTLINE

<category text=[NODETEXT] value=[NODEVAL] selectable=[BOOL]? icon=[URL]?>
[OUTLINE]*

</category>

Description:

Defines a tree that represent (part of) an outline. The outer category tag is the root of this tree, and the
inner [OUTLINE]* are its children. The meaning of the different attributes is as follows:

• text is the text to be show for that node.
• value is the value to passed to an application if that node is selected.
• selectable indicates if this node can be selected. Its default value is true. Such nodes are used

to divide the tree in several logical categories. Note that, in some clients, nodes might be still
selectable even if the value is false, however, in such case they will not be passed to the application.

• icon is a URL to an alternative icon to be used for that node.

NODETEXT
A string.

NODEVAL
[a-z,A-Z,0-9,-,_,:,.]+

BOOL
("true" | "false")

URL
A valid http or https URL.

4.2 Eclipse Plugin

Under development.

4.3 Remote shell

Under development.

5 | The EasyInterface Output Language

In this chapter we describe a text-based output language that allows applications to view their output in a
graphical way, e.g., highlighting lines, adding markers, defining on-click actions, etc. Some clients, e.g., the
web-client, interpret this language and render the effect of the corresponding commands in the respective
environment. An output in this language is an XML structure the adhere to the syntax of [EIOUT] that is
described below.

5.1 Syntax and Semantics

EIOUT

<eiout version=[VERSION]? >
[EICOMMANDS]*
[EIACTIONS]*

</eiout>

Description:

This is the main environment of the output, it includes several lists of command environments
[EICOMMANDS], and several lists of action environments [EIACTIONS]. Commands are executed first,
in the given order, and then actions are executed in the given order as well. The version attribute
indicates the version of the output language that is used, which is 1.0 by default.

EICOMMANDS

<eicommands outclass=[OUTCLASS]? dest=[PATH]?>
[EICOMMAND]*

</eicommands>

Description:

A list of commands to be performed. The attribute dest is the destination file on which the command
is applied (if needed). E.g., when highlighting a line we might want to highlight a line in one file
or another. If dest is not specified, then the commands will be applied to the file that is currently
active, e.g., if the client have a code editor with several tabs, one for each file, the command will be
applied to the active tab. If none is active then the behavior is not specified. The attribute outclass
specifies the output class of the commands in this environment, that is, the nature of the corresponding
output generated by the commands, e.g., error, information, warning, etc. All commands inside this
environment inherit the values of outclass and dest, and each can overwrite them.

EIACTIONS

<eiactions dest=[PATH]? autoclean=[BOOL]?>
[EIACTION]*

</eiactions>

Description:

A a list of actions to be declared. An action typically executes a list of [EICOMMANDS] when the user

34

interacts with the interface in some predetermined way, e.g., when the user clicks on line 30, highlight
lines number 12 and 16. We say the an action is performed as a response to the user interaction. If the
user interacts again with the interface, according to what is specified in the action, then the action is
unperformed if possible (when the corresponding commands support the undo operation), e.g., in the
above example if the user clicks again on line 30 the highlights of lines 12 and 16 are turned off.

Before performing an action, the last performed action is unperformed first. This behavior can be
disabled by setting the autoclean attribute to “false”. All actions inside this environment inherit the
value of autoclean, and each can overwrite it. The attribute dest and outclass are as in the case of
commands (see the description of [EICOMMANDS]).

EICOMMAND

(
[PRINTONCONSOLECOMMAND]

| [HIGHLIGHTLINESCOMMAND]
| [DIALOGBOXCOMMAND]
| [WRITEFILECOMMAND]
| [SETCSSCOMMAND]
| [ADDMARKERCOMMAND]
| [ADDINLINEMARKERCOMMAND]
)

Description:

A command in the EasyInterface output language, briefly:

• [PRINTONCONSOLECOMMAND] can be used to print on the console.
• [HIGHLIGHTLINESCOMMAND] can be used to highlight lines in the code editor.
• [DIALOGBOXCOMMAND] can be used to open a dialog window with a corresponding message.
• [WRITEFILECOMMAND] can be used to add a file (and a corresponding content) to the files tree.
• [SETCSSCOMMAND] can be used to change the CSS properties of some elements.
• [ADDMARKERCOMMAND] can be used to add a marker next to a line in the code editor.
• [ADDINLINEMARKERCOMMAND] can be used to add a line widget (an inlined marker) in the code editor.

EIACTION

(
[ONCODELINECLICKACTION]

| [ONCLICKACTION]
)

Description:

An action in the EasyInterface output language, briefly:

• [ONCODELINECLICKACTION] can be used to perform an action when the user clicks on a line in the
code editor.

• [ONCLICKACTION] can be used to perform an action when the user clicks on a DOM element.

PRINTONCONSOLECOMMAND

<printonconsole outclass=[OUTCLASS]? consoleid=[CONSOLEID]? consoletitle=[STRING]?>
[CONTENT]+

</printonconsole>

Description:

Print the content of the [CONTENT] environments on the console with identifier consoleid. If consoleid
is not specified, the output goes to the default console. If consoleid is specified but there is no console
with such an identifier, the console is created and consoletitle (if specified) is used as its title. The
attribute outclass is as described in [EICOMMANDS].

HIGHLIGHTLINESCOMMAND

<highlightlines outclass=[OUTCLASS]? dest=[PATH]?>
[LINES]*

</highlightlines>

Description:

Highlight the lines specified by [LINES] in the file dest. The attribute outclass is as described in
[EICOMMANDS].

DIALOGBOXCOMMAND

<dialogbox outclass=[OUTCLASS]? boxtitle=[STRING]? boxwidth=[INT]? boxheight=[INT]?>
[CONTENT]+

</dialogbox>

Description:

Open a dialog box with the content specified by the [CONTENT] environemnts. The value of boxtitle, if
specfied, is used as a title for the dialog box. The attribtes boxwidth and boxheight can be used to set
the size of the window. The attribute outclass is as in [EICOMMANDS].

WRITEFILECOMMAND

<writefile filename=[PATH] overwrite=[BOOL]>
[TEXT]

</writefile>

Description:

Create a new file and place it in the files view, using the path specified by filename. The file is initialized
with the all text [TEXT] inside this tag. If the file exists, and overwrite is true the content is replaced
otherwise a new file is created with a new name. The default value of overwrite is false.

SETCSSCOMMAND

<setcss>
[ELEMENTS]
[CSSPROPERTIES]

</setcss>

Description:

Change the CSS properties, as specified by [CSSPROPERTIES], of all elements that match the selector in
[ELEMENTS]. There must be exactly one [ELEMENTS] environment and one [CSSPROPERTIES] environment.

The elements are typically selected from those generated by other commands.

ADDMARKERCOMMAND

<addmarker outclass=[OUTCLASS]? dest=[PATH]? boxtitle=[STRING]?
boxwidth=[INT]? boxheight=[INT]?>

[LINES]
[CONTENT]*

</addmarker>

Description:

Add a marker next to each line that is specified in [LINES]. The column information from each [LINE] in
[LINES] is ignored. All markers are associated with the content given by the [CONTENT] environments, as
a tooltip. If the client allows expanding the tooltip to a dialog window, the attributes boxtitle, boxwidth
and boxheight can be used to set the properties of the corresponding window (see [DIALOGBOXCOMMAND]).
The attributes dest and outclass are as described in [EICOMMANDS].

ADDINLINEMARKERCOMMAND

<addinlinemarker outclass=[OUTCLASS]? dest=[PATH]?>
[LINES]
[CONTENT]*

</addinlinemarker>

Description:

Add an inline marker (a line widget) for each line that is specified by [LINES]. All line widgets will
include the content specified by the [CONTENT] environments. In some clients, the supported content
might be only of text format. The attributes dest and outclass are as described in [EICOMMANDS].

ONCODELINECLICKACTION

<oncodelineclick dest=[PATH]? autoclean=[BOOL]? outclass=[OUTCLASS]?>
[LINES]
[CONTENT]*
[EICOMMANDS]

</oncodelineclick>

Description:

Add markers at the the code lines specified by [LINES], such that when any is clicked the commands
in [EICOMMANDS] are performed. The content given by the [CONTENT] environemts is associated with the
markers (as a tooltip for example). The attributes dest and outclass are as described in [EIACTIONS].
Moreover, the above [EICOMMANDS] environment inherits the dest and outclass attributes of this envi-
ronment.

ONCLICKACTION

<onclick outclass=[OUTCLASS] autoclean=[BOOL]? >
[ELEMENTS]
[EICOMMANDS]

</onclick>

Description:

A click on any DOM element that matches the selector of [ELEMENTS], will execute the commands
declared in [EICOMMANDS]. The attributes dest and outclass are as described in [EIACTIONS]. Moreover,
the above [EICOMMANDS] environment inherits the dest and outclass attributes of this environment.

LINES

<lines>
[LINE]+

</lines>

Description:

A group of lines, typically used to specify the lines affected by an [EICOMMAND] or an [EIACTION].

LINE

<line from=[INT] to=[INT]? fromch=[INT]? toch=[INT]? />

Description:

A region (of lines) typically used to specify the region on which the effect of an [EICOMMAND] or an
[EIACTION] is applied:

• from is the start line.
• to is the end line.
• fromch is the where the first line starts.
• toch is the character (i.e., column number) where the last line ends.

The default value of to is as the value of from. The default value of colfrom is 0, and of colto is the end
of the line.

ELEMENTS

<elements>
[SELECTOR]*

</elements>

Description:

Set of selectors (of DOM elements)

SELECTOR

<selector value=[STRING] />

Description:

The attribute value musy be valid selector as in JQuery (see https://jquery.com). It is used to match
some DOM elements.

CSSPROPERTIES

<cssproperties>
[CSSPROPERTY]*

</cssproperties>

Description:

A set of CSS properties.

CSSPROPERTY

<cssproperty name=[CSSNAME] value=[CSSVAL] />

Description:

A CSS property. The attributes name and this value should correspond to valid CSS properties.

CONTENT

<content format=[TEXTFORMAT]? >
[TEXT]

</content>

Description:

A text given in a specific format, e.g., "text", "html", etc. If the attribute format is not provided, then it
is assumed to be "text" format (plain text).

CONSOLEID
([a-z,A-Z,0-9,-,_]+ | new | default)

The value ’new’ means a new console, no reference to this console is saved. The value ’default’ means the
default console of the client.

PATH
A path to file, including the file name. There are two from, the first one is a full path including the temporal
directory name that is created by the server, e.g., “/tmp/easyinterfae_XYZ/_ei_files/dir1/dir2/file.c”.
The simply ignore the prefix we “/tmp/easyinterfae_XYZ/_ei_files/”, i.e., the value in this case is
“dir1/dir2/file.c”.

VERSION
x.y, where x is the major version number and y is the minor one, e.g. 1.0, 1.1, etc.

OUTCLASS
(none | info | warning | error)

BOOL
("true" | "false")

INT
An integer

STRING

A string

TEXT
Free text.

TEXTFORMAT
("text" | "html" | "svg")

CSSNAME
A valid name for a CSS property.

CSSVAL
A valid value for a corresponding CSS property.

	1 Introduction
	2 ABS Web Site
	2.1 Arriving at the web site
	2.2 Vision
	2.3 The Collaboratory
	2.4 Documentation
	2.5 Discussion Forums
	2.6 Mailing Lists

	3 Overview of the EasyInterface Framework
	3.1 The Architecture of EasyInterface
	3.1.1 The Server Side
	3.1.2 The Client Side

	3.2 Web-site of the Envisage Virtual Collaboratory
	3.3 Source Code

	4 Conclusions and Future Work
	Glossary
	A EasyInterface User Manual

