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Chapter 1

Introduction

One of the most important features of a software system is its resource consumption. By resource, we mean
not only traditional cost measures (e.g., number of executed instructions, or memory consumption) but also
more advanced measures (e.g., number of tasks spawned, number of requests to remote servers, amount of
data transmitted among the locations of a virtual system). Resource analysis (a.k.a. cost analysis) aims
at statically inferring approximations of the resource consumption of executing the software system by just
inspecting the code, in contrast to dynamic analysis in which the system is run for arbitrary inputs.

The S tatic Analyzer for Concurrent Objects (SACO), presented in this deliverable, addresses objective
O5 “Model Analysis Demonstrator” of the ENVISAGE project. This objective includes an automated analysis
to check termination and obtain upper bounds on resource consumption including the amount of data
transmitted between distributed components. Furthermore, SACO directly addresses objective O3.3 and is
also relevant for O3.4, due to the fact that the invariant reasoning could benefit of this information, and
thereby proves that the derived resources bounds are correct. The main challenges in those tasks that involve
resource analysis are related to leveraging the system level and the deployment descriptions contained in the
models to the resource analyzer, as we will explain in the next chapter. In particular, SACO is directly related
to Task T3.3, whose goal consists in developing a systematic resource analysis for inferring an upper bound
on the resource consumption of abstract behavioral specification models (ABS) at early stages of software
development. With the information provided by SACO, we aim at having anticipated knowledge on the
resource consumption of the different components which constitute the system. This can be crucial, among
other things, to detect potential bottlenecks in the systems, or for optimally distributing the load of work.
Besides, the information provided by the resource analyzer integrated in SACO can be used to compare
the different deployment scenarios and drive the definition of the SLA of the application. In case of a
SLA previously established, such information allows us to validate that the abstract system model complies
with the SLA. Additionally, the results of the resource analysis could help to improve automation in the
Verification Task T3.2.

The rest of the deliverable is structured in two chapters and several appendices that include the articles
described in this document. Chapter 2 comprises a description of the different analyses that SACO integrates
as follows:

• Section 2.1 introduces the starting point to this work, which is a rather limited resource analysis for
ABS models which does not take system level and deployment descriptions into account.

• Section 2.2 presents the extensions required to handle concurrent executions in a precise way. Our first
extension to the basic analysis is to use a may-happen-in-parallel pre-analysis in order to take system
level information into account. We show in Section 2.2.1 how we can consider deployment decisions
about the scheduling policy statically (this work has been published in LPAR-19 [15], included as
Appendix A to this deliverable). Section 2.2.2 introduces another important extension to the basic
framework to reason accurately about the resource consumption in the presence of interleaving tasks in
a distributed system (published at ATVA’13 [13] and included as Appendix B). Section 2.2.3 presents an
extension of the may-happen-in-parallel analysis that infers accurate information about the concurrent
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behaviour in the system in the presence of inter-procedural synchronization, i.e., when future variables
are passed as arguments of the tasks (published at SAS’15 [14] and included as Appendix C).

• Section 2.3 presents the extensions required to infer system level information about distributed sys-
tems in a precise way. Section 2.3.1 describes the performance indicators which allow us to obtain
relevant information about distributed systems such us whether the load in the system is well-balanced
(i.e., all distributed nodes execute a similar number of steps), or communication costs computed by
overapproximating the sizes of the data transmitted between the locations of a distributed, or virtual
system (the main results are published at [9] and ISOLA’14 [8], included as Appendices D and E to
this deliverable). In Section 2.3.2 we introduce a novel resource analysis which is able to estimate
the maximum of the resource consumption for non-cumulative resources that increase and decrease
along the computation (i.e., resources can be acquired and released). This work has been published in
TACAS’15 [11] and included as Appendix F. Section 2.3.3 presents the first static analysis to infer the
peak cost in a virtual system, i.e., it infers the maximum amount of resources which each virtual loca-
tion might have pending to execute along any execution of the system (this work has been published
at SAS’14 [10] and included as Appendix G). In Section 2.3.4, we present a static analysis to infer the
parallel cost of a distributed system, i.e., a new notion of cost that takes into account that some tasks
execute in parallel across different distributed components and thus the total cost is the maximum
among them. The main results related to parallel cost have been published in SAS’15 [7] and included
as Appendix H to this deliverable. Section 2.3.5 describes a resource analysis of timed ABS models.
That is, ABS models with time annotations that specify how time passes during the model’s execution.
The obtained results do not represent the total resource consumption of the analyzed system but rather
the resource consumption of the system at a given time. This work is available at [19] and has been
submitted for publication. It is included as Appendix I to this deliverable.

• Finally, in Section 2.4 we present CoFloCo, a new cost analysis backend that attempts to overcome
some of the limitations of PUBS (the current backend [5]). CoFloCo can obtain precise upper bounds
for many systems where PUBS fails. This work has been published in APLAS’14 [18] and is included
as Appendix J to this deliverable.

After having introduced the theory underlying the resource analyzer, Chapter 3 provides a user manual in
which the different settings and options are described in detail (the tool has been demonstrated at TACAS’14
[3] and a system description has been published in the conference proceedings, Appendix K).
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Chapter 2

Basic Concepts

2.1 Starting Point

Resource analysis (or cost analysis [6]) aims at statically, i.e. without running the program, bounding the
cost of executing programs for any possible input data value. Such bounds are given as functions on the
input data sizes. This section briefly describes the starting point for our work: a basic resource analysis for
ABS models [4] which is able to separate the cost of the distributed components of the system using cost
centers and which discards information on the shared data at processor release points. In the following we
introduce the basic concepts of resource analysis illustrating them by means of examples.

The first challenge for computing the cost of a program is to have an automatic method to compute
the maximum number of iterations on loops (or recursive structures), and, as a side effect, to guarantee the
termination of the program. The use of ranking functions to automatically bound the number of iterations
was proposed in [5]. A ranking function is a function on the program variables which (1) is positive and (2)
decreases in each iteration, and thus, can be used to bound the number of loop iterations. Once we have
bounded the number of iterations, in order to determine the cost of executing the program, we define the
notion of resource that we aim to approximate by static analysis. Typical examples of resources that can be
measured include: number of execution steps, amount of memory allocated, amount of data transmitted over
the Internet, etc. In order to define a generic resource analyzer we rely on the notion of cost model, which
determines the type of resource to be measured. A cost model assigns a cost to the different instructions of
the programming language. For instance, if we want to count the number of executed steps, all instructions
are assigned cost 1; if we want to measure the amount of memory allocated, only the instructions which
allocate memory are assigned a cost, which is usually determined by the size of the created data; if we want
to count the number of method invocations, only the instructions which invoke methods are assigned cost
1, all remaining instructions have a cost of 0. Let us see an example of resource analysis for the program in
Figure 2.1.

Example 1 Figure 2.1 shows the ABS source code of the example that will be used in some parts of the rest of
this chapter. It includes a class PrettyPrinter, which displays some information, and a class VendingMachine,
with methods to insert a number of coins and to retrieve all coins on a vending machine. The program
includes methods showIncome and showCoin. We assume that both methods are not empty and they do not
contain any method call. Let us start by studying the resource consumption of the loop at line 23 (for brevity,
denoted L23) in method retrieveCoins. We need to ignore at this point the await instruction at L26, otherwise
the basic framework cannot find an upper bound. Ignoring await, it is clear that the loop iterates coins times.
Hence, the local ranking function nat(coins)1 is computed, where nat(x) = x if x ≥ 0, and nat(x) = 0 if
x < 0. We then need to find an over-approximation of the cost of executing any iteration of the loop at L23,
denoted Cl. Note that, as we are computing the cost executed within retrieveCoins, Cl does not include the
cost executed by showCoin. Thus, the cost of executing the loop is bounded by the expression nat(coins) ∗ Cl.

1We use the nat function to avoid negative values in the ranking function, since coins is an integer variable.
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1 class PrettyPrinter{
2 Unit showIncome(Int n){. . .}
3 Unit showCoin(){. . .}
4 }//end class
5

6 class VendingMachine{
7 Int coins;
8 PrettyPrinter out;
9 Unit insertCoins(Int n){

10 Fut〈Unit〉 f;
11 while (n>0){
12 n=n−1;
13 f=this ! insertCoin();
14 await f?;
15 }
16 }

17 Unit insertCoin(){
18 coins=coins+1;
19 }
20 Int retrieveCoins(){
21 Fut〈Unit〉 f;
22 Int total=0;
23 while (coins>0){
24 coins=coins−1;
25 f=out ! showCoin();
26 await f?;
27 total=total+1;
28 }
29 return total;
30 }
31 }//end class

32 //main method
33 main(Int n){
34 PrettyPrinter p;
35 VendingMachine v;
36 Fut〈Int〉 f;
37 p=new PrettyPrinter();
38 v=new VendingMachine(0,p);
39 v ! insertCoins(n);
40 f=v ! retrieveCoins();
41 await f?;
42 Int total=f.get;
43 p!showIncome(total);
44 }

Figure 2.1: Example of an ABS Program

An upper bound of the cost of method retrieveCoins can be easily obtained by adding the cost of the loop plus
that of the instructions outside the loop (Co), that is, CretrieveCoins = Co + nat(coins) ∗ Cl. Let us observe
that this cost is not constant – it depends on the maximal value of field coins. Expressions Co and Cl are
constant, but their values depend on the resource of interest. For instance, if we use the cost model that counts
executed instructions, then Co = 3 (instructions L21, L22 and L29), and Cl = 4 (instructions L23–L28). An
upper-bound on the number of executed instructions by retrieveCoins is 3+nat(coins)∗4. —recall that the cost
executed at showCoin is not included in Cl. Other cost models can be applied as well. As an example, we can
count the number of tasks spawned in retrieveCoins by means of a cost model that assigns 1 to L25 and 0 to
the rest of the instructions. Then, the expression 0 + nat(coins) ∗ 1 bounds the number of calls performed by
retrieveCoins— remember that showCoin does not contain any method call. Finally, let us note that the cost
model to measure the amount of memory allocated by retrieveCoins would assign cost 0 to all instructions in
the method, since no object is created at retrieveCoins. Similarly, we can obtain CinsertCoins, CinsertCoin,.., for
all methods.

In a distributed setting with multiple objects possibly running concurrently on different central processing
units (CPUs), the notion of cost has to be extended so that, rather than aggregating together the cost of
all execution steps, they are split among the different computing infrastructures. This is important since
different infrastructures might have different configurations, such as CPU, memory, etc. Therefore, inferring
the resource consumption for each infrastructure separately helps in identifying those that might exceed the
resource limit (e.g., run out of memory). With this aim, we adopt the notion of cost centers proposed in
[4]. A cost center is a symbolic artifact of the form c(o) that we include in the cost expressions to distribute
the cost associated to the object o. We will use as object identifier the program point where the object is
created. Since the concurrency unit of our language is the object, cost centers are used to assign the cost of
each execution step to the cost center associated to the object where the step is performed.

Example 2 Let us study the resource consumption of the main method in Figure 2.1. Three objects are
involved in the execution: the object that executes the main, and the two objects created resp. at L37 and L38.
The associated cost-centers are denoted respectively c(ε), c(37) and c(38). We use Cm to represent the upper
bound of the cost executed at method m, including the number of times that m is executed. For instance, if
we assume that one call to showCoin executes 5 instructions, as showCoin is executed coins times, we have
that CshowCoin = nat(coins) ∗ 5. The following expression bounds the cost of the main method at the level of
distributed components (i.e. objects):

c(ε)∗Cmain+ c(38)∗CinsertCoins+ c(38)∗CinsertCoin+ c(38)∗CretrieveCoins+ c(37)∗CshowCoin + c(37)∗CshowIncome
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This allows obtaining the cost attributed to a concrete object o by replacing the associated cost center c(o)
by 1, and replacing by 0 the remaining cost centers. E.g., the cost attributed to the object created at L37 is
bounded by the expression c(37) ∗ CshowCoin + c(37) ∗ CshowIncome.

One of the main challenges when (statically) analyzing concurrent programs is to model the behavior of
the shared memory. Let us consider the concurrent execution of two tasks A and B on an object o. While A
is executing, task B can interleave its execution with it and modify the values stored in o’s heap, affecting
A’s behavior and possibly its resource consumption. Therefore, A cannot assume that the values stored in
o’s heap are preserved. A safe solution to this problem [4] consists in discarding all information about fields
at all release points. As a consequence of this loss of information, cost analysis can be rather imprecise in
many situations or even cannot succeed in finding the ranking function for some loops (therefore not being
able to compute an upper bound).

Example 3 Let us study again the cost of the loop at L23, but this time without ignoring the await at L26.
The important point to note is that, due to the await at L26, the processor might be released allowing other
tasks to interleave their execution with the execution of retrieveCoins, possibly changing the value of the shared
variable coins. The safe solution consists in discarding all information about coins at this point, i.e., after
executing the await at L26 the shared variable coins can have any value. This means nat(coins) is not a valid
ranking function for the loop. Consequently, without further improvements, the termination of such loop
cannot be guaranteed and its cost cannot be bounded with the available techniques.

2.2 Handling Concurrency

2.2.1 Use of May-Happen-in-Parallel (with Priorities)

As mentioned in the previous section, if a loop contains an await instruction, then another task can take the
processor in the middle of the execution and change the shared memory. If we do not have any information
about the concurrent behavior of the program, we have to assume that every shared variable may change at
this await point. In order to handle situations like these, we will use the information provided by an analysis
called may-happen-in-parallel (MHP). MHP is an analysis which has been defined for many concurrent
languages (see [1, 16, 22, 23]). We use the MHP analysis defined for the ABS language in [12]. This analysis
takes into account the system level information of the application learned from the task invocations and
release instructions, and returns a list of all pairs of program points that can be executed in parallel or that
can interleave their execution. This information is crucial in this context since it allows us to know whether or
not the value of a specific shared variable may be modified when the execution of a loop releases the processor
at an await instruction. If the shared memory cannot be modified, then we can confirm that the ranking
function obtained ignoring the await instruction is indeed a correct ranking function considering concurrent
interleavings. Otherwise, as the shared memory could be modified, the mentioned ranking function may be
incorrect and the analysis would fail as in the scenario presented in Section 2.1.

Example 4 The MHP analysis applied over the program in Figure 2.1 infers (among other information)
that the instructions at L10–L16 and L18 can interleave with the execution of the loop when the processor is
released at L26 (await instruction). Since the instruction at L18 modifies the shared variable coins, nat(coins)
will not be a valid ranking function for the loop in retrieveCoins. In this case, the information from the MHP
analysis does not improve the results and the resource analysis fails, as the original analysis.

Let us observe that any improvement in the precision of the results of the MHP analysis could improve the
precision of the results of the resource analysis as well (await instructions could interleave with a smaller set of
instructions). For instance, the precision of the MHP analysis can significantly improve by taking advantage
of deployment decisions about the scheduling policy of the system. We have studied the extension of the
MHP analysis with priority-based scheduling, one of the policies more commonly adopted in practice. In
this policy, every task invocation is assigned a priority number, which can be seen as an additional argument
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in the call. When the processor is idle, the scheduler selects and executes the task with the highest priority
in the current object, instead of taking non-deterministically some pending task.

Example 5 Consider the program in Figure 2.1 with the following additional priorities to task invocations:
the task invocation at L40 (retrieveCoins) has the maximum priority 10, and the task invocations at L39, L13
and L25 (insertCoins, insertCoin and showCoin respectively) have the minimum priority 0. Using this priority
information the MHP analysis can obtain more precise results: when the execution of the loop releases the
processor at L26, task insertCoin cannot interleave with it, because it has a lower priority. As the await
instruction at L26 cannot interleave with any other instruction that modifies the shared memory, its value
will not change, and thus the ranking function nat(coins) is correct for the loop in retrieveCoins. Hence we
can bound its resource consumption.

Although the extensions presented in this section have been implemented and can improve over the
original resource analysis presented in the Section 2.1, they are currently not available in the SACO tool
—see Section 3. The reason is twofold: (1) currently the ABS language does not support setting the priority
of task invocations, and (2) this extension is further improved by the extended termination and resource
analysis presented in the next section, which is fully implemented and integrated within the tool.

2.2.2 Rely-Guarantee Resource Analysis

As we have seen in Example 4, the interleaving information computed by the MHP analysis is not always
enough to obtain ranking functions for loops. The previous section showed that if the MHP analysis can
ensure the absence of interleavings that update the shared memory, the ranking function obtained by ignoring
the await is still valid. In this section we will show that using the MHP information in a more sophisticated
way we can assure the termination and bound the resource consumption of loops even in some cases when
interleavings modify the shared memory. We will focus first on termination, and then we will extend the
results to resource consumption.

The main idea for proving termination of loops with concurrent interleavings is the following: if (1) a
loop is terminating assuming there are no interleavings and (2) we can prove that the possible interleavings
modify the shared memory a finite number of times, then the loop is terminating even with concurrent
interleavings. This can be seen clearly in the loop of retrieveCoins in Figure 2.1.

Example 6 According to the MHP analysis, the await instruction at L26 can happen in parallel with the
instruction at L18, which modifies the shared variable coins. When the updating instruction interleaves with
the loop, the shared variable may decrease or even increase between iterations, potentially causing divergence.
However, if we can assure that the updating instruction is executed a finite number of times, then, from some
point in the execution on, the potential interleavings will not change the shared memory any longer. Therefore,
from that point on the shared variable coins will decrease at each iteration and the loop will terminate.

It is interesting to note that checking if an instruction is executed a finite number of times is easily
reduced to checking if the loop that contains that instruction is terminating, so we have a recursive procedure
for termination. This approach is inspired by the rely-guarantee style of reasoning used for compositional
verification and analysis of thread-based concurrent programs: we first assume a property on the global
state in order to prove termination of a loop, and then, we prove that this property holds. Concretely the
termination of a loop L involves:

1. Check the termination of L assuming that the shared memory is modified a finite number of times.

2. For every instruction that modifies the shared memory and can interleave with L, check the termination
of the loop that contains it. This second step proves the property assumed in step 1.

We can prove that a program is terminating by applying this approach to every loop. Terminating
programs have the mentioned property that the size of all data is bounded. Concretely every shared variable
f will be bounded by some lower and upper bounds: f ∈ [f−..f+]. The existence of these bounds is important
in other analysis like resource consumption, as we will see.
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Example 7 Consider again the loop in method retrieveCoins in Figure 2.1. As mentioned in Example 6, this
loop is terminating if the instruction at L18 is executed a finite number of times. Following the rely-guarantee
reasoning, we need to prove this property. The instruction at L18 is executed by method insertCoin, which is
invoked in the loop of method insertCoins at L13. Therefore we have to prove the termination of this second
loop (L11–L15). This case is simpler since it depends on a local variable n which cannot be modified due to
possible interleavings. The loop will therefore be executed exactly nat(n) times. Consequently, the instruction
at L18 will modify the shared variable coins a finite number of times, and the loop in retrieveCoins will be
proved terminating.

We can use similar reasoning to measure the resource consumption of programs. In this case we want
to compute precise ranking functions to bound the number of iterations of loops considering the possible
interleavings. Once we have these ranking functions we can compose them with the cost models and cost
centers presented in Section 2.1 in order to obtain the desired resource consumption bounds. To obtain
such ranking functions we combine the ranking functions ignoring the interleavings (obtained by the original
analysis presented in Section 2.1) with the number of times that the shared memory is modified.

Example 8 Consider again the loop in retrieveCoins in Figure 2.1. As we have mentioned in Example 1, if
we ignore the interleavings, the ranking function is nat(coins). However, each time there is an interleaving
the value of the shared variable coins might change. The only interleaving instruction that modifies coins
is in L18, which is executed n times. In order to obtain an upper bound, we will take the worst case: the
loop in retrieveCoins will execute all its iterations, but then in the last iteration an interleaving will replace
the current value of coins by its maximum value coins+. This situation will happen exactly n times, because
the updating instruction at L18 is visited n times, so the final ranking function for the loop in retrieveCoins
will be nat(coins+) ∗ nat(n)—note that the upper bound coins+ exists because the program has been proved
terminating.
With this ranking function we can obtain an upper bound for retrieveCoins using any desired cost model.
For example, if we want to count executed instructions, the upper bound will be 3 + nat(coins+) ∗ nat(n) ∗ 4,
since there are 3 instructions before the loop and 4 instructions inside it—recall that the method showCoin
is empty. If, on the other hand, we use a cost model to count spawned tasks, the upper bound will be
0 + nat(coins+) ∗ nat(n) ∗ 1 because there are 0 task invocations before the loop and exactly one invocation
(L13) inside it. Similarly, we could add cost centers in order to associate resource consumption to the object
where the step is performed.

The extensions for termination and resource consumption presented in this section have been both in-
tegrated within the SACO tool delivered with this document. Section 3 contains a detailed explanation of
their usage and how to visualize their results.

2.2.3 May-Happen-in-Parallel with Inter-Procedural Synchronization

The ABS language allows passing future variables as arguments of tasks. This is an important feature as
it enables inter-procedural synchronization, i.e., synchronizing with the termination of a task outside the
scope in which the task is spawned. The original MHP analysis of [12] only handles a restricted form of
intra-procedural synchronization and we have worked on the extension of this analysis to inter-procedural
synchronization.

Example 9 If the MHP analysis of [12] is applied to the program in Figure 2.2, it will infer that program
point at L7 can execute in parallel with L12 or L8 can execute in parallel with L19. However, it is not
able to infer that L9 and program point at L12 cannot happen in parallel. To infer this, we need to track
inter-procedural synchronizations.

When analyzing await y? in the program of Figure 2.2 using the previous MHP, the analysis marks the task
bound to y as finished, but it does not track the inter-procedural information, i.e, it does not mark the
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1 Unit main(){
2 Fut<Unit> x;
3 Fut<Unit> y;
4 o1 = new O1();
5 o2 = new O2();
6 x = o1!f();
7 y = o2!g(x);
8 await y?;
9 }

10 class O1{
11 Unit f(){
12 skip;
13 }
14 }
15

16 class O2{
17 Unit g(Fut<Unit> w){
18 skip;
19 await w?;
20 skip;
21 }
22 }

Figure 2.2: Example of Inter-Procedural Synchronization

task bound to x as finished. In order to overcome this imprecision, we have developed a must-have-finished
analysis that captures inter-procedural synchronization. This analysis returns for each program point a set
of future variables that must have finished when reaching this program point. All technical details about
this analysis have been published in the proceedings of SAS’15 [14].

Example 10 The must-have-finished analysis applied to the program in Figure 2.2 will infer that when
reaching L19, it is guaranteed that whatever task bound to w has already finished, when reaching L7 there is
no task finished and when reaching L8, it is guaranteed that whatever tasks bound to x and y have already
finished.

This information can be integrated in the MHP analysis improving its precision, namely when an await x?
statement is reached, it marks as finished not only the task bound to x but also the task whose termination
depends on the task bound to this future variable. Observe that we sometimes omit variable types in
examples for readability.

Example 11 If the MHP analysis with inter-procedural synchronization is applied to the program in Fig-
ure 2.2, it will infer that L7 can happen in parallel with L12, or L8 can happen in parallel with L19, as the
MHP analysis of Albert et al. [12] does. In addition, it is able to infer that program L9 cannot happen in
parallel with L12 because the task bound to y has finished its execution and transitively the task bound to x
too. It will also infer that L12 and L20 cannot happen in parallel since the execution of the task passed as
parameter to method g is finished at L20.

This extension is fundamental as MHP is an analysis of utmost importance to ensure both liveness and
safety properties of ABS programs, namely the enhancement of the MHP analysis with inter-procedural
synchronization allows improving the precision of the deadlock, termination and resource analysis.

The MHP analysis with Inter-Procedural Synchronization presented in this section is integrated within
the SACO tool delivered with this document. Section 3 contains a detailed explanation of its usage in SACO
and how to visualize its results.

2.3 Handling Distribution

2.3.1 Performance Indicators

In this section we define indicators that can be considered to estimate the performance of a distributed
system [9]. In particular, we are interested in predicting the load balancing of the distributed objects, the
number of communications between nodes and the amount of data transferred among them.
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1 void m (int n) {
2 I a = new Obj();
3 while (n > 0) {
4 a!p(n,a);
5 n = n − 1;
6 }
7 }

8 void p (int n, I x) {
9 while (n > 0) {

10 x!q();
11 n = n − 1;
12 }
13 }
14 q () { 10 instr }

15 void m2 (int n) {
16 while (n > 0) {
17 I a = new Obj();
18 a!p(n,a);
19 n = n − 1;
20 }
21 }

Figure 2.3: Example of Performance Indicators

Load Balance

Using the cost centers described in Section 2.1, we define an indicator to assess how balanced the load of
the distributed nodes that compose the system is. By attributing the cost of each instruction to the object
responsible of executing it, upper bounds can help during the development process to take better design
decisions for obtaining an optimal load balancing.

Example 12 In the source code shown in Figure 2.3 (left and center), method m creates a new object at
L2 by means of new Obj(), which is referenced by variable a, and the while loop spawns n tasks executing
method p (L4). Besides, method p contains another loop that calls q n times (L10). Observe that the second
argument of the call to p at L4 causes method q to be executed at object a. If we replace the second argument
by this at L4, that is a!p(n,this), method q will be executed at the object executing m. We refer to this object
as ε. The upper bound expressions for the number of steps are the same for both cases, but such decisions
are crucial for properly balancing the system. By using the resource analysis of Section 2.1, for a!p(n,a) at
L4, the cost attributed to c(ε) is 9+ 7 ∗n and the cost attributed to c(2) is 1+n ∗ (6+ 14 ∗n). It can be seen
that the program is not properly balanced, since the cost attributed to c(ε) is a linear expression w.r.t. the
value of n, while the cost attributed to c(2) is a quadratic expression w.r.t. n. On the other hand, by using
a!p(n,this) at L4, we have that the cost attributed to c(2) is 1 + n ∗ (6 + 7 ∗ n) and the cost attributed to c(ε)
is 9 + n ∗ (7 + 7 ∗ n). In this case we can see that the program is more evenly balanced, as both expressions
are quadratic w.r.t. n.

When reasoning about distributed systems, it is essential to have information about their configuration,
i.e., the sorts and quantities of nodes that compose the system. As we have seen in the previous example,
configurations may be straightforward in simple applications, but the tendency is to have rather complex
and dynamically changing configurations (cloud computing is an example of this). To this end, in addition
to the upper bound on the number of instructions executed by each object, it is required to have information
about how many instances of each object might exist. Resource analysis described at Section 2.1 can also
be extended to provide such information.

Example 13 As we have seen in Example 12, method m only uses two objects, ε and a. In contrast, method
m2 shown in Figure 2.3 (right) creates objects within a loop and, by means of the resource analysis, we can
infer that the number of objects created at m2 is bounded by the value of n.

If we consider a system to be optimally balanced when all its components execute the same number
of instructions, we can use the upper bounds on the number of instructions and the upper bounds on the
number of distributed components to reason about how balanced the load of the distributed nodes that
compose the system is. As regards the number of instructions executed by each object in the system, we
have to take into account that an abstract object might represent multiple concrete objects. This means that
the number of instructions executed by an abstract object actually accounts for the instructions executed by
all objects it represents.

Example 14 The analysis of m2 returns that the cost attributed to c(ε) is 6+ 10 ∗n and that the number of
instructions executed by the objects created within the loop is n∗ (7+14∗n). As we have seen in Example 13,
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the number of objects created within the loop is bounded by the value of the input argument n. Therefore, we
have n objects, identified by the cost center c(17) that execute n∗ (7+14∗n) instructions, and another object,
identified by the cost center c(ε), that executes 6 + 10 ∗ n steps, which implies that the system is properly
balanced as all objects perform a linear number of instructions.

Section 3 contains a detailed explanation of how to use the performance indicators implemented in SACO
and how to visualize its results.

Transmission data sizes

Another relevant contribution for Envisage is the extension of SACO to infer the transmitted data sizes. We
have developed a static analysis to infer the amount of data that a distributed system may need to transmit.
Knowledge of the transmission data sizes is essential, among other things, to predict the bandwidth required
to achieve a certain response time, or conversely, to estimate the response time for a given bandwidth. The
different locations of a distributed system communicate and coordinate their actions by posting tasks among
them. A task is posted by building a message with the task name and the data on which such task has to
be executed. When the task completes, the result can be retrieved by means of another message from which
the result of the computation can be obtained. Thus, the transmission data size of a distributed system
mainly depends on the amount of messages posted among the objects of the system, and the sizes of the
data transferred in the messages. In order to estimate the transmission data sizes, we need to keep track of
the amount of data transmitted in two ways:

1. By posting asynchronous tasks among the objects. This requires building a message in which the name
of the task to execute and the data on which it executes are included.

2. By retrieving the results of executing the tasks. In our setting, future variables are used to synchronize
with the completion of a task and retrieve the result.

Our analysis infers a safe over-approximation of the transmission data sizes required by both sources of
communications in a distributed system. Our method infers two different pieces of information: the number
of tasks spawned at a given object, and the data sizes transmitted as a result of the task spawned.

Since we are considering an abstract representation of data by means of functional types, we will focus on
units of data transmitted instead of bits, which depends on the actual implementation and is highly platform-
dependent. Concretely, we assume that the cost of transmitting a basic value or a data type constructor is
one unit of data. This size measure is known as term size. However, our static analysis would work also with
any other mapping from data types to corresponding sizes (given by means of a function α).

Example 15 The program shown in Figure 2.4 creates objects s and m at L56 and L57, respectively, to
perform some processing on a list. The list l has an initial content set at L55 (not relevant for the example)
that is passed as a parameter of the call to method work at object m, and thus there is data transmission at
this point. Method work extends the list with n values, and calls method process at object s (L73) after adding
each element to the list, passing the list as argument. Method process does some processing to the list passed
as argument. There are two program points in method work where data is transmitted between objects m and
s: L73 and L74, that correspond to the call to process and the retrieval of the returned value, respectively.
Data structures are defined in ABS by means of data constructs, as shown in L51 with the data type definition
for representing lists of integers. We consider the term size of data structures as the size measure. For
example, a list defined as l = Cons(1, Cons(2, Cons(3,Nil))) has size α(l) = 7, as it counts 2 for each element
in the list (the Cons constructor and the element itself), plus 1 for the Nil constructor.

For inferring an upper bound on the number of tasks spawned between all pairs of distributed objects,
we use the cost analysis framework described in Section 2.1. In particular, we need to use a symbolic cost
model which allows us to annotate the caller and callee objects when a task is spawned in the program. In
essence, if we find an instruction a!m(x) which spawns a task m at object a, the cost model symbolically

14



Envisage Deliverable D3.3.2 Resource Analysis

51 data List = Nil | Cons(Int, List);
52 // main method
53 Unit main (Int n) {
54 Slave s; Master m; List l;
55 l = . . .;
56 s = new Slave();
57 m = new Master(s);
58 m!work(l,n);
59 }
60 class Slave {
61 Int process (List le) {
62 . . .
63 return h;
64 }}// end class

65 class Master {
66 Slave s;
67 work(List l,Int n) {
68 Int x;
69 Int n;
70 fut<Int> y;
71 while (n>0){
72 l = Cons(n,l);
73 y = s!process(l);
74 x = y.get;
75 n−−;
76 }
77 }
78 }// end class

Figure 2.4: Example of transmission data sizes

counts c(this, a,m) ∗ 1, i.e., it counts that 1 task executing m is spawned from the current object this at a.
If the task is spawned within a loop that performs n iterations, the analysis will infer c(this, a,m) ∗ n.

Example 16 For the code in Figure 2.4, cost analysis infers that the number of iterations of the loop in work
(at L71) is bounded by the expression nat(n). Then, by applying the number of tasks cost model we obtain
the following expression that bounds the number of tasks spawned at L73: c(m, s, process) ∗ nat(n)

The second piece of information obtained by our analysis is the data size transmitted as a result of
spawning a task. To this end, we need to infer the sizes of the arguments in the task invocations. Typically,
size analysis [17] infers upper bounds on the data sizes at the end of the program execution. Here, we are
interested in inferring the sizes at the points in which tasks are spawned. In particular, given an instruction
a!m(x), we aim at over-approximating the size of x when the program reaches the above instruction. If the
above instruction can be executed several times, we aim at inferring the largest size of x, denoted α(x), in
all executions of the instruction. Altogether, c(this, a,m)∗α(x) is a safe over-approximation of the data size
transmission contributed by this instruction. The analysis will infer such information for each pair of objects
in the system that communicate, annotating also the task that was spawned.

Example 17 Since in method work the size of l is increased within the loop at L72, the maximum size of l
is produced in the last call to process. Recall that the term size of the list l counts 2 units for each element
in the list. Therefore, each iteration of the loop at L71 increments the term size of the list in 2 units and,
consequently, the last call to process is executed with a list of size l0 + 2 ∗ n, where l0 is the term size of the
initial list, created at L55. In addition, the value returned by the call to process is retrieved at L74. Since the
data retrieved is of type Int, its size is 1.
Then, the data transmitted between objects m and s is bounded by the following expression, where the constant
I is the size of establishing the communication:

c(m, s, process) ∗ nat(n) ∗ (I + nat(l + n ∗ 2)) + c(s,m, process) ∗ nat(n) ∗ (I + 1)

The analysis for inferring transmission data sizes is integrated within the SACO tool delivered with this
document. Section 3 contains a detailed explanation of its usage and how to visualize its results.

2.3.2 Non-cumulative Cost

Another extension to sequential resource analysis is the inference of non-cumulative resources [11]. Existing
cost analysis frameworks have been defined for cumulative resources which keep on increasing along the
execution. In contrast, non-cumulative resources are acquired and (possibly) released along the execution.
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1 Unit main (Int s, Int n) {
2 x = acquire(k1);
3 r = acquire(k2);
4 r = acquire(s);
5 release r;
6 y = acquire(n);
7 release x;
8 }

x:k1

L2

r:k2

x:k1

L3

r:s

r:k2

x:k1

L4

r:k2

x:k1

L5

y:n

r:k2

x:k1

L6

y:n

r:k2

L7

Figure 2.5: Example of an ABS Program with Non-Cumulative Resources

Examples of non-cumulative cost are memory usage in the presence of garbage collection, number of connec-
tions established that are later closed, or resources requested to a virtual host which are released after using
them.

To model non-cumulative resources we have added two instructions to the language: r = acquire(e), which
acquires the amount e of resources, referenced by the variable r, and the instruction release r, to free the
resources pointed by r.

It is recognized that non-cumulative resources introduce new challenges in resource analysis [2, 20]. This
is because the resource consumption can increase and decrease along the computation, and it is not enough
to reason on the final state of the execution, but rather the upper bound on the cost can happen at any
intermediate step. The analysis of non-cumulative resources is defined in two steps: (1) We first infer the sets
of resources which can be in use simultaneously (i.e., they have been both acquired and none of them released
at some point of the execution). This process is formalized as a static analysis that (over-)approximates the
sets of acquire instructions that can be in use simultaneously, allowing us to capture the simultaneous use
of resources in the execution. (2) We then perform a program-point resource analysis which infers an upper
bound on the cost at the points of interest, namely the points at which the resources are acquired. This
is done by using as cost centers the program points at which the resources are acquired so that they are
separated within the upper bound from the other acquired resources. From such upper bounds, we can obtain
the maximum cost by just eliminating the cost due to acquire instructions that do not happen simultaneously
with the others (according to the analysis information gathered at step 1). This analysis can be extended to
multiple resources by adding a parameter to acquire instructions which determines the kind of resource to
be allocated, i.e, acquire(res,e) where res specifies the type of resource.

Example 18 Figure 2.5 shows a sample program where some non-cumulative resources are acquired at L2,
L3, L4 and L6, and released at L5 and L7. At L4 variable r is assigned without previously releasing the
resources acquired at L3, producing a resource leak (shown in grey). At L5 the program releases the resources
acquired at L4. At L6 n resources are acquired, and since they are not released, these resources leak upon
program termination. Finally, at L7 the resources acquired at L2 are released. To the right of Figure 2.5 we
show how resources are actually acquired and released during execution. We can see that the program points
where more resources are simultaneously acquired are L4 and L6. Our analysis infers for each program point
pp the set of program points corresponding to acquire resources that have not been released in any execution
reaching pp. The analysis is similar to a liveness analysis since release instructions allow detecting that
a resource is freed. The program points that correspond to maximal sets lead to the maximum resource
consumption. In this example, they are: A1 = {L2, L3, L4} and A2 = {L2, L3, L6}, that correspond to the
resources alive at lines L4 and L6 of the execution, respectively. By means of the program-point resource
analysis, we can infer that the amount of resources acquired by the sets A1 and A2 are bounded by the
expressions NA1 = k1 + k2 + nat(s) and NA2 = k1 + k2 + nat(n). Therefore, the non-cumulative resource
consumption of the program is bounded by the expression max(NA1 , NA2).

Section 3 contains a detailed explanation of its usage in SACO and how to visualize its results.
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2.3.3 Peak Cost

One of the important results obtained in the area of resource analysis during the first two years of the project
is the extension of the SACO system to infer the peak cost. Existing cost analyses for distributed systems
infer the total resource consumption [4] of each distributed object, e.g., the total number of instructions that
it needs to execute, the total amount of memory that it will need to allocate, or the total number of tasks that
will be added to its queue. This is a too pessimistic estimation of the amount of resources actually required
in the real execution. An important observation is that the peak cost will depend on whether the tasks
that the object has to execute are pending simultaneously. We aim at inferring such peak of the resource
consumption which captures the maximum amount of resources that the object might require along any
execution. This information is crucial to dimensioning the distributed system: it will allow us to determine
the size of each object’s task queue; the required size of the object’s memory; and the processor execution
speed required to execute the peak of instructions and provide a certain response time. It is also of great
relevance in the context of virtualization as used in cloud computing, as the peak cost allows estimating how
much processing/storage capacity one needs to buy in the host machine, and thus can help reduce costs.

We have developed a static analysis to infer the peak of the resource consumption of ABS models, which
takes into account the type and amount of tasks that the distributed objects can have in their queues
simultaneously along any execution, to infer precise bounds on the peak cost. The first step of the peak cost
analysis is the total cost analysis described in Section 2.1. Then, an abstract queue configuration is inferred
for each object, which captures all possible configurations that its queue can take along the execution. A
particular queue configuration is given as the sets of tasks that the object may have pending to execute at
a moment of time. We rely on the information gathered by the MHP analysis mentioned in Section 2.2.1 to
define the abstract queue configurations.

Example 19 The upper bound expression inferred by the resource analysis in Example 2 for the cost center
c(37) is c(37) ∗CshowCoin + c(37) ∗CshowIncome, where CshowCoin and CshowIncome represent the computed upper
bound of the cost of executing all instances of the respective tasks, and it is the total cost associated to the
object created at L37. This estimation is pessimistic w.r.t. the actual resources required for object L37. The
calls to showCoin at L25 are awaited at L26, and therefore when retrieveCoins finishes its execution, all tasks
spawned at L25 have finished as well. This means that when showIncome is called at L43, the queue of
the object L37 is guaranteed to be empty. Therefore, object L37 only requires resources to either execute
showIncome or execute (several instances of) showCoin.
In contrast, the object created at L38 will execute asynchronous calls to insertCoins and retrieveCoins that may
be posted to the object queue simultaneously. Consequently, the object must have enough resources for dealing
with both calls at the same time.

A quantified queue configuration is inferred for each object, which over-approximates the peak cost of each
distributed object. For a given queue configuration, its quantified configuration is computed by removing
from the total cost expression those tasks that do not belong to that configuration. The peak for the object
is the maximum of the costs of all configurations that its queue can have.

Example 20 Since object L37 cannot have in its queue calls to showCoin and to showIncome simultaneously,
an upper bound of the peak cost of this object is max(CshowCoin, CshowIncome), where Cm bounds the cost
executed by method m. Observe that since showCoin is invoked several times inside the while loop at L25,
CshowCoin bounds the execution of all such instances.

The accuracy of the peak analysis can be improved if it is possible to determine that, for a method that
is called several times, there will be no more than one task in the queue for that method at any time. The
MHP analysis can detect whether several instances of a method m are never queued simultaneously. In that
case, only one instance of the method can be considered for the peak cost. Under some specific technical
conditions, it is sound to obtain the cost of executing one instance of m, by dividing the bound Cm obtained
for the total cost executed by m, by the number of instances spawned for m. The number of instances can
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void m (int n) {
. . . // m1

x!p();
. . . // m2

y!q();
. . . // m3

}
void p () {
. . . // p1
y!s();
. . . // p2

}

Trace 1©
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m2

m3

p1

p2 s

q

P1

Trace 2©
o x y
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Trace 3©
o x y
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q
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P3

P1 = Cm1+Cm2+Cm3 P2 = Cm1+Cp1+Cs+Cq P3 = Cm1+Cm2+Cq+Cs

Figure 2.6: Parallel Cost Analysis example

be obtained by using a cost model that counts the number of times a point is visited within the analysis
framework described in Section 2.1.

Example 21 As observed in Example 20, CshowCoin bounds the execution of all such instances, but only one
instance is queued simultaneously at object L37. If Cc

showCoin is the number of tasks spawned for method
showCoin, max(CshowCoin/C

c
showCoin, CshowIncome) is a more accurate bound for the peak cost executed by L37.

The peak analysis presented in this section is integrated within the SACO tool delivered with this
document. Section 3 contains a detailed explanation of its usage and how to visualize its results.

2.3.4 Parallel Cost Analysis

Parallel cost differs from the standard notion of serial cost by exploiting the truly concurrent execution model
of distributed processing to capture the cost of synchronized tasks executing in parallel. It is also different
to the peak cost since this one is still serial; i.e., it accumulates the resource consumption in each component
and does not exploit the overall parallelism as it is required for inferring the parallel cost. It is challenging
to infer parallel cost because one needs to soundly infer the parallelism between tasks while accounting for
waiting and idle processor times at the different objects. Let us see an example.

Example 22 Figure 2.6 (left) shows a simple method m that spawns two tasks by calling p and q at objects x
and y, resp. In turn, p spawns a task by calling s at object y. This program only features distributed execution,
concurrent behaviours within the objects are ignored for now. In the sequel we denote by Cm the cost of block
m. Cm1 , Cm2 and Cm3 denote, resp., the cost from the beginning of m to the call x!p(), the cost between
x!p() and y!q(), and the remaining cost of m. Cp1 and Cp2 are analogous. The resource analysis described in
Section 2.1 can be used for obtaining an upper bound of the cost of each block.

The notion of parallel cost P corresponds to the cost consumed between the first instruction executed by
the program at the initial object and the last instruction executed at any object by taking into account the
parallel execution of instructions and idle times at the different objects.

Example 23 Figure 2.6 (right) shows three possible traces of the execution of this example (more traces are
feasible). Below the traces, the expressions P1, P2 and P3 show the parallel cost for each trace. The main
observation here is that the parallel cost varies depending on the duration of the tasks. It will be the worst
(maximum) value of such expressions, that is, P=max(P1, P2, P3, . . . ). In 2© p1 is shorter than m2, and
s executes before q. In 3©, q is scheduled before s, resulting in different parallel cost expressions. In 1©, the
processor of object y becomes idle after executing s and must wait for task q to arrive.

18



Envisage Deliverable D3.3.2 Resource Analysis

In the general case, the inference of parallel cost is complicated because: (1) It is unknown if the processor
is available when we spawn a task, as this depends on the duration of the tasks that were already in the
queue; e.g., when task q is spawned we do not know if the processor is idle (trace 1©) or if it is taken (trace 2©).
Thus, all scenarios must be considered; (2) objects can be dynamically created, and tasks can be dynamically
spawned among the different objects (e.g., from object o we spawn tasks at two other objects). Besides, tasks
can be spawned in a circular way; e.g., task s could make a call back to object x; (3) Tasks can be spawned
inside loops, we might even have non-terminating loops that create an unbounded number of tasks. We use
a distributed flow graph (DFG) to capture the different flows of execution that the distributed system can
perform. We use the standard partitioning of methods into blocks to build the control flow graph of the
program. The nodes in the DFG are the blocks of the control flow graph (CFG) combined with the object’s
identity and are used as cost centers when obtaining the upper bound as in Section 2.1. The edges represent
the control flow in the sequential execution (drawn with normal arrows) and all possible orderings of tasks
in the object’s queues (drawn with dashed arrows) since, when the processor is released, any pending task
of the same object could start executing.

Example 24 Figure 2.7 shows the DFG for the program in Figure 2.6. Nodes in gray are the exit nodes of
the methods, and it implies that the execution can terminate executing o:m3, x:p2, y:s or y:q. Solid edges
include those existing in the CFG of the sequential program but combined with the object’s identity and those
derived from calls. The dashed edges model that the execution order of s and q at object y is unknown.

o:m1

o:m2

o:m3

x:p1

x:p2

y:s

y:q

Figure 2.7: DFG for Figure 2.6

Our analysis consists of obtaining the maximal parallel
cost from all possible executions of the program, based on
the DFG. The execution paths in the DFG start in the initial
node that corresponds to the entry method of the program,
and finish in any exit node of a method. The key idea to
obtain the parallel cost from paths in the graph is that the
cost of each block contains not only the cost of the block
itself but this cost is multiplied by the number of times the
block is visited. For the sake of inferring the cost, it is not
relevant the order in which blocks are executed and thus we
use sets instead of sequences. The parallel cost of the distributed system can be over-approximated by the
maximum cost for all paths to nodes that correspond to method exit blocks.

Example 25 Given the DFG in Example 24, we have the following sets:

{{o:m1, o:m2, o:m3}︸ ︷︷ ︸
N1

, {o:m1, x:p1, x:p2}︸ ︷︷ ︸
N2

, {o:m1, x:p1, y:s, y:q}︸ ︷︷ ︸
N3

, {o:m1, o:m2, y:s, y:q}︸ ︷︷ ︸
N4

}

Observe that these sets represent traces of the program. The execution captured by N1 corresponds to trace
1© of Figure 2.6. In this trace, the code executed at object o leads to the maximal cost. Similarly, the set N3

corresponds to trace 2© and N4 corresponds to trace 3©. The set N2 corresponds to a trace where x:p2 leads to
the maximal cost (not shown in Figure 2.6). The cost is obtained by using the block-level costs for all nodes
that compose the sets above. The overall parallel cost is computed as:

max(CN1
, CN2

, CN3
, CN4

) where

CN1 = Co:m1 + Co:m2 + Co:m3 ,
CN2 = Co:m1 + Cx:p1 + Cx:p2 ,
CN3 = Co:m1 + Cx:p1 + Cy:s + Cy:q,
CN4 = Co:m1 + Co:m2 + Cy:s + Cy:q

Importantly, the parallel cost is more precise than the serial cost because all paths have at least one missing
node. For instance, N1 does not contain the cost of x:p1, x:p2, y:s, y:q and N3 does not contain the cost of
o:m2, o:m3, x:p2.
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1 Unit main(Int n){
2 while(n>0){
3 Job j=new Job();
4 j!start(10);
5 await duration(1,1);
6 n= n−1;
7 }
8 }

9 class Job{
10 Unit start(Int dur){
11 while(dur>0){
12 [Cost: 1] dur=dur−1;
13 await duration(1,1);
14 }
15 }
16 }

Figure 2.8: Example of timed model
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Figure 2.9: Resource consumption in time of the example in Fig.2.8

2.3.5 Cost Analysis in Time

With the introduction of concurrency and distribution, the concept of resource consumption or cost becomes
much richer that in the traditional sequential non-distributed setting. Instead of having a single magnitude,
we can have a cost for each distributed component (using cost centers) and other cost measures such as peak
cost or parallel cost (See Sections 2.3.3 and 2.3.4).

One of the possibilities that ABS offers is to extend its models with time annotations [21]. These time
annotations model the passing of time during the execution of the model and add a new dimension to the cost
of a model. Given an ABS model with time annotations, we want to obtain upper bounds on the resource
consumption at any given time. Instead of having a simple measure of how many resources are needed to
execute a model, we can obtain a profile of how many resources are needed at each time interval and how
the resource requirements evolve with the passage of time.

Example 26 The code in Figure 2.8 represents a simple model with time annotations (Lines 5 and 13). The
main method launches n jobs of duration 10 (Line 4). However, the jobs are not launched simultaneously but
one each time unit. The jobs take 10 time units to complete and consume one cost unit at a time (Line 12).

In Figure 2.9 we can see the cost in time of the example for n = 20. The number of running jobs grows
steadily from 1 to 10. At that point, the jobs launched at the beginning start to finish but new jobs keep being
added until the time is 20. After time 20, no more jobs are created and the existing ones finish one by one
until the time is 30.

SACO can generate the following piece-wise upper bound that precisely represents the model’s behavior:
Upper Bound Precondition
0 (to = n+ 1 ∧ to >= 2 ∧ t >= to + 9) ∨ (to = 1 ∧ 0 >= n ∧ t >= 1)
1 (t = 1∧to = n+1∧to >= 3)∨(to = n+1∧to+8 = t∧to >= 2)∨(n = 1∧t = 1∧to = 2)
10 (to = n+1∧ t >= 11∧ to >= t+2)∨ (t = 10∧ to = n+1∧ to >= 12)∨ (n = t∧n+1 =

to ∧ n >= 11) ∨ (n = 10 ∧ t = 10 ∧ to = 11)
n (to = n+ 1 ∧ 9 >= t ∧ to >= 2 ∧ t >= to) ∨ (t = 10 ∧ n+ 1 = to ∧ 9 >= n ∧ n >= 2)
t (to = n+ 1 ∧ 9 >= t ∧ t >= 2 ∧ to >= t+ 2) ∨ (n = t ∧ n+ 1 = to ∧ 9 >= n ∧ n >= 2)
n+ 10− t (to = n+ 1 ∧ t >= 11 ∧ to + 7 >= t ∧ t >= to)
n is the entry parameter, t the time we want to observe and t0 the final time after the execution of method

main. If we evaluate this upper bound for n = 20 and for the interval t = [1..30], we obtain the graph in
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Example 1 Example 2 Example 3

while(0<i && i<n){
if(dir==1)

i=i+1;
else

i=i−1;
}

while(x>0 && y>0){
if(∗){

x=x−1;
y=r;

} else{
y=y−1;

}
}

while(x>0){
while(y>0 && ∗){

y=y−1;
}
x=x−1;

}

Figure 2.10: Example of complex loops

Figure 2.8.

In order to analyze timed models, we developed a model transformation that takes a model with time
primitives and that generates a regular ABS model whose cost is equivalent to the cost of the original model
at time t. In this transformed model t is simply an additional input parameter of the model. Once the model
has been transformed, we can apply a regular cost analysis to obtain the corresponding upper bounds. In
order to obtain high precision, it might be necessary to use the CoFloCo backend described in Section 2.4.
In particular if we want to obtain piece-wise upper bounds such as the one given in example 26.

This capability to analyze timed ABS models has still some limitations. Only models with explicit
cost annotations without blocking instructions are supported. An instruction is blocking if it can prevent
a complete COG from progressing (such as y.get instructions that are not preceded by the corresponding
await y?). For more details see Appendix I.

The timed analysis presented in this section is integrated within the SACO tool delivered with this
document. Section 3 contains a detailed explanation of its usage.

2.4 CoFloCo: a more precise backend

The cost analyses in SACO follow a two phase approach. In the first phase, a set of cost equations is
generated. Cost equations are recursive equations annotated with constraints that represent the cost of
the target program. In the second phase these cost equations are analyzed and a closed-form upper bound
is generated. That is, an upper bound that can be directly evaluated. This second phase is performed
by PUBS [5] and is common to all cost analyses of SACO. Solving cost equations into a closed form is a
complex process and PUBS fails to obtain (precise) upper bounds for many problems. Because of this, we
developed an alternative backend CoFloCo (Appendix J) that can obtain (more precise) upper bounds for
many programs where PUBS fails. Because of having a compatible interface, CoFloCo has been directly
integrated in the SACO tool as an option so all the analyses can benefit for its increased precision. Section 3
contains a detailed explanation of its usage.

CoFloCo incorporates multiple techniques to achieve higher precision. In Figure 2.10, we illustrate
through examples some of the cases where CoFloCo can obtain better bounds than PUBS:

Ex1 We have a loop that finishes when i reaches 0 or n and that can increase or decrease i in its body. i is
guaranteed to reach 0 or n because whether i is incremented or decremented depends on a condition
that does not change throughout the execution. That is, once entered in the loop, always the same
path in the loop will be taken. That leaves us with two possible execution patterns. One in which
dir = 1 and the loop iterates n − i times and another one in which dir 6= 1 and the loop iterates i
times. CoFloCo is able to analyze these two patterns separately and thus find a bound max(n − i, i)
whereas PUBS does not find any upper bound.

Ex2 The loop decrements either x or y in each iteration given a condition that we consider abstracted away
∗. However, when x is decremented, y is reset to a value r. The first path of the loop can be executed x
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times and the second path can be executed y+(x ∗ r) times which account to y being set to r x times.
In total the upper bound of the loop in the number of iterations is x+ y + (x ∗ r). PUBS consider all
the loop paths together and fails to obtain any bound.

Ex3 If we count the number of times y is modified, PUBS obtain an upper bound x ∗ y. This upper bound
is correct but imprecise. Because y is not reset every time the inner loop is reached, it can be easily
seen that y is a valid and more precise upper bound despite having two nested loops. This bound is
the one obtained by CoFloCo.

Traditionally, cost analyses obtain a single upper bound function valid for all possible input values. This
information can be insufficient in cases where the behavior of a program or model depends heavily on the
values of the input parameters. CoFloCo can obtain a set of conditional upper bounds. Conditional upper
bounds are upper bounds that are valid as long as a precondition is satisfied. This preconditions are generated
based on the internal structure of the program. If we combine the different conditional upper bounds we can
generate a piece-wise upper bound function that provide us with more detailed information of the behavior
of the analyzed program.

Example 27 In the example 1 from Figure 2.10, we can obtain the following piece-wise upper bound:
Upper Bound Precondition
n− i dir = 1 ∧ i ≥ 1 ∧ i ≤ n− 1
i dir 6= 1 ∧ i ≥ 1 ∧ i ≤ n− 1
0 (i ≤ 0) ∨ (i ≥ n)
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End User Documentation

3.1 User Manual

In what follows we present the user manual of SACO by illustrating the different analyses that it is able
to perform. In Figure 3.2, we first show how to start to use SACO within the Envisage collaboratory. For
this, we must first select the analysis in a pull-down menu, and, for executing the analysis, we click on
Apply. The Clear button removes all previous results. Optionally, the parameters of the selected analysis
can be configured by clicking on Settings (details are given in Section 3.1.1). Finally, the results of the
selected analysis are presented in the console. This can be done by means of graphs, text messages, markers,
highlighters in the code, and interactions among them. In the following, we describe the use of SACO by
analyzing the examples studied throughout Section 2.2.

3.1.1 Parameters of the Analyses

Basic Resource Analysis

Let us start by performing the basic resource analysis described in Section 2.1. We open the file Vend-
ingMachine_init.abs, which contains the code described in Example 1 and that can be found within the
DeliverableExamples project. Note that in Example 1 we had to ignore the await instruction at L26 in the
code of Figure 2.1. Thus, it is commented in the file VendingMachine_init.abs. We click on Refresh Outline
and we select the entry method (method main of class IMain) in the Outline (see right of Figure 3.1). By
clicking Settings a pop-up window appears and shows the configuration that allows us to set up the param-
eters for the analysis. Let us select Resource Analysis and the following parameters can be configured (see
Figure 3.3):
Cost model : The cost model indicates the type of resource that we are interested in measuring. The user
can select among the following cost metrics: termination (only termination is proved), steps (counts the
number of executed instructions), objects (counts the number of executed new instructions), tasks (counts
the number of asynchronous calls to methods), memory (measures the size of the created data structures),
data transmitted (measures the amount of data transmitted among the distributed objects), user-defined
model (allows to write annotations in the code of the form [cost == expr] and the analysis accumulates the
cost specified by the user in expr every time this program point is visited).
Cost centers: This option allows us to decide whether we want to obtain the cost per cost center (i.e., for
each of the abstract objects inferred by the analysis) or a monolithic expression that accumulates the whole
computation in the distributed system. The value no refers to the latter case. If we want to separate the
cost per cost center, we have again two possibilities. The option class shows the cost of all objects of the
same class together, while object indicates the cost attributed to each abstract object.
Asymptotic bounds: Upper bounds can be displayed in asymptotic or non-asymptotic form. The former one
is obtained by removing all constants and subsumed expressions from the non-asymptotic cost, only showing
the complexity order.
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Figure 3.1: Collaboratory web Interface

Figure 3.2: Collaboratory web interface analysis selection
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Figure 3.3: Resource analysis options in SACO

Symbolic or numeric: Next, if the cost model is memory or objects, the upper bounds can be shown either,
symbolically, in terms of symbolic sizes (we use size(A) to refer to the size of an object of type A), or numeric,
by assigning a predefined measure to them.

Debug: sets the verbosity of the output (the higher the number, the more verbose the output).

Rely Guarantee: performs the resource analysis taking into account the possible interleavings in the tasks
execution (see Section 2.2.2).

Peak Cost Analysis: computes the peak cost analysis for all objects which are identified (see Section 2.3.3).

Parallel Cost Analysis: computes the parallel cost analysis of the program (see Section 2.3.4).

Non-cumulative Cost Analysis: computes the non-cumulative cost of the program (see Section 2.3.2).

Backend of the Analysis: SACO uses PUBS or CoFloCo as backend to solve the cost equations (see Section
2.4).

Conditional UBs: computes a set of conditional upper bounds according to some conditions on the input
parameters (see Section 2.4).

Timed Cost Analysis: computes the cost analysis in time (see Section 2.3.5).

Let us analyze the program VendingMachine_init.abs with the default values, except for the asymptotic
bounds parameter that we set to yes. We click on Close and then we click on Apply. Figure 3.4 shows the
resource analysis results yield by SACO. It can be seen that the upper bound is linear and it is a function
on n (the input parameter of main) and on the maximum value that field coins can take, denoted max(coins).
Variable n is wrapped by function nat previously defined to avoid negative costs. The upper bound is shown
in the console view and also at the method’s header when the mouse passes over the marker (see L48 in
Figure 3.4).

Now, let us analyze the main method of the file VendingMachine.abs which contains the code shown in
Figure 2.1—including the await instruction at L26. The results of the analysis can be seen in Figure 3.5, and,
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Figure 3.4: SACO’s Starting Point Resource Analysis
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Figure 3.5: Problem with the basic resource analysis

as we have explained in Example 3, it shows, by using a warning marker, that the resource analysis cannot
infer an upper bound nor guarantee the termination of the program.

Rely-guarantee Resource Analysis

Let us now perform the analysis described in Section 2.2.2 on the main of the VendingMachine.abs file. To do
so, we set the option Rely Guarantee to yes and the Cost Model to termination.

Figure 3.6 shows that SACO proves all methods of the example of Figure 2.1 terminating. Let us now
slightly modify the example to make method insertCoins non-terminating by removing the line with the
instruction coins = coins - 1. The analysis information is displayed as follows. For each strongly connected
component1 (SCC), the analysis places a marker in the entry line to the SCC. If the SCC is terminating, by
clicking on the marker, the lines that compose this SCC are highlighted in yellow (see Figure 3.6). On the
other hand, if the SCC is non-terminating, by clicking on the marker (see L29 of Figure 3.7) SACO highlights
the lines of the SCC in blue. Besides the markers, the list of all SCCs of the program and their computed
termination results are printed by SACO in the console.

At this point, let us perform the rely guarantee resource analysis to infer the cost of the program. We
select the Steps cost model with the option Rely guarantee set to yes. Figure 3.8 shows the computed upper
bound. The upper bound is a function on n (the input parameter of main) multiplied by the maximum value
that field coins can take, denoted max(coins). We can observe that the cost of main is quadratic. In addition,
SACO shows a marker for each method to display their corresponding upper bounds.

May-Happen-in-Parallel with Inter-Procedural Synchronization

Let us analyze with SACO the program shown in Figure 2.2 with the inter-procedural synchronization of
the MHP analysis, as we have described in Section 2.2.3. To do so, we select the May-Happen-in-Parallel
analysis and set the option Inter-Procedural Synchronization to yes. Figure 3.9 shows the output of SACO

1While loops and methods are basically the SCCs in a program.
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Figure 3.6: Rely guarantee termination analysis output of SACO for the example in Figure 2.1

Figure 3.7: Rely Guarantee Termination analysis results for a non-terminating example
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Figure 3.8: Rely guarantee resource analysis results for the example in Figure 2.1

after analyzing method main. By clicking in the blue arrows that appear to the right of the line numbers,
SACO highlights those program points that might happen in parallel with the clicked program point. In
Figure 3.9 we see that the only program points that can happen in parallel with L34 are the end of methods
f and g, which means that both methods must have finished when L34 is reached.

Load Balance

At this point, let us use the resource analysis to study the load balance of the example used in Section 2.3.1.
First, we open the file LoadBalance.abs in the project DeliverableExamples. We start by applying the Resource
Analysis and selecting the option Cost Centers to object. As the concurrency unit of ABS is the object, it
uses the cost centers to assign the cost of each execution step to the object where the step is performed. If
we apply the Resource Analysis to the method C.m, SACO returns that we have two cost centers, one cost
center labelled with [12] which corresponds to the object that executes C.m and [13, 12], which abstracts the
object created at L13. The labels of the nodes contain the program lines where the corresponding object is
created. That is, the node labeled as [13, 12] corresponds to the C object, created at L13 while executing
the main method, node identified by L12. In addition, SACO shows a graph with both nodes in the Console
Graph view. By clicking on the node [12], SACO shows a dialog box with the upper bound on the number
of steps performed by such node. Similarly, by clicking on the node [13, 12], it shows the number of steps
that can be executed by the object identified with [13, 12]. If we analyze method C.mthis, which contains the
modification described in Figure 3.7, the cost is distributed differently, as we have detailed in Figure 3.10.
Such differences can be seen by comparing the expressions shown in Figure 3.10 and those in Figure 3.11.

Then, to obtain the number of instances of each object we can have in C.m2, we perform the Resource-
Analysis setting the options Cost Model to Objects and Cost Centers to Object. Figure 3.12 shows the output
of SACO for this analysis, and it can be seen that, the number of instances of the object identified by [37, 35]
is bounded by n (the input argument of method mthis). Finally, we can apply the ResourceAnalisis to C.m2
selecting Cost Model to Steps and its results are shown in Figure 3.13.

29



Envisage Deliverable D3.3.2 Resource Analysis

Figure 3.9: Inter-Procedural MHP analysis results for the example in Figure 2.2

Figure 3.10: Resource Analysis to get the load balance for method C.m of the program in Figure 2.3
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Figure 3.11: Resource Analysis to get the load balance for method C.mthis of the program in Figure 2.3

Figure 3.12: Resource Analysis to get the number of instances created by C.m2 of the program in Figure 2.3

31



Envisage Deliverable D3.3.2 Resource Analysis

Figure 3.13: Resource Analysis to get the load balance for method C.m2 of the program in Figure 2.3

Transmission data sizes

Now, let us perform the transmission data size analysis for the example shown in Figure 2.4. First, we open the
file DataTrasmitted.abs in the project DeliverableExamples. The transmission data size analysis is performed
by selecting the analysis Resource Analysis and setting the option Cost Model to Data Transmitted. If we apply
the analysis to the method IMain.main of the file DataTrasmitted.abs, the console will show the upper bound
expressions for all possible pairs of objects identified by the analysis. In addition to the console information,
a graph that shows the objects creation is displayed. The Console Graph is shown next to the default console.
By clicking on a node, a message outputs the UBs for all transmissions data sizes that the selected object
can perform and the objects involved in such transmissions. E.g., by clicking on the node [32, 31], which
corresponds to the Master object, we can see the upper bounds on the data transmitted (incoming and
outgoing transmissions) from this object. As before, the labels of the nodes contain the program lines
where the corresponding object is created. For instance, the node labeled as [32, 31] corresponds to the
Master object, created at L32 while executing the main method, the object identified by L31. This can be
seen in Figure 3.14. In such upper bounds, the cost expression c(i) represents the cost of establishing the
communication, that is, I explained in Example 17.

Non-cumulative Cost

The file Non-Cumulative.abs in the project DeliverableExamples contains the program shown at Figure 2.5. Let
us perform the Resource Analysis by setting the option Cost Center to Non-cumulative to method IMain.main
after restoring the default options. Figure 3.15 shows the results obtained by SACO. Such results show
that we have two sets of program points that can lead to the maximum on the number of steps and their
corresponding upper bound expressions. The set [L6, L8, L10] corresponds to the acquire instructions at lines
L6, L8 and L10 of the program.
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Figure 3.14: Transmissions data sizes analysis results for Example 2.4

Figure 3.15: Non-Cumulative Resource Analysis for the program in Figure 2.5
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Figure 3.16: Peak cost analysis results for the example in Figure 2.1

Peak cost analysis

Let us continue by performing the peak cost analysis to VendingMachine_init.abs. Similarly to other analyses,
we first select the entry method (method main in class IMain) in the Outline View and apply the Resource
Analysis with the default options with the exception of the option Peak Cost Analysis, which is enabled to yes.
For each identified object, the peak cost analysis outputs in the console all possible queue configurations and
the cost associated to each of them. As before, SACO shows a graph where the labels of the nodes contain
the program lines where the corresponding object is created. For instance, the graph shown in Figure 3.16,
the node labeled as [49, 48] corresponds to the PrettyPinter object, created at L49 while executing the main
method (L48). By clicking on a node, the queue configurations that have been identified and their costs are
shown in a message. The analysis results that are yield for the peak cost of PrettyPrinter can be seen in
Figure 3.16.

Parallel Cost

Let us perform the parallel cost analysis that we have described in Section 2.3.4. To do so, we open the file
Parallel.abs file of the project DeliverableExamples. Now, we select the entry method IMain.main in the Outline
and apply the Resource Analysis by restoring the default values and setting the Parallel Cost Analysis to yes.
Figure 3.17 shows the computed upper bound expressions obtained for all paths identified in the DFG of the
program. In addition, SACO shows the number of nodes and edges of the computed DFG.

Cost Analysis in Time

Let us continue by performing the cost analysis in time to the program in Timed.abs. We select the entry
method IMain.main in the Outline of the program. Then, we select the Resource Analysis and set the option
Timed to yes. Figure 3.18 shows the output of SACO, showing the results detailed in Example 26 for the
application of the cost analysis in time to the model shown in Figure 2.8.
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Figure 3.17: Parallel Cost analysis for the example in Figure 2.6

Figure 3.18: Cost analysis in time analysis output for the example in Figure 2.8
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Figure 3.19: Resource analysis output for method C.m2 in the example of Figure 2.10 using CoFloCo

CoFloCo Backend

Finally, let us analyze the program CoFloCoExample.abs by using CoFloCo as backend. We can select the
method of interest, that is, C.m, C.m2 or C.m3 and then perform the Resource Analysis with the default
options except the option Backend, which must be set to CoFloCo. Figure 3.19 shows the results of the
analysis of C.m with CoFloCo. Additionally, by setting the option Conditional UBs to yes, we can obtain
conditional upper bounds (shown in Figure 3.20).

36



Envisage Deliverable D3.3.2 Resource Analysis

Figure 3.20: Conditional UBs for method C.m2 in the example of Figure 2.10 using CoFloCo
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Conclusions

This deliverable comprises the main achievements in the task of resource analysis during the first two years
of the Envisage’s project. The main goal has been to infer system level information about the resource
consumption and to take deployment descriptions into account in the analysis. To achieve these goals,
we have enhanced the may-happen-in-parallel analysis used in SACO. We have worked in the integration
of scheduling policies in the analysis, in particular, we have considered priority-based scheduling, which
is one of the policies more commonly adopted in practice. Another important contribution has been the
extension of the may-happen-in-parallel analysis to handel inter-procedural synchronization. Our next goal
has been to infer system-level resource analysis information. The first step is to be able to bound the
resource consumption of tasks which interleave their execution. This is challenging because at the points in
which tasks might interleave their execution, we must find out the tasks that can be executing and prove
termination properties on them. Next, we infer the peak of the resource consumption at each location of a
distributed system. This information is useful to dimensioning the distributed system: it will allow us to
determine the size of each location task queue; the required size of the location’s memory; and the processor
execution speed required to guarantee a certain response time under heavy load (i.e. at the peak). We
have also investigated the notion of parallel cost that allows us to infer an overall estimation of the resource
consumption by exploiting the fact that computations across different distributed components are executed
in parallel. We have investigated the inference of new performance indicators, like the load-balance, the level
of parallelism achieved and the data transmission cost. The latter is an important contribution to be able
to infer the response times of distributed components. In particular, if one knows the bandwidth conditions
among each pair of locations, we can infer the time required to transmit the data and to retrieve the result.
This time should be added to the time required to carry out the computation at each location, which is
an orthogonal issue. Conversely, we can use our analysis to establish the bandwidth conditions required
to ensure a certain response time. The resource analysis in time can be useful to investigate the resource
consumption of a system according to various assumptions about the execution environment that take the
form of time annotations. For example, these time annotations could be the result of previous resource
analysis of the bandwidth usage. Finally, the techniques developed in CoFloCo widen the range of systems
that can be analyzed and increase the precision of all the related analyses.
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Glossary

ABS stands for Abstract Behavioral Specification.

Abstract queue configuration contains an over-approximation of the sets of tasks that may be simul-
taneously queued in a location task queue during any execution of the program.

Bandwidth is a measurement of bit-rate of data communication resources expressed in bits per second or
multiples of it.

Concurrent interleaving is the ability to interleave the execution of several processes in a location, either
using explicit language constructs or preemptively.

Cost center is a symbolic construct used by resource analysis in cost expressions to distribute the cost
among the components of a system.

Distributed Flow Graph (DFG) captures the different flows of execution that the distributed system
can perform

Location is an abstract representation of a processing unit in the ABS language, which may refer to a
conceptual processor, an actual processor, or a core in a multiprocessor.

May-happen-in-parallel analysis is a static analysis that infers the pairs of instructions in a program
that may execute in parallel.

Non-cumulative cost analysis is a static analysis to estimate the maximum of the resource consumption
for non-cumulative resources that increase and decrease along the computation (i.e., resources can be acquired
and released)

Parallel Cost Analysis is a static analysis that infers the parallel cost of the program, i.e. a new notion
of cost that takes into account that some tasks execute in parallel across different distributed components
and thus the total cost is the maximum among them.

Peak cost analysis is a resource analysis that infers the maximum amount of resources that a location
might require along any execution of the program.

Peak resource consumption is the maximum amount of resources that a location might require along
any execution of the program.

Performance indicators are metrics that allow us to assess the quality of a distributed system, such us
whether the load in the system is well-balanced (i.e., all distributed nodes execute a similar number of steps),
or how the communication cost between nodes is distributed.
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Envisage Deliverable D3.3.2 Resource Analysis

Priority-based scheduling is a scheduling policy that, given priorities assigned to tasks, selects the next
task to be executed based on such priorities.

Quantified queue configuration is a bound on the peak resource consumption of a location.

Ranking function is a function that bounds the number of iterations of a loop in a program.

Release point is a program point in a concurrent or distributed program in which the processor is released
and therefore other pending tasks can execute.

Rely-guarantee is a style of reasoning used for compositional verification and analysis of thread-based
concurrent systems.

Resource is a cost metrics to be measured when analyzing a program. Classical measures are the number
of executed instructions, memory usage, or the number of calls to a given method.

Resource analysis is a static analysis that aims at bounding the consumption of some resource by in-
specting a program without having to actually run it.

Scheduling policy in a concurrent program is the policy used for selecting the task to be executed from
the queue of pending tasks.

Strongly connected component is a set of nodes that form a cycle in a graph.

Task queue is a list of tasks pending to be executed in a location.

Term size is a measurement of the size of a functional data structure that counts 1 for each basic value
or data type constructor.

Termination analysis is a static analysis that aims at inferring that a program terminates.

Total resource consumption is the total amount of resources that a location may consume in any
execution of the program.

Transmission data size is the size of the data transmitted between two locations in any execution.

Upper bound is an expression that bounds the resource consumption of a program depending on some
parameters, usually input arguments or fields.
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Article May-Happen-in-Parallel Analysis
for Priority-based Scheduling, [15]
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May-Happen-in-Parallel Analysis for
Priority-based Scheduling

Authors’ Version?

Elvira Albert, Samir Genaim, and Enrique Martin-Martin

Complutense University of Madrid, Spain

Abstract. A may-happen-in-parallel (MHP) analysis infers the sets of
pairs of program points that may execute in parallel along a program’s
execution. This is an essential piece of information to detect data races,
and also to infer more complex properties of concurrent programs, e.g.,
deadlock freeness, termination and resource consumption analyses can
greatly benefit from the MHP relations to increase their accuracy. Previ-
ous MHP analyses have assumed a worst case scenario by adopting a sim-
plistic (non-deterministic) task scheduler which can select any available
task. While the results of the analysis for a non-deterministic scheduler
are obviously sound, they can lead to an overly pessimistic result. We
present an MHP analysis for an asynchronous language with prioritized
tasks buffers. Priority-based scheduling is arguably the most common
scheduling strategy adopted in the implementation of concurrent lan-
guages. The challenge is to be able to take task priorities into account
at static analysis time in order to filter out unfeasible MHP pairs.

1 Introduction

In asynchronous programming, programmers divide computations into shorter
tasks which may create additional tasks to be executed asynchronously. Each
task is placed into a task-buffer which can execute in parallel with other task-
buffers. The use of a synchronization mechanism enables that the execution of
a task is synchronized with the completion of another task. Synchronization can
be performed via shared-memory [9] or via future variables [13, 8]. Concurrent
interleavings in a buffer can occur if, while a task is awaiting for the completion of
another task, the processor is released such that another pending task can start
to execute. This programming model captures the essence of the concurrency
models in X10 [13], ABS [12], Erlang [1] and Scala [11], and it is the basis of

? Appeared in the Proc. of the 19th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR-19). Springer, Lecture Notes
in Computer Science volume 8312, subline Advanced Research in Computing and
Software Science (ARCoSS), 2013, pp 18–34. The final publication is available at
link.springer.com.



actor-like concurrency [2, 11]. The most common strategy to schedule tasks is
undoubtedly priority-based scheduling. Each task has a priority level such that
when the active task executing in the buffer releases the processor, a highest
priority pending task is taken from its buffer and begins executing. Asynchronous
programming with prioritized tasks buffers has been used to model real-world
asynchronous software, e.g., Windows drivers, engines of modern web browsers,
Linux’s work queues, among others (see [9] and its references).

The higher level of abstraction that asynchronous programming provides,
when compared to lower-level mechanisms like the use of multi-threading and
locks, allows writing software which is more reliable and more amenable to be
analyzed. In spite of this, proving error-freeness of these programs is still quite
challenging. The difficulties are mostly related to: (1) Tasks interleavings, typ-
ically a programmer decomposes a task t into subtasks t1, . . . , tn. Even if each
of the sub-tasks would execute serially, it can happen that a task k unrelated
to this computation interleaves its execution between ti and ti+1. If this task
k changes the shared-memory, it can interfere with the computation in several
ways, e.g., leading to non-termination, to an unbounded resource consumption,
and to deadlocks. (2) Buffers parallelism, tasks executing across several task-
buffers can run in parallel, this could lead to deadlocks and data races.

In this paper, we present a may-happen-in-parallel (MHP) analysis which
identifies pairs of statements that can execute in parallel and in an interleaved
way (see [13, 3]). MHP is a crucial analysis to later prove the properties men-
tioned above. It directly allows ensuring absence of data races. Besides, MHP
pairs allow us to greatly improve the accuracy of deadlock analysis [16, 10] as
it discards unfeasible deadlocks when the instructions involved in a possible
deadlock cycle cannot happen in parallel. Also, it improves the accuracy of ter-
mination and cost analysis [5] since it allows discarding unfeasible interleavings.
For instance, consider a loop like while (l!=null) {x=b.m(l.data); await

x?; l=l.next;}, where x=b.m(e) posts an asynchronous task m(e) on buffer
b, and the instruction await x? synchronizes with the completion of the asyn-
chronous task by means of the future variable x. If the asynchronous task is not
completed (x is not ready), the current task releases the processor and another
task can take it. This loop terminates provided no instruction that increases the
length of the list l interleaves or executes in parallel with the body of this loop.

Existing MHP analyses [13, 3] assume a worst case scenario by adopting a
simplistic (non-deterministic) task scheduler which can select any available task.
While the results of the analysis for a non-deterministic scheduler are obviously
sound, they can lead to an overly pessimistic result and report false errors due
to unfeasible schedulings in the task order selection. For instance, consider two
buffers b1 and b2 and assume we are executing a task in b1 with the following
code “x=b1.m1(e1); y=b1.m2(e2); await x?; b2.m3(e3);”. If the priority of
the task executing m1 is smaller than that of m2, then it is ensured that task
m2 and m3 will not execute in parallel even if the synchronization via await is
on the completion of m1. This is because at the await instruction, when the
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processor is released, m2 will be selected by the priority-based scheduler before
m1. A non-deterministic scheduler would give this spurious parallelism.

Our starting point is the MHP analysis for non-deterministic scheduling of
[3], which distinguishes a local phase in which one inspects the code of each task
locally, and ignores transitive calls, and a global phase in which the results of
the local analysis are composed to build a global MHP-graph which captures the
parallelism with transitive calls and among multiple task-buffers. The contribu-
tion of this paper is an MHP analysis for a priority-based scheduling which takes
priorities into account both at the local and global levels of the analysis. As each
buffer has its own scheduler which is independent of other buffer’s schedulers,
priorities can be only applied to establish the order of execution among the tasks
executing on the same task-buffer (intra-buffer MHP pairs). Interestingly, even
by only using priorities at the intra-buffer level, we are also able to implicitly
eliminate unfeasible inter-buffer MHP pairs. We have implemented our analysis
in the MayPar system [4] and evaluated it on some challenging examples, includ-
ing some of the benchmarks used in [9]. The system can be used online through
a web interface where the benchmarks used are also available.

2 Language

We consider asynchronous programs with priority-levels and multiple tasks bu-
ffers. Tasks can be synchronized with the completion of other tasks (of the same
or of a different buffer) using futures. In this model, only highest-priority tasks
may be dispatched, and tasks from different task buffers execute in parallel. The
number of task buffers does not have to be known a priori and task buffers can
be dynamically created. We keep the concept of task-buffer disconnected from
physical entities, such as processes, threads, objects, processors, cores, etc. In [9],
particular mappings of task-buffers to such entities in real-world asynchronous
systems are described. Our model captures the essence of the concurrency and
distribution models used in X10 [13] and in actor-languages (including ABS [12],
Erlang [1] and Scala [11]). It also has many similarities with [9], the main differ-
ence being that the synchronization mechanism is by means of future variables
(instead of using the shared-memory for this purpose).

2.1 Syntax

Each program declares a sequence of global variables g0, . . . , gn and a sequence
of methods named m0, . . . ,mi (that may declare local variables) such that one
of the methods, named main, corresponds to the initial method which is never
posted or called and it is executing in a buffer with identifier 0. The grammar
below describes the syntax of our programs. Here, T are types, m procedure
names, e expressions, x can be global or local variables, buffer identifiers b are
local variables, f are future variables, and priority levels p are natural numbers.
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M ::= T m(T̄ x̄){s; return e; }
s ::= s; s | x = e | if e then s else s | while e do s |

await f? | b = newBuffer | f = b.m(〈ē〉, p) | release

The notation T̄ is used as a shorthand for T1, ...Tn, and similarly for other names.
We use the special buffer identifier this to denote the current buffer. For the sake
of generality, the syntax of expressions is left free and also the set of types is not
specified. We assume that every method ends with a return instruction.

The concurrency model is as follows. Each buffer has a lock that is shared by
all tasks that belong to the buffer. Data synchronization is by means of future
variables as follows. An await y? instruction is used to synchronize with the
result of executing task y=b.m(〈z̄〉, p) such that await y? is executed only when
the future variable y is available (and hence the task executing m is finished).
In the meantime, the buffer’s lock can be released and some highest priority
pending task on that buffer can take it. The instruction release can be used to
unconditionally release the processor so that other pending task can take it.
Therefore, our concurrency model is cooperative as processor release points are
explicit in the code, in contrast to a preemptive model in which a higher priority
task can interrupt the execution of a lower priority task at any point (see Sec. 7).
W.l.o.g, we assume that all methods in a program have different names.

2.2 Semantics

A program state St = 〈g, Buf〉 is a mapping g from the global variables to their
values along with all created buffers Buf. Buf is of the form buffer1 ‖ . . . ‖ buffern

denoting the parallel execution of the created task-buffers. Each buffer is a term
buffer(bid , lk,Q) where bid is the buffer identifier, lk is the identifier of the active
task that holds the buffer’s lock or ⊥ if the buffer’s lock is free, and Q is the
set of tasks in the buffer. Only one task can be active (running) in each buffer
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(tid ,m, p, l, s) where tid
is a unique task identifier, m is the method name executing in the task, p is the
task priority level (the larger the number, the higher the priority), l is a mapping
from local (possibly future) variables to their values, and s is the sequence of
instructions to be executed or s = ε(v) if the task has terminated and the return
value v is available. Created buffers and tasks never disappear from the state.

The execution of a program starts from an initial state where we have an
initial buffer with identifier 0 executing task 0 of the form S0 = 〈g, buffer(0, 0,
{tsk(0,main, p, l, body(main))})〉. Here, g contains initial values for the global vari-
ables, l maps parameters to their initial values and local reference and future
variables to null (standard initialization), p is the priority given to main, and
body(m) refers to the sequence of instructions in the method m. The execu-
tion proceeds from S0 by selecting non-deterministically one of the buffers and
applying the semantic rules depicted in Fig. 1. We omit the treatment of the
sequential instructions as it is standard, and we also omit the global memory g
from the state as it is only modified by the sequential instructions.
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(newbuffer)
fresh(bid ′) , l′ = l[x→ bid ′], t = tsk(tid ,m, p, l, 〈x = newBuffer; s〉)

buffer(bid , tid , {t} ∪ Q) ‖ B ;

buffer(bid , tid , {tsk(tid ,m, p, l′, s)} ∪ Q) ‖ buffer(bid ′,⊥, {}) ‖ B

(priority)
highestP (Q) = tid , t = tsk(tid , , , , s) ∈ Q, s 6= ε(v)

buffer(bid ,⊥,Q) ‖ B ; buffer(bid , tid ,Q) ‖ B

(async)

l(x) = bid1, fresh(tid1), l′ = l[y → tid1], l1 = buildLocals(z̄,m1)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈y = x.m1(z, p1); s〉} ∪ Q) ‖ buffer(bid1, ,Q′) ‖ B ;

buffer(bid , tid , {tsk(tid ,m, p, l′, s)} ∪ Q) ‖
buffer(bid1, , {tsk(tid1,m1, p1, l1, body(m1))} ∪ Q′) ‖ B

(await1)
l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 = ε(v)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B ;

buffer(bid , tid , {tsk(tid ,m, p, l, s)} ∪ Q) ‖ B

(await2)
l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 6= ε(v)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B ;

buffer(bid ,⊥, {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B

(release) buffer(bid , tid , {tsk(tid ,m, p, l, 〈release; s〉)} ∪ Q) ‖ B ;

buffer(bid ,⊥, {tsk(tid ,m, p, l, s)} ∪ Q) ‖ B

(return)
v = l(x)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈return x; 〉)} ∪ Q) ‖ B ;

buffer(bid ,⊥, {tsk(tid ,m, p, l, ε(v))} ∪ Q) ‖ B

Fig. 1. Summarized Semantics for a Priority-based Scheduling Async Language

Newbuffer: an active task tid in buffer bid creates a buffer bid ′ which is
introduced to the state with a free lock. Priority: Function highestP returns a
highest-priority task that is not finished, and it obtains its buffer’s lock. Async:
A method call creates a new task (the initial state is created by buildLocals)
with a fresh task identifier tid1 which is associated to the corresponding future
variable y in l′. We have assumed that bid 6= bid1, but the case bid = bid1 is
analogous, the new task tid1 is simply added to Q of bid . Await1: If the future
variable we are awaiting for points to a finished task, the await can be completed.
The finished task t1 is looked up in all buffers in the current state (denoted Buf).
Await2: Otherwise, the task yields the lock so that any other task of the same
buffer can take it. Release: the current task frees the lock. Return: When return
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1 // g1 global variable
2 // g2 global variable
3 void task(){
4 g2 = g2 + 1;
5 }
6 void f(){
7 while( g1 > 0 ){
8 g1 = g1 − 1;
9 g2 = g2 + 1;

10 release;
11 }
12 }

13 void m(){
14 while( g1 < 0 ){
15 g1 = g1 + 1;
16 release;
17 }
18 }
19 void h(){
20 while(g1 > 0){
21 g1 = g1 − 2;
22 release;
23 }
24 }

25 // main has priority 0
26 main(){
27 this.f(<>,10);
28 Fut x = this.m(<>,5);
29 await x?;
30 this.h(<>,10);
31 Buffer o=newbuffer;
32 o.task(<>,0);
33 ...
34 }

Fig. 2. Example for inter-buffer and intra-buffer may-happen-in-parallel relations

is executed, the return value is stored in v so that it can be obtained by the future
variable that points to that task. Besides, the lock is released and will never be
taken again by that task. Consequently, that task is finished (marked by adding
the instruction ε(v)) but it does not disappear from the state as its return value
may be needed later on in an await.

Example 1. Figure 2 shows some simple methods which will illustrate different
aspects of our analysis. In particular, non-termination of certain tasks and data
races can occur if priorities are not properly assigned by the programmer, and
later considered by the analysis. Our analysis will take the assigned priorities
into account in order to gather the necessary MHP information to be able to
guarantee termination and absence of data races. Let us by now only show some
execution steps. The execution starts from a buffer 0 with a single task in which
we are executing the main method. Let us assume that such task has been given
the lowest priority 0. The global memory g is assumed to be properly initialized.

St0 ≡ 〈g, buffer(0, 0, {tsk(0,main, 0, l, body(main))})〉 async−−−−→
St1 ≡ 〈g, buffer(0, 0, {tsk(0, ..), tsk(1, f, 10, ..)})〉 async−−−−→
St2 ≡ 〈g, buffer(0, 0, {tsk(0, ..), tsk(1, ..), tsk(2,m, 5..)})〉 await−−−→
St3 ≡ 〈g, buffer(0,⊥, {tsk(0, .., await), tsk(1, ..), tsk(2,m, 5..)})〉 priority−−−−−→
St4 ≡ 〈g, buffer(0, 1, {tsk(0, .., await), tsk(1, ..), tsk(2,m, 5..)})〉 −→∗
St5 ≡ 〈g′, buffer(0, 1, {tsk(0, .., await), tsk(1, .., return), tsk(2,m, 5..)})〉 return−−−−→
St6 ≡ 〈g′, buffer(0,⊥, {tsk(0, .., await), tsk(1, .., ε(v)), tsk(2,m, 5..)})〉 priority−−−−−→
St7 ≡ 〈g′, buffer(0, 2, {tsk(0, .., await), tsk(1, .., ε(v)), tsk(2,m, 5..)})〉 −→∗

St8 ≡ 〈g′′, buffer(0, 0, {tsk(0, ..), tsk(1, .., ε(v)), tsk(2, .., ε(v)), tsk(3..)})〉 newbuf−−−−−→
St9 ≡ 〈g′′, buffer(0, 0, {tsk(0..), tsk(1..), tsk(2..), tsk(3..)}), 〉buffer(1,⊥, {}) async−−−−→
St10 ≡ 〈g′′, buffer(0, 0, {tsk(0..), ..}), 〉buffer(1,⊥, {task(4..)}) priority−−−−−→
St11 ≡ 〈g′′, buffer(0, 0, {tsk(0..), ..}), 〉buffer(1, 4, {task(4..)}) ...−→
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At St1, we execute the instruction at Line 27 (L27 for short) that posts, in the
current buffer this, a new task (with identifier 1) that will execute method f with
priority 10. The next step St2 posts another task (with identifier 2) in the current
buffer with a lower priority (namely 5). At St3, an await instruction (L29) is used
to synchronize the execution with the completion of the task 2 spawned at L28.
As the task executing f has higher priority than the one executing m, it will be
selected for execution at St4. After returning from the execution of task 1 in St5,
the priority rule selects task 2 for execution in St6. An interesting aspect is
that after creating buffer 1 at St10, execution can non-deterministically choose
buffer 0 or 1 (in St11 buffer 1 has been selected).

3 Definition of MHP

We first formally define the concrete property “MHP” that we want to approx-
imate using static analysis. In what follows, we assume that instructions are
labelled such that it is possible to obtain the corresponding program point iden-
tifiers. We also assume that program points are globally different. We use pm̊
to refer to the entry program point of method m, and pṁ to all program points
after its return instruction. The set of all program points of P is denoted by PP .
We write p ∈ m to indicate that program point p belongs to method m. Given a
sequence of instructions s, we use pp(s) to refer to the program point identifier
associated with its first instruction and pp(ε(v)) = pṁ.

Definition 1 (concrete MHP). Given a program P , its MHP is defined as
EP =∪{ES |S0  ∗ S} where for S=〈g, Buf〉, the set ES is ES = {(pp(s1), pp(s2)) |
buffer(bid1, ,Q1)∈Buf, buffer(bid2, ,Q2)∈Buf, t1 = tsk(tid1, , , , s1)∈Q1, t2 =
tsk(tid2, , , , s2)∈Q2, tid1 6= tid2}.

The above definition considers the union of the pairs obtained from all deriva-
tions from S0. This is because execution is non-deterministic in two dimensions:
(1) in the selection of the buffer that is chosen for execution, since the buffers
have access to the global memory different behaviours (and thus MHP pairs)
can be obtained depending on the execution order, and (2) when there is more
than one task with the highest priority, the selection is non-deterministic.

The MHP pairs can originate from direct or indirect task creation relation-
ships. For instance, the parallelism between the points of the tasks executing h

and task is indirect because they do not invoke one to the other directly, but
a third task main invokes both of them. However, the parallelism between the
points of the task main and those of task is direct because the first one invokes
directly the latter one. Def. 1 captures all these forms of parallelism.

Importantly, EP includes both intra-buffer and inter-buffer MHP pairs, each
of which are relevant for different kinds of applications, as we explain below.
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Intra-buffer MHP pairs. Intra-buffer relations in Def. 1 are pairs in which bid1 ≡
bid2. We always have that the first instructions of all tasks which are pending
in the buffer’s queue may-happen-in-parallel among them, and also with the
instruction of the task which is currently active (has the buffer’s lock). This
piece of information allows approximating the tasks interleavings that we may
have in a considered buffer. In particular, when the execution is at a processor
release point, we use the MHP pairs to see the instructions that may execute
if the processor is released. Information about task interleavings is essential to
infer termination and resource consumption in any concurrent setting (see [5]).

Example 2. Consider the execution trace in Ex. 1, we have the MHP pairs
(29,pf̊ ) and (29,pm̊) since when the active task 0 is executing the await (point

29) in St4, we have that tasks 1 and 2 are pending at their entry points. The
following execution steps give rise to many other MHP pairs. The most relevant
point to note is that in St8 when the execution is at L30 and onwards, the tasks
1 and 2 are guaranteed to be at their exit program points pḟ and pṁ. Thus,
we will not have any MHP pair between the instructions that update the global
variable g1 (L8 and L15 in tasks 1 and 2, resp.) and the release point at L22
of the task 3 executing h. This information is essential to prove the termination
of h, as the analysis needs to be sure that the loop counter cannot be modified
by instructions of other tasks that may execute in parallel with the body of this
loop. The information is also needed to obtain an upper bound on the number
of iterations of the loop and then infer the resource consumption of h.

Inter-buffer MHP pairs. In addition to intra-buffer MHP relations, inter-buffer
MHP pairs happen when bid1 6= bid2. In this case, we obtain the instructions
that may execute in parallel in different buffers. This information is relevant
at least for two purposes: (1) to detect data-races in the access to the global
memory and (2) to detect deadlocks and livelocks when one buffer is awaiting
for the completion of one task running in another buffer, while such other task
is awaiting for the completion of the current task, and the execution of these
(synchronization) instructions happens in parallel (or simultaneously). If the
language allows blocking the execution of the buffer such that no other pending
task can take it, we have a deadlock, otherwise we have a livelock.

Example 3. Consider again the execution trace in Ex. 1, in St10 we have created
a new buffer 1 in which task 4 starts to execute at St11. We will have the inter-
buffer pair (21,4) as we can have L21 executing in buffer 0 and L4 executing
in buffer 1. Note that, if task had updated g1 instead of updating g2, we would
have had a data race. Data races can lead to different types of errors, and static
analyses that detect them are of utmost importance.

4 Method-Level Analysis with Priorities

In this section, we present the local phase of our MHP analysis which assigns
to each program point, of a given method, an abstract state that describes the
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(1) τp(y=this.m(x̄, p),M) = M [〈y,O, Z,R〉/〈?,O, Z,R〉] ∪ {〈y, t, m̌, p〉}
(2) τp(y=x.m(x̄, p),M) = M [〈y,O, Z,R〉/〈?,O, Z,R〉] ∪ {〈y, o, m̃, p〉}
(3) τp(release,M) = τp(release1; release2,M)
(4) τp(release1,M) = M [〈Y, t, m̌, p〉/〈Y, t, m̃, p〉] where p ≥ p

(5) τp(release2,M) = M [〈Y, t, m̃, p〉/〈Y, t, m̂, p〉] where p > p

(6) τp(await y?,M) = M ′[〈y,O, m̃,R〉/〈y,O, m̂,R〉]
where M ′ = τp(release1; release2,M)

(7) τp(return,M) = M [〈Y, t, m̌, R〉/〈Y, t, m̃, R〉]
(8) τp(b,M) = M otherwise

Fig. 3. Method-level MHP transfer function: τp : s× B 7→ B.

status of the tasks that have been locally invoked so far. The status of a task
can be (1) pending, i.e., it is at the entry program point; (2) finished, i.e., it has
executed a return instruction already; or (3) active, i.e., it can be executing at
any program point (including the entry and the exit). The analysis uses MHP
atoms which are syntactic objects of the form 〈F,O, T,R〉 where

– F is either a valid future variable name or ?. The value ? indicates that the
task might not be associated with any future variable, either because there is
no need to synchronize with its result, or because the future has been reused
and thus the association lost (this does not happen in our example);

– O is the buffer name that can be t or o, which resp. indicate that the task
is executing on the same buffer or maybe on a different one;

– T can be m̌, m̃, or m̂ where m is a method name. It indicates that the
corresponding task is an instance of method m, and its status can be pending,
active, or finished resp.;

– P is a natural number indicating the priority of the corresponding task.

Intuitively, an MHP atom 〈F,O, T,R〉 is read as follows: task T might be exe-
cuting (in some status) on buffer O with priority P , and one can wait for it to
finish using future variable F . The set of all MHP atoms is denoted by A.

Example 4. The MHP atom 〈x, t, m̃, 5〉 indicates that there is an instance of
method m running in parallel, in the same buffer. This task is active (i.e., can
be at any program point), has priority 5, and is associated with the future x.

The MHP atom 〈?, o, ˆtask, 0〉 indicates that there is an instance of method task
running in parallel, maybe in a different buffer. This task is finished (i.e., has
executed return), has priority 0, and it is associated to any future variable.

An abstract state is a multiset of MHP atoms from A. The set of all multisets
over A is denoted by B. Given M ∈ B, we write (a, i) ∈ M to indicate that a
appears exactly i > 0 times in M . We omit i when it is 1. The local analysis
is applied on each method and, as a result, it assigns an abstract state from
B to each program point in the program. The analysis takes into account the
priority of the method being analyzed. Thus, since a method might be called with
different priorities p1, . . . , pn, the analysis should be repeated for each pi. For
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the sake of simplifying the presentation, we assume that each method is always
called with the same priority. Handling several priorities is a context-sensitive
analysis problem that can be done by, e.g., cloning the corresponding code.

The analysis of a given method, with respect to priority p, abstractly executes
its code over abstract elements from B. This execution uses a transfer function
τp, depicted in Fig. 3, to rewrite abstract states. Given an instruction b and an
abstract state M ∈ B, τp(b,M) computes a new abstract state that results from
abstractly executing b in state M . Note that the subscript p in τp is the priority
of the method being analyzed. Let us explain the different cases of τp:

– (1) Posting a task on the same buffer adds a new MHP atom 〈y, t, m̌, p〉
to the abstract state. It indicates that an instance of m is pending, with
priority p, on the same buffer as the analyzed method, and is associated
with future variable y. In addition, since y is assigned a new value, those
atoms in M that were associated with y should now be associated with ?
in the new state. This is done by M [〈y,O, Z,R〉/〈?,O, Z,R〉] which replaces
each atom that matches 〈y,O, Z,R〉 in M by 〈?,O, Z,R〉;

– (2) It is similar to (1), the difference is that the new task might be posted on
a buffer different from that of the method being analyzed. Thus, its status
should be active since, unlike (1), it might start to execute immediately;

– (3)-(5) These cases highlight the use of priorities, and thus mark the main
differences wrt [3]. They state that when releasing the processor, only tasks
of equal or higher priorities are allowed to become active (simulated through
release1). Moreover, when taking the control back, any task with strictly
higher priority is guaranteed to have been finished (simulated through release2).
Importantly, the abstract element after release1 is associated to the program
point of the release instruction, and that after release2 is associated to the
program point after the release instruction. These two auxiliary instructions
are introduced to simulate the implicit “loop” (in the semantics) when the
task is waiting at that point;

– (6) This instruction is similar to release, the only difference is that the status
of the tasks that are associated with future variable y become finished in the
following program point. Importantly, the abstract element after release1 is
associated to the program point of the await y?;

– (7) It changes the status of every pending task executing on the same buffer
to active, this is because the processor is released. Note that we do not
consider priorities in this case, since the task is finished.

In addition to using the transfer function for abstractly executing basic instruc-
tions, the analysis merges the results of paths (in conditions, loops, etc) using a
join operator. We refer to [3] for formal definitions of the basic abstract interpre-
tations operators. In what follows, we assume that the result of the local phase
is given by means of a mapping L

P
:PP 7→B which maps each program point p

(including entry and exit points) to an abstract state L
P

(p) ∈ B.

Example 5. Applying the local analysis on main, results in the following abstract
states (initially the abstract state is ∅):

10



28:{〈?, t, f̌, 10〉}
29:{〈?, t, f̃, 10〉, 〈x, t, m̃, 5〉}
30:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉}
31:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈?, t, ȟ, 10〉}
32:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈?, t, ȟ, 10〉}
33:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈?, t, ȟ, 10〉, 〈?, o, ˜task, 0〉}

Note that in the abstract state at program point 30 we have both f and m finished,
this is because they have higher priority than main, and thus, while main is waiting
at program point 29 both f and m must have completed their execution before
main can proceed to the next instruction. If we ignore priorities, then we would
infer that f might be active at program point 30 (which is less precise).

5 MHP Graph for Priority-based Scheduling

In this section we will construct a MHP graph relating program points and
methods in the program, that will be used to extract precise information on
which program points might globally run in parallel. In order to build this graph,
we use the local information computed in Sec. 4 which already takes priorities
into account. In Sec. 5.2, we explain how to use the MHP graph to infer the
MHP pairs in the program. Finally, in Sec. 5.3 we compare the inference method
of MHP pairs using a priority-based scheduling with the technique introduced
in [3] for programs with a non-deterministic scheduling.

5.1 Construction of the MHP Graph with Priorities

The MHP graph has different types of nodes and different types of edges. There
are nodes that represent the status of methods (active, pending or finished) and
nodes that represent the program points. Outgoing edges from method nodes
are unweighted and unlabeled, they represent points of which at most one might
be executing. Outgoing edges from program point nodes are labeled, written →l

where the label l is a tuple (O,R) that contains a priority R and a buffer name
O. These edges represent tasks such that any of them might be running. Besides,
when two nodes are directly connected by i > 1 edges, we connect them with
a single edge superscripted with weight i, written as →i

l where l is the label as
before.

Definition 2 (MHP graph with priorities). Given a program P , and its
method-level MHP analysis result L

P
, the MHP graph of P is a directed graph

G
P

= 〈V,E〉 with a set of nodes V and a set of edges E = E1 ∪ E2 defined:

V = {m̃, m̂, m̌ | m ∈ PM} ∪ PP
E1 = {m̃→ p | m ∈ PM , p ∈ PP , p ∈ m} ∪ {m̂→ pṁ, m̌→ pm̊ | m ∈ PM}
E2 = {p→i

(O,R) x | p ∈ PP , (〈 , O, x,R〉, i) ∈ LP (p)}
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Fig. 4. MHP graph with priorities of the example

Example 6. Fig. 4 depicts the relevant fragment of the MHP graph for our run-
ning example. The graph only shows selected program points, namely all points
of the main task and those points of the other tasks in which there is a release

instruction, or in which the global memory is updated. For each task, we have
three nodes which correspond to their possible status (except for h and task that
we have omitted status that do not have incoming edges). In order to avoid clut-
tering the graph, in edges from program points, the labels only show the priority.
The weight is omitted as it is always 1. The label corresponding to the buffer
name is depicted using different types of arrows: normal arrows correspond to
the buffer name o, while dashed arrows to t. From the pending (resp. finished)
nodes, we always have an edge to the task entry (resp. exit) point. From the
active nodes, we have edges to all program points in the corresponding method
body, meaning that only one of them can be executing. The key aspect of the
MHP graph is how we integrate the information gathered by the local analysis
(with priorities) to build the edges from the program points: we can observe
that node 28 has an edge to pending f, and at the await (node 29) the edges
go to active f and m. After await, in nodes 30 and the next ones, the edges go
to finished tasks. The remaining tasks only have edges to their program points
since they do not make calls to other tasks.

5.2 Inference of Priority-based MHP pairs

The inference of MHP pairs is based on the notion of intra-buffer path in the
MHP graph. A path from p1 to p2 is called intra-buffer if the program points
p1 and p2 are reachable only through tasks in the same buffer. A simple way
to ensure the intra-buffer condition is by checking that the buffer labels are
always of type t (more accurate alternatives are discussed later). Intuitively, two
program points p1, p2 ∈ PP may run in parallel if one of the following conditions
hold:
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1. there is a non-empty path in G
P

from p1 to p2 or vice-versa; or

2. there is a program point p3 ∈ PP , and non-empty intra-buffer paths from
p3 to p1 and from p3 to p2 that are either different in the first edge, or they
share the first edge but it has weight i > 1, and the minimum priority in
both paths is the same; or

3. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and
from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1, and at least one of the paths is not intra-buffer.

The first case corresponds to direct MHP scenarios in which, when a task is run-
ning at p1, there is another task running from which it is possible to transitively
reach p2, or vice-versa. For instance (33,4) is a direct MHP resulting from the
direct call from main to task.

The second and third cases correspond to indirect MHP scenarios in which
a task is running at p3 and there are two other tasks p1 and p2 executing in
parallel and both are reachable from p3. However, the second condition takes
advantage of the priority information in intra-buffer paths to discard potential
MHP pairs: if the minimum priority of path pt1 ≡ p3 ; p1 is lower than the
minimum priority of pt2 ≡ p3 ; p2, then we are sure that the task containing
the program point p2 will be finished before the task containing p1 starts. For
instance, consider the two paths from 29 to 8 and from 29 to 16, which form
the potential MHP pair (8,16). They are both intra-buffer (executing on buffer
0) and the minimum priority is not the same (the one to 16 has lower priority).
Thus, (16,8) is not an MHP pair. The intuition is that the task with minimum
priority (m in this case) will be pending and will not start its execution until all
the tasks in the other path are finished. Similarly, we obtain that the potential
MHP pair (10,15) is not a real MHP pair. Knowing that (10,15) and (16,8)
are not MHP pairs is important because this allows us to prove termination of
both tasks executing m and f. This is an improvement over the standard MHP
analysis in [3], where they are considered as MHP pairs—see Sect. 5.3. On the
other hand, when a path involves tasks running in several buffers (condition 3),
priorities cannot be taken into account, as the buffers (and their task schedulers)
work independently. Observe that, in the second and third conditions, the first
edge can only be shared if it has weight i > 1 because it denotes that there might
be more than one instance of the same type of task running. For instance, if we
add the instruction o.task(<>,0) at L33 we will infer the pair (4,4), reporting a
potential data race in the access to g2.

Let us formalize the inference of the priority-based MHP pairs. We write
p1  p2 ∈ GP

to indicate that there is a path from p1 to p2 in G
P

such that the
sum of the edges weights is greater than or equal to 1, and p1 →i x p2 ∈ GP

to mark that the path starts with an edge to x with weight i. We will say that
a path p1  p2 ∈ GP

is intra-buffer if all the edges from program points to
methods have t labels. Similarly, we will say that p is the lowest priority of the
path p1  p2 ∈ GP

, written lowestP(p1  p2 ) = p, if p is the smallest priority
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of all those that appear in edges from program points to methods in the path.
We now define the priority-based MHP pairs as follows.

Definition 3. Given a program P , we let ẼP = D ∪ Iintra ∪ Iinter where

D = {(p1, p2) | p1, p2 ∈ PP , p1 ; p2 ∈ GP )}
Iintra = {(p1, p2) | p1, p2, p3 ∈ PP , p3

i→ x1 ; p1 ∈ GP , p3
j→ x2 ; p2 ∈ GP ,

p3
i→ x1 ; p1 is intra−buffer , lowestP(p3

i→ x1 ; p1) = pr1,

p3
j→ x2 ; p2 is intra−buffer , lowestP(p3

j→ x2 ; p2) = pr2,
(x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)) ∧ pr1 = pr2}

Iinter = {(p1, p2) | p1, p2, p3 ∈ PP , p3
i→ x1 ; p1 ∈ GP , p3

j→ x2 ; p2 ∈ GP ,

p3
i→ x1 ; p1 or p3

j→ x2 ; p2 are not intra−buffer ,
x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)}

An interesting point is that even if priorities can only be taken into account at an
intra-buffer level, due to the inter-buffer synchronization operations, they allow
discarding unfeasible MHP pairs at an inter-buffer level. For instance, we can see
that (4,9), which would report an spurious data race, is not an MHP pair. Note
that 4 and 9 execute in different buffers. Still, the priority-based local analysis
has allowed us to infer that after 29, task f will be finished and thus, it cannot
happen in parallel with the execution of task in buffer o. Thus, it is ensured that
there will not be a data-race in the access to g2 from the two different buffers.

The following theorem states the soundness of the analysis, namely, that ẼP
is an over-approximation of EP —the proof appears in the extended version of
this paper [6]. Let Enon−detP be the MHP pairs obtained by [3].

Theorem 1 (soundness). EP ⊆ ẼP ⊆ Enon−detP .

As we have discussed above, a sufficient condition for ensuring the intra-buffer
condition of paths is to take priorities into account when all edges are labelled
with the t buffer. However, if buffers can be uniquely identified at analysis time
(as in the language of [9]), we can be more accurate. In particular, instead of
using o to refer to any buffer, we would use the proper buffer name in the labels
of the edges. Then, the intra-buffer condition will be ensured by checking that
the buffer name along the considered paths is always the same.

In our language, buffers can be dynamically created, i.e., the number of
buffers is not fixed a priori and one could have even an unbounded number of
buffers (e.g., using newBuffer inside a loop). The standard way to handle this sit-
uation in static analysis is by incorporating points-to information [17, 15] which
allows us to over-approximate the buffers created. A well-known approximation
is by buffer creation site such that all buffers created at the same program point
are abstracted by a single abstract name. In this setting, we can take advantage
of the priorities (and apply case 2 in Def. 3) only if we are sure that an abstract
name is referring to a single concrete buffer. As the task scheduler of each buffer
works independently, we cannot use knowledge on the priorities to discard pairs
if the abstract buffer might correspond to several concrete buffers. The extension
of our framework to handle these cases is subject if future work.
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5.3 Comparison with non-Priority MHP Graphs

The new MHP graphs with priority information (Sec. 5.1), and the conditions
to infer MHP pairs (Sec. 5.2), are extensions of the corresponding notions in [3].
The original MHP graphs were defined as in Def. 2 with the following differences:

– The edges in E2 do not contain the label (O,R) with the buffer name and
the priority, but only the weight.

– The method-level analysis L
P

(p) in [3] does not take priorities into account,
so after a release instruction, pending tasks are set to active. With the
method-level analysis in this paper (Sect. 4), tasks with a higher priority
in the same buffer are set to finished after a release instruction—case (4) in
Fig. 3. This generates less paths in the resulting MHP graph with priorities
and therefore less MHP pairs.

– In [3], there is another type of nodes (future variable nodes) used to increase
the accuracy when the same future variable is re-used in several calls in
branching instructions. For the sake of simplicity we have not included future
nodes here as their treatment would be identical as in [3].

Regarding the conditions to infer MHP pairs, only two are considered in [3]:

1. there is a non-empty path in G
P

from p1 to p2 or vice-versa; or
2. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and

from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1.

The first case is the same as the first condition in Sect 5.2. The second case
corresponds to indirect MHP scenarios and is a generalization of conditions 2
and 3 in Sect 5.2 without considering priorities and intra-buffer paths. With
these conditions, we have that the release point 22 cannot happen in parallel
with the instructions that modify the value of the loop counter g1 (namely 8
and 15), because there is no direct or indirect path connecting them starting
from a program point. However, we have the indirect MHP pairs (10,15) and
(16,8), meaning respectively that at the release point of f the counter g1 can be
modified by an interleaved execution of m and that at the release point of m

the counter g1 can be modified by an interleaved execution of f. Such spurious
interleavings prevent us from proving termination of the tasks executing f and m

and, as we have seen in Sec. 5.2, they are eliminated with the new MHP graphs
with priorities and the new conditions for inferring MHP pairs.

6 Implementation in the MayPar System

We have implemented our analysis in a tool called MayPar [4], which takes
as input a program written in the ABS language [12] extended with priority
annotations. ABS is based on the concurrency model in Sec. 2 and uses the
concept of concurrent object to realize the concept of task-buffer, such that
object creation corresponds to buffer creation, and a method call o.m() posts
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a task executing m on the queue of object o. Currently the annotations are
provided at the level of methods, instead of at the level of tasks. This is because
we lacked the syntax in the ABS language to include annotations in the calls, but
the adaptation to calls will be straightforward once we have the parser extended.

We have made our implementation and a series of examples available online
at http://costa.ls.fi.upm.es/costabs/mhp. After selecting an example, the
analysis options allow: the selection of the entry method, enabling the option to
consider priorities in the analysis, and several other options related to the format
for displaying the analysis results and the verbosity level. After the analysis,
MayPar yields in the output the MHP pairs in textual format and also optionally
a graphical representation of the MHP graph. Besides, MayPar can be used in
an interactive way which allows the user to select a line and the tool highlights
all program points that may happen in parallel with it.

The examples on the MayPar site that include priority annotations are within
the folder priorities. It is also possible to upload new examples by writing them
in the text area. In order to evaluate our proposal, we have included a series of
small examples that contain challenging patterns for priority-based MHP analy-
sis (including our running example) and we have also encoded the examples in the
second experiment of [9] and adapted them to our language (namely we use await

on futures instead of assume on heap values). MayPar with priority-scheduling
can successfully analyze all of them. Although these examples are rather small
programs, this is not due to scalability limits of MayPar. It is rather because of
the modeling overhead required to set up actual programs for static analysis.

7 Conclusions and Related Work

May-happen-in-parallel relations are of utmost importance to guarantee the
sound behaviour of concurrent and parallel programs. They are a basic compo-
nent of other analyses that prove termination, resource consumption boundness,
data-race and deadlock freeness. As our main contribution, we have leveraged
an existing MHP analysis developed for a simplistic scenario in which any task
could be selected for execution in order to take task-priorities into account. In-
terestingly, have succeeded to take priorities into account both at the intra-buffer
level and, indirectly, also at an inter-buffer level.

To the best of our knowledge, there is no previous MHP analysis for a priority-
based scheduling. Our starting point is the MHP analysis for concurrent objects
in [3]. Concurrent objects are almost identical to our multi-buffer asynchronous
programs. The main difference is that, instead of buffers, the concurrency units
are the objects. The language in [3] is data-race free because it is not allowed
to access an object field from a different object. Our main novelty w.r.t. [3]
is the integration of the priority-based scheduler in the framework. Although
we have considered a cooperative concurrency model in which processor release
points are explicit in the program, it is straightforward to handle a preemptive
scheduling at the intra-buffer level like in [9], by simply adding a release point
after posting a new task. If the posted task has higher priority, the active task will
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be suspended and the posted task will become active. Thus, our analysis works
directly for this model as well. As regards analyses for Java-like languages [14,
7], we have that a fundamental difference with our approach is that they do not
take thread-priorities into account nor consider any synchronization between the
threads as we do. To handle preemptive scheduling at the inter-buffer level, one
needs to assume processor release points at any instruction in the program, and
then the main ideas of our analysis would be applicable. However, we believe
that the loss of precision could be significant in this setting.
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Abstract. By following a rely-guarantee style of reasoning, we present
a novel termination analysis for concurrent programs that, in order to
prove termination of a considered loop, makes the assumption that the
“shared-data that is involved in the termination proof of the loop is mod-
ified a finite number of times”. In a subsequent step, it proves that this
assumption holds in all code whose execution might interleave with such
loop. At the core of the analysis, we use a may-happen-in-parallel anal-
ysis to restrict the set of program points whose execution can interleave
with the considered loop. Interestingly, the same kind of reasoning can
be applied to infer upper bounds on the number of iterations of loops
with concurrent interleavings. To the best of our knowledge, this is the
first method to automatically bound the cost of such kind of loops.

1 Introduction

We develop new techniques for cost and termination analyses of concurrent ob-
jects. The actor -based paradigm [1] on which concurrent objects are based has
evolved as a powerful computational model for defining distributed and concur-
rent systems. In this paradigm, actors are the universal primitives of concurrent
computation: in response to a message, an actor can make local decisions, create
more actors, send more messages, and determine how to respond to the next
message received. Concurrent objects (a.k.a. active objects) [18,19] are actors
which communicate via asynchronous method calls. Each concurrent object is a
monitor and allows at most one active task to execute within the object. Schedul-
ing among the tasks of an object is cooperative (or non-preemptive) such that
a task has to release the object lock explicitly. Each object has an unbounded
set of pending tasks. When the lock of an object is free, any task in the set
of pending tasks can grab the lock and start to execute. The synchronization
between the caller and the callee methods can be performed when the result is
necessary by means of future variables [11]. The underlying concurrency model
of actor languages forms the basis of the programming languages Erlang [7] and
Scala [14] that have gained in popularity, in part due to their support for scalable
concurrency. There are also implementations of actor libraries for Java.

? This work was funded partially by the projects FP7-ICT-610582, TIN2008-05624,
TIN2012-38137, PRI-AIBDE-2011-0900 and S2009TIC-1465.



Termination analysis of concurrent and distributed systems is receiving con-
siderable attention [17,2,9]. The main challenge is in handling shared-memory
concurrent programs. This is because, when execution interleaves from one task
to another, the shared-memory may be modified by the interleaved task. The
modifications will affect the behavior of the program and, in particular, can
change its termination behavior and its resource consumption. Inspired by the
rely-guarantee style of reasoning used for compositional verification [12] and
analysis [9] of thread-based concurrent programs, we present a novel termina-
tion analysis for concurrent objects which assumes a property on the global state
in order to prove termination of a loop and, then, proves that this property holds.
The property we propose to prove is the finiteness of the shared-data involved in
the termination proof, i.e., proving that such shared-memory is updated a finite
number of times. Our method is based on a circular style of reasoning since the
finiteness assumptions are proved by proving termination of the loops in which
that shared-memory is modified. Crucial for accuracy is the use of the informa-
tion inferred by a may-happen-in-parallel (MHP) analysis [4], which allows us
to restrict the set of program points on which the property has to be proved to
those that may actually interleave its execution with the considered loop.

Besides termination, we also are able to apply this style of reasoning in order
to infer the resource consumption (or cost) of executing the concurrent program.
The results of our termination analysis already provide useful information for
cost: if the program is terminating, we know that the size of all data is bounded.
Thus, we can give cost bounds in terms of the maximum and/or minimum values
that the involved data can reach. Still, we need novel techniques to infer upper
bounds on the number of iterations of loops whose execution might interleave
with instructions that update the shared memory. We provide a novel approach
which is based on the combination of local ranking functions (i.e., ranking func-
tions obtained by ignoring the concurrent interleaving behaviors) with upper
bounds on the number of visits to the instructions which update the shared
memory. As in the case of the termination analysis, an auxiliary MHP analysis
is used to restrict the set of points whose visits have to be counted to those that
indeed may interleave. To the best of our knowledge this is the first approach to
infer the cost of loops with concurrent interleavings.

Our analysis has been implemented, and its termination component is al-
ready fully integrated in COSTABS [2], a COSt and Termination analyzer for
concurrent objects. Experimental evaluation of the termination analysis has been
performed on a case study developed by Fredhopper R© and several other smaller
applications. Preliminary results are promising in both the accuracy and effi-
ciency of the analysis.

The rest of the paper is organized as follows. Sec. 2 contains preliminar-
ies about the language, termination and cost. Sec. 3 and 4 explains the rely-
guarantee termination and cost analysis, respectively. Sec. 5 contains the pre-
liminary evaluation of the analyses. Finally, Sec. 6 presents the conclusions and
related work.
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2 Concurrency Model, Termination and Cost

This section presents the syntax and concurrency model of the concurrent objects
language, which is basically the same as [15,2]. A program consists of a set
of classes, each of them can define a set of fields, and a set of methods. The
notation T̄ is used as a shorthand for T1, ...Tn, and similarly for other names.
The set of types includes the classes and the set of future variable types fut(T ).
Pure expressions pu (i.e., functional expressions that do not access the shared
memory) and primitive types are standard and omitted. The abstract syntax
of class declarations CL, method declarations M , types T , variables V , and
statements s is:

CL ::=class C {T̄ f̄ ; M̄} M ::=T m(T̄ x̄){s; return p; } V ::=x | this.f
s ::=s; s | x = e | V = x | await V ? | if p then s else s | while p do s
e ::=new C(V̄ ) | V !m(V̄ ) | pu T ::=C | fut(T )

As in the actor-model, the main idea is that control and data are encapsulated
within the notion of concurrent object. Thus each object encapsulates a local heap
which stores the data that is shared within the object. Fields are always accessed
using the this object, and any other object can only access such fields through
method calls. We assume that every method ends with a return instruction. The
concurrency model is as follows. Each object has a lock that is shared by all tasks
that belong to the object. Data synchronization is by means of future variables:
An await y? instruction is used to synchronize with the result of executing task
y=x!m(z̄) such that await y? is executed only when the future variable y is
available (i.e., the task is finished). In the meantime, the object’s lock can be
released and some other pending task on that object can take it. W.l.o.g, we
assume that all methods in a program have different names.

A program state St is a set St = Ob ∪ T where Ob is the set of all created
objects, and T is the set of all created tasks. An object is a term ob(o, a, lk)
where o is the object identifier, a is a mapping from the object fields to their
values, and lk the identifier of the active task that holds the object’s lock or ⊥
if the object’s lock is free. Only one task can be active (running) in each object
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(t ,m, o, l, s) where t is a
unique task identifier, m is the method name executing in the task, o identifies
the object to which the task belongs, l is a mapping from local (possibly future)
variables to their values, and s is the sequence of instructions to be executed or
s = ε(v) if the task has terminated and the return value v is available. Created
objects and tasks never disappear from the state. Complete semantic rules can
be found in the extended version of this paper [5].

Example 1. Figure 1 shows some simple examples which will illustrate different
aspects of our analysis. We have an interface Task, and a class TaskQueue which
implements a queue of tasks to which one can add a single task using method
AddTask or a list of tasks using method AddTasks. The loop that adds the tasks
invokes asynchronously method AddTask and then awaits for its termination at
Line 11 (L11 for short). We use the predefined generic type List<E> with the
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1 Class TaskQueue{
2 List<Task> pending=Nil;
3 void AddTask(Task tk){
4 pending= appendright(pending,tk);
5 }
6 void AddTasks(List<Task> list){
7 while (list != Nil) {
8 Task tk = head(list);
9 pending = tail(list);

10 Fut f=this!AddTask(tk);
11 await f?;}
12 }
13 void ConsumeAsync(){
14 while (pending != Nil) {
15 Task tk = head(pending);
16 pending = tail(pending);
17 Fut f=tk!start();}
18 }
19 void ConsumeSync(){
20 while (pending != Nil) {
21 Task tk = head(pending);
22 pending = tail(pending);
23 Fut f=tk!start();
24 await f?;}
25 }} //end class TaskQueue
26 Interface Task {void start();}

27 //implementations of main methods
28 main1(List<Task> l){
29 TaskQueue q=new TaskQueue();
30 q!AddTasks(l);
31 q!ConsumeAsync();
32 }
33 main2(List<Task> l){
34 TaskQueue q= new TaskQueue();
35 Fut f=q!AddTasks(l);
36 await f?;
37 q!ConsumeSync();
38 }
39 main3(List<Task> l){
40 TaskQueue q= new TaskQueue();
41 q!AddTasks(l);
42 q!ConsumeSync();
43 }
44 main4(List<Task> l){
45 TaskQueue q= new TaskQueue();
46 while (true){
47 Fut x=q!AddTasks(l);
48 Fut y=q!ConsumeSync();
49 await x?;
50 await y?;}
51 }

Fig. 1. Simple examples for termination and cost

usual operations appendright to add an element of type <E> to the end of the
list, head to get the element in the head of the list and tail to get the remaining
elements. These operations are performed on pure data (i.e., data that possibly
contains references but does not access the shared memory) and are executed
sequentially. The class has two other methods, ConsumeAsync and ConsumeSync,
to consume the tasks inside the queue. The former method starts all tasks (L17)
concurrently. Instead, method ConsumeSync executes each task synchronously. It
releases the processor and waits until the task is finished at L24. In the right-
most column, there are four implementations of main methods which are defined
outside the classes. Here we show some execution steps from main3:

St1 ≡ {obj(0, f, 0) tsk(0,main3, 0, l, q=new TaskQueue();...)} new−−→
St2 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, q!AddTasks(l);...)} async−call−−−−−−−→
St3 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, q!ConsumeSync(1);...)

tsk(1,AddTasks, 1, l′′,while(list!= Nil);...)} async−call−−−−−−−→
St4 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, return;) tsk(1,AddTasks, 1, l′′, ...)

tsk(2,ConsumeSync, 1, l′′′,while(pending!= Nil);...)} return−−−−→ activate−−−−−→
St5 ≡ {obj(0, f,⊥) obj(1, f1, 2) tsk(0..) tsk(1..) tsk(2..)}
Observe that the execution of new at St1 creates the object identified by 1. Then,
the executions of the asynchronous calls at St2 and St3 spawn new tasks on ob-
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ject 1 identified by 1 and 2, respectively. In St4, we perform two steps, first the
execution of task 0 terminates (executes return) and object 0 becomes idle, next
object 1 (which was idle) selects task 2 for execution. Note that as scheduling is
non-deterministic any of both pending tasks (1 or 2) could have been selected.

2.1 Termination and Cost

Traces take the form t ≡ St0 →b0 · · · →bn−1 Stn, where St0 is an initial state
in which only the main method is available and the superscript bi is the instruc-
tion that is executed in the step. A trace is complete if it cannot continue from
Stn(not taking into account spurious cycles of take-release an object’s lock).
A trace is finished if every task in the configuration tsk(t ,m, o, l, s) ∈ T is
finished s = ε(v)). If a trace is complete but not finished, the trace must be
deadlocked. Deadlocks happen when several tasks are awaiting for each other to
terminate and remain blocked. Deadlock is different from non-termination, as
non-terminating traces keep on consuming instructions. As we have seen, since
we have no assumptions on scheduling, from a given state there may be several
possible non-deterministic execution steps that can be taken. We say that a
program is terminating if all possible traces from the initial state are complete.

When measuring the cost, different metrics can be considered. A cost model
is a function M : Ins 7→ R+ which maps instructions built using the grammar
above to positive real numbers and, in this way, it defines the considered metrics.
The cost of an execution step is defined asM(St→b St′) =M(b), i.e., the cost
of the instruction applied in the step. The cost of a trace is the sum of the costs
of all its execution steps. The cost of executing a program is the maximum of the
costs of all possible traces from the initial state. We aim at inferring an upper
bound on the cost of executing a program P for the defined cost model, denoted
UBP , which is larger than or equal to that maximum.

Example 2. A cost model that counts the number of instructions is defined as
Minst(b) = 1 where b is any instruction of the grammar. A cost model that
counts the number of visits to a method m is defined as Mvisits m(b) = 1 if
b = x!m(z̄) and 0 otherwise. Consider the partial trace of Ex. 1. By applying
Minst we get 4 executed instructions (as the application of Activate does not
involve any instruction) and if we count Mvisits ConsumSync we obtain 1.

3 Termination Analysis

This section gives first in Sec. 3.1 the intuition behind our method, then it
presents the termination algorithm in Sec. 3.2, and finally it provides the results
that we need for its application in cost analysis in Sec. 3.3.

3.1 Basic Reasoning

Our starting point is an analysis [2] that infers the termination (and resource
consumption) of concurrent programs by losing all information on the shared-
memory at “processor release points” (i.e., at the points in which the processor
can switch the execution to another task because of an await instruction or a
method return). Alternatively, instead of losing all information, it can also use
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monitor invariants (provided by the user) to force some assumptions on the
shared-memory. In the latter alternative, the correctness of the analysis depends
on the correctness of the provided invariants (the analysis does not infer nor
prove them correct). Let us show the kind of problems that [2] can and cannot
solve. Consider the first three implementations of main methods:

– main1 creates a TaskQueue q, adds the list of tasks received as input parameter
to it, and executes ConsumeAsync. It is not guaranteed that the tasks are
added to the queue when ConsumeAsync starts to execute because, as the
call at L30 is not synchronized, the processor can be released at L11 and
the call at L31 can start to execute. This is not a problem for termination,
since ConsumeAsync is executed without releasing the processor. Hence, the
method of [2] can prove all methods terminating.

– in main2 the addition of tasks (i.e., the call to AddTasks at L35) is guaranteed
to be terminated when ConsumeSync starts to execute due to the use of await
at L36. However, the difficulty is that ConsumeSync contains a release point.
The method of [2] fails to prove termination because at this release point
pending is lost. The key is to detect that there are no concurrent interleavings
at L24 in this loop by means of an auxiliary MHP analysis.

– main3 has a loop with concurrent interleavings since ConsumeSync is called
without waiting for completion of AddTasks. Thus, some tasks can be added
to the list of pending tasks in the middle of the execution of ConsumeSync,
resulting in a different ordering in which tasks are executed, or even can be
added when ConsumeSync has finished and hence start will not be executed
at all on them. Proving termination requires developing novel techniques.

Our reasoning is at the level of the strongly connected components (SCCs), de-
noted 〈S1, . . . , Sn〉, in which the code to be analyzed is split. For each method
m, we have an SCC named Sm and for each loop (in the methods) starting
at Lx we have an SCC named Sx. The analysis starting from main2 must con-
sider the SCCs: 〈Smain2, SAddTasks, S7, SAddTask, SConsumeSync, S20〉. For simplifying
the presentation, we assume that each recursive SCC has a single cut-point (in
the corresponding CFG). Moreover, the cut-point is assumed to be the entry of
the SCC. In such case, an SCC can be viewed as a simple while loop (i.e., without
nested loops) with several possible paths in its body. Nested loops can be trans-
formed into this form, by viewing the inner loops as separate procedures that are
called from the outer ones. This, however, cannot be done for complex mutual
recursions which are rare in our context. The purpose of this assumption is to
simplify the way we count the number of visits to a given program point in Sec. 4.

In order to use the techniques of [2] as a black-box, in what follows, we assume
that seq termin(S, F ) is a basic termination analysis procedure that receives an
SCC S and a set of fields F , and works as follows: (1) given a function fields that
returns the set of fields accessed in the given scope, for any f ∈ fields(S) \ F ,
it adds the instruction f = ∗ at each release point of S; (2) it tries to proves
termination of the instrumented code using an off-the-shelf termination analyzer
for sequential code; and (3) it returns the result. We assume that seq termin

ignores calls to SCCs transitively invoked from the considered scope S, assumes
nothing about their return values, and ignores the instruction await.
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Algorithm 1 MHP-based Termination Analysis

1: function terminates(S,SSet)
2: if S ∈ SSet then return false

3: if seq termin(S, ∅) then return true

4: F = select fields(S)
5: if (not seq termin(S, F )) then return false

6: RP = release points(S)
7: MP = MHP pairs(RP)
8: I = field updates(MP , F )
9: DepSet = extract sccs(I)

10: for each S′ ∈ DepSet do
11: if (not terminates(S′,SSet ∪ {S}) then return false

12: return true

Observation 1 (finiteness assumption) If S terminates under the assump-
tion that a set of fields F are not modified at the release points of S, then S also
terminates if they are modified a finite number of times.

The intuition behind our observation is as follows. Since the fields are modified
finitely, then we will eventually reach a state from which that state on they are
not modified. From that state, we cannot have non-termination since we know
that S terminates if the fields are not modified. Moreover, one can construct a
lexicographical ranking function [8] that witnesses the termination of S.

Example 3. Consider the following two loops:

S1





52 while ( f > 0 ) {
53 x = g();
54 await x?;
55 f−−; }
56

S2





57 while ( m > 0 ) {
58 x = g();
59 await x?;
60 f=∗;
61 m−−; }

and assume that S1 and S2 are the only running processes. Their execution
might interleave since both loops have a release point. We let f be a shared
variable, m a local variable, and we ignore the behavior of method g. It is easy
to see that (a) S1 terminates under the assumption that f does not change at
the release point (L54), and that RF 1(m, f) = f is a ranking function that
witnesses its termination; and (b) S2 terminates without any assumption and
RF 2(m, f) = m is a ranking function that witnesses its termination. Since S2

terminates, we know that f is modified a finite number of times at the release
point of S1 and thus, according to Observation 1, S1 terminates when running
in parallel with S2. The lexicographical ranking function RF 3(f,m) = 〈m, f〉 is
a witness of the termination of S1.

3.2 Termination Algorithm

Algorithm 1 presents the main components of our termination algorithm, defined
by means of function TERMINATES. The first parameter S is an SCC that we
want to prove terminating, and the second one SSet includes the SCCs whose
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termination requires the termination of S. The role of the second parameter is
to detect circular dependencies. In order to prove that a program P terminates,
we prove that all its SCCs terminate by calling terminates(S, ∅) on each one
of them. Let us explain the different lines of the algorithm:

1. At Line 2, if S is in the set SSet , then a circular dependency has been
detected, i.e., the termination of S depends on the termination of S itself. In
such case the algorithm returns false (since we cannot handle such cases).

2. At Line 3, it first tries to prove termination of S without any assumption
on the fields, i.e., assuming that their values are lost at release points. If
it succeeds, then it returns true. Otherwise, in the next lines it will try to
prove termination w.r.t. some finiteness assumptions on the fields.

3. At Line 4, it selects a set of fields F and, at Line 5, it tries to prove that
S terminates when assuming that fields from F keep their values at the
release points. If it fails, then it returns false. Otherwise, in the next lines
it will try to prove that these fields are modified finitely in order to apply
Observation 1. The simplest strategy for constructing F (which is the one
implemented in our system) is to include all fields used in S. This can also
be refined to select only those that might affect the termination of S (using
some dependency analysis or heuristics).

4. At this point the algorithm identifies all instructions that might modify a
field from F while S is waiting at a release point. This is done as follows:
at Line 6 it constructs the set RP of all release points in S; at Line 7 it
constructs the set MP of all program points that may run in parallel with
program points in RP (this is provided by an auxiliary MHP analysis [4]);
and at Line 8 it remains with I ⊆ MP that actually update a field in F .

5. At Line 9, it constructs a set DepSet of all SCCs that can reach a program
point in I, i.e., those SCCs that include a program point from I or can reach
one by (transitively) calling a method that includes one. Proving termination
of these SCCs guarantees that each instruction in I is executed finitely, and
thus the fields in F are updated finitely and the finiteness assumption holds.

6. The loop at Line 10 tries to prove that each SCC in DepSet terminates. If it
finds one that might not terminate, it returns false. In the recursive call S
is added to the second parameter in order to detect circular dependencies.

7. If the algorithm reaches Line 12, then S is terminating and returns true.

Essentially our approach translates the concurrent program into a sequential set-
ting using the assumptions. To define our proposal, we have focused exclusively
on the finiteness assumption because of its wide applicability for proving termi-
nation of different forms of loops. Being more general requires a more complex
reasoning than when handling other kinds of simpler assumptions. For instance,
simpler assumptions (like checking that a field always increases or decreases its
value when it is updated) can be easily handled by adding a corresponding test,
after Line 8, that checks the assumption holds on the instructions in I.

Example 4. We can now prove termination of both main2 and main3. For main2,
the challenge is to prove termination of ConsumeSync and namely of the loop
that forms S20. This loop depends on the field pending whose size is decreased
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at each iteration. However, there is a release point in the loop’s body (L24).
Thus, we need to guarantee the finiteness assumption on pending at that point.
The MHP analysis infers that the only other instruction that updates pending

at L4 cannot happen in parallel with the release point. This can be inferred
thanks to the use of await at L11 and L36. Therefore, the set I at Line 8
of Alg. 1 is empty and terminates returns true. In the analysis of main3,
when proving termination of SConsumeSync we have that L4 can happen in par-
allel with L24 so we have to prove the finiteness assumption recursively. In
particular, DepSet = {SAddTask, S7, SAddTasks, Smain3}. Proving termination of S7

is done directly by seq termin as termination of the loop depends only on the
non-shared data list. Also, SAddTask, SAddTasks and Smain3 are proved terminating
by seq termin as they do not contain loops. Thus, pending can only increase up
to a certain limit and the termination of SConsumeSync and all other scopes can be
guaranteed.

We can achieve further precision by replacing extract sccs by a procedure
extract mhp sccs which returns all SCCs that can reach a program point in I
and that can happen in parallel with a release point in RP . A sufficient condition
for an SCC to happen in parallel with a point in RP is that its entry point (entry
point of while rule) might happen in parallel with a point in RP . The correctness
of this enhancement is proved in [5]. The point is that with extract sccs we
could find loops that contain I but cannot iterate at RP . These do not have to
be taken into account because during the execution of S they will be stopped in
a single iteration and therefore cannot cause unboundedness in S. This happens
in the next example.

Example 5. Using extract mhp sccs we can prove that ConsumeSync always ter-
minates in the context of main4. This is true because only one instance of AddTasks
is running in parallel with ConsumeSync (due to the awaits at L49 and L50), and
AddTasks is terminating. Using extract sccs, we would detect that L4 is reached
from S46 and thus, it cannot be proved bounded (due to the while (true)). How-
ever, the MHP analysis tells us that the await in L24 of ConsumeSync can run in
parallel with AddTasks but not with S46. This reduces the number of SCC we
have to consider (removing S46) and thus we can prove ConsumeSync terminating.

Proving termination of the SCCs given by extract mhp sccs guarantees that
each instruction in I is executed finitely during the release points RP , and thus
the fields in F are updated finitely and the finiteness assumption holds. We
assume that extract mhp sccs is used in what follows. The following theorem
ensures the soundness of our approach (the proof is in [5]).

Theorem 1 (soundness). Given a program P and its set of recursive SCCs
SSet. If, ∀S ∈ SSet, terminates(S, ∅) returns true, then P is terminating.

3.3 Inferring Field-Boundedness

The termination procedure in Sec. 3 gives us an automatic technique to infer
field-boundedness, i.e., knowing that field f has upper and lower bounds on the
values that it can take. The upper (resp. lower) bound of a field f is denoted as
f+ (resp. f−), and we use f b to refer to the bounds [f−, f+] for f .

Corollary 1. Consider a field f . If all recursive SCCs that reach a point in
which f is updated are terminating, then f is bounded.
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4 Cost Analysis

As for termination, the resource consumption (or cost) of executing a fragment
of code can be affected by concurrent interleavings in the loops. Previous work
[2] is not able to estimate the cost in these cases. This section proposes new
techniques to bound the number of iterations of such loops and thus the cost.
This requires to have first proved field-boundedness (Sec. 3.3).

4.1 Cost Analysis of Sequential Programs

Let us first provide an intuitive view of the process of inferring the cost of a
program divided in SCCs S1, . . . , Sn. As an example consider this code:

62 main (int n, int m)
63 { int i=0; while (i<n) { i++; s2; int j=i; while (j<m) {s1; j++; }}}

where s1 and s2 represent a sequence of instructions that do not call any other
SCC and do not modify the counters. This leads to one SCC for the inner loop
S1 and one SCC for the outer loop S2. We first consider the SCC which does
not call any other scope, S1. Given a fragment of sequential code s, we can
apply the cost model M to all instructions in s (see Sec. 2.1) and sum the
result, denoted as M(s). Now, an upper bound on the cost of executing the
SCC S1 is UBS1 = #iter∗M(body(S1)) where #iter is an upper bound on the
number of loop iterations. For sequential programs [3], a ranking function for the
loop soundly approximates #iter and can be automatically inferred. In this case,
UBS1

= nat(m−j+1)∗M(body(S1)), where function nat is defined as nat(n) = n
if n ≥ 0 and 0 otherwise (it is used to avoid having negative costs [3]).

We consider now the general case in which we need to compose the cost
of different SCCs. The point is that in order to plug the cost that we have
already computed for S1 in its calling SCC S2, we need to maximize it (i.e.,
compute its worst case cost). Intuitively, the worst case cost is when j is 0 and
hence UBS1

becomes nat(m+1)∗M(body(S1)). Intuitively, maximization works
by first inferring an invariant that holds between the arguments at the initial
call (main method) and at each iteration during the execution. For instance, we
infer the invariant 0 ≤ j ≤ m0 which holds in S1 where m0 is the initial value
for m. Maximizing UBS1

using the invariant results in nat(m+1)∗M(body(S1)).
In what follows, we refer as max init(e) to the maximization of an expression
e using such procedure (see [3]) which we simply adopt in this paper. Thus,
the upper bound for S2 is UBS2

= #iter∗(M(body(S2)) +max init(UBS1
)) ≡

nat(n)∗(M(body(S2))+nat(m+1)∗M(body(S1))).

Note that if the considered SCC is not recursive, then we simply apply M
to the sequential instructions and compose the SCCs as above. SCCs with mul-
tiple recursive calls (that lead to an exponential complexity) and loops with
logarithmic complexity are treated analogously, see [3].

4.2 Basic Reasoning

In order to explain the intuition of our approach, let us first consider the se-
quential loop in S1 whose termination behavior has been widely studied by the
termination community (we use ∗ to ignore irrelevant code):
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S1





64 while (f>0){
65 f−−;
66 if (∗ & m>0)
67 { m−−;
68 f=∗;
69 }}

S2





70 while (f>0){
71 f−−;
72 await ∗?
73 }

S3





74 while (m>0){
75 m−−;
76 f=∗;
77 }

Our method is inspired by the observation that, provided the if statement is
executed a finite number of times, an upper bound on the number of iterations
of S1 can be computed as: the maximum number of iterations of the loop ig-
noring the if statement, but assuming that such if statement updates the field
f with its maximum value, multiplied by the maximum number of times that
the if statement can be executed. Intuitively, we assume that every time the if

statement is executed the field can be put to its maximum value and thus the
loop can be executed the maximum number of times in the next iteration. Hence,
max init(f)∗m is an upper bound for the loop, and max init(f) = f+ results
in the maximum value for field f (see Sec. 3.3).

We propose to apply a similar reasoning to bound the number of iterations of
loops with concurrent interleavings. Assume that S2 and S3 are the only running
processes and that the execution of the instruction at L76 that updates the field
may interleave with the await in S2. We have a similar behavior to the leftmost
loop, though they are obviously not equivalent. Instead of having an interleaving
if, we have an interleaving process that updates the field. Our proposal is to first
bound the number of times that instruction 76 can be executed. A sound and
precise bound is m. Our main observation is that, the upper bound for S2 is
the maximum number of iterations ignoring the await, but assuming that at this
point f can take its maximum value f+, multiplied by the maximum number
of visits to 76. Thus, f+∗m is a sound upper bound. If we have a loop like
while (f<0) {f++; await ∗?}, whose ranking function is −f , then the worst case
cost occurs when f is set to its minimum value f−, i.e., max init(−f) = f−.
Therefore, maximizing a ranking function that involves a field f is done by relying
on its field bound f b, and it may result, depending on the case, in f+ or f−.

Observation 2 (loop bounds) An upper bound on the number of iterations of
a loop l with interleaving instructions that update fields F is niter∗(nvisits+1):
1. where nvisits is the number of visits to the points in which fields in F are

updated and that might interleave their execution with the loop release points;
2. and niter is the number of iterations of the loop ignoring the interleavings

—maximized w.r.t. the bounds for the fields in F ;

Our analysis relies on the assumption that the number of visits (item 1) is
bounded, which has been proved in Corollary 1. Given a bound on the number
of loop iterations, the cost is obtained as in the sequential case, i.e., by applying
the cost model to the instructions in the loop body and multiplying it by our
loop bound. Thus, we only focus now on bounding the number of loop iterations.

4.3 Bounding the Number of Iterations for Loops with Interleavings

Alg. 2 presents two mutually recursive functions which allow us to infer the two
items of the observation above. For each SCC S, we assume that after executing
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Algorithm 2 Bounding the Number of Iterations for Loops with Interleavings

1: function niter(S,SSet)
2: if S ∈ SSet then return false

3: if S is not recursive then return 1
4: i = 1;
5: for each p ∈ SI do
6: i = i+nvisits(p, SRP ,SSet ∪ S)

7: return max init(SRF )∗i

8: function nvisits(p,RP,SSet)
9: Vp= 0;

10: P= mhp reachable paths(p,RP );
11: for each 〈S1, . . . , Sn〉 in P do
12: Vaux=1;
13: for i = 1 to n do
14: Vaux = Vaux∗niter(Si,SSet)

15: Vp = Vp+Vaux

16: return Vp

Alg. 1 we have the following information: the set RP computed at Line 6, denoted
as SRP ; the set I computed at Line 8, denoted as SI ; and a (linear) ranking
function computed by the seq termin at Lines 3 and 5, denoted as SRF . If S
was proved terminating at Line 3 (i.e., losing the fields), we assume that SI and
SRP are empty. Function niter receives an SCC S whose number of iterations
is to be bounded and a set of SCCs SSet which, as before, is initially empty
and allows us to detect cyclic dependencies (Line 2). As the number of SCCs is
finite, termination is guaranteed. If the SCC S is not recursive, it simply returns
one (Line 3). Otherwise, the number of iterations in the SCC can be bound
by the maximization of the local ranking function, multiplied by the maximum
number of visits to all the points that update the fields (Line 7) and that may
happen in parallel with SRP (to this end we pass SRP as parameter to nvisits).
As mentioned in Sec. 4.1, function max init maximizes the received expression
w.r.t. the input parameters of the entry method (often main), and the field bounds
f b are used for maximizing the fields.

Function nvisits receives a program point p, a set of release points RP , and
infers an upper bound on the number of visits to p while the program is waiting
at a point of RP . We first compute the multiset of reachable paths to p. Each
path is of the form 〈S1, . . . , Sn〉, i.e., it is a sequence of SCCs which reach the
program point p. For each of the paths (Line 11), we traverse all the SCCs in
the path (Line 13) and multiply the number of iterations of the corresponding
SCC by those of the SCCs already traversed if the SCC might happen in parallel
with the release points RP . We assume that mhp reachable paths gives us only
those SCC that may happen in parallel with the release points RP passed as
parameters. The number of visits from each of the paths is accumulated to the
paths that have been already accounted (Line 15).

Example 6. Let us consider method ConsumeSync invoked from main3. We want
to compute niter(S20, ∅). Alg. 1 gives us that the local ranking function is
RF = length(pending) and that the program point 4 may happen in parallel with
the release point 24 and update the field pending. Hence, we need to compute
nvisits(4, {24}, {S20}). We first compute the reachable paths to 4, which gives
us the only element 〈SAddTask, S7, SAddTasks〉. Note that Smain3 is not included in the
path because its entry point cannot happen in parallel with 24. We start by com-
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puting niter(SAddTask, {S20}), since SAddTask is not recursive, we simply return 1
which is multiplied at Line 14 of Alg. 2 by the initial value for Vaux (which is 1).
The next iteration of the for loop at Line 13 invokes niter(S7, {S20, SAddTask}). In
this case, by Alg. 1, we have the local ranking function length(list) and that the
set of points at which list is updated is empty. The maximization of length(list)
returns it in terms of the initial parameters of main3, i.e., length(l). This value
is multiplied at Line 14 by 1 (previous value of Vaux). Finally, we compute
niter(SAddTasks, {S7, S20, SAddTask}) that, as it is not recursive, simply returns 1.
The execution of the for loop at Line 13 finishes and also the execution of the
for each loop at Line 11 and we have that nvisits(4, {S20})= length(l). Thus,
we can now finish the computation of niter(S20, ∅) returning length(pending+)
∗length(l). The upper bound for ConsumeSync when invoked from main4 can be
obtained in a similar way.

The following theorem ensures the soundness of our approach. The proof can be
found in [5].

Theorem 2 (soundness). Given a recursive SCC S, the execution of niter(S, ∅)
terminates and returns an upper bound on the number of iterations in S.

5 Implementation and Preliminary Evaluation

We have implemented the described cost and termination analyses, although cur-
rently only the termination component is integrated within COSTABS. Our anal-
ysis can be tried online at http://costa.ls.fi.upm.es/costabs by enabling
the option “rely-guarantee termination analysis”. The cost analysis component
will be available for its online use from the same site soon. Given a program and
a selection of an entry method from which the analysis will start, the output of
the analysis is a description of the SCCs (reachable from the entry) which are
terminating. This section aims at performing a preliminary experimental eval-
uation of the accuracy and performance of our implementation, by comparing
our results with those obtained by the previous version of the analyzer which
loses all information on the shared-memory. For this purpose, we have analyzed
a set of small and medium-sized programs, as well as one industrial case study,
the Replication System, developed by Fredhopper R©. The analyzed code for all
examples can be found and tried in the above site.

Regarding the small and medium-sized examples, their number of lines of
code ranges from 20 to 100 and the number of SCCs from 5 to 20. Both versions
of the analyzer need less than 1 sec. to analyze each program. All terminating
loops with concurrent interleavings are reported by our rely-guarantee method,
improving the results of the previous analyzer. Our largest experiment is per-
formed on the Replication System, a case study that provides search and mer-
chandising IT services to e-Commerce companies, developed within the HATS
project (http://www.hats-project.eu/). It has 2100 lines of code and 426
SCCs that need to be analyzed. The previous analyzer needs 2813 sec. and
proves 420 SCCs terminating, whereas the rely-guarantee method proves 423
SCCs terminating in only 41 sec. Times are obtained as the arithmetic mean of
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five runs on a Ubuntu 12.04 32-bit with Intel Core2 Quad CPU Q9550 2.83GHz
and 3.4GiB of memory. The efficiency of our rely-guarantee method can be ex-
plained because it works modularly at the level the SCCs, instead of analyzing
the program globally as the previous analyzer. An inspection of the three addi-
tional SCCs that have been proved terminating confirms that they indeed corre-
spond to loops with concurrent interleavings. The reason why a simple analysis
that loses the shared-memory could achieve already good results is that the (ex-
perienced) developers of the case study were aware of the risks of having loops
with concurrent interleavings and they were very much avoided.

6 Conclusions and Related Work

Concurrency adds further difficulty when attempting to prove program termina-
tion and inferring resource consumption. The problem is that the analysis must
consider all possible interactions between concurrently executing objects. This is
challenging because processes interact in subtle ways through fields and future
variables. We have proposed novel techniques to prove termination and inferring
upper bounds on the number of iterations of loops with such concurrent inter-
leavings. Our analysis benefits from an existing MHP analysis to achieve further
precision [4].

Existing methods for proving termination of thread-based programs also ap-
ply a rely-guarantee or assume-guarantee style of reasoning [9,17,10]. These
methods consider every thread in isolation under assumptions on its environ-
ment, thus avoiding to reason about thread interactions directly. Applying this
technique to our concurrent setting could be done by assuming a property of the
second object while proving the property of the first object, and then assum-
ing the recently proved property of the first object when proving the assumed
property of the second object. Although we make assumptions and then prove
them, our assumptions are of a different kind, i.e., namely they are assumptions
on finiteness of data, no matter on which thread (or object) they are executed.
This point makes our work fundamentally different from [9]. We can still apply
our method in the presence of dynamically created objects and the number of
concurrency units does not need to be known a priori as in [9].

As regards the bounds on loop iterations, to the best of our knowledge, there
are no other works that have attempted to infer those bounds for loops with con-
current interleavings before. There are several techniques [13,6,20] for inferring
complex loop bounds for (sequential) transition systems. Our basic termination
component could benefit from these techniques. Moreover, in principle, a con-
current program could be translated to a transition system that simulates all
possible interleavings, which then would allow using these techniques for infer-
ring bounds on loops with concurrent interleaving. However, we expect such
translation to be far more complicated that our techniques.

Finally, as in other kinds of analyses, by making the analysis object-sensitive
(i.e., by distinguishing between different objects of the same class) we can achieve
further precision. For instance, if we add to main3 the following two instructions
TaskQueue q1=new TaskQueue(); q1!ConsumeSync();. The MHP analysis infers
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that ConsumeSync can run in parallel with itself. When trying to solve the equa-
tions a cyclic dependency is created and both terminates and niter algorithms
terminate returning false.
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Asynchronous Programs with Inter-Procedural

Synchronization
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Abstract. A may-happen-in-parallel (MHP) analysis computes pairs of
program points that may execute in parallel across different distributed
components. This information has been proven to be essential to infer
both safety properties (e.g., deadlock freedom) and liveness properties
(termination and resource boundedness) of asynchronous programs. Ex-
isting MHP analyses take advantage of the synchronization points to
learn that one task has finished and thus will not happen in parallel with
other tasks that are still active. Our starting point is an existing MHP
analysis developed for intra-procedural synchronization, i.e., it only al-
lows synchronizing with tasks that have been spawned inside the current
task. This paper leverages such MHP analysis to handle inter-procedural
synchronization, i.e., a task spawned by one task can be awaited within
a different task. This is challenging because task synchronization goes
beyond the boundaries of methods, and thus the inference of MHP rela-
tions requires novel extensions to capture inter-procedural dependencies.
The analysis has been implemented and it can be tried online.

1 Introduction

In order to improve program performance and responsiveness, many modern
programming languages and libraries promote an asynchronous programming
model, in which asynchronous tasks can execute concurrently with their caller
tasks, until their callers explicitly wait for their completion. Our analysis is for-
malized for an abstract model that includes procedures, asynchronous calls, and
future variables for synchronization [8, 7]. In this model, a method call m on some
parameters x, written as f=m(x), spawns an asynchronous task. Here, f is a future
variable which allows synchronizing with the termination of the task executing
m. The instruction await f? allows checking whether m has finished, and blocks
the execution of the current task if m is still running. As concurrently-executing
tasks interleave their accesses to shared memory, asynchronous programs are
prone to concurrency-related errors [6]. Automatically proving safety and live-
ness properties still remains a challenging endeavor today.

MHP is an analysis of utmost importance to ensure both liveness and safety
properties of concurrent programs. The analysis computes MHP pairs, which are
pairs of program points whose execution might happen in parallel across differ-
ent distributed components. In this fragment of code f=m(..) ;...; await f ?; the



execution of the instructions of the asynchronous task m may happen in paral-
lel with the instructions between the asynchronous call and the await. However,
due to the await instruction, the MHP analysis is able to ensure that they will
not run in parallel with the instructions after the await. This piece of informa-
tion is fundamental to prove more complex properties: in [9], MHP pairs are
used to discard unfeasible deadlock cycles; in [4], the use of MHP pairs allows
proving termination and inferring the resource consumption of loops with con-
current interleavings. As a simple example, consider a procedure g that contains
as unique instruction y=−1, where y is a global variable. The following loop
y=1; while( i>0){i=i−y;} might not terminate if g runs in parallel with it, since g
can modify y to a negative value and the loop counter will keep on increasing.
However, if we can guarantee that g will not run in parallel with this code, we
can ensure termination and resource-boundedness for the loop.

This paper leverages an existing MHP analysis [3] developed for intra-pro-
cedural synchronization to the more general setting of inter-procedural synchro-
nization. This is a fundamental extension because it allows synchronizing with
the termination of a task outside the scope in which the task is spawned, as it is
available in most concurrent languages. In the above example, if task g is awaited
outside the boundary of the method that has spawned it, the analysis of [3] as-
sumes that it may run in parallel with the loop and hence it fails to prove
termination and resource boundedness. The enhancement to inter-procedural
synchronization requires the following relevant extensions to the analysis:

1. Must-have-finished analysis (MHF): the development of a novel MHF anal-
ysis which infers inter-procedural dependencies among the tasks. Such de-
pendencies allow us to determine that, when a task finishes, those that are
awaited for on it must have finished as well. The analysis is based on us-
ing Boolean logic to represent abstract states and simulate corresponding
operations. The key contribution is the use of logical implication to delay
the incorporation of procedure summaries until synchronization points are
reached. This is challenging in the analysis of asynchronous programs.

2. Local MHP phase: the integration of the above MHF information in the
local phase of the original MHP analysis in which methods are analyzed
locally, i.e., without taking transitive calls into account. This will require the
use of richer analysis information in order to consider the inter-procedural
dependencies inferred in point 1 above.

3. Global MHP phase: the refinement of the global phase of the MHP analysis
–where the information of the local MHP analysis in point 2 is composed– in
order to eliminate spurious MHP pairs which appear when inter-procedural
dependencies are not tracked. This will require to refine the way in which
MHP pairs are computed.

We have implemented our approach in SACO [2], a static analyzer for concur-
rent objects which is able to infer the aforementioned liveness and safety proper-
ties. The system can be used online at http://costa.ls.fi.upm.es/saco/web,
where the examples used in the paper are also available.
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2 Language
Our analysis is formalized for an abstract model that includes procedures, asyn-
chronous calls, and future variables [8, 7]. It also includes conditional and loop
constructs, however, conditions in these constructs are simply non-deterministic
choices. Developing the analysis at such abstract level is convenient [11], since
the actual computations are simply ignored in the analysis and what is actually
tracked is the control flow that originates from asynchronously calling methods
and synchronizing with their termination. Our implementation, however, is done
for the full concurrent object-oriented language ABS [10] (see Sec. 6).

A program P is a set of methods that adhere to the following grammar:
M ::= m(x̄) {s} s::=ε | b; s
b ::= if (∗) then s1 else s2 | while (∗) do s | y = m(x̄) | await x? | skip

Here all variables are future variables, which are used to synchronize with the
termination of the called methods. Those future variables that are used in a
method but are not in its parameters are the local future variables of the method
(thus we do not need any special instruction for declaring them). In loops and
conditions, the symbol ∗ stands for non-deterministic choice (true or false).
The instruction y = m(x̄) creates a new task which executes method m, and
binds the future variable y with this new task so we can synchronize with its
termination later. Inter-procedural synchronization is realized in the language by
passing future variables as parameters, since the method that receives the future
variable can await for the termination of the associated task (created outside its
scope). For simplifying the presentation, we assume that method parameters are
not modified inside each method. For a method m, we let Pm be the set of its
parameters, Lm the set of its local variables, and Vm = Pm ∪ Lm.

The instruction await x? blocks the execution of the current task until the
task associated with x terminates. Instruction skip has no effect, it is simply
used when abstracting from a richer language, e.g., ABS in our case, to abstract
instructions such as assignments. Programs should include a method main from
which the execution (and the analysis) starts. We assume that instructions are
labeled with unique identifiers that we call program points. For if and while the
identifier refers to the corresponding condition. We also assume that each method
has an exit program point `m. We let ppoints(m) and ppoints(P ) be the sets
of program points of method m and program P , resp., I` be the instruction at
program point `, and pre(`) be the set of program points preceding `.

Next we define a formal (interleaving) operational semantics for our language.
A task is of the form tsk(tid , l, s) where tid is a unique identifier, l is a mapping
from local variables and parameters to task identifiers, and s is a sequence of
instructions. Local futures are initialized to ⊥. A state S is a set of tasks that
are executing in parallel. From a state S we can reach a state S′ in one execution
step, denoted S ; S′, if S can be rewritten using one of the derivation rules of
Fig. 1 as follows: if the conclusion of the rule is A ; B such that A ⊆ S and
the premise holds, then S′ = (S \ A) ∪ B. The meaning of the derivation rules
is quite straightforward: (skip) advances the execution of the corresponding
task to the next instruction; (if) nondeterministically chooses between one of
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(skip)
tsk(tid , l, skip; s) ; tsk(tid , l, s)

(if)
b ≡ if (∗) then s1 else s2, set s′ non-deterministically to s1; s or s2; s

tsk(tid , l, b; s) ; tsk(tid , l, s′)

(loop)
b ≡ while (∗) do s1 , set s′ non-deterministically to s1; b; s or s

tsk(tid , l, b; s) ; tsk(tid , l, s′)

(call)
z̄ are the formal parameters of m, tid ′ is a fresh id, l′ = {zi 7→ l(xi)}
tsk(tid , l, y = m(x̄); s) ; tsk(tid , l[y 7→ tid ′], s), tsk(tid ′, l′, body(m))

(await)
l(x) = tid ′

tsk(tid , l, await x?; s), tsk(tid ′, l′, ε) ; tsk(tid , l, s), tsk(tid ′, l′, ε)

Fig. 1. Derivation Rules

the branches; (loop) nondeterministically chooses between executing the loop
body or advancing to the instruction after the loop; (call) creates a new task
with a fresh identifier tid ′, initializes the formal parameters z̄ of m to those of
the actual parameters x̄, sets future variable y in the calling task to tid ′, so one
can synchronize with its termination later (other local futrures are assumed to
be ⊥); and (await) advances to the next instruction if the task associated to x
has terminated already. Note that when a task terminates, it does not disappear
from the state but rather its sequence of instructions remains empty.

An execution is a sequence of states S0 ; S1 ; · · ·; Sn, sometimes denoted
as S0 ;∗ Sn, where S0 = {tsk(0, l, body(main))} is an initial state which includes
a single task that corresponds to method main, and l is an empty mapping. At
each step there might be several ways to move to the next state depending on
the task selected, and thus executions are nondeterministic.

In what follows, given a task tsk(tid , l, s), we let pp(s) be the program point
of the first instruction in s. When s is an empty sequence, pp(s) refers to the
exit program point of the corresponding method. Given a state S, we define its
set of MHP pairs, i.e., the set of program points that execute in parallel in S, as
E(S) = {(pp(s1), pp(s2)) | tsk(tid1, l1, s1), tsk(tid2, l2, s2) ∈ S, tid1 6= tid2}. The
set of MHP pairs for a program P is then defined as the the set of MHP pairs
of all reachable states, namely EP = ∪{E(Sn) | S0 ;∗ Sn}.
Example 1. Fig. 2 shows some simple examples in our language. Methods m1, m2

and m3 are main methods and the remaining ones are auxiliary. Let us consider
some steps of one possible derivation from m2:
S0 ≡ tsk(0, ∅, body(m2)) ;∗ S1 ≡ tsk(0, [x 7→ 1], {16, . . .}), tsk(1, ∅, body(f)) ;∗

S2 ≡ tsk(0, [x 7→ 1, z 7→ 2], {18, . . .}), tsk(1, ∅, body(f)), tsk(2, [w 7→ 1], body(g)) ;∗

S3 ≡ tsk(0, [x 7→ 1, z 7→ 2], {19, . . .}), tsk(1, ∅, ε), tsk(2, [w 7→ 1], body(g)) ;∗

S4 ≡ tsk(0, [x 7→ 1, z 7→ 2], {20, . . .}), tsk(1, ∅, ε), tsk(2, [w 7→ 1], ε) ; . . .

In S1 we execute until the asynchronous call to f which creates a new task
identified as 1 and binds x to this new task. In S2 we have executed the skip
and the asynchronous invocation to g that adds in the new task the binding of
the formal parameter w to the task identified as 1. In S3 we proceed with the
execution of the instructions in m2 until reaching the await that blocks this task
until g terminates. Also, in S3 we have executed entirely f (denoted by ε). S4
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1 m1() {
2 x=f();
3 z=q();
4 skip
5 if (∗) then
6 w=g(x);
7 skip ;
8 else
9 w=k(x,z);

10 skip ;
11 await w?;
12 }

13 m2() {
14 skip ;
15 x=f();
16 skip ;
17 z=g(x);
18 skip ;
19 await z?;
20 skip ;
21 }
22

23

24

25 m3() {
26 z=f();
27 while (∗)
28 x=q();
29 w=h(x,z);
30 await w?;
31 skip ;
32 }
33

34 f () {
35 skip ;
36 }

37 g(w) {
38 skip ;
39 await w?
40 skip ;
41 }
42

43 h(a,b) {
44 skip ;
45 z=g(a);
46 skip ;
47 await z?;
48 }

49 k(a,b) {
50 skip ;
51 await a?;
52 skip ;
53 await b?;
54 skip ;
55 }
56

57 q() {
58 skip ;
59 }
60
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Fig. 2. (TOP) Examples for MHP analysis (m1, m2, m3 are main methods). (BOT-
TOM) MHP graph Gi corresponds to analyzing mi, and G0 to analyzing m2 as in [3].

proceeds with the execution of g whose await can be executed since task 1 is
at its exit point ε. We have the following MHP pairs in this fragment of the
derivation, among many others: from S1 we have (16,35) that captures that the
first instruction of f executes in parallel with the instruction 16 of m2, from S2

we have (18,35) and (18,38). The important point is that we have no pair (20,35)
since when the await at L19 executes at S4, it is guaranteed that f has finished.
This is due to the inter-procedural dependecy at L39 of g where the task f is
awaited: variable x is passed as argument to g, which allows g to synchronize
with the termination of f at L39 even if f was called in a different method.

3 An Informal Account of our Method

In this section, we provide an overview of our method by explaining the analysis
of m2. Our goal is to infer precise MHP information that describes, among others,
the following representative cases: (1) any program point of g cannot run in
parallel with L20, because at L19 method m2 awaits for g to terminate; (2) L35
cannot run in parallel with L20, since when waiting for the termination of g at
L19 we know that f must-have-finished as well due to the dependency relation
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that arises when m2 implicitly waits for the termination of f; and (3) L35 cannot
run in parallel with L40, because f must-have-finished due to the synchronization
on the local future variable w at L39 that refers to future variable x of m2.

Let us first informally explain which MHP information the analysis of [3] is
able to infer for m2, and identify the reasons because it fails to infer some of the
desired information. The analysis of [3] is carried out in two phases: (1) each
method is analyzed separately to infer local MHP information; and (2) the local
information is used to construct a global MHP graph from which MHP pairs are
extracted by checking reachability conditions among the nodes.

The local analysis infers, for each program point, a multiset of MHP atoms
where each atom describes a task that might be executing in parallel when
reaching that program point, but only considering tasks that have been invoked
locally within the analyzed method. An atom of the form x:m̃ indicates that
there might be an active instance of m executing at any of its program points,
and is bounded to the future variable x. An atom of the form x:m̂ differs from
the previous one in that m must be at its exit program point, i.e., has finished
executing already. For method m2, the local MHP analysis infers, among others,
{x:̃f} for L16, {x:̃f, z:g̃} for L18, and {x:̃f, z:ĝ} for L20 and L21, because g has
been awaited locally. Observe that the sets of L20 and L21 include x:̃f and not
x:̂f, although we know that method f has finished already when reaching L20
and L21 (since g has finished). This information cannot be inferred by the local
analysis of [3] since it is applied to each method separately, ignoring (a) transitive
(non-local) calls and (b) inter-procedural synchronizations. In the sequel we let
Ψ` be the result of the local MHP analysis for program point `.

In the second phase, the analysis of [3] builds the MHP graph whose purpose
is to capture MHP relations due to transitive calls (point (a) above). The graph
G

0
depicted in Fig. 2 for m2 is constructed as follows: (1) every program point

` contributes a node labeled with ` – for simplicity we include only program
points of interest; (2) every method m contributes two nodes m̃ and m̂, where m̃
is connected to all program point nodes of m, to indicate that an active method
can be executing at any of its program points, and m̂ is connected only to the exit
program point of m; and (3) if x:m̃ (resp. x:m̂) is an atom of Ψ` with multiplicity
i, we create an edge from ` to m̃ (resp. m̂) and label it with i:x. Note that i is
the multiplicity of the edge, i.e., we could copy the edge i times instead.

Roughly, the MHP pairs are obtained from G0 using the following principle:
program points (`1, `2) might execute in parallel if there is a path from `1 to
`2 or vice versa (direct MHP pair); or if there is a program point `3 such that
there are paths from `3 to `1 and to `2 (indirect MHP pair), and the first edge
of both paths is labeled with two different future variables. When two paths are
labeled with the same future variable, it is because there is a disjunction (e.g.,
from an if-then-else) and only one of the paths might actually occur. Applying
this principle to G

0
, we can conclude that L20 cannot execute in parallel with

any program point of g, which is precise as expected, and that L20 can execute
in parallel with L35 which is imprecise. This imprecision is attributed to the fact
that the MHP analysis of [3] does not track inter-method synchronizations.
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To overcome the imprecision, we develop a must-have-finished analysis that
captures inter-method synchronizations, and use it to improve the two phases
of [3]. This analysis would infer, for example, that “when reaching L40, it is
guaranteed that whatever task bounded to w has finished already”, and that “when
reaching L20, it is guaranteed that whatever tasks bounded to x and z have fin-
ished already”. By having this information at hand, the first phase of [3] can
be improved as follows: when analyzing the effect of await z? at L20, we change
the status of both g and f to finished, because we know that any task bounded
z and x has finished already. This will require to enrich the information of the
MHP atoms as follows: an MHP atom will be of the form y:`:m̃(x̄) or y:`:m̂(x̄),
where the new information ` and x̄ are the calling site and the parameters
passed to m. In summary, the modified first phase will infer {x:15:̃f ()} for L16,
{x:15:̃f (), z:17:g̃(x)} for L18, and {x:15:̂f (), z:17:ĝ(x)} for L20 and L21.

In the second phase of the analysis: (i) the construction of the MHP graph
is modified to use the new local MHP information; and (ii) the principle used to
extract MHP pairs is modified to make use to the must-have-finished informa-
tion. The new MHP graph constructed for m2 is depicted in Fig. 2 as G

2
. Observe

that the labels on the edges include the new information available in the MHP
atoms. Importantly, the spurious MHP information that is inferred by [3] is not
included in this graph: (1) in contrast to G0 , G2 does not include edges from
nodes 20 and 21 to f̃, but to f̂. This implies that L35 cannot run in parallel with
L20 or L21; (2) in G

2
, we still have paths from 18 to 35 and 40, which means,

if the old principle for extracting MHP pairs is used, that L35 and L40 might
happen in parallel. The main point is that, using the labels on the edges, we
know that the first path uses a call to f that is bounded to x, and that this same
x is passed to g, using the parameter w, in the first edge of the second path. Now
since the must-have-finished analysis tell us that at L40 any task bounded w is
finished already, we conclude that f must be at its exit program point and thus
this MHP pair is spurious (because L35 is not an exit program point).

4 Must-Have-Finished Analysis
In this section we present a novel inter-procedural Must-Have-Finished (MHF)
analysis that can be used to compute, for each program point `, a set of finished
future variables, i.e., whenever ` is reached those variables are either not bounded
to any task (i.e., have value ⊥) or their bounded tasks are guaranteed to have
terminated. We refer to such sets as MHF sets.

Example 2. The following are MHF sets for the program points of Fig. 2:
L2: {x,w,z}
L3: {z,w}
L4: {w}
L5: {w}
L6: {w}
L7: {}

L9 : {w}
L10: {}
L11: {}
L12: {x,w}
L14: {x,z}
L15: {x,z}

L16: {z}
L17: {z}
L18: {}
L19: {}
L20: {x,z}
L21: {x,z}

L26: {x,z,w}
L27: {x,w}
L28: {x,w}
L29: {w}
L30: {}
L31: {x,w}

L32: {x,w}
L35: {}
L36: {}
L38: {}
L39: {}
L40: {w}

L41: {w}
L44: {z}
L45: {z}
L46: {}
L47: {}
L48: {a,z}

L50: {}
L51: {}
L52: {a}
L53: {a}
L54: {a,b}
L55: {a,b}

L58: {}
L59: {}

At program points that correspond to method entries, all local variables (but
not the parameters) are finished since they point to no task. For g: at L38 and
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L39 no task is guaranteed to have finished, because the task bounded to w might
be still executing; at L40 and L41, since we passed through await w? already, it
is guaranteed that w is finished. For k: at L50 and L51 no task is guaranteed
to have finished; at L52 and L53 a is finished since we already passed through
await a?; and at L54 and L55 both a and b are finished. For m1: at L12 both w
and x are finished. Note that w is finished because of await w?, and x is finished
due to the implicit dependency between the termination of x and w.

4.1 Definition of MHF

By carefully examining the MHF sets of Ex. 2, we can see that an analysis that
simply tracks MHF sets would be imprecise. For example, since the MHF set at
L11 is empty, the only information we can deduce for L12 is that w is finished. To
deduce that x is finished we must track the implicit dependency between w and x.
Next we define a more general MHF property that captures such dependencies,
and from which we can easily compute the MHF sets.

Definition 1. Given a program point ` ∈ ppoints(P ), we let F(`) = {f(Si, l) |
S0 ;∗ Si, tsk(tid , l, s) ∈ Si, pp(s) = `} where f(S, l) = {x | x ∈ dom(l), l(x) =
⊥ ∨ (l(x) = tid ′ ∧ tsk(tid ′, l′, ε) ∈ S)}.

Intuitively, f(S, l) is the set of all future variables, from those defined in l, whose
corresponding tasks are finished in S. The set F(`) considers all possible ways of
reaching `, and for each one it computes a corresponding set f(S, l) of finished
future variables. Thus, F(`) describes all possible sets of finished future variables
when reaching `. The set of all finished future variables at ` is then defined as
mhf(`) = ∩{F | F ∈ F(`)}, i.e., the intersection of all sets in F(`).

Example 3. The values of F(`) for selected program points from Fig. 2 are:
L5 : {{w,x,z},{w,z},{w,x},{w}}
L11: {{w,x,z},{w,x},{x,z},{z},{x},{}}
L12: {{x,w,z},{w,x}}
L20: {{x,z}}
L27: {{w,x,z},{w,x}}
L30: {{w,x,z},{w,x},{x,z},{x},{z},{}}

L31: {{w,x,z},{w,x}}
L32: {{w,x,z},{w,x}}
L35: {{}}
L38: {{w},{}}
L40: {{w}}

L46: {{a,z},{a},{},
{a,b,z},{a,b},{b}}

L48: {{a,z},{a,b,z}}
L52: {{a},{a,b}}
L54: {{a,b}}
L58: {{}}

In L5 different sets arise by considering all possible orderings in the execution
of tasks f, q and m1, but mhf(L5) = {w}. Note that for any F ∈ F(11), if w ∈ F
then x ∈ F , which means that if w is finished at L11, then x must finish too.

4.2 An Analysis to Infer MHF Sets

Our goal is to infer mhf(`), or a subset of it, for each ` ∈ ppoints(P ). Note that
any set X that over-approximates F(`), i.e., F(`) ⊆ X, can be used to compute
a subset of mhf(`), because ∩{F | F ∈ X} ⊆ ∩{F | F ∈ F(`)}. In the rest of this
section we develop an analysis to over-approximate F(`). We will use Boolean
formulas, whose models naturally represent MHF sets, and, moreover, Boolean
connectives smoothly model the abstract execution of the different instructions.
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An MHF state for the program points of a method m is a propositional
formula Φ : Vm 7→ {true, false} of the form ∨i∧j cij , where an atomic proposition
cij is either x or y → x such that x ∈ Vm ∪{true, false} and y ∈ Lm. Intuitively,
an atomic proposition x states that x is finished, and y → x states that if y is
finished then x is finished as well. Note that we do not allow the parameters
of m to appear in the premise of an implication (we require y ∈ Lm). When Φ
does not include any atomic proposition of the form y → x we call it monotone.
Recall that σ ⊆ Vm is a model of Φ, iff an assignment that maps variables from
σ to true and other variables to false is a satisfying assignment for Φ. The set of
all models of Φ is denoted [[Φ]]. The set of all MHF states for m, together with
the formulas true and false, is denoted Am.

Example 4. Assume Vm = {x, y, z}. The Boolean formula x∨y states that either
x or y or both are finished, and that z can be in any status. This information is
precisely captured by the models [[x ∨ y]] = {{x},{y},{x,y},{x,z},{y,z},{x,y,z}}.
The Boolean formula z∧(x→ y) states that z is finished, and if x is finished then
y is finished. This is reflected in [[z ∧ (x→ y)]] = {{z}, {z, y}, {z, x, y}} since z
belongs to all models, and any model that includes x includes y as well. The
formula false means that the corresponding program point is not reachable. The
following MHF states correspond to some selected program points from Fig. 2:
Φ5 : w
Φ11: w→x

Φ12: w ∧ x
Φ20: x ∧ z

Φ27: w ∧ x
Φ30: w→x

Φ31: w ∧ x
Φ32: w ∧ x

Φ35: true
Φ38: true

Φ40: w
Φ46: z→a

Φ48: a ∧ z
Φ52: a

Φ54: a ∧ b
Φ58: true

Note that the models [[Φ`]] coincide with F(`) from Ex. 3.

Now that is clear how Boolean formulas represent the desired MHF infor-
mation, we proceed to explain how the execution of the different instructions
can be modeled with Boolean formulas. Let us first define some auxiliary oper-
ations. Given a variable x and an MHF state Φ ∈ Am, we let ∃x.Φ = Φ[x 7→
true] ∨ Φ[x 7→ false], i.e., this operation eliminates variable x from (the domain
of) Φ. Note that ∃x.Φ ∈ Am and that [[Φ]] |= [[∃x.Φ]]. For a tuple of variables x̄
we let ∃x̄.Φ be ∃x1.∃x2. . . . .∃xn.Φ, i.e., eliminate all variables x̄ from Φ. We also
let ∃̄x̄.Φ stand for eliminating all variables but x̄ from Φ. Note that if Φ ∈ Am
and monotone, and x ∈ Lm, then x→ Φ is a formula in Am as well.

Given a program point `, an MHF state Φ`, and an instruction to execute
I`, our aim is to compute a new MHF state, denoted µ(I`), that represents the
effect of executing I` within Φ`. If I` is skip, then clearly µ(I`) ≡ Φ`. If I` is an
await x? instruction, then µ(I`) is x∧Φ`, which restricts the MHF state of Φ` to
those cases (i.e., models) in which x is finished. If I` is a call y = m(x̄), where
m is a method with parameters named z̄, and, at the exit program point of m
we know that the MHF state Φ`m holds, then µ(I`) is computed as follows:
– We compute an MHF state Φm that describes “what happens to tasks bounded

to x̄ when m terminates”. This is done by restricting Φ`m to the method
parameters, and then renaming the formal parameters z̄ to the actual pa-
rameters x̄, i.e., Φm = (∃̄z̄.Φ`m)[z̄/x̄] , where [z̄/x̄] denotes the renaming.

– Now assume that ξ is a new (future) variable to which m is bounded. Then
ξ → Φm states that “when m terminates, Φm must hold”. Note that it says
nothing about x̄ if m has not terminated yet.
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– Next we add ξ → Φm to Φ`, eliminate (old) y since the variable is rewritten,
and rename ξ to (new) y. Note that we use ξ as a temporary variable just
not to conflict with the old value of y.

The above reasoning is equivalent to (∃y.(Φ` ∧ (ξ → (∃̄z̄.Φ`m)[z̄/x̄]))[ξ/y], and is
denoted by ⊕(Φ`, y, Φ`m , x̄, z̄).

Example 5. Let Φ11 = x→ w be the MHF state at L11. The effect of executing
I11, i.e., await w?, within Φ11 should eliminate all models that do not include
w. This is done using w ∧ Φ11 which results in Φ12 = w ∧ x. Now let Φ29 = w
be the MHF state at L29. The effect of executing the instruction at L29, i.e.,
w=h(x,z), within Φ29 is defined as ⊕(Φ29,w, Φ48, 〈x, z〉, 〈a, b〉) and computed as
follows: (1) we restrict Φ48 = a ∧ z to the method parameters 〈a, b〉, which
results in a; (2) we rename the formal parameters 〈a, b〉 to the actual ones 〈x, z〉
which results in Φh = x; (3) we compute ∃w.(Φ29 ∧ (ξ → Φh)), which results in
ξ → x; and finally (4) we rename ξ to w which results in Φ30 = w→ x.

Next we define our MHF analysis by means of data-flow equations, whose so-
lutions associate to each ` ∈ ppoints(P ) an MHF state Φ` that over-approximates
F(`), i.e., F(`) ⊆ [[Φ`]].

Definition 2. The set of HP of equations for a program P is defined as follows:

1. For each ` ∈ ppoints(P ) such that ` is not an entry program point, we
generate the equation Φ`=∨{µ(`′) | `′ ∈ pre(`)};

2. For each ` ∈ ppoints(P ) such that ` is an entry program point for method
m 6= main, let {`1, . . . , lk} be the program points in which m is called, we
generate Φ`=(∨{TF (Φ`i) | `i ∈ {`1, . . . , `k}}) ∧ (∧{x | x ∈ Lm});

3. If ` is the entry program point of main, we generate Φ` = ∧{x | x ∈ Lmain}.
Let us explain the meaning of each equation in the above defintion: (1) when
` is not a method entry, we consider each program point `′ that immediately
precedes `, compute the effect µ(`′) of executing I`′ within Φ`′ , and the take the
disjunction of all such states. This is precisely captured by Φ` = ∨{µ(`′) | `′ ∈
pre(`)}; (2) when ` is the first program point of a method m 6= main, the most
precise MHF state Φ` that we can have, ignoring how m was called, is that all
local variables point to finished tasks (since they are mapped to ⊥ when entering
a method), and that the parameters might point to finished or active tasks which
is precisely captured by Φ` = ∧{x | x ∈ Lm}. But in addition we require that m
has actually been called – this is the role of add ∨{TF (Φ`i) | `i ∈ {`1, . . . , `k}};
(3) the equation Φ` = ∧{x | x ∈ Lmain}, where ` is the entry of main, indicates
that we start the execution from main.

Example 6. The following are the equations for the program points of m3:
Φ26= w ∧ x ∧ z
Φ27= ⊕(Φ26, z, Φ36, 〈〉, 〈〉) ∨ Φ31

Φ28= Φ27

Φ29= ⊕(Φ28, x, Φ59, 〈〉, 〈〉)
Φ30= ⊕(Φ29,w, Φ48, 〈x, z〉, 〈a, b〉)

Φ31= w ∧ Φ30

Φ32= Φ27

Note, for example, the circular dependency between Φ27 and Φ31 which originates
from the corresponding while loop.
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The next step is to solve HP , i.e., compute an MHF state Φ`, for each ` ∈
ppoints(P ), such that HP is satisfiable. This can be done iteratively as follows.
We start from an initial solution where Φ` = false for each ` ∈ ppoints(P ). Then
repeat the following until a fixed-point is reached: (1) substitute the current
solution in the right hand side of the equations, and obtain new values for each
Φ`; and (2) merge the new and old values of each Φ` using ∨. E.g, solving the
equation of Ex. 6, among other equations that were omitted, results in a solution
that includes, among others, the MHF states of Ex. 4. In what follows we assume
that HP has been solved, and we use Φ` to refer to the MHF state at ` in such
solution.

Theorem 1. For any program point ` ∈ ppoints(P ), we have F(`) ⊆ [[Φ`]].

In the rest of this article we let mhfα(`) = {x | x ∈ Vm, Φ` |= x}, i.e., the
set of finished future variable at ` that is induced by Φ`. Theorem 1 implies
mhfα(`) ⊆ mhf(`). Computing mhfα(`) using the MHF states of Ex. 4, among
others that are omitted, results exactly in the MHF sets of Ex. 2.

5 MHP Analysis

In this section we present our MHP analysis, which is based on incorporating
the MHF sets of Sec. 4 into the MHP analysis of [3]. In sections 5.1 and 5.2 we
describe how we modify the two phases of the original analysis, and describe the
gain of precision with respect to [3] in each phase.

5.1 Local MHP

The local MHP analysis (LMHP) considers each method m separately, and for
each ` ∈ ppoints(m) it infers an LMHP state that describes the tasks that
might be executing when reaching ` (considering only tasks invoked in m). An
LMHP state Ψ is a multiset of MHP atoms, where each atom represents a task
and can be: (1) y:`′:m̃(x̄), which represents an active task that might be at any
of its program points, including the exit one, and is bounded to future variable y.
Moreover, this task is an instance of method m that was called at program point
`′ (the calling site) with future parameters x̄; or (2) y:`′:m̂(x̄), which differs from
the previous one in that the task can only be at the exit program point, i.e., it
is a finished task. In both cases, future variables y and x̄ can be ?, which is a
special symbol indicating that we have no information on the future variable.

Intuitively, the MHP atoms of Ψ represent (local) tasks that are executing in
parallel. However, since a variable y cannot be bounded to more than one task at
the same time, atoms bounded to the same variable represent mutually exclusive
tasks, i.e., cannot be executing at the same time. The same holds for atoms that
use mutually exclusive calling sites `1 and `2 (i.e., there is no path from `1 and
`2 and vice versa). The use of multisets allows including the same atom several
times to represent different instances of the same method. We let (a, i) ∈ Ψ
indicate that a appears i times in Ψ . Note that i can be∞, which happens when
the atom corresponds to a calling site inside a loop, this guarantees convergence
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of the analysis. Note that the MHP atoms of [3] do not use the parameters x̄
and the calling site `′, since they do not benefit from such extra information.

Example 7. The following are LMHP states for some program points from Fig. 2:

L5 : {x:2: f̃ (),z:3:q̃()}
L7 : {x:2: f̃ (),z:3:q̃(),w:6:g̃(x)}
L10: {x:2: f̃ (),z:3:q̃(),w:9:k̃(x,z)}
L11: {x:2: f̃ (),z:3:q̃(),w:6:g̃(x),w:9:k̃(x,z)}
L12: {x:2: f̂ (),z:3:q̃(),w:6:ĝ(x),w:9:k̂(x,z)}
L16: {x:15: f̃ ()}
L18: {x:15: f̃ (),z:17:g̃(x)}
L20: {x:15: f̂ (),z:17:ĝ(x)}

L21: {x:15: f̂ (),z:17:ĝ(x)}
L27: {z:26: f̃ (),(?:28:q̂(),∞),(?:29:ĥ(?,z),∞)}
L29: L27 ∪ {x:28:q̃()}
L30: L29 ∪ {w:29:h̃(x,z)}
L31: {z:26: f̃ (),(?:28:q̂(),∞),(?:29:ĥ(?,z),∞)}
L32: {z:26: f̃ (),(?:28:q̂(),∞),(?:29:ĥ(?,z),∞)}
L44: {}
L46: {z:45:g̃(a)}
L48: {z:45:ĝ(a)}

Let us explain some of the above LMHP states. The state at L5 includes x:2:̃f ()
and z:3:q̃() for the active tasks invoked at L2 and L3. The state at L11 includes
an atom for each task invoked in m1. Note that those of g and h are bounded
to the same future variable w, which means that only one of them might be
executing at L11, depending on which branch of the if statement is taken. The
state at L12 includes z:3:q̃() since q might be active at L12 if we take the then
branch of the if statement, and the other atoms correspond to tasks that are
finished. The state at L27 includes z:26:̃f () for the active task invoked at L26,
and ?:28:q̂() and ?:29:ĥ(?,z) with ∞ multiplicity for the tasks created inside the
loop. Note that the first parameter of h is ? since x is rewritten at each iteration.

The LMHP states are inferred by a data-flow analysis which is defined as a
solution of a set of LMHP constraints obtained by applying the following transfer
function τ to the instructions. Given an LMHP state Ψ`, the effect of executing
instruction I` within Ψ`, denoted by τ(I`), is defined as follows:

– if I` is a call y = m(x̄), then τ(I`) = Ψ`[y/?] ∪ {y:`′:m̃(x̄)}, which replaces
each occurrence of y by ?, since it is rewritten, and then adds a new atom
y:`:m̃(x̄) for the newly created task. E.g., the LMHP state of L30 in Ex. 7
is obtained from the one of L29 by adding w:29:h̃(x,z) for the call at L29;

– if I` is await y?, and `′ is the program point after `, then we mark all tasks that
are bounded to a finished future variable as finished, i.e., τ(I`) is obtained
by turning each z:`′′:m̃(x̄) ∈ Ψ` to z:`′′:m̂(x̄) for each z ∈ mhfα(`′). E.g., the
LMHP state of L12 in Ex. 7 is obtained from the one of L11 by turning the
status of g, k, and f to finished (since w and x are finished at L12);

– otherwise, τ(I`) = Ψ`.

The main difference w.r.t. the analysis of [3] is the treatment of await y?: while we
use an MHF set computed using the inter-procedural MHF analysis of Sec. 4,
In [3] the MHF set {y} is used, which is obtained syntactically from the in-
struction. Our LMHP analysis, as [3], is defined as a solution of a set of LMHP
constraints. In what follows we assume that the results of the LMHP analysis
are available, and we will refer to the LMHP state of program point ` as Ψ`.
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5.2 Global MHP

The results of the LMHP analysis are used to construct an MHP graph, from
which we can compute the desired set of MHP pairs. The construction is exactly
as in [3] except that we carry the new information in the MHP atoms. However,
the process of extracting the MHP pairs from such graphs will be modified.

In what follows, we use y:`:m̆(x̄) to refer to an MHP atom without specifying
if it corresponds to an active or finished task, i.e., the symbol m̆ can be matched
to m̃ or m̂. As in [3], the nodes of the MHP graph consist of two method nodes m̃
and m̂ for each method m, and a program point node ` for each ` ∈ ppoints(P ).
Edges from m̃ to each ` ∈ ppoints(m) indicate that when m is active, it can be
executing at any program point, including the exit, but only one. An edge from
m̂ to `m indicates that when m is finished it can be only at its exit program
point. The out-going edges from a program point node ` reflect the atoms of the
LMHP state Ψ` as follows: if (y:`′:m̆(x̄), i) ∈ Ψ`, then there is an edge from node
` to node m̆ and it is labeled with i:y:`′:x̄. These edges simply indicate which
tasks might be executing in parallel when reaching `, exactly as Ψ` does.

Example 8. The MHP graphs G1 , G2 , and G3 in Fig. 2, correspond to methods m1,
m2, and m3, each analyzed together with its reachable methods. For simplicity,
the graphs include only some program points of interest. Note that the out-going
edges of program point nodes coincide with the LMHP states of Ex. 7.

The procedure of [3] for extracting the MHP pairs from the MHP graph of a
program P , denoted G

P
, is based on the following principle: (`1, `2) is an MHP

pair induced by G
P

iff (i) `1 ; `2 ∈ GP
or `2 ; `1 ∈ GP

; or (ii) there is
a program point node `3 and paths `3 ; `1 ∈ GP

and `3 ; `2 ∈ GP
, such

that the first edges of these paths are different and they do not correspond to
mutually exclusive MHP atoms, i.e., they use different future variable and do
not correspond to mutually exclusive calling sites (see Sec. 5.1). Edges with
multiplicity i > 1 represent i different edges. The first (resp. second) case is
called direct (resp. indirect) MHP, see Sec. 3.

Example 9. Let us explain some of the MHP pairs induced by G1 of Fig. 2. Since
11 ; 35 ∈ G

1
and 11 ; 58 ∈ G

1
we conclude that (11,58) and (11,35) are direct

MHP pairs. Moreover, since these paths originate in the same node 11, and the
first edges use different future variables, we conclude that (58,35) is an indirect
MHP pair. Similarly, since 11 ; 38 ∈ G

1
and 11 ; 50 ∈ G

1
we conclude that

(11,38) and (11,50) are direct MHP pairs. However, in this case (38,50) is not
an indirect MHP pair because the first edges of these paths use the same future
variable w. Indeed, the calls to g and k appear in different branches of an if
statement. To see the improvement w.r.t. to [3] note that node 12 does not have
an edge to f̃, since our MHF analysis infers that x is finished at that L12. The
analysis of [3] would have an edge to f̃ instead of f̂, and thus it produces spurious
pairs such as (12,35). Similar improvements occur also in G2 and G3 .

Now consider nodes 35 and 40, and note that we have 11 ; 35 ∈ G
1
and

11 ; 40 ∈ G
1
, and moreover these paths use different future variables. Thus, we
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conclude that (35,40) is an indirect MHP pair. However, carefully looking at the
program we can see that this is a spurious pair, because x (to which task f is
bounded) is passed to method g, as parameter w, and w is guaranteed to finish
when executing await w? at L39. A similar behavior occurs also in G2 and G3 .
For example, the paths 30 ; 58 ∈ G

3
and 30 ; 40 ∈ G

3
induce the indirect

MHP pair (58,40), which is spurious since x is passed to h at L29, as parameter
a, which in turn is passed to g at L45, as parameter w, and w is guaranteed to
finish when executing await w? at L39.

The spurious pairs in the above example show that even if we used our im-
proved LMHP analysis when constructing the MHP graph, using the procedure
of [3] to extract MHP pairs might produce spurious pairs. Next we handle this
imprecision, by modifying the process of extracting the MHP pairs to have an
extra condition to eliminate such spurious MHP pairs. This condition is based
on identifying, for a given path m̆ ; ` ∈ G

P
, which of the parameters of m are

guaranteed to finish before reaching `, and thus, any task that is passed to m in
those parameters cannot execute in parallel with `.

Definition 3. Let p be a path m̆ ; ` ∈ G
P
, z̄ be the formal parameter of m,

and I a set of parameter indices of method m. We say that I is not alive along p
if (i) p has a single edge, and for some i ∈ I the parameter zi is in mhfα(`); or
(ii) p is of the form m̆ −→ `1

i:k:y:x̄−→ m̆1 ; `, and for some i ∈ I the parameter
zi is in mhfα(`1) or I ′ = {j | i ∈ I, zi = xj} is not alive along m̆1 ; `.

Intuitively, I is not alive along p if some parameter zi, with i ∈ I, is finished at
some point in p. Thus, any task bounded to zi cannot execute in parallel with `.

Example 10. Consider p ≡ g̃ ; 40 ∈ G1 , and let I = {1}, then I is not alive
along p since it is a path that consists of a single edge and w ∈ mhfα(40). Now
consider h̃; 40 ∈ G

3
, and let I = {1}, then I is not alive along p since I ′ = {1}

is not alive along g̃ ; 40.

The notion of “not alive along a path” can be used to eliminate spurious MHP
pairs as follows. Consider two paths

p1 ≡ `3
i1:y1:`′1:w̄−→ m̃1 ; `1 ∈ GP

and p2 ≡ `3
i2:y2:`′2:x̄−→ m̆2 ; `2 ∈ GP

such that y1 6= ?, and the first node after m̃1 does not correspond to the exit
program point of m1, i.e., m1 is not finished and bounded to y1. Define

– F = {y1} ∪ {y | Φ`3 |= y → y1}, i.e., the set of future variables at `3 such
that when any of them is finished, y1 is finished as well; and

– I = {i | y ∈ F, xi = y}, i.e., the indices of the parameters of m2 to which
we pass variables from F (in p2).

We claim that if I is not alive along p2, then the MHP pair (`1, `2) is spurious.
This is because before reaching `2, some task from F is guaranteed to terminate,
and hence the one bounded to y1, which contradicts the assumption that m1 is
not finished. In such case p1 and p2 are called mutually exclusive paths.
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Example 11. We reconsider the spurious indirect MHP pairs of Ex. 9. Consider
first (35,40), which originates from

p1 ≡ 11
1:x:2: []−→ f̃ ; 35 ∈ G

1
and p2 ≡ 11

1:w:6:[x]−→ g̃ ; 40.

We have F = {x,w}, I = {1}, and we have seen in Ex. 10 that I is not alive
along g̃ ; 40 ∈ G

1
, thus p1 and p2 are mutually exclusive and we eliminate this

pair. Similarly, consider (58,40) which originates from

p1 ≡ 30
1:x:28: []−→ q̃ ; 58 ∈ G

3
and p2 ≡ 30

1:w:29:[x,z]−→ h̃; 40.
Again F = {x,w}, I = {1}, and we have seen in Ex. 10 that I is not alive along
h̃; 40 ∈ G

3
, thus p1 and p2 are mutually exclusive and we eliminate this pair.

Let ẼP be the set of all MHP pairs obtained by applying the process of [3],
modified to eliminate indirect pairs that correspond to mutually exclusive paths.

Theorem 2. EP ⊆ ẼP .

6 Conclusions, Implementation and Related Work

The main contribution of this work has been the enhancement of an MHP anal-
ysis that could only handle a restricted form of intra-procedural synchronization
to the more general inter-procedural setting, as available in today’s concurrent
languages. Our analysis has a wide application scope on the inference of the main
properties of concurrent programs, namely the new MHP relations are essential
to infer (among others) the properties of the termination, resource usage and
deadlock freedrom of programs that use inter-procedural synchronization.

Our analysis has been implemented in SACO [2], a S tatic Analyzer for
Concurrent Objects, which is able to infer deadlock, termination and resource
boundedness of ABS programs [10] that follow the concurrent objects paradigm.
Concurrent objects are based on the notion of concurrently running objects,
similar to the actor-based and active-objects approaches [12, 13]. These mod-
els take advantage of the concurrency implicit in the notion of object to provide
programmers with high-level concurrency constructs that help in producing con-
current applications more modularly and in a less error-prone way. Concurrent
objects communicate via asynchronous method calls and use await instructions
to synchronize with the termination of the asynchronous tasks. Therefore, the
abstract model used in Sec. 2 fully captures the MHP relations arising in ABS
programs.

The implementation has been built on top of the original MHP analysis
in SACO. The MHF analysis has been implemented and its output has been
used within the local and global phases of the MHP analysis, which have been
adapted to this new input as described in the technical sections. The remaining
analyses in SACO did not require any modification and now they work for inter-
procedural synchronization as well. Our method can be tried online at: http:
//costa.ls.fi.upm.es/saco/web by enabling the option Inter-Procedural
Synchronization of the MHP analysis in the Settings section. One can then
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apply the MHP analysis by selecting it from the menu for the types of analyses
and then clicking on Apply. All examples used in the paper are available in the
folder Forte15 adapted to the syntax of the ABS language. In the near future,
we plan to apply our analysis to industrial case studies that are being developed
in ABS but that are not ready for experimentation yet.

There is an increasing interest in asynchronous programming and in con-
current objects, and in the development of program analyses that reason on
safety and liveness properties [6]. Existing MHP analyses for asynchronous pro-
grams [3, 11, 1] lose all information when future variables are used as parameters,
as they do not handle inter-procedural synchronization. As a consequence, exist-
ing analysis for more advanced properties [9, 4] that rely on the MHP relations
do all lose the associated analysis information on such futures. In future work
we plan to study the complexity of our analysis, which we conjuncture to be in
the same complexity order as [4]. In addition, we plan to study the computa-
tional complexity of deciding MHP, for our abstract models, with and without
inter-procedural synchronizations in a similar way to what has been done in [5]
for the problem of state reachability.
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Abstract. When reasoning about distributed systems, it is essential to have information about the different kinds
of nodes that compose the system, how many instances of each kind exist, and how nodes communicate with
other nodes. In this paper we present a static-analysis-based approach which is able to provide information about
the questions above. In order to cope with an unbounded number of nodes and an unbounded number of calls
among them, the analysis performs an abstraction of the system producing a graph whose nodes may represent
(infinitely) many concrete nodes and arcs represent any number of (infinitely) many calls among nodes. The
crux of our approach is that the abstraction is enriched with upper bounds inferred by resource analysis that
limit the number of concrete instances that the nodes and arcs represent and their resource consumption. The
information available in our quantified abstract configurations allows us to define performance indicators which
measure the quality of the system. In particular, we present several indicators that assess the level of distribution
in the system, the amount of communication among distributed nodes that it requires, and how balanced the
load of the distributed nodes that compose the system is. Our performance indicators are given as functions on
the input data sizes, and they can be used to automate the comparison of different distributed settings and guide
towards finding the optimal configuration.

Keywords: Static analysis, Cost analysis, Distributed systems

1. Introduction

When reasoning about distributed systems, it is essential to have information about their configuration, i.e., the
sorts and quantities of nodes that compose the system, and their communication, i.e., with whom and how often
the different nodes interact. Whereas configurations may be straightforward in simple applications, the tendency
is to have rather complex and dynamically changing configurations (cloud computing [BYV09] is an example of
this). In this paper, we introduce the notion of quantified abstraction (QA) of a distributed system that abstracts
both its configuration and communication by means of static analysis. QAs are abstract in the sense that a single
abstract node may represent (infinitely) many nodes and a single abstract interaction may represent (infinitely)
many interactions. QAs are quantified in that we provide an upper bound on the (possibly infinite) number of
actual nodes that each abstract node represents, and an upper bound on the (possibly infinite) number of actual
interactions that each abstract interaction represents. Abstraction allows dealing with an unbounded number of
elements in the system, whereas the upper bounds allow regaining accuracy by bounding the number of elements
which each abstraction represents.
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We apply our analysis to an Actor-like language [JHS12] for distributed concurrent systems based on asyn-
chronous communication. Actors form a well established model for distributed systems [YBS86, Ame89, Car93,
SPH10], which is lately regarding attention due to its adoption in Erlang [AVW96], Scala [HO09] and active
objects [SPH10, BGS12]. In our language, the distribution model is based on (possibly interacting) objects that
are grouped into distributed nodes, called coboxes. Objects belong to their corresponding cobox for their entire
lifetime. To realize concurrency, each cobox supports multiple, possibly interleaved, processes which we refer to
as tasks. Tasks are created when methods are asynchronously called on objects, e.g., o!m() starts a new task. The
callee object o is responsible for executing the method call. The communication can be observed by tracking the
calls between each pair of objects (e.g., we have a communication between the this object and o due to the invoca-
tion of m). Informally, given an execution, its configuration consists of the set of coboxes that have been created
along such execution and which are the nodes of the distributed system, together with the set of objects created
within each cobox. Similarly, the communication of an execution is defined as the set of calls (or interactions)
between each pair of objects in the system; from which we can later obtain the external communication for pairs
of coboxes.

Statically inferring QAs is a challenging problem, since it requires (1) keeping track of the relations between
the coboxes and the objects, (2) bounding the number of elements which are created, (3) bounding the number
of interactions between objects, and (4) doing so in the context of distributed concurrent programming. In
our approach, QAs are inferred in two main steps; first, we infer the nodes that safely describe all possible
executions that might occur at runtime, and, second, we infer the interactions between the nodes identified for
the configurations. An allocation site is a program point in which an object is created. The abstraction of objects
and coboxes we rely on is based on allocation sequences [MRR05]. An allocation sequence is the sequence of
allocation sites where the objects that led to the creation of the current one were created. By using this abstraction,
a quantified abstraction of a distributed system is a directed graph whose nodes represent the abstract objects
that may be created along the execution, and the edges link a node n1 with a node n2 to represent a call (or
interaction) from an object in n1 to an object in n2. QAs are quantified since nodes and edges are enriched with
upper bounds. In the case of nodes, the upper bound (over) approximates the number of concrete instances of
each abstract object. For edges, the upper bound (over) approximates the number of calls among the objects.

The main applications of QAs are on optimizing, debugging and efficiently dimensioning distributed systems
because: (1) QAs provide a global view of the distributed application, which may help to find the best task
distribution, to detect errors related to the creation of the topology or task distribution. (2) They allow us to
identify nodes that execute a too large number of processes while other siblings execute only a few of them. (3)
They are required to perform meaningful resource analysis of distributed systems, since they allow determining
to which node the computation of the different processes should be associated. This allows us to check if the
configuration is well balanced. (4) They allow us to detect components that have many communications and that
would benefit from being deployed in the same machine or at least have a very fast communication channel.

1.1. Summary of contributions

The main contributions of this paper can be summarized as follows:

1. Abstract configurations. We use a points-to analysis to infer the allocation sequences for reference variables.
Such sequences allow us to infer the ownership relations that determine to which coboxes the objects belong.
From this information, we compute an abstraction of the configuration of the distributed system.

2. Quantified nodes. We define a new cost model that can be plugged in the generic resource analyzer SACO
[AAG12a] (without requiring any change to the analysis engine) in order to infer upper bounds on the number
of coboxes and of objects that each element of an abstract configuration represents.

3. Quantified edges. Likewise, we propose a cost model that can be also plugged in SACO to infer upper bounds
on the number of calls among nodes. The three points described so far allow us to define QAs.
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4. Performance indicators. We define performance indicators that can be obtained from the information gathered
in the QAs and that allow us to evaluate the quality of a particular distributed system.

5. Optimal settings. Performance indicators can be used together with deployment constraints (i.e., restrictions
given by the concrete deployment scenario) to find the configuration that best satisfies the constraints imposed.
For this purpose, we outline practical ways to determine when one distributed setting is better than another
one.

6. Implementation. We have implemented our analysis in SACO (http://costa.ls.fi.upm.es/SACO) and applied
it on several benchmarks and on two larger case studies. Our experiments show that the application of our
approach to finding optimal configurations is feasible and useful to guide the deployment of a distributed
program.

This article improves and extends the iFM’13 Conference paper [ACP13] in the following aspects: (1) it improves
the formalization by giving the semantics of the language and proving the soundness of our approach w.r.t. such
semantics, (2) we introduce several performance indicators that can be automatically inferred using our techniques,
(3) we develop the application of QAs to find optimal configurations of distributed systems that adhere to given
deployment constraints and (4) we extend our experimental evaluation by applying our techniques for finding
optimal configurations to some classical distributed applications and two case studies.

1.2. Organization of the article

The article is organized as follows. Section 2 describes the abstract behavioral specification language (ABS) and
its semantics. This is a language for designing distributed object-oriented systems that uses the concept of coboxes
that execute concurrently. When an ABS program is written, the programmer may decide whether an object is
created in the current cobox or in a fresh cobox by using different language constructs for object creation, namely
new and newcog, respectively. Different distributed settings are thus achieved by trying different combinations
of new and newcog instructions.

Background concepts needed throughout the article are introduced in Sect. 3. First, the points-to analysis is
briefly described. It is used to obtain information about the coboxes created by the program and how objects
are distributed among them. The result of the points-to analysis is later used to define cost centers for which our
static analysis will compute quantitative information about a resource being measured. The resource of interest
is specified by the definition of a cost model, a function that relates each type of instruction with a number that
represents its cost. Given a cost model, the resource analysis obtains an upper bound of the cost of executing a
program.

Section 4 defines the concrete notions of configuration and communication for a given program execution.
The configuration collects the state of a program regarding objects and coboxes for all possible execution traces.
The communication refers to the interactions between objects during the execution of a program. A method for
inferring an over-approximation of both concepts is described in Sect. 5, by means of an abstract definition of
configuration and communication, and by integrating quantitative information based on points-to and resource
analysis. Soundness of the analysis results is proved.

The information available in our quantified abstract configurations is used in Sect. 6 to define a series of perfor-
mance indicators that measure the quality of a setting and allow us to compare it to other settings. In particular,
we present several indicators that assess the level of distribution in the setting, the amount of communication
with other distributed nodes that it requires, and how balanced the load of the distributed nodes that compose
the system is. Since software performance can vary significantly depending on the target architecture, deployment
constraints can be used to express decisions that reflect the deployment scenario.

Section 7 describes the experimental evaluation of our approach for several classical distributed applications
and how our techniques can be used for finding the optimal configuration of a system. Section 8 overviews other
approaches in the literature and relates them to our work. Finally, Sect. 9 summarizes the main conclusions of
this article and points out several directions for future research.
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2. The language

We apply our analysis to the language ABS [JHS12, SPH10]. ABS extends the basic concurrent objects model
[YBS86, Ame89, Car93, SPH10] with the abstraction of object groups, named coboxes. Each cobox conceptually
has a dedicated processor and a number of objects can live inside the cobox and share its processor. Communica-
tion is based on asynchronous method calls with standard objects as targets. Consider an asynchronous method
call m on object o, written as y = o!m(). The objects this and o communicate by means of the invocation m. Here,
y is a future variable that allows synchronizing with the completion of taskm by means of the await y? instruction
that behaves as follows. If m has finished, execution of the current task proceeds. Otherwise, the current task
releases the processor to allow other available tasks (possibly a task of another object in the cobox) to take it.
The language syntax is as follows. A program consists of a set of classes

class C1 (t1 fn1, . . . , tn fnn) {M1 . . . Mk}

where each ti fni declares a field fni of type ti , and each Mi is a method definition

tm(t1 w1, . . . , tnwn){tn+1 wn+1; . . . ; tn+p wn+p; s}

where t is the type of the return value;w1, . . . ,wn are the formal parameters with types t1, . . . , tn ;wn+1, . . . ,wn+p
are local variables with types tn+1, . . . , tn+p ; and s is a sequence of instructions that adheres to the grammar below,
where we use x and z to denote standard variables, y to denote a future variable whose declaration includes the
type of the returned value, x to denote a sequence of variables of the form x1, . . . xn , and f for representing a
field. For the sake of generality, the syntax of expressions e and types t is left open.

s ::� in | in; s

in ::� x = new C (x ) | x = newcog C (x ) | x = e | this.f = e | y = x !m(z ) | y = this!m(z ) |
y = this.f !m(z ) | if e then s1 else s2 | return x | while e do s | await y?

There is an implicit local variable called this that refers to the current object. Observe that the only fields
that can be accessed are those of the current object, i.e., this. Thus, the language is data-race free [JHS12], since
no two tasks for the same object can be active at the same time. The instruction newcog (i.e., “new component
object group”) creates a new object, which becomes the root of a brand new cobox. It is the root since all other
objects that are transitively created using new belong to such new cobox, until another newcog instruction is
executed, which will introduce another cobox. We assume all programs include a method called main, which does
not belong to any class and has no fields, from which the execution starts in an implicitly created initial cobox,
called cε .

Figure 1 presents the semantics of the language for the instructions related to concurrency. The instructions for
sequential execution (i.e., assignment, condition and iteration) are standard and thus omitted. Program execution
is non-deterministic, i.e., given a state there may be different execution steps that can be taken, depending on
the cobox selected and, also, when processors are released, it is non-deterministic on the particular task within
each cobox selected for further execution. A program state is formed by a set of coboxes cobox (c, o), objects
ob(o, a, t, ts ) and futures fut(f , v ). Each cobox simply contains a unique identifier c and the identifier of the
currently active object in the cobox o (or idle if all objects in the cobox are idle). Each object contains a unique
identifier o, a mapping a from the object fields to their values, the active task t , and a pool of pending tasks ts .
Each task in turn is a pair 〈tv , s〉 that contains a mapping from the local variables tv to their values, and the list
of instructions s to execute. The set of fields of an object contains a special field named cobox with a reference
to the cobox where the object is executing. Analogously, the set of local variables of a given method contains a
special variable ret to store the future variable that will receive the result of the method. Futures fut(f , v ) in the
program state are used to synchronize the execution of a task with the termination of another one, and return
the result of executing an asynchronous call, as we explain in the rules below.
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Fig. 1. ABS language semantics

The following auxiliary functions are used in the semantics. Function fresh(n) returns a globally unique
identifier, which can be used for referring to an object, a future variable or a cobox. Function initAtts(C , v̄ , c)
is used for field initialization, it returns the initial state of an instance of class C , with formal parameters bound
to v̄ and cobox bound to c. Function buildLocals(w̄ , o, f ,m) produces the initial values of local variables for
method m from the actual parameters w̄ . The name f is a fresh reference to the future fut(f , v ) in the program
state, and it is used as value for the special local variable ret . This allows notifying the caller the termination of
the execution as well as the corresponding returned value. And finally, function selectObj (S ) selects an idle object
from an idle cobox from a state S . Function selectTask (q) selects a task from a task pool q . Both functions are
left unspecified, such that different definitions correspond to different scheduling policies for handling tasks (see
[BBS13]).

Intuitively, the rules in the semantics are as follows. Rules new-obj and new-cobox describe object and cobox
creation, respectively. When the instruction being executed in the active task of an object o is a new or a newcog
instruction, a new ob element is added to the program state with a reference to a fresh object o ′, a set of initialized
fields a ′, no active task selected, and an empty task queue. Both rules differ in the cobox that the newly created
object belongs to: in new-obj it is the same cobox to which o belongs, while in new-cobox it is a fresh cobox c′.
Rule async-call handles asynchronous invocations to methods. In this case, a fresh future variable f is created
with initial value ⊥, and a new task with the instructions of the method invoked is added to the task queue of the
object o ′ on which the method is invoked. Observe that o and o ′ may refer to the same object if o ′ is a reference
to this (for brevity, we have not included an explicit rule to handle this case). The invoked method terminates
its execution when a return instruction is reached. This is handled by rule return. The special local variable ret
contains the identifier of the future variable that must be updated upon method return. The instruction await
is handled by means of rules await-t and await-f. Rule await-t handles the case in which the future variable has
a value already, updating the local variable accordingly, and continuing the execution. In contrast, rule await-f
suspends the task executing the await instruction and adds it to the queue of pending tasks of the object. Observe
that idle becomes the active task of the object in order to allow that another task can be executed in the cobox.
When the active object in a cobox has the idle task, the cobox itself is released so that rule activate can select a
task from the lists of pending tasks of the objects executing in that cobox.

Execution steps are denoted S �b
o S ′, indicating that we move from state S to state S ′ by executing instruction

b on the object o. Traces take the form t ≡ S0 �b0
oε

· · · �bn−1
on−1

Sn where S0 is an initial state of the form
{ob(oε,⊥, idle, {〈⊥, (fε � this !main(v̄ ))〉}), cobox (cε, idle), fut(fε,⊥)}. Given a trace t , we use steps(t) to denote
the set of steps that form trace t . Since execution is non-deterministic, given a program P (x ), multiple (possibly
infinite) fully expanded traces may exist. We use executions(P (x )) to denote the set of all possible fully expanded
traces for P (x ).
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Fig. 2. Running example

Example 2.1 Our running example in Fig. 2 sketches an implementation of a distributed application to store and
retrieve data from a database. The main method creates a new server and initializes it using two arguments, n, the
number of handlers (i.e., objects that perform requests to the database), and m, the number of requests performed
by each handler. Method start initializes a data access object (DAO) that is used by Handler objects to request
data from the database. Then, it creates n Handler objects at program point 2© and starts their execution via the
run method. The DAO object creates a fresh DB object at program point 4©, that will actually execute queries
from handlers. When executing run, each handler performs m requests to the DAO object by invoking method
query. The use of Fut<void> variables and await instructions allows method synchronization as explained
above. Regarding distribution, observe that, in addition to the initial cobox, the configuration contains a single
distributed component (the Server cobox at 1©), as all other objects are created using new.

A trace with some execution steps of the example program is shown in Fig. 3. Each rule is labelled with the
name of the rule of the semantics applied. The execution starts with an initial cobox cε and object oε on which
method main is executed. When a newcog instruction is executed, a fresh cobox is created as well as a fresh object
with idle as the active task, as shown in the program state of Step 1. An asynchronous call creates a new task
in the pending tasks pool of the callee object: Step 2 shows a new task added to the queue of a different object,
which is non-deterministically selected for execution in Step 4 by means of function selectObj (S ). In contrast, in
Step 5 the newly created task is added to the pending tasks queue of the same object o1 that performs the call. In
both cases, the task is not activated until rule activate selects it from the pool. Observe that objects oε and o1 can
execute non-deterministically after Step 2, and this will not affect the results since fields are local to their objects
(i.e., they can only be accessed through method calls). In other words, if Steps 3 and 4 are swapped in the trace, we
have exactly the same execution but two different traces. On the other hand, different scheduling policies handled
by selectObj and selectTask functions may yield to different execution traces with possibly different results. A
cobox is released in two cases: when a return rule is applied (Step 3) or when an await instruction is reached and
the future variable being awaited for has no value yet (await-f in Step 6). �
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Fig. 3. Trace with some execution steps for the running example (with n=2 and m=2).

3. Background: points-to and resource analysis

In this article, we make use of the techniques of points-to analysis [MRR05, SBL11, APC12] and resource analysis
[AAG11a, APC12] to infer quantified abstract configurations. A points-to and resource analyses for a language
like ours, but without the instruction newcog, are defined and proved correct in [APC12]. Handling newcog
does not pose any further difficulty as it can be handled as new by both the points-to and resource analysis.
In a subsequent step, we will give a special treatment to newcog in order to define the notion of quantified
configuration. In what follows, we use points-to and resource analysis as black boxes as much as possible. Still,
we need to describe the basic components that have to be used and/or adapted for our purposes.

3.1. Points-to analysis

An essential concept of the resource analysis framework for distributed systems in [AAG11a, APC12] is the
notion of cost center. A cost center is associated to every distributed component (or node) of the system such
that the cost performed on such component can be attributed to its cost center. Since in our language coboxes
are the distributed components of the system, finding out the cost centers amounts to inferring the set of coboxes
in the program. This can be done by means of points-to analysis [APC12]. The aim of points-to analysis is to
approximate the set of objects (or coboxes) that each reference variable may point to during program execution.
Let us introduce some notation. All instructions are labeled, such that b ≡ q : i denotes that instruction b has q
as label (program point) and i is the proper instruction. An allocation site is a program point where i is a new
or newcog instruction. Following [MRR05, SBL11], we use the notion of allocation sequence to abstract the
sequence of object creations. An allocation sequence is a syntactic construction of the form oab...cd , where all
elements in ab . . . cd are allocation sites, and it represents all run-time objects that were created at program point
d when the enclosing instance method was invoked on an object represented by oab...c , which in turn was created
at allocation site c, and so on. Note that allocation sequences are not object identifiers since objects created within
loops have the same allocation sequence as it will be seen in the following example.
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Fig. 4. Fragment of points-to analysis with k � 2 applied to the running example

Example 3.1 (Allocation sequence) Figure 4 shows (part of) the result of applying points-to analysis to each
program point. Object creations use the allocation sequences pointed to by this to generate new allocation
sequences by adding the current allocation site. The analysis starts from the main method with this pointing to
oε . At allocation site 1© a new server is created, thus variable s points to object o1. Since oε is not relevant for the
analysis of the running example, in what follows, we omit it. The set of possible values for this within a method
comes from the object name(s) for the variable used to call the method. Then, at program point 2© this 	→ {o1},
then the object created at 2© is identified by the allocation sequence 12, that is, o12. Observe that o12 represents
multiple objects as they are created within a loop. �

We will use ol to refer to an object with allocation sequence l . As we will see in Sect. 4, we use multisets to handle
different objects with the same allocation sequence. Allocation sequences have in principle unbounded length (e.g.
recursion) and thus it is sometimes necessary to lose precision during analysis. Then, like in [MRR05], we limit
the length of the allocation sequences to a constant value k ≥ 1. Thus, k defines the maximum size of allocation
sequences, and it allows controlling the precision of the analysis. The larger values of k , the more precise results
are obtained by the points-to analysis. LetAS be the set of all allocation sites in a program. Given a value of k ≥ 1,
the analysis considers a finite set of object names, which is defined as AS � {ol | l ∈ {ε} ∪ AS ∪ AS 2 . . .AS k }.
This is done by just keeping the k rightmost positions in sequences whose length is greater than k . We use | s |
to denote the length of a sequence s . The size of the allocation sequence is therefore limited during the execution
of the points-to analysis as follows. For an object name oab...c of length at most k and an allocation site d , we
define the operation ab . . . c ⊕k d as ab . . . cd if | ab . . . cd |≤ k , or b . . . cd otherwise. In addition, a variable can
be assigned objects with different object names. In order to represent all possible objects pointed to by a variable,
sets of object names are used.

We will use the results of the points-to analysis with precision k by means of a function pt(q, x), which returns
the set of object names at program point q computed by the analysis for a given reference variable x . For the sake
of readability, we omit k from the parameters of pt as it is fixed beforehand and remains constant for the whole
analysis. In addition, we use O to refer to the set of all object names generated by the points-to analysis.
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void main2 (Int n, Int m) {
1© Server s = newcog Server(null);

s! start (n,m);
5© Server s2 = newcog Server(null);

s2! start (n,m);
return;

}

k = 3
ε

o1

o13

o134

o12

o5

o53

o534

o52

k = 2
ε

o1

o13

o34

o12

o5

o53 o52

Fig. 5. Abstract configurations example with different values of k

Example 3.2 (Points-to analysis) For the running example, k � 3 is the smallest k for which no information is
lost when handling object names. If we apply the points-to analysis with k � 3, at program point 4© we have that
this 	→ {o13}, thus we apply 13⊕3 4, which returns the sequence 134, and consequently o13.db 	→ {o134}. However,
if points-to analysis is applied with k � 2, at program point 4© the application of 13 ⊕2 4 returns the sequence
34 because | 134 |> 2, and then o13.db 	→ {o34}. As a consequence, the object name o34 obtained with k � 2 is
losing information. Let us see another situation of precision loss. To the left of Fig. 5, we define a main2 method
that generates two Server objects, created at program points 1© and 5©. The graph in the middle and right will be
explained later. At 4©, we could have this 	→ {o13} and this 	→ {o53}, thus at 4© we create two object names, o134
and o534. If k � 2 both object names are abstracted to o34.
For the next examples that use the running example, we use k � 2 and we have O � {oε, o1, o12, o13, o34}. �

In what follows, in order to relate the concrete identifier for the objects used in the semantics to the abstract
names inferred by the points-to analysis, we use name(ol ) to refer to the abstract object name in O that represents
the concrete object o and whose allocation sequence is l . Concretely, name(ol ) is oλ, where λ is the longest suffix
of length at most k of the (possibly unbounded) allocation sequence l . As before, we do not include k as parameter
of name.

Example 3.3 (Name) For representing the concrete objects we use their allocation sequences. Thus, in the run-
ning example, the object created at 4© is represented by o134. Function name(o134) returns the object name that
corresponds to o134, that is o34 since k � 2. The function name applied to o13 does not remove any allocation
site, that is, name(o13) � o13. �

3.2. Cost models

Cost models determine the type of resource we are measuring. Traditionally, a cost model M is a function
M : Instr 	→ N that for each instruction in the set of instructions Instr returns a natural number that represents
its cost. As an example, if we are interested in counting the number of instructions executed by a program, we
define a cost model Minst that counts one unit for any instruction, i.e., Minst (b) � 1, for any b ∈ Instr . We use
superscripts in M just as part of the name of a particular cost model for distinguishing the different cost models
described throughout the paper.

In the context of distributed programs, the main difference is that the cost model not only accounts for the
cost consumed by the instruction, but it also needs to attribute the cost to the corresponding cost center. In
particular, we use the results of the points-to analysis to determine the set of object names that might execute the
corresponding instruction. A cost model that can be used for this purpose is defined as follows.

Definition 3.4 (MI cost model) Given an instruction b ≡ q : i in program P , and the results of the points-to
analysis, the cost model MI (b) is a function that returns c(oλ) ∗ 1, where oλ ∈ pt(q, this).

As before, we count “1” instruction but now we attribute it to the cost center, that corresponds to one object
that executes the instruction, i.e. this . In order to obtain an upper bound on the cost, all possible object names
returned by pt(q, this) are covered by generating cost equations for each c(oλ) (for more details, see [APC12]).
In the previous definition, c( ) is a symbolic artifact that we include in the cost expressions so as to attribute
the cost to the corresponding cost center. Then, to obtain how many instructions have been executed by the cost
center c(oλ), we replace c(oλ) by 1 and c(o ′) by 0 for all other o ′ ��oλ.
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Given a trace step Si �b
ol

Si+1, we will use M(Si �b
ol

Si+1) to refer to M(b), i.e., the cost of executing
instruction b with respect to a cost model M. The actual total cost of a trace t within object ol , is defined as
costP (t, ol ,M) � ∑

s∈steps(t) M(s) |{name(ol )}, where we use M(s) |N to denote the result of replacing each cost
center c(oλ) by 1 ifoλ ∈ N and by 0 otherwise. As we have seen, for the cost modelMI , the symbolic cost expression
c(oλ) includes a single object name, however, the artifact c( ) can include more than one argument, as will see
later. In the following sections, we will define the cost models and the cost centers that we use for our analysis.

3.3. Upper bounds

Given a program P (x ), where x are the input values for the arguments of the main method, and a definition
of cost model M, the resource analysis obtains an upper bound U BM

P (x ) that is an expression of the form
c1·e1 + · · · + cn ·en where ci are cost centers and ei are cost expressions (e.g., polynomials, exponential functions,
etc.) with i � 1, . . . ,n. For the cost model MI , the upper-bound expression U BMI

P (x ) is an expression of
the form c(oλ1

)·e1 + · · · + c(oλn
)·en where each c(oλi

)·ei represents that the object oλi
executes the number of

instructions ei . By replacing c(oλi
) by 1 and all other cost centers by 0 we obtain an upper bound on the number

of instructions performed in the object oλi
. We use U BMI

P (x ) |N to denote the result of replacing c(oλ) by 1 if
oλ ∈ N and by 0 otherwise.

Example 3.5 The UB expression obtained by applying resource analysis on the running example usingMI , which
counts the number of instructions executed by each object inferred by the points-to analysis, is

UBMI

main (n,m) � c(o1)·18+c(o13)·6+c(o1)·12·nat(n)
+c(o12)·6·nat(n)+c(o12)·8·nat(n)·nat(m)+c(o13)·2·nat(n)·nat(m)+c(o34)·nat(n)·nat(m),

where nat(x )� max (x , 0) and it is used for avoiding negative evaluations of cost expressions. In what follows, for
readability, nat is omitted from the UB expressions. The number of instructions executed by a particular object
name, say o12, is obtained as:

UBMI

main (n,m) |{o12}� n · (6 + 8 · m).

This upper bound states that the objects created at program point 2© from the Server object created at program
point 1© execute at most that number of instructions. Observe that object nameo12 refers to several concrete objects.
Intuitively, n in the upper bound expression corresponds to the number of objects created at program point 2©,
which is the maximum number of iterations that the loop in method start performs. The expression enclosed in
parenthesis corresponds to the maximum number of instructions executed by each Handler object in method
run. This expression is linear with respect to m, since the loop in method run iterates m times. The constants
6 and 8 refer to the concrete number of instructions executed. We note that these numbers do not correspond
directly to the source level instructions since they are put in some normal form before the analysis starts (e.g., an
arithmetic expression involving several operations uses auxiliary variables to perform each individual operation
and such auxiliary variable is used in the next operation, etc.). The analyzer counts the normalized instructions
instead of the source level ones. �

The analysis guarantees that UBM
P is an upper bound on the worst-case cost (for the type of resource defined by

M) of the execution of P w.r.t. any input data; and in particular, that each ei is an upper bound on the execution
cost performed by the cost center that ci represents. Formally, the following theorem from [APC12] states the
soundness result of the resource analysis.

Theorem 3.6 (Soundness [APC12]) Let P be a program with input values x and S0 its initial state. If t ≡ S0 �
· · · � Sn is an execution trace, then for any object ol such that ob(ol , , , ) ∈ Si , 0 ≤ i ≤ n, it holds that

costP (t, ol ,M)≤UBM
main(x) |{name(ol )}.

It should be noted that we omit explanations on the use of norms in the resource analysis (see, e.g., [AAG07,
BCG07]) because they are orthogonal to our contribution. Norms are used to determine the notion of size that the
resource analysis relies on. For instance, when a loop traverses a list, its resource consumption typically depends
on the length of such list. Thus, the resource analysis will give the upper bound in terms of the size of the list, in
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such a way that the variables used in the upper bounds represent the sizes of the corresponding data (abstracted
using some norm). In our examples, the resource consumption only depends on integer data. In such cases, the
norm used by the analysis coincides with the value of the integer variable. Hence, there is no ambiguity and we
can ignore the use of norms in what follows as it does not affect our approach.

Example 3.7 Although the resource analysis in [AAG11a, APC12] cannot infer how object identifiers are grouped
in the configuration of the program, it can give us the cost executed by a set of objects:

UBMI

main (n,m) |{o1,o12}� 18 + n · (18 + 8 · m)

This expression is an upper bound of the total number of instructions executed by the objects created at 1© and
the objects created from these objects at 2©. If objects with names o1 and o12 are located in the same cobox, this
is an upper bound on the number of instructions executed in that cobox. The first constant with value 18 in the
upper bound expression corresponds to the (normalized) instructions executed by object name o1 in method start
that are outside the while loop, while the second constant with value 18 refers to the instructions executed inside
that loop: 12 of them by object name o1, and 6 of them by object name o12, as shown above in the upper bound
computed for o12. �

4. Concrete definitions in distributed systems

As our first contribution, this section formalizes the concrete notions of configuration and communication that
we aim at approximating by static analysis in the next section.

4.1. Configuration

Let us introduce some notation. As we have already mentioned, allocation sequences are not identifiers since
there may be multiple objects with the same allocation sequence. Therefore, we sometimes use multisets (denoted
{| |}). Underscores ( ) are used to ignore irrelevant information. Given an object ol , we use root(ol ) to refer to
the root object of the cobox that owns ol . It can be defined as the object whose allocation sequence is the longest
prefix of l that ends in an allocation site for coboxes, i.e., one site at which a newcog instruction is executed.
Therefore, if l ends in an allocation site for coboxes, then root(ol ) � ol . If it ends in an allocation site for objects,
i.e., one where a new instruction is executed, then root(oab...cd ) � root(oab...c). Given a trace t , the multiset of
cobox roots created during t is defined as cobox roots(t) � {| ol | �q :newcog

oj ...p
∈ steps(t) ∧ l � j . . . pq |}.

Also, given a cobox root ol , the multiset of objects it owns in a trace t is defined as obj in cobox(ol , t) � {|
oj ...pq | �q :new

oj ...p
∈ steps(t) ∧ root(oj ...p) � ol |}.

Example 4.1 Deliberately, the running example shown in Fig. 2 executes in a single cobox, in addition to the
initial cobox cε (see Example 2.1) that executes main (i.e., all objects conceptually share the processor). It can
be configured as a distributed application by creating coboxes instead of objects, i.e., by replacing selected new
instructions by newcog and thus assuming that we have a new processor to execute the corresponding code. The
graphs in Fig. 6 graphically show three possible settings and the memory allocation instruction (new or newcog)
that have been used at the program points 2©, 3© and 4©. The object names in the graph are grouped using dotted
rectangles according to the cobox to which they belong. Cobox roots appear in grey, e.g., for setting 1 we have
two cobox roots, o1 and o134. Dashed edges represent the creation sequence, that is, object o1 creates objects o13
and o12, while object o13 creates object o134. The annotation 1 . . . n indicates that we have n objects of this form.
In setting 1, all objects are created in the same cobox, except for the object of type DB. In setting 2, also the
object of type DAO is in a separate cobox. In setting 3, each handler is in a separate cobox, and DAO and DB
share a cobox. As we will define in Definition 4.2, the configurations for the different settings capture textually
the information in the graphs:
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Setting 1

o1

o13

o134

o12 o121...n

2©: new
3©: new
4©: newcog

Setting 2

o1

o13

o134

o12 o121...n

2©: new
3©: newcog
4©: newcog

Setting 3

o1

o13

o134

o12 o121...n

2©: newcog
3©: newcog
4©: new

Fig. 6. Configurations for the running example for all settings

Setting 1:{| 〈o1, {| o12, . . . , o12︸ ︷︷ ︸
n objects

, o13 |}〉, 〈o134, {||}〉 |}

Setting 2:{| 〈o1, {| o12, . . . , o12︸ ︷︷ ︸
n objects

|}〉, 〈o13, {||}〉, 〈o134, {||}〉 |}

Setting 3:{| 〈o1, {||}〉, 〈o12, {||}〉, . . . , 〈o12, {||}〉︸ ︷︷ ︸
n coboxes

, 〈o13, {| o134 |}〉 |}.

�

Definition 4.2 (Configuration). Given an execution trace t , we define its configuration, denoted Ct , as:

Ct � {| 〈ol , obj in cobox(ol , t)〉 | ol ∈ cobox roots(t) |}.
The configuration of a program P on input values x , denoted Con f P (x ) is defined as:

Con f P (x ) � {Ct | t ∈ executions(P (x ))}.
For given input values and an allocation sequence, now we want to count the maximum number of instances

(objects) created at such allocation sequence.

Example 4.3 The number of instances for the allocation sequence 〈1, 2〉 in our running example with input
values x � 〈3, 4〉 (i.e., n = 3 and m = 4) is the maximum number of objects with 〈1, 2〉 as allocation sequence,
over all possible executions. Such maximum is 3. In fact, for any execution the maximum coincides with the value
of n. �
We use card(x ,M ) to refer to the cardinality of x in the multiset M .

Definition 4.4 (Number of instances) Given an object ol , a program P and input values x , we define the number
of instances for ol as:

inst(ol ,P , x )

� max
t∈executions(P (x ))

(
card (ol , {| ol ′ | �q :i

oj ...p
∈ steps(t) ∧ (i≡new ∨ i≡newcog ) ∧ l ′�j . . . pq |})

)
.

4.2. Communication

The communication refers to the interactions between objects occurring during the execution of a program. As in
the above section, objects are represented using allocation sequences. A global view of the distributed system for
a trace execution t can be depicted as a graph whose nodes are object representations of the form ol , where l is
an allocation sequence that occurs in the trace t , and whose arcs, annotated with the method name are given by
the interactions among objects.
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Fig. 7. Interactions for the running example

Example 4.5 The interactions for any execution of our running example, and thus, the communication of the
program, is depicted graphically in Fig. 7, and, it is textually defined as:

{| 〈oε, o1, start〉, 〈o1, o1, initDAO〉, 〈o1, o13, initDB〉, 〈o1, o12, run〉, . . . , 〈o1, o12, run〉︸ ︷︷ ︸
n interactions

,

〈o12, o13, query〉, . . . , 〈o12, o13, query〉︸ ︷︷ ︸
n ·m interactions

, 〈o13, o134, exec〉, . . . , 〈o13, o134, exec〉︸ ︷︷ ︸
n ·m interactions

|}.

�
Definition 4.6 (Communication) Given an execution trace t , its interactions, denoted It , are defined as:

It � {| 〈ol , ol ′ ,m〉 | S �q :x !m( )
ol

∈ steps(t) ∧ ob(ol , , 〈tv , 〉, ) ∈ S ∧ (x 	→ ol ′) ∈ tv |},
and the communication performed in the execution of a program P and input values x , denoted CommP (x ) is
defined as:

CommP (x ) � {It | t ∈ executions(P (x ))}.
Observe that the communication of the program includes all calls to methods, including calls within the

same object such as 〈o1, o1, initDAO〉. A relevant aspect of communications is that they are independent from the
distributed setting of the program.

Example 4.7 In the running example, methods initDAO and initDB are executed only once. During the execution
of start in object o1, method run is called inside the while loop and it is executed n times by the objects o12.
Similarly, for each execution of run in o12, method query is called m times, resulting in n · m calls to method
query in o13. Besides, each call to query executes exec in o134. �
Definition 4.8 (Number of interactions) Given a program P and its input values x , two objects ol , ol ′ , and a
method m, we define the number of interactions from ol to ol ′ by method m in the execution of P on x as:
ninter (ol , ol ′ ,m,P , x ) � maxIt∈CommP (x )(card(〈ol , ol ′ ,m〉, It )).

5. Inference of quantified abstractions

This section presents our method to infer quantified abstractions of distributed systems. The main novelties are:
(1) we provide an abstract definition for configuration and communication that can be automatically inferred by
relying on the results computed by points-to analysis. (2) We enrich the abstraction by integrating quantitative
information inferred by resource analysis. For this, we build on prior work on resource analysis [AAG11a, APC12]
that was primarily used for the estimation of upper bounds on the worst-case cost performed by each node in the
system (see Sect. 3). To use this analysis, we need to define new cost models that allow establishing upper bounds
for the number of nodes and communications that the execution of the system requires.
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5.1. Quantified configurations

The points-to analysis results can be presented by means of a points-to graph as follows.

Example 5.1 The graph in Fig. 8 shows the points-to graph for the running example. It contains one node for
each object name inferred by the points-to analysis. Given an allocation site, edges link object names pointed
to by this to the corresponding objects created at that program point, e.g., an edge from o1 to o13 and o12 and
another one from o13 to o34. �
Definition 5.2 (Points-to graph). Given a program P and its points-to analysis results, we define its points-to
graph as a directed graph GP � 〈V ,E 〉 whose set of nodes is V � O and set of edges is E � {oλ →
oλ′ | q :y�new or q :y�newcog ∈ P ∧ oλ ∈ pt(q, this) ∧ oλ′ ∈ pt(q, y)}.

Points-to graphs provide abstractions of the ownership relations among objects in the program. To extract
abstract configurations from them, it is necessary to identify abstract cobox roots and find the set of object names
that belong to the coboxes associated to such roots. Note that given an object name oab...q it can be decided
whether it represents a cobox root, denoted is root(oab...q ), by simply checking whether the allocation site q
contains a newcog instruction.

Example 5.3 (Abstract configuration). The abstract configuration for the concrete setting 2 is represented graph-
ically in Fig. 8. As before, cobox roots appear in grey and objects are grouped by cobox (dotted rectangles). The
abstract configurations for the settings in Example 4.1 are:

Setting 1: 〈o1, {o12, o13}〉, 〈o34, {}〉,
Setting 2: 〈o1, {o12}〉, 〈o13, {}〉, 〈o34, {}〉,
Setting 3: 〈o1, {}〉, 〈o12, {}〉, 〈o13, {o34}〉.

�
We write x � y to indicate that there is a non-empty path in a graph from x to y and we denote by interm(x , y)
the set of intermediate nodes in the path (excluding x and y).

Definition 5.4 (Abstract configuration). Given a program P and a points-to graph GP � 〈V ,E 〉 for P , we
define its abstract configuration AP as the set of pairs of the form 〈oλ, obj names in cobox(oλ,GP )〉 s.t.
oλ ∈ V ∧ is root(oλ) where obj names in cobox(oλ,GP ) � {oλ′ ∈ V s.t. oλ � oλ′ in GP and ∀ oλ′′ ∈
interm(oλ, oλ′) ∧ ¬is root(oλ′′)}.
Note that, in the above definition, function obj names in cobox(oλ,GP ) returns the subset of object names that
are part of the cobox whose root is the object name oλ in the points-to graph GP .

Example 5.5 Let us illustrate how the precision of the points-to analysis leads to different abstract configurations.
To the right of Fig. 5, we show the points-to graph obtained for method main2 (left of Fig. 5) with different
precision of the points-to analysis, k � 2 and k � 3 (using setting 3). It can be seen that the only difference in the
graphs is that, for k � 3 we have nodes o134 and o534, whereas for k � 2, due to the length bound in the object
names, they are merged in only one node, o34. Thus, we have different abstract configurations, for k � 3 we have
coboxes 〈o13, {o134}〉 and 〈o53, {o534}〉, while for k � 2 we have 〈o13, {o34}〉 and 〈o53, {o34}〉. Note that for k � 2
node o34 belongs to two different coboxes, which is a less precise abstract configuration than the one for k � 3. �

Soundness of the analysis requires that the abstract configuration obtained is a safe approximation of the
configuration of the program for any input values. Given a set of objects O and a set of object names N ,
we write covers(N ,O) if ∀ ol ∈ O, ∃ oλ ∈ N s.t. oλ � name(ol ). Given 〈ol ,O〉 and 〈oλ,N 〉, we write
covers(〈oλ,N 〉, 〈ol ,O〉) if oλ � name(ol ) and covers(N ,O). Given a trace t , its concrete configuration Ct ,
and an abstract configuration A, we write covers(A,Ct ) if ∀〈ol ,O〉 ∈ Ct there exists 〈oλ,N 〉 ∈ A s.t.
covers(〈oλ,N 〉, 〈ol ,O〉).
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o1

o13

o34

o12

Fig. 8. Points-to graph and abstract configuration for the running example with setting 2

o1

o13

o34

o12

exec
query

runinitDB

initDAO

Fig. 9. Interactions graph for the running example

Theorem 5.6 (Soundness of abstract configurations) Let P be a program and AP its abstract configuration. Then
∀ x ,∀Ct ∈ Con f P (x ), covers(AP ,Ct ) holds.

Proof. (Sketch) The proof relies on the fact that the underlying points-to analysis of Sect. 3.1 is correct (a
correctness proof for the points-to analysis can be found in [APC12]). Then, we let Ct be a multiset of
pairs 〈ol , obj in cobox(ol , t)〉, where l is an allocation sequence for a cobox root (created with newcog).
Let obj in cobox(ol , t) be the multiset of objects (transitively) created with new from ol . Let Ap be a
set of pairs 〈oλ, obj names in cobox(oλ,Gp)〉, where oλ is an object name for a cobox root. Finally, let
obj names in cobox(oλ,Gp) be the set of object names reachable from oλ by a path in Gp in which there are no
cobox roots except oλ. Now, we proceed to prove that for every 〈ol ,O〉 ∈ Ct , there exists 〈oλ,N 〉 ∈ Ap such that
covers(〈oλ,N 〉, 〈ol ,O〉) holds.

By construction of the points-to graph, we have that the set of verticesV in the graph contains all object names
that have been generated during the points-to analysis O. Since this analysis is correct, every possible allocation
sequence in an execution trace is covered by some object name. In particular, for every 〈ol , s〉 ∈ Ct , there exists
〈oλ, s

′〉 ∈ Ap such that oλ�name(ol ) in O. Analogously, for any trace t and object ol in t such that ol�root(ol ),
we have that covers(obj names in cobox(oλ,Gp), obj in cobox(ol , t)) holds, since all allocation sequences in
obj in cobox(ol , t) have their corresponding object names in O. Let ol ′ be an element of obj in cobox(ol , t). We
distinguish two cases:

• If |l ′| ≤ k , then l ′ is the result of appending some allocation sites to l , and therefore the object name
oλ′�name(ol ′) coincides with its allocation sequence: l ′ � λ

′.
• Otherwise |l ′| > k , and then λ

′ in oλ′�name(ol ′) is the suffix of l ′ of length k .

It is straightforward to prove by induction on the allocation sites in l ′ that are not in l that there exists
a path in Gp from oλ to oλ′ that has no intermediate vertex that is a cobox root, and therefore oλ′ ∈
obj names in cobox(oλ,Gp). �

It is easy to see that the theorem holds for the configuration Con f P in Example 4.1, and any abstract
configuration AP of Example. 5.3.

(Non-quantified) abstract configurations are already useful when combined with the resource analysis in
Sect. 3, since they allow us to obtain the resource consumption at the level of cobox names. In what follows, given
a points-to graph GP and a cobox root oλ, we use cobox (oλ,GP ) to denote {oλ} ∪ obj names in cobox(oλ,GP ).
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Example 5.7 Using the UB expression inferred in Example 3.5 and the abstract configurations for all settings in
Example 5.3, we can obtain the cost for each cobox name. The following table shows the results obtained from
UBMI

main (n,m) |cobox (c,Gmain ) where c corresponds, in each case, to the cobox name in the considered abstract
configuration:

Setting 1 Setting 2 Setting 3

cobox UB cobox UB cobox UB

o1 24 + 18·n + 10·n·m o1 18 + 18·n + 8·n·m o1 18 + 12·n
o34 n·m o13 6 + 2·n·m o12 6·n + 8·n·m

o34 n·m o13 6 + 3·n·m

As the table shows, in settings 1 and 2 most of the instructions are executed in cobox(es) represented by cobox
name o1. In setting 3, the cost is more evenly distributed among cobox names. However, in order to reason
about how loaded actual coboxes are, it is required to have information about how many instances of each cobox
name exist. For example, in setting 3, o12 represents n Handler coboxes. This essential (and complementary)
information will be provided by the quantified abstraction. �
We now aim at quantifying abstract configurations, i.e., at inferring an over-approximation of the number of
concrete objects (and coboxes) that each abstract object (or cobox) represents. For this purpose, we define the
MC cost model as follows.

Definition 5.8 (MC cost model) Given an instruction b in program P and the points-to analysis results for P with
precision k , the cost model MC (b) is a function that returns c(oλ′) if b ≡ q :y�new C or b ≡ q :y�newcog C ,
and 0 otherwise, where oλ ∈ pt(q, this) and λ′ � λ ⊕kq .

The novelty is on how the information computed by the points-to analysis is used in the cost model: it concatenates,
by means of the operator ⊕k , the name of the object that corresponds to the considered object name for this with
the instruction allocation site q . The cost center c(oλ′) allows counting the elements created at program point q
for each particular instance of this considered by the points-to analysis.

Example 5.9 Using MC , the upper bound obtained by the resource analysis in Sect. 3 for the configuration of
the running example is the expression:

UBMC

main (n,m) � c(o1) + c(o13) + c(o34) + n · c(o12)

This expression allows us to infer an upper bound of the maximum number of instances for any object identified
in the points-to graph. Regarding configurations, we are interested in the number of instances of those objects that
are distributed nodes (coboxes). The following table shows the results of solving the expression UBMC

main (n,m) |{cobox }
where cobox is the object name of the objects identified as coboxes for each setting. For instance, for setting 1
we have two coboxes, o1 and o34, and for setting 2, we have o1, o13 and o34. The following table shows the UBs
obtained for all settings:

Setting 1 Setting 2 Setting 3

cobox UB cobox UB cobox UB

o1 1 o1 1 o1 1

o34 1 o13 1 o12 n

o34 1 o13 1

2 3 2 + n

Clearly, setting 1 is the setting that creates fewer coboxes (only 2 coboxes execute the whole program). Thus, the
queries requested by handlers cannot be processed in parallel. If there is more parallel capacity available, setting
3 may be more appropriate, since handlers can process requests in parallel. �
Theorem 5.10 (Soundness) Let P be a program with input values x and S0 its initial state. If t ≡ S0 � · · · � Sn
is an execution trace, then for any object ol such that ob(ol , , , ) ∈ Si , 0 ≤ i ≤ n, it holds that

inst(ol ,P , x ) ≤ UBMC

P (x ) |{name(ol )} .

Proof. (Sketch) Soundness is derived from the following facts:
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(a) By applying Theorem 3.6 with respect to the cost model MC , we have that

∀ x , ∀ t ∈ executions(P (x )), costP (t, ol ,MC ) ≤ UBMC

P (x ) |{name(ol )}.

Since this inequality holds for all traces, the following also holds:

max
t∈executions(P (x ))

(costP (t, ol ,MC )) ≤ UBMC

P (x ) |{name(ol )}. (1)

(b) Definition 4.4 states that inst is defined as

inst(ol ,P , x ) � max
t∈executions(P (x ))

(card (ol , I ))

where

I � {| ol ′ | �q :i
oj ...p

∈ steps(t) ∧ (i≡new ∨ i≡newcog ) ∧ l ′�j . . . pq |}.
Given the multiset of objects I , we use name(I ) to refer to the following multiset: {| oλ | ol ∈ I ∧ oλ �
name(ol ) |}. The following statement holds:

card (ol , I ) ≤ card (name(ol ),name(I )).

As costP (t, ol ,MC ) � ∑
s∈steps(t) MC (s) |{name(ol )} (see Sect. 3.2), where MC (s) |{name(ol )} counts 1 if MC (s)

returns c(name(ol )) and 0 otherwise, costP (t, ol ,MC ) � card (name(ol ),name(I )) holds. Therefore,

inst(ol ,P , x ) ≤ max
t∈executions(P (x ))

(
costP (t, ol ,MC )

)
. (2)

From (1) and (2), Theorem 5.10 holds. �

5.2. Quantified communication

From the points-to analysis results, we can generate the interaction graph as follows.

Example 5.11 Figure 9 shows the interaction graph for the running example. Edges connect the object that is
executing when a method is called with the object responsible for executing the call, e.g., during the execution of
start, object o1 calls method initDAO using the this reference and it also interacts with o12 by calling run. Besides,
object o1 executes method initDAO and it calls initDB in the object o13. Note that the multiple calls to query from
o12 to o13 are abstracted by one edge. �
Definition 5.12 (Interaction graph) Given a program P and its points-to analysis results, we define its interaction
graph as a directed graph IP � 〈V ,E 〉 with a set of nodes V � O and a set of edges E � {oλ

m−→ oλ′ | q :x !m( )∧
oλ ∈ pt(q, this) ∧ oλ′ ∈ pt(q, x)}.
We now integrate quantitative information in the interaction graph. For this purpose, we define a new cost model.

Definition 5.13 (MK cost model) Given an instruction b in programP and the points-to analysis results forP , the
cost modelMK (b) is a function that returns c(m)·c(oλ, oλ′) if b ≡ x !m( ), and 0 otherwise, where oλ ∈ pt(q, this)
and oλ′ ∈ pt(q, x).

The key point is that for capturing interactions between objects, when applying the cost model to an instruction,
we pass as parameters the considered object names of the caller and callee objects. The resulting upper bounds
will contain cost centers made up of pairs of object names c(oλ, oλ′), where oλ is the object that is executing and
oλ′ is the object responsible for executing the call. Besides, we attach to the interaction the name of the invoked
method c(m) (multiplication is used as an instrument to attach this information and manipulate it afterwards
as we describe below). In order to obtain upper bounds using this cost model, all combinations of oλ and oλ′

are tried by the underlying resouce analyzer. Soundness of the analysis guarantees that the upper bound is the
maximum of all possibilities.

From the upper bounds on the interactions, we can obtain a range of useful information: (1) by replacing c(m)
by 1, we obtain an upper bound on the number of interactions between each pair of objects. (2) We can replace
c(m) by (an estimation of) the amount of data transferred when invoking m (i.e., the size of its arguments).
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query [n·m]
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run [n]initDB [1]

UB Total Comm.: 1+n+n·m
UB Total Coboxes: 2+n

Fig. 10. QA for the running example for setting 3

This is a first approximation of a band-width analysis. (3) Replacing c(oλ, oλ′) by 1 for selected objects and
the remaining ones by 0, we can see the interactions between the selected objects. (4) If we are interested in
the communications for the whole program, we just replace all expressions c(oλ, oλ′) by 1. (5) Furthermore, we
can obtain the interactions between the distributed nodes by replacing by 1 those cost centers in which oλ and
oλ′ belong to different coboxes and by 0 the remaining ones. From this information, we can detect nodes that
have many interactions and that would benefit from being deployed on the same machine or at least have a fast
communication channel.

Example 5.14 The interaction UB obtained by the resource analysis is as follows:

UBMK

main (n,m) � c(start)·c(oε, o1) + c(initDAO)·c(o1, o1) + c(initDB)·c(o1, o13)

+n·c(run)·c(o1, o12) + n·m·c(query)·c(o12, o13) + n·m·c(exec)·c(o13, o34).

From this global UB, we obtain the following UBs on the number of interactions between coboxes for the
different settings in Fig. 6:

Setting 1 Setting 2 Setting 3
method coboxes UB method coboxes UB method coboxes UB

exec o1 → o34 n·m query o1 → o13 n·m run o1 → o12 n
exec o13 → o34 n·m initDB o1 → o13 1

query o12 → o13 n·m
n·m n·m + n·m 1 + n + n·m

The last row shows the total number of interactions between coboxes. Clearly, the minimum number of inter-
cobox interactions happens in setting 1, where most objects are in the same cobox. Setting 2 has a higher number
of interactions, because the database objects DAO and DB are in different coboxes. In setting 3 most interactions
are produced between the coboxes created for the handlers which, on the positive side, may run in parallel. By
combining this information with the quantified configuration of the system, for setting 3, we generate the quantified
abstraction shown in Fig. 10. Each node contains as object identifier its object name and the number of instances
(e.g., the number of instances of o12 is n). Optionally, if it is a cobox, it contains the number of instructions
executed by it. For instance, the UB on the number of instructions executed in cobox o12 is 6·n + 8·n·m (see
Example 5.7). The edges represent the interactions and are annotated (in brackets) with the UB on the number
of calls (e.g., the objects represented by o12 interact with o13 n·m times calling method query). �

From the example, we can figure out the applications described in Sect. 1: (1) we can visualize the topology
and view the number of tasks to be executed by the distributed nodes and possibly spot errors. (2) We detect that
node o1 executes only one process, while o13 executes many. Thus, it probably makes sense to have them sharing
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the processor. (3) We can perform meaningful resource analysis by assigning to each distributed node the number
of steps performed by it, rather than giving this number at the level of objects as in [AAG11a, APC12] (as maybe
the objects do not share the processor). (4) We can see that o13 and o12 have many interactions and would benefit
from having a fast communication channel.

We use UBMK

P (x ) |N ,M , where N ⊆ O×O is a set of pairs of object names and M is a set of method names, to
denote the result of replacing in the resulting UB the expression c(oλ, oλ′) by 1 if (oλ, oλ′) ∈ N and by 0 otherwise
and the expression c(m) by 1 if m ∈ M and by 0 otherwise. Similarly, we use costP (t, (ol , ol ′),m,MK ) to extend
the definition given in Sect. 3.2 for the cost of a trace with respect to (ol , ol ′ ) and m.

Theorem 5.15 (Soundness) Let P be a program with input values x and S0 its initial state. If t ≡ S0 � · · · � Sn
is an execution trace, then for any two objects ol and ol ′ such that ob(ol , , , ) ∈ Si , ob(ol ′, , , ) ∈ Sj , 0 ≤ i ≤
n, 0 ≤ j ≤ n, it holds that

ninter (ol , ol ′ ,m,P , x ) ≤ UBMK

P (x ) |{(name(ol ),name(ol ′ )},{m}.

Proof. (Sketch) Soundness is derived from the following facts:

(a) By applying Theorem 3.6 to MK , we have that

∀ x , ∀ t ∈ executions(P (x )), costP
(
t, (ol , ol ′ ),m,MK

) ≤ UBMK

P (x ) |{(name(ol ),name(ol ′ ))},{m}.

Since this inequality holds for all traces, the following also holds:

max
t∈executions(P (x ))

(
costP (t, (ol , ol ′ ),m,MK )

) ≤ UBMK

P (x ) |{(name(ol ),name(ol ′ ))},{m}. (3)

(b) Definition 4.8 states that ninter is defined as

ninter (ol , ol ′ ,m,P , x ) � max
It∈CommP (x )

(card(〈ol , ol ′ ,m〉, It ))

where It � {| 〈ol , ol ′ ,m〉 | S �q :x !m( )
ol

∈ steps(t) ∧ ob(ol , , 〈tv , 〉, ) ∈ S ∧ ol ′ � tv (x ) |}.
Since every trace t ∈ executions(P (x )) is represented by an element It ∈ CommP (x ) (see Definition 4.6), the
following holds:

ninter (ol , ol ′ ,m,P , x ) � max
t∈executions(P (x ))

(card(〈ol , ol ′ ,m〉, It )).

Given It , we use name(It ) to refer to the following multiset:

{|〈oλ, oλ′ ,m〉 | 〈ol , ol ′ ,m〉 ∈ It ∧ oλ � name(ol ) ∧ oλ′ � name(ol ′)|}.
The following statement holds:

card (〈ol , ol ′ ,m〉, It ) ≤ card (〈name(ol ),name(ol ′),m〉,name(It )).

As costP (t, (ol , ol ′),m,MK ) � ∑
s∈steps(t) MK (s) |{(name(ol ),name(ol ′ ))},{m} (see Sect. 3.2), where MK

(s) |{(name(ol ),name(ol ′ ))},{m} accounts 1 if MK (s) returns c(name(ol ),name(ol ′)) ∗ c(m) and 0 otherwise,
costP (t, (ol , ol ′),m,MK ) � card (name(〈ol , ol ′ ,m〉),name(II )) holds. Therefore,

ninter (ol , ol ′ ,m,P , x ) ≤ max
t∈executions(P (x ))

(
costP (t, (ol , ol ′),m,MK )

)
. (4)

From (3) and (4), Theorem 5.15 holds. �

6. Finding optimal settings for distributed systems

As we have seen in the example, we can achieve different ways of distributing an application by using newcog
or new instructions at the object allocation sites. If newcog is used, a new distributed component is created,
while when new is used, the created object (and its resource consumption) belongs to the current distributed
component. As we have seen in the example, even for small programs, many different settings can be achieved by
trying different combinations of newcog and new instructions. A careful inspection of our QAs can give very
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useful information to decide which setting is the most adequate for a specific deployment scenario, as we have
seen in the examples of the previous section. However, we seek for a more systematic, and fully automated way
to compare the different settings and evaluate their adequacy for a given deployment scenario. As all settings can
be tried, this will provide us a way of finding the optimal setting for a distributed system.

We proceed in several steps: (1) we first consider in Sect. 6.1 deployment constraints that are provided externally
by taking into account the deployment scenario (e.g., we might have limits on the number of distributed compo-
nents that can be created). Such constraints might allow discarding settings that do not fulfill them, or inferring
conditions on the input data that, if satisfied, ensure that the deployment constraints are met. (2) We then define
in Sect. 6.2 a series of performance indicators that can be automatically computed from the information available
in our QAs, and which are useful to estimate the quality of a setting. (3) Finally, as the performance indicators are
given as functions on the input data sizes, Sect. 6.3 discusses practical issues to indicate when one configuration
might be better than another one.

6.1. Deployment constraints

Software is often developed for a range of deployment scenarios and indeed software performance can vary
significantly depending on the target architecture. Deployment constraints can be used to express decisions that
reflect the deployment scenario. For instance, as a cobox conceptually represents a processor, deployment con-
straints can be used to restrict the number of coboxes that can be created to the maximum number of processors
available. In our proposal, such constraints are provided in the same language as the cost models we use in our
framework. Also, they can refer to the resource consumption attributed to a set of objects N . It can be the case
that the deployment constraints are only conditionally preserved for certain input values.

Example 6.1 Let us consider a deployment scenario in which the number of processors available is 32. This
deployment constraint is expressed in our framework by stating that the number of coboxes created by the
program must be equal to or less than 32. It is stated using the cost model MC and the set of objects N are
the coboxes, i.e., N � {o1, o12, o13}. In particular, UBMC

main (n,m) |{o1,o12,o13}≤ 32. Settings 1 and 2 satisfy this
constraint unconditionally for any possible values of n and m. However, setting 3 does not always satisfy the
deployment constraint. Thus, we want to determine the conditions on the input arguments that guarantee that
the program will run within the given constraints. The following condition is obtained 2 + n ≤ 32 that holds if
ϕ � {n ≤ 30}. The condition is given in terms of n due to the fact that the expression UBMC

P (x ) |{o1,o12,o13} only
depends on the value of the input argument n. �

We denote by L〈M,N 〉 a deployment constraint that restricts the resource consumption of the set of objects N
w.r.t. the cost model M. Note that N is a set of cost centers of the form c(o) for the cost models MI , MC , and
a set of pairs of the form c(o1, o2),m for the cost model MK .

Definition 6.2 Given a program P with input arguments x , a deployment constraint L〈M ,N 〉 for a cost model M
and set of object names N , we say that P conditionally satisfies L〈M ,N 〉, if there exist conditions ϕ on the input
arguments x such that ϕ |� UBM

P (x ) |N≤ L〈M ,N 〉.

In the previous definition we have focused on a single constraint for a particular cost model and a set of objects.
In general, deployment constraints can refer to any resource of interest on any of the cost centers inferred by the
analysis. This is because the scenario in which the application will be deployed can have more than one limitation.
Having multiple constraints can fully discard a particular setting, but it can also result in multiple constraints
on the input arguments. The constraints gathered from multiple resource limitations are conjoined to determine
the global constraints on the input arguments (Definition 6.2 trivially extends to multiple constraints). If the
conjunction results in an unsatisfiable set of constraints, we have that the setting is invalid for such deployment
scenario.

Example 6.3 Let us suppose that, in addition to the constraints imposed in Example 6.1, we have a limitation on
the number of instructions that each cobox can execute. If such limit is 500 instructions, we have that the coboxes
inferred in the abstract configuration can execute at most 500 instructions. By using the UBs obtained for setting
3 in Example 5.7, we have that:
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ϕo1 ≡ 18 + 12 · n ≤ 500
ϕo12 ≡ 6 · n + 8 · n · m ≤ 500
ϕo13 ≡ 6 + 3 · n · m ≤ 500.

Thus, the conditions that warrant that the program will run within the given restrictions are:

{n ≤ 30} ∧ {6 · n + 8 · n · m ≤ 500} ∧ {6 + 3 · n · m ≤ 500}.
�

6.2. Performance indicators

We aim now at defining performance indicators that can be obtained from the information available in the QAs.
Our goal is to use such indicators to compare different settings for the distributed system and find the optimal
one (w.r.t. such indicators) for a particular deployment scenario. We note that there are aspects that might heavily
influence the performance of the distributed system and that cannot be expressed using our framework. Therefore,
we do not claim that the indicators that we define below are the unique criteria that matter in order to assess
the performance. Instead, our indicators can be used in combination with other ones that currently cannot be
obtained by state-of-the-art analyzers (see Sect. 9).

A performance indicator is defined as a function that evaluates into a number in the range [0–1], such that
the closer to one the better the performance. We start by defining the distribution function, which measures how
much distributed the application is. It is defined as the relation between the number of coboxes that are created
for this particular setting with respect to the maximum number of potential coboxes that could be created if all
object instances were coboxes, i.e., the optimal setting from a distribution perspective in which we have as many
coboxes as possible. In what follows, given a set of object names N we will use coboxes(N ) to refer to the elements
in the subset of N that are cobox roots, coboxes(N ) � {oλ ∈ N | is root(oλ)}.
Definition 6.4 (Distribution function) Given a program P with input arguments x , and its QAs, we define the
distribution level for P as:

DP (x ) � UBMC
P (x ) |coboxes(O)

UBMC
P (x ) |O

.

The distribution function is useful in the deployment process to know how close the application is to the maximum
level of distribution that the program can reach (if all allocation sites are newcog instructions).

Example 6.5 (Distribution function) The distribution function for setting 3 is computed as:

Dmain (n,m) � UBMC
P (n,m) |{o1,o12,o13}

UBMC
P (n,m) |{o1,o12,o13,o34}

� 2 + n

3 + n
.

The following table shows the distribution functions for all settings:

Setting 1 Setting 2 Setting 3
2

3 + n

3
3 + n

2 + n

3 + n

The deployment constraints in Sect. 6.1 can be used to discard any setting by imposing limits on the distribution
level. �

Another crucial aspect that can be observed using QAs is the level of external communications performed in
the distributed system (i.e., calls to objects that belong to other coboxes). The motivation is that calls to other
distributed components are potentially more expensive (as they require communications costs) and thus one
wants to minimize them as much as possible. So as to evaluate this aspect, we use the communication function,
which is defined as one minus the ratio between the number of communications that the program performs in
the current setting, and the maximum number of communications when using a setting in which all objects are
created as coboxes and thus every asynchronous call (on an object different from the one executing) is external.
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Definition 6.6 (Communication function) Given a program P with input arguments x , and its QAs, we define the
communication level for P as:

KP (x ) � 1 − UBMK
P (x ) |comms(O),methods(P )

UBMK
P (x ) |allComms(O),methods(P )

where comms(O) is the set of pairs (oλ1
, oλ2

) such that oλ1
and oλ2

belong to different coboxes in the abstract
configuration,allComms(O) is defined as the set of all distinct pairs of objects, i.e.,{(oλ1

, oλ2
) ∈ O×O | oλ1

�� oλ2
},

and methods(P ) is the set of methods defined in P .

Observe that, unlike the distribution function, which returns a greater value when more coboxes are created, the
communication function will then return a smaller value when a larger number of coboxes are created (since more
external communications are performed). Thus, there is a trade-off between these two performance indicators
such that the optimal setting should take both indicators into account in the context of the specific scenario in
which the distributed application will be deployed.

Example 6.7 (Communication function) According to Definition 6.6, and using the UBs obtained in Example 5.14,
the communication function for setting 3 is obtained as follows:

Kmain (n,m) � 1 − UBMK
P (x ) |{(o1,o12),(o1,o13),(o12,o13)},methods(main)

UBMK
P (x ) |allComms(O),methods(main)

� 1 − 1 + n + n · m
1 + n + 2 · n · m .

Observe that the numerator expression accounts for all communications performed between objects that belong to
different coboxes, while the denominator contains all possible pairs with different objects created in the program
(calls in the same object are not added). The communication functions for our settings are:

Setting 1 Setting 2 Setting 3

1 − n · m
1 + n + 2 · n · m 1 − n · m + n · m

1 + n + 2 · n · m 1 − 1 + n + n · m
1 + n + 2 · n · m

�

The third performance indicator that can be obtained using techniques based on resource analysis is the
balance level of the distributed system. We consider that the system is optimally balanced when all its components
execute the same number of instructions. In order to define this performance indicator, we introduce the balance
function that makes use of the UBs on the number of instructions obtained using the cost model MI and the
UBs on the number of objects in its QAs. The balance function measures the standard deviation of the number

of instructions executed by each cobox. As a reminder, sN �
√

1
N

∑N
i�1(xi − avg(x ))2 is the deviation where

{x1, x2, . . . , xN } are the observed values of the sample items and avg(x ) is the mean value of these observations,
while the denominator N stands for the size of the sample. To obtain the balance level, we consider that one
observation is the number of instructions executed by each cobox. The number of observations of each cobox
is multiplied by the number of instances identified for the abstract cobox to weight those abstract coboxes that
might represent more that one concrete cobox. Finally, we want to measure the balance level by means of a
number in the interval [0, 1] as in the other indicators. For this purpose, we divide the standard deviation by the
maximum dispersion of the coboxes from the average. The maximum dispersion for a data set is the expression
| x+ − x− | /2, where x+ and x− represent the furthest (highest and lowest) values from the average of the data
set (see, e.g., [ASY09]). Let us see the formal definition:

Definition 6.8 (Balance function) Given a program P and input values x and its abstract configuration, we define
the balance deviation of P (x ) as:

σP (x ) �

√√√√√√√

∑

oλ∈coboxes(O)

(
UBMI

P (x ) |{oλ}
UBMC

P (x ) |{oλ}
− UBMI

P (x ) |O
UBMC

P (x ) |coboxes(O)

)2

∗ UBMC
P (x ) |{oλ}

UBMC
P (x ) |coboxes(O)

.
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The balance function for P and x is defined as:

BP (x ) � 1 − σP (x )(
UBMI

P (x ) |O
2

) .

Let us explain the details of the definition. The mean of the number of instructions executed by each cobox
is obtained by accumulating the total number of instructions executed [obtained using the cost model MI ] and
dividing it by the number of coboxes (obtained using the cost model MC restricted to the set coboxes(O)). Then,
the mean is captured by the expression:

UBMI
P (x ) |O

UBMC
P (x ) |coboxes(O)

.

As regards the number of instructions executed by each cobox in the sample, we have to take into account that
an abstract cobox might represent multiple concrete coboxes. Therefore, the number of instructions executed by
an abstract cobox is accounting for the instructions executed by all coboxes it represents. The simplest solution
that we adopt in order to define our performance indicator is to assume that the instructions are executed by such
coboxes in an optimally balanced way (i.e., we divide the total number of instructions executed in the abstract
cobox by the total number of coboxes that it represents). Thus, we divide the total number of instructions allocated
to the abstract cobox oλ, UBMI

P (x ) |{oλ}, by the number of instances of the corresponding cobox UBMC
P (x ) |{oλ}.

Besides, as one abstract cobox might represent multiple concrete coboxes, we multiply the observation of each
cobox by the UB on the number of instances, UBMC

P (x ) |{oλ}. The values of the indicator must range in the interval
[0, 1]. The minimum is 0, i.e., one cobox does not execute any instruction. The maximum is the total number
of instructions executed by the program, i.e., all instructions are executed in only one cobox. Observe that the
higher the balance deviation, the worse the balance function is. If the balance deviation is zero, that means that
the coboxes are perfectly balanced, and therefore the balance function BP (x ) is 1.

Example 6.9 (Balance function) For obtaining the balance function for setting 3, we first obtain the average
on the number of instructions executed by each cobox. In such setting, the coboxes identified in the abstract
configuration are {o1, o12, o13}, thus the average is:

avg(UB) � UBMI
main (n,m) |{o1,o12,o13}

UBMC
main (n,m) |{o1,o12,o13}

� 24 + 18n + 11 · n · m
2 + n

.

We then generate the subexpressions associated to each cobox in {o1, o12, o13}. The UB expressions for number
of instructions and number of cobox instances are shown in the tables in Examples 5.7 and 5.9, respectively. They
are used to obtain:

UBCo1 � UBMI
main (n,m) |{o1}

UBMC
main (n,m) |{o1}

� 18 + 12 · n
1

UBCo12 � UBMI
main (n,m) |{o12}

UBMC
main (n,m) |{o12}

� 6 · n + 8 · n · m
n

UBCo13 � UBMI
main (n,m) |{o13}

UBMC
main (n,m) |{o13}

� 6 + 3 · n · m
1

.

The maximum dispersion of the coboxes is given by the expression:

σmax � UBMI
main (n,m) |{o1,o12,o13}

2
� 24 + 18n + 11 · n · m

2
.

By putting all together, the balance function is as follows:

Bmain (n,m) � 1 −

√
(UBCo1 − avg(UB))2 ∗ 1 + (UBCo12 − avg(UB))2 ∗ n + (UBCo13 − avg(UB))2 ∗ 1

2 + n
σmax

.

�
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Fig. 11. Comparison for the runnnig example for different values of n and m

The assumption made about the optimally balanced distribution within the component that an abstract cobox
represents can be improved in several ways. First, by using a more accurate points-to analysis (e.g., larger values
of constant k ), the loss of precision will be reduced. Still, over-approximation might be needed in some examples.
Second, instead of assuming that the load is well balanced, one can make other assumptions, for instance, that
the distribution is as bad as possible. The latter assumption can be realized by assuming that one concrete cobox
executes all instructions and the remaining ones are idle (execute 0 instructions). Any other assumption in the
middle can be made. Our well-balancedness assumptions works well for the examples we have tried, but other
case studies may require different assumptions.

6.3. Overall assessment of setting

So far, we have probably discarded settings that do not satisfy deployment constraints, or we have constrained the
input arguments to satisfy them, and we have computed performance indicators. The last step is to have an overall
assessment of the considered settings and, then be able to compare them. We discuss three aspects relevant to
such comparison: (1) evaluation for fixed input values, (2) plotting the performance functions, and (3) providing
user-defined objective functions.

Fixed input arguments. The most trivial assessment is obtained by considering a range of fixed values for the
input parameters. This is a very common situation when we are planning to deploy an application with an initial
estimation on the number of potential customers or when we are interested in giving service to a concrete number
of customers and, above this number, it is preferable to deny the requests because we cannot guarantee quality
of service any longer. Since performance indicators are functions that evaluate to values in the range [0–1], it is
straightforward to instantiate them for particular input values.

Example 6.10 (Fixed arguments) Let us study the distribution level, the communication level and the balance level
of the running example for different pairs of the arguments n and m. Figure 11 shows graphically the results for
different values of the input arguments. The plots have three axes, distribution, communication and balance, that
correspond to the distribution function, the communication function and the balance function, respectively. The
range shown for each axis is from 0 to 1 and the value obtained for each function is the result of the corresponding
function for the selected input values. Besides, each plot shows three lines that correspond to the values obtained
for settings 1, 2 and 3, shown in detail in Example 4.1. Such plots will be useful for comparing the behaviour of
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Fig. 12. Graphical representation of the distribution function for the running example
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Fig. 13. Graphical representation of the communication function for the running example

different settings for the given input arguments. Let us start by focusing on the plots that correspond to the pairs
n = 20, m = 5 and n = 5, m = 20. Regarding distribution and balance, for both pairs it can be seen that setting 3
has higher values, which means that setting 3 has a better balance and distribution level than settings 1 and 2. As
regards communications, setting 1, shows good results for both estimations. This is because most methods are
executed by only one cobox. However, the behaviour of setting 3 is very similar in this point, showing that for both
estimations, n = 20, m = 5 and n = 5, m = 20, setting 3 is the one that best fits with the deployment estimations.

As general conclusion, we can say that settings 1 and 2 will not distribute the work properly and consequently
will behave worse when the number of clients (n) is increased. This aspect can be observed in plots A©, B© and C©,
that show how the distribution level gets worse when n is increased. On the contrary, the number of requests does
not affect them, plots D©, E© and F© are very similar for all values of m. This means that settings 1 and 2 could
be valid for deployment scenarios with an estimation of a low number of clients, independently of the number of
requests generated by each client. Clearly, setting 3 is the one that behaves better for all scenarios studied, and
different values of n and m do not affect the behaviour of the resulting configuration. Note that one important
point, in setting 3, is that the number of processors required for solving the requests depends on the value of n.
Thus, depending on the number of processors available, this configuration could be invalid for a large number of
clients. Such kind of restrictions can be handled by using the deployment constraints imposed in Example 6.3. �

Non-fixed input arguments. The problem of fixing the input arguments is well-known, one can miss the anomalous
behaviour (in our case related to the program’s resource consumption). Therefore, it is interesting to observe how
the resource consumption evolves with larger values of the input arguments. One can also focus on a range of
interest. As performance indicators are functions, it is possible to visualize their behaviour by representing them
graphically, provided the functions do not have too many arguments.

Example 6.11 (Non-fixed arguments) Figure 12 shows how the distribution function for the running example (see
Example 6.5) evolves for all settings of interest. This graphical representation clearly shows that the distribution
levels of settings 1 and 2 get worse when the value of n is increased. However, the distribution level of setting 3
gets better when the value of n is growing.
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Fig. 14. Graphical representation of the balance function for the running example

In Fig. 13 we can observe the behaviour of the communication function with respect to n and m. Figure 13
confirms that the communication level of setting 1 is the best one, but it also shows that increasing the value of
n deteriorates the performance of this setting. On the contrary, the behaviour of setting 3 is quite stable for all
possible values of n.

The balance function for all settings is shown in Fig. 14. As it was explained in Example 6.10, the performance
of settings 1 and 2 gets worse when the value of n increases. Once again we confirm that setting 3 is the most
stable of all settings proposed for the program and it features a good trade-off between all features, distribution,
communications and nodes balance. �

Comparison of different settings. In order to find the optimal setting for a distributed system, we should be able
to: (1) generate all possible settings automatically, (2) generate performance indicators for each of them and (3)
be able to compare such indicators for the different settings. As regards (1), it should be noted that some settings
should be discarded when generating all possible combinations of new and newcog instructions. As noted in
[FMA13] by grouping objects in coboxes one can introduce deadlocks. Therefore, each candidate configuration
should be checked for deadlock freeness. Apart from this issue, the generation of all possible settings does not
pose any relevant problem. The second aspect has been discussed in the previous section. So, it remains to be
seen how to automatically compare different settings.

In principle, since performance indicators are functions, point (3) consists in comparing the corresponding
functions. There are several points to take into consideration here:

• Function comparison is undecidable. We refer to [AAG10] for a practical method for function comparison.
There is no guarantee that we will be able to have a result from the comparison of the functions. Also, the
work in [AAG10] does not admit square roots in functions such as the ones we have in the balance function.
If function comparison cannot be performed, we can compare the settings by using fixed input arguments as
discussed above.

• When one setting outperforms all others (according to all considered performance indicators) the result is
clear. But it might happen that it outperforms other settings only for some indicators. In such case, one can
define target functions, T (x ), that weight the importance given to each performance indicator.

Target functions are functions that combine, by taking into account to the target deployment scenario, the
performance indicators defined in Sect. 6.2. Essentially, they weight the indicators depending on the characteristics
of the scenario. Similarly to the performance indicators, target functions are also expressed in terms of the input
arguments of the program and return a value that could help to determine the quality of each setting for the target
scenario. The simplest target function is the addition of all performance indicators, which gives the same weight
to all indicators. However, such function could not be so good for a cloud computing scenario where connections
are costly if computers are located in different countries. On the contrary, a scenario where all computers are
connected through a fast local area network and the number of processors is limited, is well captured by using
a function that gives higher weight to the distribution and less weight to communications. Let us see two target
functions by means of an example.
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Fig. 15. Graphical representation of the target function Tmain (n,m) for the running example
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Fig. 16. Graphical representation of the target function T ′
main (n,m) for the running example

Example 6.12 Let us start the example with a target functions that weights equally the performance indicators
obtained in Examples 6.5, 6.7 and 6.9:

Tmain (n,m) � Dmain (n,m) + Kmain (n,m) + Bmain (n,m).

Figure 15 shows the graphical representation of Tmain (n,m). It can be observed that setting 3 behaves better
than settings 1 and 2, as expected from the results obtained in the previous examples. Setting 3 shows a good
behaviour when the values of n and m are increased because the program is well balanced and well distributed,
and the number of communications does not degrade its performance.
Let us now consider a deployment scenario with some peculiar characteristics. Assume that communications
are done by a fast communication channel and the number of processors is low. The latter requires that the
distribution level is as low as possible, i.e. high levels of distribution should be mapped into low values in the
target function. A target function that could represent such scenario is:

T ′
main (n,m) � (1 − Dmain (n,m)) + 0.2 ∗ Kmain (n,m) + Bmain (n,m).

The graphical representation of T ′
main (n,m) in Fig. 16 indicates that the performance obtained for settings 1

and 2 is much better than that of setting 3. The main reason is that the unlimited number of coboxes created by
setting 3 results in lower values of T ′

main (n,m). �

7. Experimental evaluation

We have implemented our analysis in SACO http://costa.ls.fi.upm.es/SACO, a SACO, and we have applied it to
some classical examples of distributed based systems: BBuffer, the typical bounded-buffer for communicating
several producers and consumers; MailServer, which models a mail server distributed system with multiple
clients; Chat, modelling a client-server chat application; BookShop, which implements a web shop client-server
application; and the RunningExample shown in Fig. 2. In addition, we have studied two case studies: an academic
case study, PeerToPeer, which represents a peer-to-peer network formed by a set of interconnected peers which
make some files available to other peers; and TradingSystem, an industrial case study that models a supermarket
sales handling system. The source code for the benchmarks can be downloaded from the SACO web site. Due to
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Table 1. Experimental evaluation results (times in s)

Benchmark Loc #P #A TC TK TI CC CK CI
Running 78 2 5 0.05 0.06 0.06 5/1/5 11/2/10 31/2/16
BBuffer 105 5 4 0.14 0.18 0.19 5/2/4 10/4/7 52/5/21
MailServer 115 3 4 0.10 0.15 0.18 4/1/4 16/3/8 59/5/20
Chat 302 4 10 0.11 0.13 0.16 10/1/10 38/2/34 96/4/46
BookShop 353 6 5 0.57 0.59 1.24 5/1/5 10/1/10 134/19/24
PeerToPeer 240 5 9 1.60 11.57 13.09 8/1/9 244/21/252 2,642/225/1,100
TradingSystem 1,340 15 23 110.31 721.34 746.15 27/2/23 354/9/325 560,390/18,190/309,705

some limitations of the underlying resource analysis that are not related to our method, we had to slightly modify
the programs by changing the structure of some loops, and had to add some size relations that the analysis could
not infer (see [AAG11a] for more details about the class invariants needed).

7.1. Generation of quantified abstractions

We have computed the UB expressions for all programs for the cost models MI (Definition 3.4), MC (Defin-
ition 5.8) and MK (Definition 5.13). During the analysis, the points-to graph (Definition 5.2) of the program
has also been inferred, since the points-to information is needed to obtain the UBs with cost centers for the
different objects. The experiments have been performed on an Intel Core i7 at 3.4 GHz with 4 GB of RAM,
running Ubuntu Server 12.04. Points-to analysis has been performed with k � 2, i.e., the maximum length
of object names (see Sect. 3) is two. Table 1 shows the efficiency of the analysis. Let us describe the figures in
detail. Columns Benchmark, loc and #P show, respectively, the studied benchmark name, the number of lines
of ABS code, and the number of input parameters. Column #A displays the number of allocation sites found
in the program. Columns TC , TK and TI show the time taken to compute three different cost analyses of the
program, using the cost models MC , MK and MI , respectively. Finally, columns CC , CK and CI aim at showing
the complexity of the UB expressions inferred by the resource analysis. The information shown in such columns
has the format A/B/C, where A is the number of arithmetic symbols that appear in the UB, B is the number of
occurrences of the input arguments in the UB, and C is the number of object names in the UB expression. The
figures in TC , TK and TI show that the fastest cost model for all benchmarks is MC , whereas MI is the most
costly one. This is explained by the fact that using MC the analysis will often find loops with zero cost (those that
do not contain new or newcog instructions) for which the analyzer does not need to perform any solving. This
aspect is especially remarkable in PeerToPeer and TradingSystem, which contain complex loops whose analysis
is expensive, but as the allocation sites appear outside these loops, they do not add any cost to the computation
of MC . Columns CC , CK and CI show that the time required to infer the UB increases significantly with the
complexity of the expression. The size of the UB for TradingSystem is especially large, not only because of the
number loops found in the program, but also because of the number of object names needed to keep track of the
object on which each instruction is executed (see the third value in CI that is larger than 300 thousand names).

The result of the analysis for each benchmark is an upper bound for each of the cost models used. It must be
stressed that, since the benchmarks considered are non trivial, such UBs are expressed in terms of (a subset of) the
input arguments and using the object names identified in the points-to analysis to define cost centers. Observe that
some input arguments may not appear in the UB expressions, as the configuration of the system may depend on a
subset of the input parameters only. This is often the case for the cost modelMC and can also be observed forMK,
where the number of occurrences of the input parameters in the UB expression is indeed smaller than the number
of input parameters (see e.g. the second value in columns CC , and CK of BookShop, or CK of TradingSystem).

7.2. Application for finding optimal configurations

We now aim at finding the optimal configuration for our benchmark programs. We proceed in the next steps:

(1) Settings generation. Using the points-to information, we generate all possible settings, by creating all combi-
nations of new and newcog instructions for the allocation sites found by the points-to analysis.

(2) Performance indicators. For each setting generated in (1), denoted by Si , and using the UBs inferred in
Sect. 7.1, we obtain the performance indicators, DSi

, KSi
and BSi

(see their definitions in Sect. 6.3).
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Table 2. Experimental evaluation results (times in s)

Benchmark #S #CP TES #CP/s #E TT
Running 16 100,200 17.48 5,732.26 1,603,200 1.687
BoundedBuffer 8 120,000 27.60 4,347.82 960,000 0.968
MailServer 8 102,000 24.64 4,139.61 816,000 0.817
Chat 512 12,000 9.87 1,215.31 6,144,000 7.295
BookShop 16 101,088 131.98 765.92 1 617,408 1.770
PeerToPeer 256 4,992 127.42 39.17 1,277,952 1.501
TradingSystem 64 1,024 254.03 0.06 256 1.010

(3) Input values. We fix a range of concrete values for each input parameter and generate all combinations of the
values for the parameters. We denote each combination of concrete values as Pj .

(4) Performance indicators evaluation. We evaluate the performance indicators generated in (2), for each parameter
combination generated in (3). We use the expressions DSi

(Pj ), KSi
(Pj ), BSi

(Pj ) to identify the evaluation of
the setting Si for the concrete input parameters Pj .

(5) Settings performance. At this point, for each setting Si generated at (1), we have three performance indicators
evaluated for multiple input arguments [generated in (3)]. Thus, for each setting Si , we calculate the average of
the performance indicators evaluated in (4). We denote the average of the performance indicators by avg(DSi

),
avg(KSi

), avg(BSi
).

(6) Target function. Finally, we use the target function TSi
� avg(DSi

) + avg(KSi
) + avg(BSi

) to compare and
rank the efficiency of all evaluated settings.

Table 2 shows the results of the application of the steps described above. Column #S shows the number of
settings generated in step (1). Column #CP shows the number of combinations of the input parameter values
on which each setting will be evaluated [step (3)]. TES shows the average time taken by the evaluation of the
performance indicators (for one setting) for all input parameters values [steps (2), (3), (4)]. Column #CP/s shows
the number of evaluations performed in one second. Column #E shows the total number of evaluations performed
for each benchmark. Note that Chat requires more than 6 million evaluations since there are 512 settings that are
tried out on 12,000 combinations of the input parameters. Finally, column TT shows the time taken to perform
the average described in step (5) and the application of the target function to sort the settings, as described in
step (6).

Observe that the evaluation described in these experiments evaluates all possible settings for a large number
of combinations. One efficient improvement can be achieved by reducing the number of settings generated in step
(1), e.g., by fixing some allocation sites of interest to new or newcog. The number of combinations of input values
generated in step (3) can also be reduced if there is additional information of the actual system being configured
given by means of constraints. Another interesting aspect is that the evaluation of a setting for a specific set of
input values is independent from evaluating other settings, or other input values of the same benchmark program,
and thus the process can be parallelized.

We can observe that the number of evaluations per second (#CP/s) directly depends on the complexity of the
UB expressions and the evaluation significantly varies for different example benchmarks, ranging from 4,347
evaluations per second in BoundedBuffer to only 765 in BookShop. The same pattern is observed in the Peer-
ToPeer and TradingSystem case studies, in which the size of the UB expressions is decisive in the time taken in the
evaluation of performance indicators. For PeerToPeer, it results in a low number of evaluations per second (39)
and, in the case of TradingSystem, the evaluation of the performance indicators for one concrete set of values of
the input parameters takes around 15.8 s. In Sect. 7.3 we will see how we can handle such issue in practice. One
positive aspect is that, once the performance indicators are obtained, the time to compute the target function (TT)
is insignificant. This means that several target functions can be efficiently computed from the results obtained for
the performance indicators.

7.3. Case studies

Once we have seen that the systematic evaluation of all settings for the benchmarks is feasible and relatively
efficient, let us study in detail the more complex case studies, PeerToPeer and TradingSystem. We first focus on
the PeerToPeer, a well-known case study for distributed systems. The main classes that compose this system are:
OurTopology, which represents the topology of the peer-to-peer system; Node, that models the nodes that share
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Fig. 17. PeerToPeer case study evaluation (256 settings sorted by T )
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Fig. 18. TradingSystem case study evaluation (512 settings sorted by T )

the files; and Database, which represents the files database used by the nodes. A node can provide its catalog of
files to its neighbours by accessing the database, and can obtain the list of its neighbours from the topology. Nodes
can also request and transfer files, package by package, to its neighbours. The plots in Fig. 17 display the values
of the performance indicators and the target function described in step (6) for all possible settings. The vertical
axis of plots 1, 2, 3, 4 shows, respectively, the values obtained for avg(DSi

), avg(KSi
), avg(BSi

) and the value of
the target function, TSi

. Settings are sorted by the value TSi
in descending order. Plot 4 shows that the target

function ranges from 1.55 to 0.55, confirming, as expected, that the setting selection directly affects the behaviour
of the program in terms of distribution, communication and balance. Another interesting aspect is that multiple
settings have the same target function value. This is due to the fact that having new or newcog in some allocation
sites dominates the general behaviour of the whole system, independently of the remaining allocation sites.

Now, let us focus on the first five settings (plot 5 in Fig. 17). Settings 1 and 2 clearly show the trade-off between
distribution and communication. In setting 1 all nodes are executing in just one cobox resulting in a high commu-
nication but a low distribution level. On the contrary, Setting 2 is fully distributed (all allocation sites are newcog),
resulting in a excellent distribution, but a poor communication level. Both settings should be discarded for the
deployment: Setting 1 because in a peer-to-peer environment nodes must execute in separate coboxes, and Setting 2
because the high number of communications could affect the performance of the application. In these experiments
we used a simple target function. Nonetheless, this aspect can be considered by defining a target function that bet-
ter reflects the structure of a peer-to-peer application. Therefore, this benchmark confirms the importance of fixing
some allocation sites to concrete instructions, as well as the relevance of defining an appropriate target function.

Regarding setting 3, its performance indicator shows a good trade-off between balance, communication and
distribution. Such setting generates a cobox that takes care of the topology, another cobox for handling the
databases, and one cobox per node. Definitely, this setting generates an appropriate configuration for a peer-to-
peer system. Settings 4 and 5 show a similar behaviour to setting 2, so they should also be discarded.
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Fig. 19. TradingSystem case study evaluation (64 settings sorted by T )

The TradingSystem case study models a supermarket cash desk line. It includes the processes at a single cash
desk (like scanning products using a bar code scanner, paying by cash or by credit card); it also handles bill
printing, as well as other administrative tasks. In the TradingSystem, a store consists of an arbitrary number
of cash desks. Each of them is connected to the store server, holding store-local product data such as inventory
stock, prices, etc. The time to analyze the TradingSystem is larger than that of the other benchmarks. This is an
expected result, due to the complexity of the UB expressions shown in Table 1 and the size of the application.
Furthermore, it contains 22 allocation sites, whose combinations result in more than 4 million possible settings.
By inspecting the program, we have detected that several objects must be created in separate coboxes (i.e., using
newcog) because they represent independent devices with their own processors, such as a printer, a bar code
scanner or a card reader. Besides, two allocation sites must be created using new because they are part of the
same physical device as the creator object. Therefore, there are 9 allocation sites left to be created using new or
newcog, resulting in the evaluation of 512 settings. Since the evaluation of all settings for multiple combinations
would take too much time, we have decided to divide the analysis in two different steps: (1) evaluate all possible
settings for one concrete evaluation of the input arguments, and, (2) using the information obtained from (1),
set to newcog or new those allocation sites that produce a significant change in the values of T . The plots in
Fig. 18 show the evaluation of all 512 settings for TradingSystem. At certain point the value of K falls down
drastically, resulting in a significant reduction in the value of T . By inspecting these settings, we observe that
this is because the objects CashDeskPCImpl and CashDeskInstallationImpl are highly cooperative. Thus, the
settings that separate both objects in different coboxes have a lower value forK, and consequently for T . The same
reasoning is also applicable to objects CashBoxPCImpl and CashDeskInstallationImpl. Therefore, these objects
have been fixed to be created using new. The number of possible settings is now 64. We have recomputed the
performance indicators for 16 combinations of the input arguments for these settings. Plot 4 in Fig. 19 shows that
T ranges from 2.2 and 2.4, which essentially reflects that CashDeskPCImpl and CashBoxPCImpl are decisive
in the configuration of the system. It can also be observed in plot 3 of Fig. 19 that the balance level is almost
constant in this case study. As several objects must be created with newcog since they represent independent
devices, and those objects are indeed well distributed, this performance indicator is not relevant in this case.

Summarizing, we argue that it is feasible to apply the approach proposed in this article to models of real
systems, and that performance indicators are helpful to guide the deployment process. Some crucial aspects for
the efficiency and usefulness of our approach are: first, the selection of precise ranges for the input arguments;
second, filtering some non-possible configurations by setting some allocation sites to new or newcog; and finally,
defining a precise target function that faithfully describes the expected behaviour of the system.

8. Related work

The analysis presented in the article is based on two existing analyses, resource and points-to analyses, whose
integration allows defining the concept of quantified abstract configuration. We first review related work on
these two techniques. As regards resource analysis, our work builds upon an existing framework for cost analysis
[AAG07, AAG08, AAG11a, AFG13]. Such framework has been defined in several steps. First, it was formalized
how to generate cost recurrence equations from a Java-like imperative language in [AAG07, AAG12b]. This
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approach applies directly to the sequential fragment of our language. Then, a method to obtain upper bounds
from cost relations was defined in [AAG08, AAG11b]. This method is language independent and thus is used to
solve the cost relations that we produce from ABS programs without requiring any extension.

Later work [AAG11a, APC12] focuses on generating cost recurrence equations from ABS programs. This
requires non-trivial extensions to treat the task interleavings that may occur in the execution of ABS programs.
In particular, when a task suspends due to the use of an await instruction, another task can take the processor
and modify the object fields. The approach in [AAG11a, APC12] proposes to lose the values of fields at any
potential release point. A more accurate solution has been proposed later to avoid losing the values of fields
[AFG13] when the tasks whose execution may interleave either do not modify the involved fields or if they do
so, they modify them a finite number of times. These techniques (both the initial and the more accurate one)
constitute the resource analysis framework that our work relies upon, and they have been adopted directly for
the generation of the upper bounds along the article.

As regards the points-to analysis, as already mentioned, we are using the abstraction proposed by Milanova
et al. [MRR05] that fits perfectly with the concept of concurrent object used in our language. In essence, as each
object is a concurrency unit, it is fundamental for the precision of the analysis to distinguish information at the
object level. The resource analysis framework defined in [AAG11a, APC12] is already object-sensitive. However,
the difference is that it does not use the notion of configuration and, thus, it does not keep track of the cobox to
which object belongs. This piece of information is essential to define the notion of quantified abstraction and to
infer meaningful information on the distributed system.

There exist several contributions in the literature about occurrence counting analysis in mobile systems of
processes, although they focus on high-level models, such as the π -calculus and BioAmbients [Fer01, GL05].
In [PHW05], a static analysis based on probabilistic abstract interpretation is proposed to deal with distributed
systems. The approach is quantitative in the sense that it obtains an approximation of the probability that some
property of interest is transmitted through a distributed network within a given interval of time. As the previously
mentioned contributions, it is applied to a high-level experimental language, pcKLAIM, a restricted version
of Kernel Language for Agents Interaction and Mobility (KLAIM) with no higher order features and single
parameter passing. It does not deal with resource analysis in general (such as memory, number of instructions,
etc.), but only communication issues.

The techniques that we use in this article are mainly static, i.e., we obtain the resource consumption without
executing the program, by only inspecting the program code. The results of static analysis are sound for any
execution of the program. This is because our analysis has considered the resource consumption of all feasible
paths of execution (and interleavings) and has not left any unchecked behavior. The analysis returns the worst-case
cost of the information obtained from all paths. In contrast, dynamic analysis (a.k.a. profiling) gathers information
from running the system. In general, the collected data is accurate of system execution as long as the overhead
of the measurement has not influenced the results. Profiling is limited, however, to the inspection of behavior
that can be made by running the system on a selection of input. This limitation means that profiling is useful in
circumstances where a sampling of behavior is sufficient. It is clearly not well suited to ensure an optimal behavior
in a system when only one execution in a million can lead to a large resource consumption. In our experiments we
have somehow combined static and dynamic techniques in the sense that the upper bounds that we obtain statically
are evaluated for particular input values. It should be clear that our results cannot be obtained by profiling the
program, since the upper bounds that are evaluated are already safe approximations of the overall cost. Thus, we
do not have the problem of missing the anomalous behaviour of the system in the selected input data as in profiling.

To the best of our knowledge, this paper is the first static approach that presents a quantitative abstraction
of a distributed system for a real language and experimentally evaluates it on a prototype. We argue that our
work is a first crucial step towards automatically inferring optimal deployment configurations of distributed
systems.

9. Conclusions and future work

We have shown that distributed systems can be statically approximated, both qualitatively and quantitatively.
For this, we have proposed the use of powerful techniques for points-to and resource analysis whose integration
results in a novel approach to describing system configurations. We have seen that performance indicators can be
obtained from our quantified abstract configurations. Our indicators estimate the distribution level of the system,
the amount of communication among its distributed components and the load balancing. These indicators can
be useful to determine that one setting has a better performance than another one and, if all possible settings are
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tried, to find the optimal one (according to our indicators). We do not claim that our performance indicators are
the only ones that must be taken into account, but rather they are useful indicators that can be obtained from
today’s resource analyzers. Future work will focus on defining complementary indicators as discussed below.

Currently, our upper bounds on the number of execution steps do not take into account the fact that tasks can
run in parallel in different distributed components. Thus, instead of accumulating the steps performed in each
component, in future work, we want to develop new techniques to infer the maximum amount of steps that are
performed when both components run in parallel. This is a first step towards the inference of the runtime of the
distributed system. In particular, it can happen that the load on the distributed nodes is well balanced, however,
the execution performed in the different components is serial, i.e., they will not happen in parallel. Thus, one
does not benefit from distributing these components in different machines. The global runtime will be another
performance indicator that can be used to choose among different possible settings.

Besides estimating runtime, we also plan to perform bandwith analysis that requires to approximate the sizes
of the data in asynchronous calls. This is a non-trivial problem that will require the development of sophisticated
size analyses. Again, bandwith analysis will provide another relevant performance indicator that can be used in
our framework in the same way as the communication level it is currently used.
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A. Glossary of notation

Term Section Definition
P (x )) 2 A program P with input arguments x
Executions(P (x )) 2 The set of all possible fully expanded traces for (P (x ))
oij ...pq 2 ij . . . pq are allocation sites and oij ...pq represents all possible runtime

objects that were created at program point q when the enclosing instance
method was invoked on an object represented by oij ...p

Operator ⊕k 3 We use ab . . . c⊕k d for referring to the following object name: ab . . . cd
if | ab . . . cd |≤ k , or b . . . cd otherwise

pt(q, x) 3 The set of object names at program point q for a given reference variable
x obtained by the points-to analysis

ol 3 An object with allocation sequence in l
oλ 3 An object name obtained by the points-to analysis
O 3 The set of all object names generated by the points-to analysis
MI (b) 3 The cost model for counting the number of instructions (see Defini-

tion 3.4)
Steps(t) 3 The list of all steps executed by the trace t
costP (t, ol ,M) 3 The actual cost of a trace t of program P excecuted by object ol with

respect to the cost model M
UBM

P (x ) 3 The upper-bound expression obtained by applying the resource analysis
for program P (x ) with respect to the cost model M

UBM
P (x ) |N 3 The result of replacing in the upper-bound expression c(oλ) by 1 if oλ ∈

N and by 0 otherwise
root(ol ) 4 Returns the root object of the cobox that owns ol
cobox roots(t) 4 The multiset of cobox roots created during the execution of trace t
obj in cobox(ol , t) 4 The multiset of objects that the cobox root ol owns in a trace t
Conf P (x ) 4 The configuration of the program P (x ) (see Definition 4.2)
inst(ol ,P , x ) 4 The maximum number of instances of the object ol that can be created

in the execution of all possible traces of program P (x ) (see Definition
4.4)
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CommP (x ) 4 The maximum number of method invocations that can be performed for
all possible traces of program P (x ) (see Definition 4.6)

ninter(ol , ol ′ ,m,P , x ) 4 The maximum number of method invocations from object ol to ol ′ by
calling m (see Definition 4.8)

GP 5 The points-to graph of the program P (see Definition 5.2)
is root(oλ) 5 is root decides whether the object name oλ represents a cobox or not
AP 5 The abstract configuration of the program P (see Definition 5.4)
cobox(oλ,GP ) 5 The set of all object names that belong to cobox oλ in GP

covers(N ,O) 5 N is a set of object names and O is a set of objects. Function covers
returns true if all objects in O is covered by at least one object name in
N

MC (b) 5 MC (b) is the cost model for counting the number of instances (see
Definition 5.8)

IP 5 The interactions graph of the program P (see Definition 5.12)
MK (b) 5 MK (b) is the cost model for counting the number of communications

performed(see Definition 5.13)
DP (x ) 6 The distribution function (see Definition 6.4)
KP (x ) 6 The communication function (see Definition 6.6)
BP (x ) 6 The balance function (see Definition 6.8)
TP (x ) 6 The target function
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Abstract. We present a static analysis to infer the amount of data
that a distributed system may transmit. The different locations of a dis-
tributed system communicate and coordinate their actions by posting
tasks among them. A task is posted by building a message with the task
name and the data on which such task has to be executed. When the
task completes, the result can be retrieved by means of another message
from which the result of the computation can be obtained. Thus, the
transmission data size of a distributed system mainly depends on the
amount of messages posted among the locations of the system, and the
sizes of the data transferred in the messages. Our static analysis has two
main parts: (1) we over-approximate the sizes of the data at the program
points where tasks are spawned and where the results are received, and
(2) we over-approximate the total number of messages. Knowledge of the
transmission data sizes is essential, among other things, to predict the
bandwidth required to achieve a certain response time, or conversely, to
estimate the response time for a given bandwidth. A prototype imple-
mentation in the SACO system demonstrates the accuracy and feasibility
of the proposed analysis.

1 Introduction

Distributed systems are increasingly used in industrial processes and products,
such as manufacturing plants, aircraft and vehicles. For example, many control
systems are decentralized using a distributed architecture with different process-
ing locations interconnected through buses or networks. The software in these
systems typically consists of concurrent tasks which are statically allocated to
specific locations for processing, and which exchange messages with other tasks
at the same or at other locations to perform a collaborative work. A decen-
tralized approach is often superior to traditional centralized control systems in
performance, capability and robustness. Systems such as control systems are of-
ten critical: they have strict requirements with respect to timing, performance,
and stability. A failure to meet these requirements may have catastrophic con-
sequences. To verify that a given system is able to provide the required quality
of control, an essential aspect is to accurately predict the communication traffic
among its distributed components, i.e., the amount of data to be transmitted
along any execution of the distributed system.



In order to estimate the transmission data sizes, we need to keep track of
the amount of data transmitted in two ways: (1) by posting asynchronous tasks
among the locations, this requires building a message in which the name of the
task to execute and the data on which it executes are included; (2) by retrieving
the results of executing the tasks, in our setting, we use future variables [8] to
synchronize with the completion of a task and retrieve the result. This paper
presents a static analysis to infer a safe over-approximation of the transmission
data sizes required by both sources of communications in a distributed system.
Our method infers three different pieces of information:

1. Inference of distributed locations. As locations can be dynamically created,
in a first step, we need to find out the locations that compose the system
and give them abstract names which will allow us to track communications
among them during the analysis. This is formalized by means of points-to
analysis [14,13], a typical analysis in pointer-based languages which infers
the memory locations that a reference variable can point to. In our case,
locations are referenced from reference variables, thus the use of points-to
analysis.

2. Inference of number of tasks spawned. The second step is to infer an upper
bound on the number of tasks spawned between each pair of distributed
locations. This is a problem which can be solved by a generic cost anal-
ysis framework such as [3]. In particular, we need to use a symbolic cost
model which allows us to annotate the caller and callee locations when a
task is spawned in the program. In essence, if we find an instruction a!m(x)
which spawns a task m at location a, the cost model symbolically counts
c(this, a,m) ∗ 1, i.e., it counts that 1 task executing m is spawned from the
current location this at a. If the task is spawned within a loop that performs
n iterations, the analysis will infer c(this, a,m) ∗ n.

3. Inference of data sizes. Finally, we need to infer the sizes of the arguments
in the task invocations. Typically, size analysis [7] infers upper bounds on
the data sizes at the end of the program execution. Here, we are interested
in inferring the sizes at the points in which tasks are spawned. In particular,
given an instruction a!m(x), we aim at over-approximating the size of x when
the program reaches the above instruction. If the above instruction can be
executed several times, we aim at inferring the largest size of x, denoted α(x),
in all executions of the instructions. Altogether, c(this, a,m) ∗α(x) is a safe
over-approximation of the data size transmission due to such instruction.
The analysis will infer such information for each pair of locations in the
system that communicate, annotating also the task that was spawned.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer within the SACO system [2], a static analyzer
for distributed concurrent programs. Preliminary experiments on some typical
applications for distributed programs show the feasibility and accuracy of our
analysis. The tool can be used on-line from a web interface available at
http://costa.ls.fi.upm.es/web/saco.
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The remaining of the paper is organized as follows. The next section will
present the distribution model that we use to formalize the analysis. Sec. 3
defines the concrete notion of transmission data size that we then want to over-
approximate by means of static analysis. Sec. 4 presents the static analysis that
carries out the three steps mentioned above. Sec. 5 reports on preliminary ex-
perimental results and Sec. 6 concludes.

2 Distribution Model

We consider a distributed programming model with explicit locations and based
on the actor-based paradigm [1]. Each location represents a processor with a
procedure stack and an unordered queue of pending tasks. Initially all processors
are idle. When an idle processor’s task queue is not empty, some task is selected
for execution. Besides accessing its own processor’s global storage, each task can
post tasks to the queues of any processor (message passing), including its own,
and synchronize with the completion of tasks. This synchronization is done by
means of future variables [8]. When a task completes or when it is awaiting for
another task to terminate, its processor becomes idle again, chooses the next
pending task, and so on. This distribution model captures the essence of the
concurrency model of languages like X10 [12], Erlang [6], Scala [10] or ABS [11].

2.1 Syntax

Regarding data, the language contains basic types B (int, bool . . . ) and paramet-
ric data types D. Data types are declared by listing all the possible constructors
C and their arguments, a syntax similar to functional languages like Haskell :

(Type variable) N ::= a, b, c . . .
(Basic type) B ::= int | bool | void | . . .
(Data type declaration) Dd ::= data D(N1, . . . , Nn) = C1 | . . . | Ck (n ≥ 0, k > 0)
(Constructor) C ::= Co(N1, . . . , Nn) (n ≥ 0)
(Ground type) T ::= B | D(T1, . . . , Tn) (n ≥ 0)

Example 1 (Data types). We define integer lists and general binary trees as:
data List = Nil | Cons(int, List)
data Tree(a) = Leaf(a) | Branch(a,Tree(a),Tree(a))

Using the previously declared constructors the list l = [1, 2, 3] is defined as
l = Cons(1, Cons(2, Cons(3,Nil))), and the binary tree t with 2 at the root, 1 as left
child and 3 as right child as t = Branch(2, Leaf(1), Leaf(3))

Apart from data type declarations, the language allows the definition of functions
based on pattern matching as in functional languages—e.g. head, tail, length, etc.
This syntax has been omitted for the sake of conciseness, as it does not play an
important role for presenting the analysis.

Regarding programs, the number of distributed locations needs not be known
a priori (e.g., locations may be virtual). Syntactically, a location will therefore
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1 main (List l , int s) {
2 x = newLoc;
3 y = newLoc;
4 z = newLoc;
5 x! extend(l,s);
6 }
7

8 int foo (int i ) {
9 return i ;

10 }

11 void extend (List l,int s) {
12 while(s > 0) {
13 Fut f = y!add(l,5) ;
14 await f ?;
15 l = f!get;
16 z! process(l);
17 s = s − 1;
18 }
19 }

20 List add (List l , int e) {
21 List r = Cons(e,l);
22 return r ;
23 }
24 void process (List le) {
25 while(le != Nil) {
26 Int h = head(le)
27 y! foo(h);
28 le = tail (le );
29 }
30 }

Fig. 1. Running Example

be similar to an object and can be dynamically created using the instruction
newLoc. The program is composed by a set of methods finished with a return

instruction M ::=T m(T̄ x̄){s; return x; } where s takes the form:
s ::= s; s | x = e | x = f .get | if e then s else s | while e do s | b = newLoc

| f = b!m(x̄) | await f?

The notation T̄ is used as a shorthand for T1, . . . , Tn, and similarly for other
names. The special location identifier this denotes the current location. For the
sake of generality, the syntax of expressions e is left open. The semantics of
future variables f and concurrency instructions is explained below.

Example 2 (running example). Fig. 1 shows a method main which creates three
distributed locations, x, y and z, and receives a list of integers, l, and one integer,
s. In the example, we assume that x, y and z are global variables and thus
accessible to all methods. Also, we have omitted return instructions in void tasks.
Method main spawns task extend at location x in Line 5 (L5 for short) and sends
data l and x (thus there is data transmission at this point). Method extend
extends l with s new elements. To do this, it invokes method add at location
y that extends the list with a new element (L13). The await instruction at L14
awaits for the termination of add. The result is retrieved using the get instruction
at L15, where besides we assign the result to l. Within the loop of extend, tasks
executing process are spawned at location z. The execution of process traverses
the list in the while loop and invokes foo for each element in l. An important
point to note is that, besides the data transmitted when asynchronous tasks
are spawned, the instruction get also involves data transmission to retrieve the
results.

2.2 Semantics

A program state has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid is the identifier of the active task which holds the location’s
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(newLoc)
t = tsk(tid ,m, l, 〈x = newLoc; s〉), fresh(lid1) , l′ = l[x→ lid1]

loc(lid , tid , {t} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid1,⊥, {})

(async)
l(x) = lid1, fresh(tid1), l1=buildLocals(z̄,m1), l′ = l[f → 〈tid1,⊥,⊥〉]

loc(lid , tid , {tsk(tid ,m, l, 〈f=x!m1(z); s〉)} ∪ Q) ‖ loc(lid1, ,Q′) ;
loc(lid , tid , {tsk(tid ,m, l′, s)}∪Q) ‖

loc(lid1, , {tsk(tid1,m1, l1, body(m1)) ∪Q′})

(return)
l(x) = v, l1(f) = 〈tid ,⊥,⊥〉, l′1 = l1[f → 〈tid , true,⊥〉]

loc(lid , tid , {tsk(tid ,m, l, 〈return x〉)} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l1, )} ∪ Q1) ;
loc(lid ,⊥, {tsk(tid ,m, l, ε(v))} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l

′
1, )} ∪ Q1)

(await-t)
t = tsk(tid ,m, l, 〈await f?; s〉), l(f) = 〈tid1, true, 〉

loc(lid , tid , {t} ∪ Q) ; loc(lid , tid , {tsk(tid ,m, l, s)} ∪ Q)

(await-f)
t = tsk(tid ,m, l, 〈await f?; s〉), l(f) = 〈tid1,⊥,⊥〉

loc(lid , tid , {t} ∪ Q) ; loc(lid ,⊥, {tsk(tid ,m, l, 〈await f?; s〉)} ∪ Q)

(get-r)
l(f) = 〈tid1, true,⊥〉, l′ = l[x→ v, f → 〈tid1, true, v〉]

loc(lid , tid , {tsk(tid ,m, l, 〈x = f .get; s〉)} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l1, ε(v))} ∪ Q1) ;

loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l1, ε(v))} ∪ Q1)

(get-l)
l(f) = 〈tid1, true, v〉, v 6= ⊥, l′ = l[x→ v]

loc(lid , tid , {tsk(tid ,m, l, 〈x = f .get; s〉)} ∪ Q) ; loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q)

(select)
select(Q) = tid , t = tsk(tid , , , s)∈Q, s 6= ε(v)

loc(lid ,⊥,Q);loc(lid , tid ,Q)

Fig. 2. (Summarized) Semantics for Distributed Execution

lock or ⊥ if the lock is free, and Q is the set of tasks at the location. Only one
task, which holds the location’s lock, can be active (running) at this location. All
other tasks are pending, waiting to be executed, or finished, if they terminated
and released the lock. A task is a term tsk(tid ,m, l, s) where tid is a unique task
identifier, m is the name of the method executing in the task, l is a mapping
from local variables to their values and s is the sequence of instructions to be
executed or s = ε(v) if the task has terminated with value v.

The execution of a program starts from a method m in an initial state S0

with a single (initial) location with identifier 0 executing task 0 of the form
S0=loc(0, 0, {tsk(0,m, l, body(m))}). Here, l maps parameters to their initial val-
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ues and local references to null (standard initialization), and body(m) refers to the
sequence of instructions in the method m. The execution proceeds from the ini-
tial state S0 by selecting non-deterministically one of the locations and applying
the semantic rules depicted in Fig. 2. The treatment of sequential instructions is
standard and thus omitted. The operational semantics ; is given in a rewriting-
based style where at each step a subset of the state is rewritten according to the
rules as follows. In newloc, the active task tid at location lid creates a location
lid1 which is introduced to the state with a free lock. async spawns a new task
(the initial state is created by buildLocals) with a fresh task identifier tid1 which
is added to the queue of location lid1—the case lid=lid1 is analogous, the new
task tid1 is simply added to the queue Q of lid . The future variable f allows
synchronizing the execution of the current task with the completion of the cre-
ated task, and retrieving its result. The association of the future variable to the
task is stored in the local variables table l′(f)=〈tid1,⊥,⊥〉: the future variable
f is linked to task tid1, the task has not terminated yet (first ⊥ in the tuple),
and the result of the invocation is not available yet (second ⊥). The rule return

is used when a task tid executes a return instruction. The terminating task tid
finishes the execution with value v (its sequence of instructions is set to ε(v))
and the calling task tid1 is notified that tid has terminated by setting to true
the termination flag of the corresponding future variable—the case lid=lid1 is
analogous, but storing the termination flag in a task in queue Q. In await-t,
the future variable we are awaiting for points to a finished task (it has the ter-
mination flag set to true in the future variable f stored in the local variable
table l) and await can be completed. Otherwise, await-f yields the lock so that
any other task of the same location can take it. The rule get-r retrieves the
returning value from the task tid1 linked to the future variable f , if the corre-
sponding task has terminated and the value has not been retrieved before. If tid1

has not terminated, it will wait for the value without yielding the lock. If the
returning value has been retrieved from the remote object already, it is copied
locally from the future variable f by means of get-l. Finally, in rule select an
idle location takes a non-finished task to continue the execution—the function
select(Q) non-deterministically returns a task identifier occurring in Q.

Example 3 (semantics). The following sequence is the beginning of a trace of
the program in Fig. 1 starting from main(Cons(1,Cons(2,Nil)),7). For the sake of
conciseness we represent lists with square brackets—[1,2]—instead of construc-
tors and we use le, la and lp to denote initial local mappings, stressing only the
important changes to them at each step.

S0 ≡ loc(0, 0, {tsk(0,main, lm, 〈x = newLoc; . . .〉)}) ;newloc×3

S3 ≡ loc(0, 0, {tsk(0,main, lm[x 7→ 1, y 7→ 2, z 7→ 3], 〈x!extend(l,s)〉)}) ‖ loc(1,⊥, {})
‖ loc(2,⊥, {}) ‖ loc(3,⊥, {}) ;async

S4 ≡ loc(0, 0, . . .) ‖ loc(1,⊥, {tsk(1, extend, le, 〈while (s > 0){. . .}〉)})
‖ loc(2,⊥, {}) ‖ loc(3,⊥, {}) ;select S5 ;

S6 ≡ loc(0, 0, . . .) ‖ loc(1, 1, {tsk(1, extend, le, 〈Fut f=y!add(l,5); . . .〉)})
‖ loc(2,⊥, {}) ‖ loc(3,⊥, {}) ;async

S7 ≡ loc(0, 0, . . .) ‖ loc(1, 1, {tsk(1, extend, le[f 7→ 〈2,⊥,⊥〉], 〈await f?;. . . 〉)})
‖ loc(2,⊥, {tsk(2, add, la, 〈List r = Cons(e,l);return r〉)}) ‖ loc(3,⊥, {}) ;select
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S8 ≡ loc(0, 0, . . .)) ‖ loc(1, 1, {tsk(1, extend, le, 〈await f?;. . . 〉)})
‖ loc(2, 2, {tsk(2, add, la, 〈List r = Cons(e,l);return r〉)}) ‖ loc(3,⊥, {}) ; S9 ;return

S10 ≡ loc(0, 0, . . .) ‖ loc(1, 1, {tsk(1, extend, le[f 7→ 〈2, true,⊥〉], 〈await f?;. . . 〉)})
‖ loc(2,⊥, {tsk(2, add, la, ε([5, 1, 2]))}) ‖ loc(3,⊥, {}) ;await-t+get-r

S12 ≡ loc(0, 0, . . .) ‖ loc(2,⊥, {tsk(2, add, la, ε([5, 1, 2]))}) ‖ loc(3,⊥, {}) ‖ loc(1, 1,
{tsk(1, extend, le[f 7→〈2, true, [5, 1, 2]〉, l7→[5, 1, 2]], 〈z!process(l);. . . 〉)}) ;async

S13 ≡ loc(0, 0, . . .) ‖ loc(2,⊥, . . .) ‖ loc(3,⊥, {tsk(3,⊥, lp, body(process))})
loc(1, 1, {tsk(1, extend, le, 〈s = s - 1;. . . 〉)})

From state S0 to S3 we create the three locations x(1), y(2) and z(3) applying
rule newloc. In S3 a new task extend is spawned using rule async, that is
placed in the queue of location 1. Since location 1 is idle but the queue contains
the non-finished task 2 in S4, it takes the lock (select) and executes the first
iteration of the loop. In S6 and S7 a new task add is spawned to location 2 and
it takes the lock. Note that in S7 the local mapping is extended to store that
the future variable f is linked to task 2, which is not finished yet (⊥). Task 2
finishes immediately by assigning variable r and returning: it stores the final
value [5,1,2] and notifies task 1 (return). Since task 2 is finished in S10 the
await and get instructions can proceed (rules await-t and get-r resp.), yielding
to S12. Finally, task 2 spawns a new task process in location 3.

3 The Notion of Transmission Data Size

The transmission data size of a program execution is the total amount of data
that is moved between locations. There are two situations that generate data
movement between locations: a) when a task is invoked (in this case it sends a
message to the destination location containing all the arguments); and b) when
the returning value of a task invocation is retrieved (it sends a message contain-
ing that value). Therefore, only these two transitions of states will contribute
to the transmission data size of a program execution. In order to define this
notion we will consider that state transitions are decorated with transmission
data size information: S1  d

(lid1 ,lid2 ,m) S2, meaning a transmission of d units of
data from object lid1 to lid2 through m. Transitions that do not generate data
transmission will be decorated as S1  0

ε S2. Since we are considering an abstract
representation of data by means of functional types, we will focus on units of
data transmitted instead of bits, which depends on the actual implementation
and is highly platform-dependent. Concretely, we assume that the cost of trans-
mitting a basic value or a data type constructor is one unit of data. This size
measure is known as term size. However, the static analysis we propose later
would work also with any other mapping from data types to corresponding sizes
(given by means of a function α such as the one below).

Definition 1 (term size). The term size of value v—α(v)—is defined as:

α(v) =

{
1 +

∑n
i=1 α(vi) if v = Co(v1 . . . vn),

1 otherwise.
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Example 4 (size measures). Considering the term size measure, the size of the
list l = Cons(1, Cons(2, Cons(3,Nil))) is α(l) = 7 (4 data constructors and 3
integers) and the size of the tree t = Branch(2, Leaf(1), Leaf(3)) is α(t) = 6 (3
constructors plus 3 integers).

Definition 2 (decorated step). A step S1  S2 using rule R from Fig. 2 is
decorated as follows:

– If R = async then the step is decorated as S1  d
(lid,lid1 ,m) S2, where d =

I +
∑
z∈z α(l(z)), and m is the method invoked in the call. The constant

I is the size of establishing the communication, and we add the size of all
the arguments passed to the destination location. Note that a task invocation
inside the same location (lid = lid1) will not generate any transmission, so
in these cases the decoration is S1  0

ε S2.
– If R = get-r then the decorated step is S1  d

(lid2 ,lid1 ,m) S2, where d =

I + α(v), v corresponds to the returned value, and m is the method that
returned v. As before, if lid = lid1 then there is no transmission and the
decoration is S1  0

ε S2.
– If R ∈ {newloc, return, await-t, await-f, get-l, select}, then the step

does not move any data, so it is decorated with an empty label: S1  0
ε S2.

Observe that rules await-t, await-f and get-l use local variables only, and
therefore do not perform any remote communication. Rule return notifies the
termination of a method to the caller location, although its cost is included in
the size I for establishing the communication included in rule async.

Definition 3 (transmission data size of a trace). Given a decorated trace
T ≡ S0  d1

o1 S1  d2
o2 . . . dn

on Sn, the transmission data size of T—trans(T )—is
defined as:

trans(T ) =
n∑

i=1

di

Example 5 (transmission data size). The decorated trace from Ex. 3 is:

Td ≡ S0  0
ε S1  0

ε S2  0
ε S3  I+6

(0,1,extend) S4  0
ε S5  0

ε S6  I+6
(1,2,add) S7  0

ε S8

 0
ε S9  0

ε S10  0
ε S11  I+7

(2,1,add) S12  I+7
(1,3,process) S13

From S3 to S4 it sends a message (I) from location 0 to 1 containing the argu-
ments of the call: l=Cons(1,Cons(2,Nil)) and s=7, where α(l) = 5 and α(7) = 1.
Similarly, from S6 to S7 it sends a message from location 1 to 2 with the ar-
guments l and 5 for task add. In State S9 it executes a return instruction, that
notifies the termination to the caller, but its size is already considered in the
call (S6). The returning value from the call to add is actually received from the
caller at S12, by means of a message from location 2 to 1 with the returning value
r = Cons(5,Cons(1,Cons(2,Nil))), α(r) = 7. Finally, the invocation of task process
in state S12 sends a message from location 1 to 3 containing the argument l =
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Cons(5,Cons(1,Cons(2,Nil))), of size 7. Considering this decorated trace, the total
transmission data size is:

trans(Td) = (I + 6) + (I + 6) + (I + 7) + (I + 7) = 4∗I + 26

In other words, the transmission data size is 4∗I units of data for creating 4
messages, and 26 units of data for the transmission of values.

The transmission data size of a trace takes into account all the invocation
and returning messages, independently of the location involved. In our setting
we have several locations that can be executing in different machines or CPUs,
so it is interesting to limit transmission data size to some locations. We define
a restriction operator over traces to consider only data-moving steps between
certain locations.

Definition 4 (trace restriction). Given a decorated trace T , two location
identifiers, l1 and l2, a method m, the trace restriction T |

l1
m−→l2

is defined as:

T |
l1

m−→l2
= {Si−1  di

(l1,l2,m) Si | Si−1  di
(l1,l2,m) Si ∈ T }

4 Automatic Inference of Transmission Data Sizes

The analysis has three main parts which are introduced in the following sections:
Sec. 4.1 is encharged of inferring the locations in the distributed system and using
them to define the cost centers on which the cost analysis is based; Sec. 4.2
infers upper bounds on the number of tasks spawned along any execution of
the program; Sec. 4.3 over-approximates the sizes of the data transmitted when
spawning asynchronous calls and when retrieving their results.

4.1 Inference of Distributed Locations

Since locations can be dynamically created, we need an analysis that abstracts
them into a finite abstract representation, and that tells us which (abstract)
location a reference variable is pointing-to. Points-to analysis [14,13,15] solves
this problem. It infers the set of memory locations that a reference variable
can point-to. Different abstractions can be used and our method is parametric
on the chosen abstraction. Any points-to analysis that provides the following
information with more or less accurate precision can be used (our implementation
uses [13]): (1) O, the set of abstract locations; (2) a function pt(pp, v) that, for
a given program point pp and variable v, returns the set of abstract locations in
O to which v may point.

Example 6 (distributed locations). Consider the main method shown in Fig. 1
which creates three locations x, y and z at L2, L3 and L4, and which are ab-
stracted, respectively, as ox, oy and oz. By using the points-to analysis we obtain
the following set of objects created along the execution of main, O = {ox, oy, oz}.
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Besides, the points-to analysis can infer information for the local variables at
the level of program point, that is, pt(L11, this) = {ox}, pt(L13, y) = {oy},
pt(L16, z) = {oz}, pt(L20, this) = {oy}, pt(L24, this) = {oz}, pt(L26, y) = {oy}
or pt(L8, this) = {oy}.
The distributed locations that the points-to analysis infers are used to define
the cost centers [3] that the resource analysis will use. The notion of cost center
is used to attribute the cost of each instruction to the location that executes it.
In the above example, we have three locations which lead to three cost centers,
c(ox), c(oy) and c(oz).

4.2 Inference of number of tasks spawned

Our analysis builds upon well-established work on cost analysis [9,16,3]. Such
analyses are based on a generic notion of resource which can be instantiated to
measure different metrics such as number of executed instructions, amount of
memory created, number of calls to methods, etc. In particular, the cost model
is used to determine the type of resource we are measuring. Traditionally, a cost
model is a function M : Instr → N which, for each instruction in the program,
returns a natural number which represents its cost. As examples of cost models
we could have: for counting the number of instructions executed by a program,
the cost model counts one unit for any instruction, i.e.,Mi(ins) = 1; for counting
the number of calls, we can use Mc(ins) = 1 if ins ≡ x!m( ); and 0 otherwise.
When the analysis uses cost centers, the cost model additionally defines to which
cost center the cost must be attributed. For instance, when counting number of
instructions, we have thatM(i) =

∑
o∈pt(pp,this) c(o)∗1, where pp is the program

point of instruction i, i.e., the instruction is accumulated in all locations that it
can be executed (this is given by the locations to which the this reference can
point).

In what follows, we use the cost analyzer as a black box in the following
way. Given a method m(x̄) and a cost model, the cost analyzer gives us an upper
bound for the total cost (for the resource specified in the cost model) of executing
m of the form Um(x̄) =

∑n
i=1 cci∗Ci, where cci is a cost center and Ci is a cost

expression that bounds the cost of the computation carried out by the cost center
cci. If one is interested in studying the computation performed by one particular
cost center ccj , we simply replace all cci with i 6= j by 0 and ccj by 1. In order to
obtain the cost expression Ci, the cost analyzer needs to over-approximate the
number of iterations that loops perform, and infer the maximum sizes of data.
For the sake of this paper, we do not need to go into the technical details of
this process. To infer an upper bound on the number of tasks spawned by the
program, we simply have to define a number of tasks cost model and use the cost
analyzer as a black box.

Definition 5 (number of tasks cost model). Given an instruction ins at
program point pp, we define the number of tasks cost model, Mt(ins) as a func-
tion which returns c(o1, o2,m) if ins ≡ f=y!m( ) ∧ o1 ∈ pt(pp, this) ∧ o2 ∈
pt(pp, y) ∧ o1 6= o2, and 0 otherwise.
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The main feature of the above cost model is that we use an extended form of cost
centers which are triples of the form c(o1, o2,m), where o1 is the object that is
executing, o2 is the object responsible for executing the call, and m is the name
of the invoked method. These cost centers are symbolic expressions that will be
part of the upper bound computed by the analyzer. Let us see an example.

Example 7 (number of tasks). For the code in Fig. 1, cost analysis infers that the
number of iterations of the loop in extend (at L12) is bounded by the expression
nat(s), where nat(e) returns e if e > 0 and 0 otherwise. Since the size of l is
increased within the loop at L12, the maximum number of iterations for the
loop at L25 is produced in the last call to process. Recall that l represents the
term size of the list l (see Def. 1), and it counts 2 units for each element in the list.
Therefore, each iteration of the loop at L25 increments the term size of the list in
2 units and, consequently, the last call to process is done with a list of size l+2∗s.
The loop in process (L25) traverses the list received as argument consuming
2 size units per iteration. Therefore, the expression (l + 2 ∗ s)/2 = l/2 + s
bounds the number of iterations of such loop. As process is called nat(s) times,
nat(s) ∗ nat(l/2 + s) bounds the number of times that the body of the loop at
L25 is executed. Then, by applying the number of tasks cost model we obtain
the following expression that bounds the number of tasks spawned:

U t
extend(l, s) = c(ox, oy, add) ∗ nat(s)+

c(ox, oz, process) ∗ nat(s)+
c(oz, oy, foo) ∗ (nat(s) ∗ nat(l/2+s))

From the upper bounds on the tasks spawned, we can obtain a range of useful
information: (1) If we are interested in the number of communications for the
whole program, we just replace all expressions c(o1, o2,m) by 1. (2) Replacing
all cost centers of the form c(o, , )/c( , o, ) by 1 for the object o and the re-
maining ones by 0, we obtain an upper-bound on the number of tasks spawned
from/in o. We use, respectively, Um|o→ and Um|→o to refer to the UB on the
outgoing/incoming tasks. (3) Replacing c(o1, o2, ) by 1 for selected objects and
the remaining ones by 0, we can see the tasks spawned by o1 in o2, denoted
by Um|o1→o2 . (4) If we are interested in a particular method p, we can replace
c( , , p) by 1 and the rest by 0, we use Um| p−→ to denote it.

Example 8 (number of tasks restriction). Given the upper bound of Ex. 7, the
number of tasks spawned from ox to oy is captured by replacing c(ox, oy, ) (the
method is not relevant) by 1 and the rest by 0. Then, we obtain the expression
U textend|ox→oy = nat(s), which shows that we have one task for each iteration of
the loop at L13. We can also obtain an upper bound on the number of tasks
from oz to oy, U textend|oz→oy = nat(s)∗nat(l/2+s). The number of tasks spawned
using method foo are captured by U textend| process−−−−→ = nat(s).

4.3 Inference of amount of transmitted data

Our goal now is to infer, not only the number of tasks spawned, but also the sizes
of the arguments in the task invocation and of the returned values. Formally, this
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is done by extending the previous cost model to include data sizes as well. We
rely on two auxiliary functions. Given a variable x at a certain program point,
function α(x) returns the term size of this variable at this point, as defined in
Sec. 3. Besides, after spawning a task, we are interested in knowing whether the
result of executing the task is retrieved, and in such case we accumulate the size
of the return value. This information is computed by a may-happen-in-parallel
analysis [5] which allows us to know to which task a future variable is associated.
Thus, we can assume the existence of a function hasGet(pp) which returns if the
result of the task spawned at program point pp is retrieved by a get instruction.
Now, we define a new cost model that counts the sizes of the data transferred
in each communication by relying on the two functions above.

Definition 6 (data sizes cost model). Given a program point pp we define
the cost model Md(ins) as a function which returns sc(ins) if pp : ins ≡ r =
y!m(x) ∧ o1 6= o2 ∧ o1 ∈ pt(pp, this) ∧ o2 ∈ pt(pp, y), and 0, otherwise; where

sc(ins)=





c(o1, o2,m)∗(I +
∑

xi∈x
nat(α(xi)))+c(o2, o1,m)∗(I+nat(α(r))) if hasGet(pp)

c(o1, o2,m)∗(I +
∑

xi∈x
nat(α(xi))) otherwise

Observe that the above cost model extends the one in Def. 5 as it extends the
number of tasks cost model with the sizes of the data transmitted. Intuitively,
as any call always transfers its input arguments, their size is always included
(second case). However, the size of the returned information is only included
when there exists a get instruction that retrieves this information (first case).
In each case, we include the size for sending the messages I. Note that the cost
centers reflect the direction of the transmission, c(o1, o2,m) corresponds to a
transmission from o1 to o2 through a call to m, whereas c(o2, o1,m) corresponds
to the information returned by o2 in response to a call to m spawned by o1. If
needed, call and return cost centers can be distinguished by marking the method
name, e.g., m for calls and mr for returns. As already mentioned, nat denotes
the positive value of an expression. We wrap the size of each argument using
nat because this way the analyzer treats them as an expression whose cost we
want to maximize (the technical details of the maximization operation can be
found in [4]). Therefore, the upper bound inferred by the analyzer using this cost
model already provides the overall information (i.e., number of tasks spawned
and maximum size of the data transmitted).

Example 9 (data sizes cost model). Let us see the application of the cost model
to the calls at L16, L13 and L26. At L16 we have the instruction z!process(l).
As the program does not retrieve any information from process(l), the function
hasGet(L16) returns false, and thus we only include the calling data. Then,
using the points-to information in Ex. 6, the application of Md at L16 returns:
Md(z!process(l)) = c(ox, oz, process) ∗ I + nat(α(l)). As l is a data structure and
it is modified within the loop, α(l), returns the term size of l. Observe that
the expression captures, not only the objects and the method involved in the
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call within the cost center, but also the amount of data transferred in the call,
nat(α(l)). The application of Md to the call at L13, f = y!add(l,5), returns the
expression:

Md(f=y!add(l0,5)) = c(ox, oy, add) ∗ (I + nat(α(l0)) + nat(α(5)))+
c(oy, ox, add) ∗ (I + nat(α(f)))

In this case, at L15 we have a get for the call at L13, so hasGet(L13) = true.
Note that we use l0 to refer to the value of l at the beginning of the loop and l
to refer to the value of the list after calling add. The application of α(5) returns
1, as it is a basic type (counting as one constructor). The call at L27 returns the
expression c(oy, oz, foo) ∗ (I + nat(α(h))).

As we have explained above, the size of a data structure might depend on
the input arguments that in turn can be modified along the program execution.
Consequently, if we are in a loop, for the same program point, the amount of data
transferred in one call can be different for each iteration of the loop. Soundness
of the cost analysis ensures that it provides the worst possible size in such case.
Technically, it is done by maximizing [4] the expressions inside nat within their
calling context.

Example 10 (data sizes upper bound). Once the cost model is applied to all
instructions in the program, we obtain a set of recursive equations which define
the transmission data sizes within the locations in the program. After solving
such equations using [4], we obtain the following expression which defines the
transmission data sizes of any execution starting from extend, denoted by Udextend:

Ud
extend(l, s) = c(ox, oy, add) ∗ nat(s) ∗ (I + nat(l + s ∗ 2− 2) + 1)+ 1©

c(oy, ox, add) ∗ nat(s) ∗ (I + nat(l + s ∗ 2))+ 2©
c(ox, oz, process) ∗ nat(s) ∗ (I + nat(l + s ∗ 2))+ 3©
c(oz, oy, foo) ∗ (nat(s) ∗ nat(l/2+s)) ∗ (I + 1) 4©

The expression at 1© includes the transmission from ox to oy. The worst case
size of the list at this point is nat(l+s∗2−2), this is because initially the list has
size nat(l) and at each iteration of the loop, the size is increased in method add
by two elements: Cons and an integer value. As the loop performs s iterations,
in the last invocation to add it has length l + (s − 1) ∗ 2. This size is assumed
for all loop iterations (worst case size), hence we infer that the maximum data
size transmitted from ox to oy is nat(s) ∗ (I + nat(l+ s ∗ 2− 2) + 1), the 1 is due
to the second argument of the call (an integer). At 2©, ox receives from oy the
same list, but including the last element, that is nat(l + s ∗ 2). The same list is
obtained at 3©. In 4©, the cost is constant in all iterations (1 integer).

As already mentioned in Sec. 4.2, the fact that cost centers are symbolic expres-
sions allows us to extract different pieces of information regarding the amount of
data transferred between the different abstract locations involved in the commu-
nications. With Ud we can infer, not only an upper-bound on the total amount
of data transferred along the program execution, but also the size of the data
transferred between two objects, or the incoming/outgoing data sent/received
by a particular object.
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Nodes Methods Pairs

Benchmark loc #c T %n
M %n

m %n
a %m

M %m
m %m

a %p
M %p

m %p
a

BBuffer 200 17 829 25.7 0.6 16.3 43.9 0.1 6.2 7.3 0.0 0.7

MailServer 119 13 693 30.0 4.4 15.4 27.3 0.5 10.0 8.7 0.0 0.6

Chat 302 10 171 40.5 7.5 20.0 12.7 0.1 3.0 9.6 0.0 1.1

DistHT 146 9 1204 48.0 3.0 18.7 40.7 0.3 10.0 8.0 0.0 0.9

BookShop 366 10 3327 58.7 3.9 23.9 23.6 0.1 8.3 29.5 0.0 1.5

PeerToPeer 263 19 62575 27.7 0.1 15.6 20.6 0.1 5.8 5.9 0.0 0.5

Table 1. Experimental results (times in ms)

Example 11 (data sizes restriction). From Udextend(l, s), using the cost centers as
we have explained in Ex. 8, we can extract different types of information about
the data transferred. For instance, we can bound the size of the outgoing data
from location x:

Ud
extend(l, s)|ox→ = nat(s) ∗ (I + nat(l + s ∗ 2− 2) + 1) + nat(s) ∗ (I + nat(l + s ∗ 2))

Or the incoming data sizes for the location y:

Ud
extend(l, s)|→oy = nat(s) ∗ (I + nat(l + s ∗ 2− 2) + 1) + (nat(s) ∗ nat(l/2+s)) ∗ (I + 1)

Theorem 1 (soundness). Let P be a program and l1, l2 location identifiers.
Let O be the object names computed by a points-to analysis of P . Let o1, o2 be
the abstractions of l1, l2 in O. Then, given a trace T from P with arguments x
we have that

trans(T |
l1

m−→l2
) ≤ UdP (x)|

o1
m−→o2

.

5 Experimental Results

We have implemented our analysis in SACO [2] and applied it to some typical
examples of distributed systems: BBuffer, a bounded-buffer for communicating
several producers and consumers; MailServer, a client-server distributed system;
Chat, a chat application; DistHT, a distributed hash table; BookShop, a web shop
client-server application; and PeerToPeer, a peer-to-peer network with a set of
interconnected peers. Experiments have been performed on an Intel Core i7 at
3.4GHz with 8GB of RAM, running Ubuntu 12.04.

We have applied our analysis and evaluated the upper bound expressions for
different combinations of concrete input values so as to obtain some quantita-
tive information about the analysis. Table 1 summarizes the results obtained.
Columns Benchmark and loc show, resp. the name and the number of program
lines of the benchmark. Column #c displays the number of locations identified
by the analysis. Column T shows the time to perform the inference of the trans-
mission data sizes. We have studied the transmission data sizes among each pair
of locations identified by the points-to analysis. We have studied data transmis-
sion from three points of view: (1) from a location with the rest of the program,
(2) from a method, and (3) among pairs of locations. In case (1), we try to
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identify potential bottlenecks in the communication, i.e., those locations that
produce/consume most of the data in the benchmark. Also, we want to observe
locations that do not have much communication. In the former, such locations
should have a fast communication channel, while in the latter we can still have
a good response time with slower bandwidth conditions. Columns %n

M , %n
m, %n

a

show, respectively, the percentage of the location that accumulates more traffic
(incoming + outgoing) w.r.t. the total traffic in the system, for the location with
less traffic, and the average for the traffic of all locations. Similarly, columns
%p
M , %p

m, %p
a show, for case (3), which is the percentage of the total traffic

transmitted by the pair of locations that have more traffic, by the pair with
less traffic and the average between the traffic of all pairs, respectively. Finally,
regarding case (2), columns under Methods show similar information but taking
into account the task that performs the communication, i.e., the percentage of
the traffic transmitted by the task that transmits more (resp., less) amount of
data, %m

M (resp., %m
m), and the average of the transmissions performed by each

task (%m
a ).

We can observe in the table that our analysis is performed in a reason-
able time. One important issue is that we only have to perform the analysis
once, and the information can be extracted later by evaluating the upper bound
with different parameters and focusing in the communications of interest. In the
columns for the locations, we can see that all benchmarks are relatively well
distributed. The average of the data transmitted per location is under 25% for
all benchmarks. BookShop is the benchmark which could have a communica-
tion bottleneck as it accumulates in a single location 58.7% of the total traffic.
Regarding methods, it is interesting to see that for all benchmarks no method
accumulates more than 45% of the total traffic. Moreover, the table shows that
in all benchmarks there is at least one method that requires less than 0.5%, in
most cases this method (or methods) is an object constructor. Regarding pairs
of locations, in all benchmarks there is at least one pair of locations that do not
communicate, %p

m = 0 for all benchmarks. This is an expected result, as it is
quite often to have pairs of locations which do not communicate in a distributed
program. Our experiments thus confirm that transmission among pairs of loca-
tions is relatively well distributed, as in most benchmarks, except for BookShop,
the pair with highest traffic requires less than 10% of the total traffic.

6 Conclusions

We have presented a static analysis to soundly approximate the amount of data
transmitted among the locations of a distributed system. This is an important
contribution to be able to infer the response times of distributed components. In
particular, if one knows the bandwidth conditions among each pair of locations,
we can infer the time required to transmit the data and to retrieve the result.
This time should be added to the time required to carry out the computation
at each location, which is an orthogonal issue. Conversely, we can use our anal-
ysis to establish the bandwidth conditions required to ensure a certain response
time. Technically, our analysis is formalized by defining a new cost model which
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captures only the data transmission aspect of the application. This cost model
can be plugged into a generic cost analyzer for distributed systems, that directly
returns an upper bound on the transmission data sizes, without requiring any
modification to the other components of the cost analyzer.
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11. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised
Papers), volume 6957 of LNCS, pages 142–164. Springer, 2012.

12. Jonathan K. Lee and Jens Palsberg. Featherweight x10: a core calculus for async-
finish parallelism. SIGPLAN Not., 45(5):25–36, 2010. 1693459.

13. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14:1–41, 2005.

14. M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Anal-
ysis. In Proc. of POPL’97, pages 1–14, Paris, France, January 1997. ACM.

15. M. Sridharan and R. Bod́ık. Refinement-based context-sensitive points-to analysis
for Java. In PLDI, pages 387–400, 2006.

16. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In SAS, volume 6887 of LNCS, pages
280–297. Springer, 2011.

16



Appendix F

Article Non-Cumulative Resource Analysis,
[11]

149



Non-Cumulative Resource Analysis
Author’s version∗∗
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Abstract. Existing cost analysis frameworks have been defined for cu-
mulative resources which keep on increasing along the computation.
Traditional cumulative resources are execution time, number of exe-
cuted steps, amount of memory allocated, and energy consumption. Non-
cumulative resources are acquired and (possibly) released along the exe-
cution. Examples of non-cumulative cost are memory usage in the pres-
ence of garbage collection, number of connections established that are
later closed, or resources requested to a virtual host which are released
after using them. We present, to the best of our knowledge, the first
generic static analysis framework to infer an upper bound on the peak
cost for non-cumulative types of resources. Our analysis comprises sev-
eral components: (1) a pre-analysis to infer when resources are being
used simultaneously, (2) a program-point resource analysis which infers
an upper bound on the cost at the points of interest (namely the points
where resources are acquired) and (3) the elimination from the upper
bounds obtained in (2) of those resources accumulated that are not used
simultaneously. We report on a prototype implementation of our analysis
that can be used on a simple imperative language.

1 Introduction

Cost analysis (a.k.a. resource analysis) aims at statically (without executing the
program) inferring upper bounds on the resource consumption of the program
as functions of the input data sizes. Traditional resources (e.g., time, steps,
memory allocation, number of calls) are cumulative, i.e., they always increase
along the execution. Ideally, a cost analysis framework is generic on the type
of resource that the user wants to measure so that the resource of interest is a
parameter of the analysis. Several generic cost analysis frameworks have been
defined for cumulative resources using different formalisms. In particular, the
classical framework based on recurrence relations has been used to define a cost

2 Appeared at Proc. 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’15), London, UK, April 11-18, 2015.
The final publication is available at http://link.springer.com/chapter/10.1007/
978-3-662-46681-0_6



analysis for a Java-like language [2]; approaches based on program invariants are
defined in [10,13]; type systems have been presented in [14].

Non-cumulative resources are first acquired and then released. Typical exam-
ples are memory usage in the presence of garbage collection, maximum number
of connections established simultaneously, the size of the stack of activation
records, etc. The problem is nowadays also very relevant in virtualized systems,
as in cloud computing, in which resources are acquired when needed and released
after being used. It is recognized that non-cumulative resources introduce new
challenges in resource analysis [5,11]. This is because the resource consumption
can increase and decrease along the computation, and it is not enough to rea-
son on the final state of the execution, but rather the upper bound on the cost
can happen at any intermediate step. We use the term peak cost to denote such
maximum cost of the program execution for non-cumulative resources.

While the problem of inferring the peak cost has been studied in the con-
text of memory usage for specific models of garbage collection [5,8,11], a generic
framework to estimate the non-cumulative cost does not exist yet. The con-
tribution of this paper is a generic resource analysis framework for a today’s
imperative language enriched with instructions to acquire and release resources.
Thus, our framework can be instantiated to measure any type of non-cumulative
resource that is acquired and (optionally) freed. The analysis is defined in two
steps which are our main contributions: (1) We first infer the sets of resources
which can be in use simultaneously (i.e., they have been both acquired and none
of them released at some point of the execution). This process is formalized as a
static analysis that (over-)approximates the sets of acquire instructions that can
be in use simultaneously, allowing us to capture the simultaneous use of resources
in the execution. (2) We then perform a program-point resource analysis which
infers an upper bound on the cost at the points of interest, namely the points at
which the resources are acquired. From such upper bounds, we can obtain the
peak cost by just eliminating the cost due to acquire instructions that do not
happen simultaneously with the others (according to the analysis information
gathered at step 1). Additionally, we describe an extension of the framework
which can improve the accuracy of the upper bounds by accounting only once
the cost introduced at program points where resources are allocated and re-
leased repeatedly. Finally, we illustrate how the framework can be extended to
get upper bounds for programs that allocate different kinds of resources.

We demonstrate the accuracy and feasibility of our approach by implement-
ing a prototype analyzer for a simple imperative language. Preliminary experi-
ments show that the non-cumulative resource analysis achieves gains up to 92.9%
(on average 53.9%) in comparison to a cumulative resource analysis. The analysis
can be used online from a web interface at http://costa.ls.fi.upm.es/noncu.

2 The Notion of Peak Cost

We start by defining the notion of peak cost that we aim at over-approximating
by means of static analysis in the concrete setting.
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(1)
r = eval(e, tv), tr′ = tr[y 7→ 〈r, app〉], H ′ = H ∪ {|〈id, y, app, r〉|}

〈id,m, pp ≡ y = acquire (e); s, tv, tr〉 ·A;H ; 〈id,m, s, tv, tr′〉 ·A;H ′

(2)
〈r, app′〉 = tr(y), tr′ = tr[y 7→ ⊥], H ′ = H \ {|〈id, y, app′ , r〉|}

〈id,m, pp ≡ release y; s, tv, tr〉 ·A;H ; 〈id,m, s, tv, tr′〉 ·A;H ′

Fig. 1. Language Semantics for resource allocation and release

2.1 The Language
The framework is developed on a language which is deliberately simple to define
the analysis in a clear way. Complex features of modern languages like mutable
variables, class, inheritance, exceptions, etc. must be considered by the under-
lying resource analysis used as a black box by our approach (and there are a
number of approaches to handle them [2,5,10]). Thus they are handled implic-
itly in our setting. For the sake of simplicity, the set Types is defined as {int}.
We have resource variables used to refer to the resources allocated by an ac-
quire instruction. A program consists of a set of methods whose definition takes
the form t m (t1v1, . . . tnvn){s} where t ∈ Types is the type returned by the
method, v1, . . . , vn are the input parameters of types t1, . . . , tn ∈ Types and s is
a sequence of instructions that adheres to the following grammar:

e ::= x |n | e+ e | e ∗ e | e− e b ::= e > e | e == e | b ∧ b | b ∨ b | !b s ::= i | i; s
i ::= x=e |x=m(z) | return x | if b then s1 else s2 |while b {s} | y = acquire (e) | release y

We assume that resource variables, named y, are local to methods and they can-
not be passed as input parameters nor returned by methods (otherwise tracking
such references is more complex, while it is not relevant to the main ideas in the
paper). We assume that the program includes a main(x) method, where x are the
input parameters, from which the execution starts. The instruction y = acquire
(e) allocates the amount of resources stated by the expression e. The instruction
release y releases the resources allocated at the last acquire associated to y. If a
resource variable is reused without releasing its resources, the reference to such
resources is lost and they cannot be released any longer.

Example 1. Fig. 2 shows to the left a method m (abbreviation of main) that
allocates resources at lines 2 (L2 for short) and L4. The resources allocated
at L2 are released at L5. In addition, method m invokes method q at L3 and
L6. For simplicity, we assume that m is called using positive values for n and s
and the expressions k1, k2, k3 are constant integer values. As it is not relevant,
we do not include the return instruction at the end of the methods. Method q
executes a while loop where k2 units are allocated at L10 and such resources
are not released. Thus, these resources escape from the scope of the loop and
the method, i.e., they leak upon exit of the loop and return of the method.
Besides, the program allocates w units at L11. As we have two calls to q, the
input parameter w will take the value s or s+4. The resources allocated at L11
are released at L12 and do not escape from the loop execution. In addition, at
L15 we have an additional, non-released, acquire of k3 units.

A program state is of the form AS;H, where AS is a stack of activation records
and H is a resource handler. Each activation record is of the form 〈id,m, s, tv, tr〉,
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1 m (int n, int s){
2 1© x=acquire(k1);
3 q(n,s);
4 2© y=acquire(s);
5 release x;
6 q(n+2, s+4);
7 }
8 q (int i , int w){
9 while(i > 0) {

10 3© z=acquire(k2);
11 4© r=acquire(w);
12 release r ;
13 i = i − 1;
14 }
15 5© t=acquire(k3);
16 }

x:k1

L2

S1

z:k2

x:k1

L10

S2

r:s

z:k2

x:k1

L11

S3

z:k2

x:k1

L12

S4

z:k2

z:k2

x:k1

L10

S5

r:s

z:k2

z:k2

x:k1

L11

S6

z:k2

z:k2

x:k1

L12

S7

. . .

r:s

z:k2

:n
z:k2

x:k1

L11

S8

t:k3

z:k2

:n
z:k2

x:k1

L15

S9

t:k3

zn:k2 n times

x:k1

L16

S10

t:k3

zn:k2

x:k1

L4

S11

y:s

t:k3

zn:k2

x:k1x:k1

L4

S12

y:s

t:k3

zn:k2

L5

S13

z:k2

y:s

t:k3

zn:k2

L10

S14

r:s+4

z:k2

y:s

t:k3

zn:k2

L11

S15

. . .

r:s+4

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L11

S16

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L14

S17

t:k3

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L13

S18

n + 2

Fig. 2. Running Example

where id is a unique identifier, m is the name of the method, s is the sequence
of instructions to be executed, tv is a variable mapping and tr is a resource
variable mapping. When resources are allocated in m, tr maps the correspond-
ing resource variable to a tuple of the form 〈r, app〉, where r is the amount of
resources allocated and app is the program point of the instruction where the re-
sources have been allocated. The resource handler H is a multiset which stores
the resources allocated so far, containing elements of the form 〈id, y, app, r〉,
where id is the activation record identifier, y is the variable name, app is the
program point of the acquire and r is the amount of resources allocated. Fig. 1
shows, in a rewriting-based style, the rules that are relevant for the resource con-
sumption. The semantics of the remaining instructions is standard. Intuitively,
rule (1) evaluates the expression e and adds a new element to H. As H stores
the resources allocated so far, it might contain identical tuples. Moreover, the
resource variable mapping tr is updated with variable y linked to 〈r, app〉. Rule
(2) takes the information stored in tr for y, i.e. 〈r, app〉, and removes from H
one instance of the corresponding element. In addition, variable y is updated to
point to ⊥, which means that y does not have any resources associated. When
the execution performs a release on a variable that maps to ⊥ (because no ac-
quire has been performed or because it has already been released), the resources
state is not modified. Execution starts from a main method and an initial state
S0 = 〈0,main, body(main), tv(x), ∅〉; ∅, where tv(x) is the variable mapping ini-
tialized with the values of the input parameters. Complete executions are of the
form S0 ; S1 ; . . .; Sn where Sn corresponds to the last state. Infinite traces
correspond to non-terminating executions.

Example 2. To the right of Fig. 2 we depict the evolution of the resources accu-
mulated in H. We use Si, to refer to the execution state i and, below each state,
we include the program line which is executed at such state. For each state we
show the elements stored in H but, for simplicity, we do not include in the figure
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the id nor app. At S1, H accumulates k1 units due to the acquire at L2. S2, S3

and S4 depict H along the first iteration of the loop, where k2 units are acquired
and not released from z. Moreover, within the loop, s units are acquired at L11
and released from r at L12. At S5, which corresponds to the second iteration of
the loop, we reuse the resource variable z and we have two identical elements
in H. As the loop iterates n times, at the last iteration (S9) we have (n−1)∗k1
units that have lost their reference. Additionally, k3 extra units pointed by t
are allocated at S9. At S10, which corresponds to the end of the execution of
the method, n∗k2+k3 units escape from the first execution of q and they are no
longer available to be released. We represent such escaped resources with light
grey color. For brevity, we use zn:k2 to represent n instances of the element z:k2.
At S12 we acquire s resources and we release the k1 units pointed by x at S13.
At S14 we start a new execution of method q.

2.2 Definition of Peak Cost

Let us formally define the notion of peak cost in the concrete setting. The peak
cost corresponds to the maximum amount of resources that are used simultane-
ously. We use Hi to refer to the multiset H at Si, and we use Ri to denote the
amount of resources contained in Hi, i.e., Ri =

∑{r | 〈 , , , r〉 ∈ Hi}. By ’ ’, we
mean any possible value. In the next definition, we use Ri to define the notion
of peak cost for an execution trace.

Definition 1 (concrete peak cost). The peak cost of an execution trace
t≡S0;Sn of a program P on input values x is defined as P(x)=max({Ri | Si∈t}).

Example 3. According to the evolution of H shown to the right of Fig. 2, the
maximum value of Ri could be reached at four different states, S8, S12, S16

and S18. We ignore those states where H is subsumed by other states as they
cannot be maximal. For instance, states S1 to S7 or S9 are subsumed by S8;
or S12 contains S10, S11 and S13. Thus, P(n, s)=max(R8, R12, R16, R18), where
R8 = k1+n∗k2+s, R12 = k1+n∗k2+k3+s, R16 = n∗k2+k3+s+(n+2)∗k2+(s+4), and
R18=n∗k2+k3+s+(n+2)∗k2+k3. Thus, the peak cost of the example depends not
only on the input parameters n, s, but also on the values of k1, k2, k3.

3 Simultaneous Resource Analysis

The simultaneous resource analysis (SRA) is used to infer the sets of acquire
instructions that can be simultaneously in use. The abstract state of the SRA
consists of two sets C and H. The set C contains elements of the form y:app

indicating that the resource variable y is linked to the acquire instruction at
program point pp. Since it is not always possible to relate the acquire instruc-
tion to its corresponding resource variable, we use ?:app to represent that some
resources have been acquired at app but the analysis has lost the variable linked
to app. The set H is a set of sets, such that each set contains those app that are
simultaneously alive in an abstract state of the analysis. Let us introduce some
notation. We use m̈ to refer to the program point after the return instruction
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(1) τ(pp : y=acquire( ), 〈C,H〉) = 〈C[y:app′/ ? :app′ ] ∪ {y:app},H ] {A(C) ∪ {app}}〉
(2) τ(pp : release y, 〈C,H〉) = 〈C \ {y:app},H〉
(3) τ(pp : m( ), 〈C,H〉) = 〈C ∪ Cm̈[x:app′/ ? :app′ ],H ] {A(C) ∪M | M ∈ Hm̈}〉
(4) τ(pp : b, 〈C,H〉) = 〈C,H〉

Fig. 3. Transfer Function of the Simultaneous Resource Analysis

of method m. We use Cpp (resp. Hpp) to denote the value of C (resp. H) after
processing the instruction at program point pp. A(C) is the set {app | :app ∈ C}
that contains all app in C. The operation H1 ] H2, where H1 and H2 are sets
of sets, first applies H = H1 ∪ H2, and then removes those sets in H that are
contained in another set in H.

The analysis of each method m abstractly executes its instructions, by ap-
plying the transfer function τ in Fig. 3, such that the abstract state at each
program point describes the status of all acquire instructions executed so far.
The set C is used to infer the local effect of the acquire and release instructions
within a method. The set H is used to accumulate the information of the ac-
quire instructions that might have been in use simultaneously. Let us explain
the different cases of the transfer function τ . The execution of acquire, case (1),
links the acquire to the resource variable y by adding {y:app} to C. As a resource
variable can only point to one acquire instruction, in (1) we update any existing
y:app′ by removing the previous link to y and replacing it by ?. In addition, rule
(1) performs the operation {A(C) ∪ {app}} ] H to capture in H the acquired
resources simultaneously in use at this point. In (2) we remove the last acquire
instruction pointed to by the resource variable y. When a method is invoked (rule
(3)), we add to C those resources that might escape from m (Cm̈) but replacing
their resource variables in m by ? (as resource variables are local). Additionally,
at (3), all sets in Hm̈ are joined with A(C) to capture the resources that might
have been simultaneously alive in the execution of m. The resulting sets of such
operation are added to H. We define the t operation between two abstract states
〈C1,H1〉 t 〈C2,H2〉 as 〈C1 ∪ C2,H1 ]H2〉. The analysis of while loops requires it-
erating until a fixpoint is reached. As the number of acquire instructions and the
number of resource variables in the program are finite, widening is not needed.
Example 4. Let us apply the SRA to the running example. To avoid cluttering
the expressions, instead of the line numbers, we use ai to refer to the acquire at
the program point marked with i© in Fig. 2. For instance, a1 refers to the acquire
marked with 1© at L2. We use Cl (resp. Hl) to denote the set C (resp. H) at line
l. Let us see the results of the SRA for some selected program points.

C2 = {x:a1} H2 = {{a1}}
C3 = {x:a1, ?:a3, ?:a5} H3 = {{a1, a3, a4}, {a1, a3, a5}}
C4 = {x:a1, ?:a3, ?:a5, y:a2} H4 = {{a1, a3, a4}, {a1, a3, a5, a2}}
C5 = {?:a3, ?:a5, y:a2} H5 = {{a1, a3, a4}, {a1, a3, a5, a2}}
C6 = Cm̈ = {?:a3, ?:a5, y:a2} H6=Hm̈={{a1, a3, a4}, {a1, a3, a5, a2}, {a2, a3, a4, a5} *©}
C10 = {?:a3, z:a3} H10 = {{a3, a4}}
C11 = {?:a3, z:a3, r:a4} H11 = {{a3, a4}}
C12 = C14 = {?:a3, z:a3} H12 = H14 = {{a3, a4}}
C15 = Cq̈ = {?:a3, z:a3, t:a5} H15 = Hq̈ = {{a3, a4}, {a3, a5}}
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We can see that C11 is the only program point where a4 is alive as it is released
at L12. On the contrary, as a3 is not released within the loop, we include ?:a3 in
C10−C14, and it escapes from the loop and from q. AsH gathers all app that might
be alive at any program point, when the fixpoint is reached, H10 −H14 contain
the set {a3, a4}. The computation of Hq̈ is done by means of the operation
A(Cq̈)]H14, that is, Hq̈={{a3, a5}}] {{a3, a4}}={{a3, a5}, {a3, a4}}, capturing
that a3, a4, a5 are not simultaneously in use at any state of q. Moreover, we can
see in Cq̈ that the resources allocated at a3 and a5 escape from the execution
of q. Let us continue with the computation of C3 and H3. Firstly, ?:a3 and
?:a5 are added to C3. Secondly, H3 is computed by adding C2={a1} to all sets
in Hq̈. To compute C4, the analysis adds y:a2 to C3. The computation of H4

adds {a1, a3, a5, a2} to H3, and replaces {a1, a3, a5} because it is a subset of
{a1, a3, a5, a2}. Finally, to obtain H6, the set A(C6)={a3, a5, a2} is added to
the sets in Hq̈, resulting in the set T = {{a2, a3, a4, a5}, {a2, a3, a5}}. Then H6

is obtained by computing H5 ] T . Note that {a2, a3, a5} is not in H6 as it is
contained in a set of H5.

Theorem 1 (soundness). Given an execution trace t ≡ S0; . . .;Sn of a
program P on input values x, for any state Si ∈ t, we have that:
(a) ∃ H ∈ H ¨main. A(Hi) ⊆ H where A(Hi) = {app | 〈 , , app, 〉 ∈ Hi};
(b) if ∃〈 , , app, 〉 ∈ Hn then :app ∈ C ¨main

4 Non-Cumulative Resource Analysis

In this section we present our approach to use the information obtained in Sec. 3
to infer the peak cost of the execution. The first part, Sec. 4.1, consists in per-
forming a program-point resource analysis in which we are able to infer the
resources acquired at the points of interest. In Sec. 4.2, we discard from the
upper bound obtained before those resources which are not used simultaneously.

4.1 Program-Point Resource Analysis

Our goal is to distinguish within the upper bounds (UB) obtained by resource
analysis the amount of resources acquired at a given program point. To do so, we
rely on the notion of cost center (CC) [1]. Originally, CCs were introduced for
the analysis of distributed systems, such that, each CC is a symbolic expression
of the form c(o) where o is a location identifier used to separate the cost of
each distributed location. Essentially, the resource analysis assigns the cost of
an instruction inst to the distributed location o by multiplying the cost due
to the execution of the instruction, denoted cost(inst) in a generic way, by the
cost center of the location c(o), i.e., cost(inst)∗c(o). This way, the UBs that the
analysis obtains are of the form

∑
c(oi)∗Ci, where each oi is a location identifier

and Ci is the total cost accumulated at this location.
Importantly, the notion of CC can be used in a more general way to define the

granularity of a cost analyzer, i.e., the kind of separation that we want to observe
in the UBs. In our concrete application, the expressions of the cost centers oi
will refer to the program points of interest. Thus, we are defining a resource
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analyzer that provides the resource consumption at program point level, i.e., a
program point resource analysis. In particular, we define a CC for each acquire
instruction in the program. Thus, CCs are of the form c(app) for each instruction
pp : acquire(e). In essence, the analyzer every time that accounts for the cost of
executing an acquire instruction multiplies such cost by its corresponding cost
center. The amount of resources allocated at the instruction pp : acquire(e) is
accumulated as an expression of the form c(app)∗nat(e), where nat(e) is a function
that returns e if e>0 and 0 otherwise. We wrap the expression e with nat because
this way the analyzer treats it as a non-negative expression whose cost we want to
maximize, and computes the worst case of such expression (technical details can
be found in [2]). The cost analyzer computes an upper bound for the total cost
of executing P as an expression of the form UP (x̄)=

∑n
i=1 c(ai)∗Ci, where Ci is

a cost expression that bounds the resources allocated by the acquire instructions
of the program. We omit the subscript in U when it is clear from the context. If
one is interested in the amount of resources allocated by one particular acquire
instruction app, denoted U(x̄)|app , we simply replace all c(app′) with pp 6= pp′ by

0 and c(app) by 1. We extend it to sets as U(x̄)|S =
∑

app∈S

U(x̄)|app
.

Example 5. The program point UB for the running example is:

U(n, s) =

e1︷ ︸︸ ︷
c(a1)∗k1 +

e2︷ ︸︸ ︷
c(a2)∗nat(s) +

e3︷ ︸︸ ︷
nat(n) ∗ (c(a3)∗k2 + c(a4)∗nat(s)) + c(a5)∗k3 +

nat(n+2) ∗ (c(a3)∗k2 + c(a4)∗nat(s+4)) + c(a5)∗k3︸ ︷︷ ︸
e4

We have a CC for each acquire instruction in the program multiplied by the
amount of resources allocated by the corresponding acquire. In the examples,
we do not wrap constants in nat because constant values do not need to be
maximized, e.g. in the subexpression e1 which corresponds to the cost of L2.
The subexpression e2 corresponds to L4 where s units are allocated. Expression
e3 corresponds to the first call to q, where the loop iterates nat(n) times and
consumes c(a3)∗k2 (L10) and c(a4)∗nat(s) (L11) resources for each iteration,
plus the final acquire at L15, which allocates c(a5)∗k3 resources. The cost of the
second call to q is captured by e4, where the number of iterations is bounded by
nat(n+2) and nat(s+4) resources are allocated. e4 also includes the cost allocated
at L15. Let us continue by using U(n, s) to compute the resources allocated at a
particular location, e.g. a4, denoted by U(n, s)|a4

. To do so, we replace c(a4) by
1 and the rest of c( ) by 0. Thus, U(n, s)|a4 = nat(n)∗nat(s)+nat(n+2)∗nat(s+4).
Similarly, given the set of program points {a3, a5}, we have U(n, s)|{a3,a5} =

U(n, s)|{a3} + U(n, s)|{a5} = nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3.

4.2 Inference of Peak Cost

We can now put all pieces together. The SRA described in Sec. 3 allows us
to infer the acquire instructions which could be allocated simultaneously. Such
information is gathered in the set H of the SRA. In fact, the set H at the last
program point of the program, namely ¨main, collects all possible states of the
resource allocation during program execution. Using this set we define the notion
of peak cost as the maximum of the UBs computed for each possible set in H ¨main.
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Definition 2 (peak cost). The peak cost of a program P (x), denoted P̂(x),

is defined as P̂(x) = max({U(x)|H | H ∈ H ¨main }).

Intuitively, for each H in H ¨main, we compute its restricted UB, U(x)|H, by re-
moving from U(x) the cost due to acquire instructions that are not in H, i.e.,
those acquire that were not active simultaneously with the elements in h.

Example 6. By usingHm̈ = {{a1, a3, a4}, {a1, a3, a5, a2}, {a2, a3, a4, a5}}, the peak
cost of m is the maximum of the expressions:

U(n, s)|{a1,a3,a4} = k1 + nat(n)∗(k2 + nat(s)) + nat(n+2)∗(k2 + nat(s+4))
U(n, s)|{a1,a3,a5,a2} = k1 + nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3
U(n, s)|{a2,a3,a4,a5} = nat(s) + nat(n)∗(k2+nat(s)) + k3 + nat(n+2)∗(k2+nat(s+4))+k3

Each UB expression over-approximates the value of R for the different states seen
in Ex. 3 that could determine the concrete peak cost, namely U(n, s)|{a1,a3,a4}
over-approximates the resource consumption at state S8, U(n, s)|{a1,a3,a5,a2} cor-
responds to S12, and U(n, s)|{a2,a3,a4,a5} bounds S16 and S18.

Theorem 2 (soundness). P(x) ≤ P̂(x).

5 Extensions of the Basic Framework

In this section we discuss several extensions to our basic framework. First,
Sec. 5.1 discusses how context-sensitive analysis can improve the accuracy of
the results. Sec. 5.2 describes an improvement for handling transient acquire in-
structions, i.e., those resources which are allocated and released repeatedly but
only one of all allocations is in use at a time. Finally, Sec. 5.3 introduces the
extension of the framework to handle several kinds of resources.

5.1 Context-Sensitivity

Establishing the granularity of the analysis at the level of program points may
lead to a loss of precision. This is because the computation of the SRA and the
resource analysis are not able to distinguish if an acquire instruction is executed
multiple times from different contexts. As a consequence, all resource usage
associated to a given app is accumulated in a single CC.

Example 7. The set Hm̈ computed in Ex. 4 includes a4 in two different sets.
The first set corresponds to the first call to q (L3), where s units are allocated,
whereas the second set corresponds to the second call (L6), and where s+4 units
are allocated. Observe that the SRA of m does not distinguish such situation as
both executions of L11 are represented as a single program point a4. The same
occurs in the computation of the UBs. In Ex. 6 we have computed U(n, s)|a4 =

nat(n)∗nat(s)+nat(n+2)∗nat(s+4), which accounts for the resources acquired at
L11. Note that U(n, s)|a4 does not separate the cost of the different calls to q.
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Intuitively, this loss of precision can be detected by checking if the call graph of
the program contains convergence nodes, i.e., methods that have more than one
incoming edge because they are invoked from different contexts. In such case,
we can use standard techniques for context-sensitive analysis [15], e.g., method
replication. In particular, the program can be rewritten by creating a different
copy of the method for each incoming edge. Method replication guarantees that
the calling contexts are not merged unless they correspond to a method call
within a loop (or transitively from a loop). In the latter case, we indeed need to
merge them and obtain the worst-case cost of all iterations, as the underlying
resource analysis [2] already does.

Example 8. As q is called at L3 and L6, the application of the context-sensitive
replication builds up a program with two methods: q 1 (from the call at L3) and
q 2 (from L6). In addition, the modified version of m, denoted m’, calls q 1 at L3
and q 2 at L6. We use a31 (resp. a32) to refer to the acquire at L10 for the replica
q 1 (resp. q 2). The SRA for m’ returns: Hm̈′ = {{a1, a31, a41}, {a1, a31, a51, a2},
{a31, a51, a2, a32, a42}, {a31, a51, a2, a32, a52}} and Cm̈′ = {a2, a31, a32, a51, a52}. Observe
that the set marked with *© in Ex. 4 is now split in two different sets, which pre-
cisely capture the states S16 and S18 of Fig. 2. Moreover, we distinguish a41, a42

and a51, a52 that allow us to separate the different calls to q, which is crucial for
accounting the peak cost more accurately. The UB for m’ is:

Um′(n, s)=c(a1)∗k1+c(a2)∗nat(s)+ nat(n)∗(c(a31)∗k2+c(a41)∗nat(s)) + c(a51)∗k3+

nat(n+2)∗(c(a32)∗k2+c(a42)∗nat(s+4))+c(a52)∗k3
In contrast to Um(n, s)|a4 , shown in Ex. 5, now we can compute Um′(n, s)|a41 =

nat(n)∗nat(s) and Um′(n, s)|a42 = nat(n+2)∗nat(s+4). P̂m′(n, s) is the maximum of:

Um′(n, s)|{a1,a31,a41} = k1 + nat(n)∗(k2 + nat(s)) [S8]
Um′(n, s)|{a1,a31,a51,a2} = k1 + nat(s) + nat(n)∗k2 + k3 [S12]

Um′(n, s)|{a31,a51,a2,a32,a42} = nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗(k2+nat(s+4)) [S16]
Um′(n, s)|{a31,a51,a2,a32,a52} = nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3 [S18]

To the right of the UB expressions above we show their corresponding state of
Fig. 2. In contrast to Ex. 6, now we have a one-to-one correspondence, and thus
P̂m′(n, s) is more accurate than P̂m(n, s) in Ex. 6.

5.2 Handling Transient Resource Allocations

A complementary optimization with that in Sec. 5.1 can be performed when
resources are acquired and released multiple times along the execution of the
program within loops (or recursion). We use the notion of transient acquire to
refer to an acquire(e) instruction at app that is executed and released repeatedly
but in such a way that the resources allocated by different executions of app

never coexist. As the UBs of Sec. 4 are computed by multiplying the number
of times that each acquire instruction is executed by the worst case cost of each
execution, the fact that the allocations of a transient acquire do not coexist is
not accurately captured by the UB.
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Example 9. Let us focus on the acquire a4 of the running example. Although a4

is executed multiple times within the loop, each allocation does not escape from
the corresponding iteration because it is released at L12. To the right of Fig. 2
we can see that states S3, S6, S8, S15 and S16 include the cost allocated by a4

only once (elements in dark grey). Thus, a4 is a transient acquire. In spite of this,
we compute Um′(n, s)|a41

=nat(n)∗nat(s), which accounts for the cost allocated at
a41 as many times as a41 might be executed. Certainly, Um′(n, s)|a41

is a sound
but imprecise approximation for the cost allocated by a41.

We can improve the accuracy of the UBs for a transient acquire app by including
its worst case cost only once. We start by identifying when app is transient in
the concrete setting. Intuitively, if app is transient the resources allocated at app

do not leak. Thus, in the last state of the execution, Sn, no resource allocated
at app remains in Hn (see the semantics at Fig. 1).
Definition 3 (transient acquire). Given a program P , an acquire instruction
app is transient if for every execution trace of P , S1; . . .;Sn, 〈 , , app, 〉 6∈ Hn.

Example 10. In Fig. 2 we can see that a1 and a4 (shown in dark grey) are
transient because their resources are always released at L5 and L12, resp.

In order to count the cost of a transient acquire only once, we use a particular
instantiation of the cost analysis described in Sec. 4.1 to determine an UB on
the number of times that such acquire might be executed. We use Uc to denote
such UB which is computed by replacing the expression Ci (see Sec. 4.1) by 1
in the computation of U . Assuming that U and Uc have been approximated by
the same cost analyzer, we gain precision by obtaining the cost associated to a
transient acquire instruction using its singleton cost.

Definition 4 (singleton cost). Given app we define its singleton cost as
Ũ(x)|app = U(x)|app/Uc(x)|app if :app 6∈ C ¨main and Ũ(x)|app = U(x)|app , otherwise.
Intuitively, when app is transient, its singleton cost is obtained dividing the accu-
mulated UB by the number of times that app is executed. If it is not transient, we
must keep the accumulated UB. According to Def. 3 and Th. 1(b), if app 6∈ C ¨main,

then app is transient, and so we can perform the division. We use P̃ to refer to

the peak cost obtained by using Ũ instead of U . In general, given a set of app, we

use Ũm′ |S to refer to the UBs computed using the singleton cost of each app ∈ S.

Example 11. Let us continue with the context-sensitive replica of the running
example, m’. We start by computing Uc

m′(n, s)|a41
= nat(n) and Um′(n, s)|a41

=

nat(n) ∗ nat(s). As we can see in Ex. 8, a41, a42 6∈ Cm̈′ , then Ũm′(n, s)|a41 = nat(s)

which is the worst case of executing a41 only once. For a42 we have Ũm′(n, s)|a42
=

nat(s+4). Regarding the remaining acquire instructions, either they cannot be

divided, or can be divided by 1. Thus, we have that P̃m′(n, s) is the maximum
of the following expressions:

Ũm′(n, s)|{a1,a31,a41} = k1 + nat(n)∗k2 + nat(s) [S8]

Ũm′(n, s)|{a1,a31,a51,a2} = k1 + nat(s) + nat(n)∗k2 + k3 [S12]

Ũm′(n, s)|{a31,a51,a2,a32,a42} = nat(s) + nat(n)∗k2 + k3 + nat(s+4) [S16]

Ũm′(n, s)|{a31,a51,a2,a32,a52} = nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3 [S18]
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Theorem 3 (soundness). Given a program P (x) and its context-sensitive replica

P ′(x), we have that PP (x) ≤ P̃P ′(x).

5.3 Handling Different Resources Simultaneously

Our goal is now to allow allocation of different types of resources in the pro-
gram (e.g., we want to infer the heap space usage and the number of simulta-
neous connections to a database). To this purpose, we extend the instruction
acquire(e) (see Sec. 2.1) with an additional parameter which determines the
kind of resource to be allocated, i.e., acquire(res,e). Such extension does not re-
quire any modification to the semantics. We define the function type(app) which
returns the type of resource allocated at app. Now, we extend Def. 1 to con-
sider the resource of interest. We use Ri(res) to refer to the following value
Ri(res) =

∑{r | 〈 , , app, r〉 ∈ Hi ∧ type(app) = res}.
Definition 5 (concrete peak cost). Given a resource res, the peak cost of
an execution trace t of program P (x, res) is P(x, res) = max({Ri(res)|Si ∈ t}).
Interestingly, such extension does not require any modification neither to the
SRA of Sec. 3 nor to the program point resource analysis of Sec. 4. This is
due to the fact that the analysis works at the level of program points and
one program point can only allocate one particular type of resource. We de-
fine R(res) as the set of program points that allocate resources of type res, i.e.,
R(res)={app | type(app)=res}. Thus, we extend the notion of peak cost of Def. 2

with the type of resource, i.e., P̂(x, res)=max({U(x)|H∩R(res) | H ∈ H ¨main}). Ob-
serve that the only difference with Def. 2 is in the intersection H∩R(res) which
restricts the considered acquire when computing the UBs. One relevant aspect is
that by computing the UB only once, we are able to obtain the peak cost for dif-
ferent types of resources by restricting the UB for each resource of interest. The
extension of Th. 2 and Th. 3 to include a particular resource is straightforward.

Example 12. Let us modify the acquire instructions of the running example
in Fig. 2 to add the resource to be allocated. Now we have that L2 is x =
acquire(hd,k1) and L11 is r = acquire(hd,w), where hd is a type of resource. We
assume that L4, L10, L15 allocate a different type of resource, e.g. a resource of
type mem. Then, using the context-sensitive replica of the program, we have that
R(hd) = {a1, a41, a42}, andR(mem) = {a2, a31, a32, a51, a52}. Now, using the UB

from Ex. 11, we have that P̂(n, s, hd)m’ is the maximum of the expressions:

Ũm′(n, s, hd)|{a1,a31,a41}∩R(hd) = k1+nat(s) [S8]

Ũm′(n, s, hd)|{a1,a31,a51,a2}∩R(hd) = k1 [S12]

Ũm′(n, s, hd)|{a31,a51,a2,a32,a42}∩R(hd) = nat(s+4) [S16]

Ũm′(n, s, hd)|{a31,a51,a2,a32,a52}∩R(hd) = 0 [S18]

6 Experimental evaluation

We have implemented a prototype peak cost analyzer for simple sequential pro-
grams that follow the syntax of Sec. 2.1, but that besides use a functional lan-
guage to define data types (the use of functions does not require any conceptual
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Benchmark #l #e Tn Tc %n %c %s %cn %sn %sc

BBuffer 105 3125 928.0 1072.0 4.9 35.7 43.9 32.1 40.6 15.7
MailServer 115 3375 958.0 1233.0 16.0 42.4 58.2 30.2 47.1 27.6
Chat 302 2500 584.0 580.0 69.9 69.9 92.9 0.0 74.8 74.8
DistHT 353 2500 685.0 2267.0 40.2 82.8 84.8 71.2 74.6 10.7
BookShop 353 4096 2219.0 2409.0 6.5 6.5 32.4 0.0 27.9 27.9
PeerToPeer 240 4096 5616.0 11860.0 0.4 8.8 11.4 8.5 11.1 3.0

23.0 41.0 53.9 23.7 46.0 26.6

Table 1. Experimental Evaluation

modification to our basic analysis). This language corresponds to the sequential
sublanguage of ABS [12], a language which besides has concurrency features that
are ignored by our analyzer. To perform the experiments, our analyzer has been
applied to some programs written in ABS: BBuffer, a bounded-buffer for com-
municating producers and consumers; MailServer, a client-server system; Chat, a
chat application; DistHT, an implementation of a hash table; BookShop, a book
shop application; and PeerToPeer, a peer-to-peer network.

The non-cumulative resource that we measure is the peak of the size of the
stack of activation records. For each method executed, an activation record is
created, and later removed when the method terminates. The size might depend
on the arguments used in the call, as due to the use of functional data structures,
when a method is invoked, the data structures (used as parameters) are passed
and stored. This aspect is interesting because we can measure the peak size, not
only due to activation records whose size is constant, but also measure the size
of the data structures used in the invocations, and take them into account.

In order to evaluate our analysis we have obtained different UBs on the size
of the stack of activation records and compared their precision. In particular,
we have compared the UBs obtained by the resource analysis of [2] (a cumula-
tive cost analyzer), our basic non-cumulative approach (Sec. 4.2), the context-
sensitive extension of Sec. 5.1 and the UBs obtained by using the singleton cost
of each acquire as described in Sec. 5.2. In order to obtain concrete values for the
gains, we have evaluated the UB expressions for different combinations of the
input arguments and computed the average. For a concrete input arguments x,
we compute the gain of P̂(x) w.r.t. U(x) using the formula (1−P̂(x)/U(x))∗100.
In order to compute the sizes of the activation records of the methods, we have
modified each method of the benchmarks by including in the beginning of the
method one acquire and one release at the end of each method to free it. Let
us illustrate it with an example, if we have a method Int m (Data d,Int i) {Int
j=i+1}, we modify it to {x=acquire(1+1+d+1+1); Int j=i+1; release x;}. The
addends of the expression 1+1+d+1+1 correspond to: the pointer to the acti-
vation record, the size of the returned value (1 unit), the size of the information
received through d (d units), the size of i (1 unit), and the size of j (1 unit). The
instruction release(x) releases all resources. Experiments have been performed
on an Intel Core i5 (1.8GHz, 4GB RAM), running OSX 10.8.

Table 1 summarizes the results obtained. Columns #l and #e show, resp.,
the number of lines of code and the number of input argument combinations
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evaluated. Columns Tn, Tc show, resp., the time to perform the basic non-
cumulative analysis and the context-sensitive non-cumulative analysis. Columns
%n, %c, %s show, resp., the gain of the non-cumulative resource analysis, its
context-sensitive extension and the singleton cost extension w.r.t. the cumula-
tive analysis. Column %cn shows the gain of P̂ applied to the context sensitive
replica of the program w.r.t. its application to the original program. Columns
%sn and %sc show, resp., the gain of P̃ w.r.t. P̂, and w.r.t. P̂ applied to the
context sensitive replica of the program. The last row shows the average of the
results. As regards analysis times, we argue that the time taken by the ana-
lyzer is reasonable and the context-sensitive approach although more expensive
is feasible. As regards precision, we can observe that the gains obtained by the
non-cumulative analyses are significant w.r.t. the cumulative resource analysis.
As it can be expected, P̃ shows the best results with gains from 11% to 93%.
The non-cumulative analysis and its context-sensitive version also present sig-
nificant gains, on average 23% and 41% respectively. The improvement gained
by applying non-cumulative analysis to the context-sensitive extension is also
relevant, a gain of 23.7%. As resources are released in all methods, we achieve
a significant improvement with P̃, from 46% to 26.6% on average. All in all, we
argue that the experimental evaluation shows the accuracy of non-cumulative
resource analysis and the precision gained with its extensions.

7 Conclusions and Related Work

To the best of our knowledge, this is the first generic framework to infer the peak
of the resource consumption of sequential imperative programs. The crux of the
framework is an analysis to infer the resources that might be used simultaneously
along the execution. This analysis is formalized as a data-flow analysis over a
finite domain of sets of resources. The inference is followed by a program-point
resource analysis which defines the resource consumption at the level of the
program points at which resources are acquired.

Previous work on non-cumulative cost analysis of sequential imperative pro-
grams has been focused on the particular resource of memory consumption with
garbage collection, while our approach is generic on the kind of non-cumulative
cost that one wants to measure. Our framework can be used to redefine previous
analyses of heap space usage [5] into the standard cost analysis setting. Depend-
ing on the particular garbage collection strategy, the release instruction will be
placed at one point or another. For instance, if one uses scope-based garbage
collection, all release instructions are placed just before the method return in-
struction and our framework can be applied. If one wants to use a liveness-based
garbage collection, then the liveness analysis determines where the release in-
structions should go, and our analysis is then applied. The important point to
note is that these analyses [5] provided a solution based on the generation of
non-standard cost relations specific to the problem of memory consumption. It
thus cannot be generalized to other kind of non-cumulative resources. Several
analyses around the RAML tool [11] also assume the existence of acquire and
release instructions and the application of our framework to this setting is an
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interesting topic for further research. The differences between amortized cost
analysis and a standard cost analysis are discussed in [6,9]. Also, we want to
study the recasting of [7] into our generic framework.

Recent work defines an analysis to infer the peak cost of distributed systems
[3]. There are two fundamental differences with our work: (1) [3] is developed
for cumulative resources, and the extension to non-cumulative resources is not
studied there and (2) [3] considers a concurrent distributed language, while our
focus is on sequential programs. There is nevertheless a similarity with our work
in the elimination from the total cost of elements that do not happen simulta-
neously. However, in the case of [3] this information is gathered by a complex
may-happen-in-parallel analysis [4] which infers the interleavings that may occur
during the execution followed by a post-process in which a graph is built and
its cliques are used to detect when several tasks can be executing concurrently.
In our case, we are able to detect when resources are used simultaneously by
means of a simpler analysis defined as a standard data-flow analysis on a finite
domain. Besides, the upper bounds in [3] are not obtained by a program-point
resource analysis but rather by a task-level resource analysis since in their case
they want to obtain the resource consumption at the granularity of tasks rather
than of program points. As in our case, the use of context sensitive analysis [15]
can improve the accuracy of the results.
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Abstract. We present a novel static analysis to infer the peak cost of
distributed systems. The different locations of a distributed system com-
municate and coordinate their actions by posting tasks among them.
Thus, the amount of work that each location has to perform can greatly
vary along the execution depending on: (1) the amount of tasks posted
to its queue, (2) their respective costs, and (3) the fact that they may be
posted in parallel and thus be pending to execute simultaneously. The
peak cost of a distributed location refers to the maximum cost that it
needs to carry out along its execution. Inferring the peak cost is chal-
lenging because it increases and decreases along the execution, unlike
the standard notion of total cost which is cumulative. Our key contribu-
tion is the novel notion of quantified queue configuration which captures
the worst-case cost of the tasks that may be simultaneously pending to
execute at each location along the execution. A prototype implementa-
tion demonstrates the accuracy and feasibility of the proposed peak cost
analysis.

1 Introduction

Distributed systems are increasingly used in industrial processes and products,
such as manufacturing plants, aircraft and vehicles. For example, many control
systems are decentralized using a distributed architecture with different process-
ing locations interconnected through buses or networks. The software in these
systems typically consists of concurrent tasks which are statically allocated to
specific locations for processing, and which exchange messages with other tasks
at the same or at other locations to perform a collaborative work. A decen-
tralized approach is often superior to traditional centralized control systems in
performance, capability and robustness. Systems such as control systems are of-
ten critical: they have strict requirements with respect to timing, performance,
and stability. A failure to meet these requirements may have catastrophic con-
sequences. To verify that a given system is able to provide the required quality,
an essential aspect is to accurately predict worst-case costs. We develop our
analysis for a generic notion of cost that can be instantiated to the number of
executed instructions (considered as the best abstraction of time for software),
the amount of memory created, the number of tasks posted to each location, or
any other cost model that assigns a non-negative cost to each instruction.

Existing cost analyses for distributed systems infer the total resource con-
sumption [3] of each distributed location, e.g., the total number of instructions



that it needs to execute, the total amount of memory that it will need to allocate,
or the total number of tasks that will be added to its queue. This is unfortunately
a too pessimistic estimation of the amount of resources actually required in the
real execution. An important observation is that the peak cost will depend on
whether the tasks that the location has to execute are pending simultaneously.
We aim at inferring such peak of the resource consumption which captures the
maximum amount of resources that the location might require along any ex-
ecution. In addition to its application to verification as described above, this
information is crucial to dimensioning the distributed system: it will allow us to
determine the size of each location task queue; the required size of the location’s
memory; and the processor execution speed required to execute the peak of in-
structions and provide a certain response time. It is also of great relevance in
the context of software virtualization as used in cloud computing, as the peak
cost allows estimating how much processing/storage capacity one needs to buy
in the host machine, and thus can greatly reduce costs.

This paper presents, to the best of our knowledge, the first static analysis to
infer the peak of the resource consumption of distributed systems, which takes
into account the type and amount of tasks that the distributed locations can
have in their queues simultaneously along any execution, to infer precise bounds
on the peak cost. Our analysis works in three steps: (1)Total cost analysis. The
analysis builds upon well-established analyses for total cost [9,3,18]. We assume
that an underlying total cost analysis provides a cost for the tasks which mea-
sures their efficiency. (2) Queues configurations. The first contribution is the
inference of the abstract queue configuration for each distributed component,
which captures all possible configurations that its queue can take along the ex-
ecution. A particular queue configuration is given as the sets of tasks that the
location may have pending to execute at a moment of time. We rely on the in-
formation gathered by a may-happen-in-parallel analysis [7,1,11,5] to define the
abstract queue configurations. (3) Peak cost. Our key contribution is the notion
of quantified queue configuration, which over-approximates the peak cost of each
distributed location. For a given queue configuration, its quantified configuration
is computed by removing from the total cost inferred in (1) those tasks that do
not belong to its configuration, as inferred in (2). The peak for the location is
the maximum of the costs of all configurations that its queue can have.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer of peak cost within the SACO system [2], a
static analyzer for distributed concurrent programs. In preliminary experiments
on some typical applications for distributed programs, the peak cost achieves
gains up to 70% w.r.t. a total cost analysis. The tool can be used on-line from a
web interface available at http://costa.ls.fi.upm.es/web/saco.

2 The Distributed Model

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered queue
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(newLoc)
t = tsk(tid ,m, l, 〈x = newLoc; s〉, c), fresh(lid1) , l′ = l[x→ lid1]

loc(lid , tid , {t}∪Q);loc(lid , tid , {tsk(tid ,m, l′, s, c+cost(newLoc))}∪Q)‖loc(lid1,⊥, {})
(async)

l(x) = lid1, fresh(tid1), l1=buildLocals(z̄,m1), l′ = l[f → tid1]

loc(lid , tid , {tsk(tid ,m, l, 〈f=x!m1(z); s〉, c)} ∪ Q) ‖ loc(lid1, ,Q′) ;
loc(lid , tid , {tsk(tid ,m, l′, s, c+ cost(f=x!m1(z)))}∪Q) ‖

loc(lid1, , {tsk(tid1,m1, l1, body(m1), 0) ∪Q′})
(await-t)

t = tsk(tid ,m, l, 〈await f?; s〉, c), l(f) = tid1, tsk(tid1, , , s1, ) ∈ Locs, s1 = τ

loc(lid , tid , {t} ∪ Q) ; loc(lid , tid , {tsk(tid ,m, l, s, c+ cost(await f?))} ∪ Q)

(await-f)
t = tsk(tid ,m, l, 〈await f?; s〉, c), l(f) = tid1, tsk(tid1, , , s1, ) ∈ Locs, s1 6= τ

loc(lid , tid , {t} ∪ Q) ; loc(lid ,⊥, {tsk(tid ,m, l, 〈await f?; s〉, c)} ∪ Q)

(select)
select(Q)=tid ,

t=tsk(tid , , , s, c)∈Q, s 6=τ
loc(lid ,⊥,Q);loc(lid , tid ,Q)

(return)
t = tsk(tid ,m, l, 〈return; 〉, c)

loc(lid , tid , {t} ∪ Q) ;
loc(lid ,⊥, {tsk(tid ,m, l, τ, c+cost(return))}∪Q)

Fig. 1. (Summarized) Cost Semantics for Distributed Execution

of pending tasks. Initially all processors are idle. When an idle processor’s task
queue is non-empty, some task is selected for execution. Besides accessing its own
processor’s global storage, each task can post tasks to the queues of any proces-
sor, including its own, and synchronize with the completion of tasks. When a
task completes or when it is awaiting for another task to terminate, its processor
becomes idle again, chooses the next pending task, and so on.

2.1 Syntax

The number of distributed locations needs not be known a priori (e.g., locations
may be virtual). Syntactically, a location will therefore be similar to an object
and can be dynamically created using the instruction newLoc. The program is
composed by a set of methods defined as M ::=T m(T̄ x̄){s} where s::= s; s |
x=e | if e then s else s | while e do s | return | b=newLoc| f=b!m(ē)| await f?. The
notation T̄ is used as a shorthand for T1, . . . , Tn, and similarly for other names.
The special location identifier this denotes the current location. For the sake of
generality, the syntax of expressions e and types T is left open. The semantics
of future variables f and concurrency instructions is explained below.

2.2 Semantics

A program state has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid is the identifier of the active task which holds the location’s
lock or ⊥ if the lock is free, and Q is the set of tasks at the location. Only one
task, which holds the location’s lock, can be active (running) at this location. All
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other tasks are pending, waiting to be executed, or finished, if they terminated
and released the lock. Given a location, its set of ready tasks is composed by
the tasks that are pending and the one that it is active at the location. A task
is a term tsk(tid ,m, l, s, c) where tid is a unique task identifier, m is the name
of the method executing in the task, l is a mapping from local variables to their
values, s is the sequence of instructions to be executed or s = τ if the task has
terminated, and c is a positive number which corresponds to the cost of the
instructions executed in the task so far. The cost of executing an instruction i
is represented in a generic way as cost(i).

The execution of a program starts from a method m in an initial state S0

with a single (initial) location of the form S0=loc(0, 0, {tsk(0,m, l, body(m), 0)}).
Here, l maps parameters to their initial values and local references to null (stan-
dard initialization), and body(m) refers to the sequence of instructions in the
method m. The execution proceeds from the initial state S0 by selecting non-
deterministically one of the locations and applying the semantic rules depicted
in Fig. 1. The treatment of sequential instructions is standard and thus omit-
ted. The operational semantics ; is given in a rewriting-based style where at
each step a subset of the state is rewritten according to the rules as follows. In
NewLoc, an active task tid at location lid creates a location lid1 which is intro-
duced to the state with a free lock. Async spawns a new task (the initial state
is created by buildLocals) with a fresh task identifier tid1 which is added to the
queue of location lid1. The case lid=lid1 is analogous, the new task tid1 is sim-
ply added to Q of lid . The future variable f allows synchronizing the execution
of the current task with the termination of created task. The association of the
future variable to the task is stored in the local variables table l′. In Await-t,
the future variable we are awaiting for points to a finished task and await can be
completed. The finished task t1 is looked up at all locations in the current state
(denoted by Locs). Otherwise, Await-f yields the lock so that any other task of
the same location can take it. Rule Select returns a task that is not finished, and
it obtains the lock of the location. Return releases the lock and it will never be
taken again by that task. Consequently, that task is finished (marked by adding
τ). For brevity, we omit the return instructions in the examples.

3 Peak Cost of Distributed Systems

The aim of this paper is to infer an upper bound on the peak cost for all lo-
cations of a distributed system. The peak cost refers to the maximum amount
of resources that a given location might require along any execution. The over-
approximation consists in computing the sum of the costs of all tasks that can
be simultaneously ready in the location’s queue. Importantly, as the number of
ready tasks in the queue can increase and decrease along the execution, in order
to define the notion of peak cost, we need to observe all intermediate states along
the computation and take the maximum of their costs.

Example 1. Figure 2 shows to the left a method m that spawns several tasks at a
location referenced from variable x (the middle code can be ignored by now). To

4



1 m (C x, int n){
2 x! r() ;
3 while(n>0){
4 x! p(n);
5 f =x!q(n);
6 await f ?;
7 n = n−1;
8 }
9 x! s() ;

10 }

11 main (int i ){
12 a© C x=newLoc;
13 b© C y=newLoc;
14 z=this!m(x,i);
15 await z?;
16 this ! m(y,i−1);
17 }
18 r (){...}
19 p (int i ){...}
20 q (int i ){...}
21 s (){...}

1©

r1

x

2©

r1

p1

x

3©

r1

p1

q1

x

4©

r1

p1

x

5©

r1

p1

p2

q2

x

6©

r1

p1

p2

p3

q3

x

. . .

7©

r1

p1

... n

pn

qn

x

8©

r1

p1

... n

pn

x

9©

r1

p1

... n

pn

s1

x

Fig. 2. Running example

the right of the figure, we depict the tasks that are ready in the queue of location
x at different states of the execution of m. For instance, the state 1© is obtained
after invoking method r at line 2 (L2 for short). The first iteration of the while
loop spawns a task p (state 2©) and then invokes q (state 3©). The important
observation is that q is awaited at L6, and thus it is guaranteed to be finished at
state 4©. The same pattern is repeated in subsequent loop iterations (states 5© to
7©). The last iteration of the loop, captured in state 7©, accumulates all calls to
p, and the last call to q. Observe that at most one instance of method q appears
in the queue at any point during the execution of the program. Finally, state 8©
represents the exit of the loop (L8) and 9© when method s is invoked at L9. The
await at L6 ensures that methods q and s will not be queued simultaneously.

We start by formalizing the notion of peak cost in the concrete setting. Let us
provide some notation. Given a state S≡loc1‖ . . . ‖locn, we use loc ∈ S to refer
to a location in S . The set of ready tasks at a location lid at state S is defined
as ready tasks(S , lid) = {tid | loc(lid, ,Q) ∈ S , tsk(tid, , , s, )∈Q, s6=τ}. Note
that we exclude the tasks that are finished. Given a finite trace t ≡ S0→ . . .→SN ,
we use C(lid, tid) to refer to the accumulated cost c in the final state SN by the
task tsk(tid, , , , c)∈Q that executes at location loc(lid, ,Q)∈SN , and C(Si, lid)
to refer to the accumulated cost of all active tasks that are in the queue at state Si

for location lid: C(Si, lid) =
∑

tid∈ready tasks(Si,lid)
C(lid, tid). Now, the peak cost

of location lid is defined as the maximum of the addition of the costs of the tasks
that are simultaneously ready at the location at any state: peak cost(t, lid) =
max({C(Si, lid) | Si ∈ t}). Observe that the cost always refers to the cost of
each task in the final state SN . This way we are able to capture the cost that a
location will need to carry out at each state Si with i ≤ N in which we have a
set of ready tasks in its queue but they have (possibly) not been executed yet.

Since execution is non-deterministic in the selection of tasks, given a program
P (x), multiple (possibly infinite) traces may exist. We use executions(P (x)) to
denote the set of all possible traces for P (x).

Definition 1 (peak cost). The peak cost of a location with identifier lid in a
program P on input values x, denoted P(P (x), lid), is defined as:
P(P (x), lid) = max({peak cost(t, lid) | t ∈ executions(P (x))})
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Example 2. Let us reason on the peak cost for the execution of m. We use
....
m to

refer to the concrete cost of a task executing method m. We use subscripts
....
mj

to refer to the cost of the j-th task spawned executing method m. As the cost
often depends on the parameters, in general, we have different costs

....
m1,

....
m2,. . .

for the multiple executions of the same method. The queue of x in states 2© and
4© accumulates the cost

....
r1 +

....
p1 . At 6©, it accumulates

....
r1 +

....
p1 +

....
p2 +

....
p3 +

....
q3 .

The peak cost corresponds to the maximum among all states. Note that it is
unknown if the cost at 7© is larger than the cost at 3©- 5©- 6©-. . .. This is because
at each state we have a different instance of q running, and it can be that

....
q1

is larger than the whole cost of the next iterations. Only some states can be
discarded (for instance 1© and 2© are subsumed by 3©, and 8© by 9©).

The above example reveals several important aspects that make the inference of
the peak cost challenging: (1) We need to infer all possible queue configurations.
This is because the peak cost is non-cumulative, and any state can require the
maximum amount of resources and constitute the peak cost. This contrasts with
the total cost in which we only need to observe the final state. (2) We need
to track when tasks terminate their execution and eliminate them from the
configuration (the await instructions will reveal this information). (3) We need
to know how many instances of tasks we might have running and bound the cost
of each instance, as they might not all have the same cost.

4 Basic Concepts: Points-to, Cost, and MHP Analyses

Our peak cost analysis builds upon well-established work on points-to analysis
[14,13], total cost analysis [9,18,3] and may-happen-in-parallel (MHP) analysis
[11,5]. As regards the points-to and may-happen-in-parallel analyses, this section
only reviews the basic concepts which will be used later by our peak cost analysis.
As for the total cost analysis, we need to tune several components of the analysis
in order to produce the information that the peak cost analysis requires.

Points-to Analysis. Since locations can be dynamically created, we need an
analysis that abstracts them into a finite abstract representation, and that tells
us which (abstract) location a reference variable is pointing-to. Points-to analysis
[14,13,16] solves this problem. It infers the set of memory locations that a ref-
erence variable can point-to. Different abstractions can be used and our method
is parametric on the chosen abstraction. Any points-to analysis that provides
the following information with more or less accurate precision can be used (our
implementation uses [13]): (1) O, the set of abstract locations; (2) M(o), the
set of methods executed in tasks at the abstract location o ∈ O; (3) a function
pt(pp, v) which for a given program point pp and a variable v returns the set of
abstract locations in O to which v may point to.

Example 3. Consider the main method shown in Fig. 2, which creates two new
locations x at program point a© (abstracted as o1) and y at b© (abstracted as
o2) and passes them as parameters in the calls to m (at L14, L16). By using the
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points-to analysis we obtain the following relevant information, O={ε, o1, o2}
where ε is the location executing main, M(o1)={r, p, q, s}, M(o2)={r, p, q, s},
pt(L14, x)={o1} and pt(L16, y)={o2}. Observe that the abstract task executing
p at location o1 represents multiple instances of the tasks invoked at L4.

Cost Analysis. The notion of cost center (CC) is an artifact used to define
the granularity of a cost analyzer. In [3], the proposal is to define a CC for each
distributed location, i.e., CCs are of the form c(o) where o ∈ O. In essence,
the analyzer every time that accounts for the cost of executing an instruc-
tion b at program point pp, it also checks at which locations it is executing.
This information is provided by the points-to analysis as Opp=pt(pp, this). The
cost of the instruction is accumulated in the CCs of all elements in Opp as∑
c(o)∗cost(b),∀o ∈ Opp, where cost(b) expresses in an abstract way the cost

of executing the instruction. If we are counting steps, then cost(b) = 1. If we
measure memory, cost(b) refers to memory created by b. Then, given a method
m(x̄), the cost analyzer computes an upper bound for the total cost of executing

m of the form Ĉm(x̄)=
∑n

i=1 c(oi)∗Ci, where oi∈O and Ci is a cost expression
that bounds the cost of the computation carried out by location oi when execut-
ing m. We omit the subscript in Ĉ when it is clear from the context. Thus, CCs
allow computing costs at the granularity level of the distributed locations. If one
is interested in studying the computation performed by one particular location
oj , denoted Ĉm(x̄)|oj , we simply replace all c(oi) with i6=j by 0 and c(oj) by
1. The use of CCs is of general applicability and different approaches to cost
analysis (e.g., cost analysis based on recurrence equations [17], invariants [9] or
type systems [10]) can trivially adopt this idea so as to extend their frameworks
to a distributed setting. In principle, our method can work in combination with
any analysis for total cost (except for the accuracy improvement in Sec. 5.3).

Example 4. By using the points-to information obtained in Ex. 3, a cost ana-
lyzer (we use in particular [2]) would obtain the following upper bounds on the
cost distributed at the locations o1 and o2 (we ignore location ε in what fol-
lows as it is not relevant): Ĉmain(i)=c(o1)∗r̂1 + c(o1)∗i∗p̂1 + c(o1)∗i∗q̂1 + c(o1)∗ŝ1 +

c(o2)∗r̂2 + c(o2)∗(i−1)∗p̂2 + c(o2)∗(i−1)∗q̂2 + c(o2)∗ŝ2. There are two important ob-
servations: (1) the analyzer computes the worst-case cost p̂1 for all instances of
tasks spawned at L4 executing p at location o1 (note that it is multiplied by
the number of iterations of the loop “i”); (2) the upper bound at location o2 for
the tasks executing p is p̂2, and it is different from p̂1 as the invocation to m at
L16 has different initial parameters. By replacing c(o1) by 1 we obtain the cost

executed at the location identified by o1, that is, Ĉmain|o1=r̂1 + i∗p̂1 + i∗q̂1 + ŝ1.

Context-Sensitive Task-level Cost Centers. Our only modification to the
total cost analysis consists in using context-sensitive task-level granularity by
means of appropriate CCs. Let us first focus on the task-level aspect. We want
to distinguish the cost of the tasks executing at the different locations. We define
task-level cost centers, T , as the set {o:m ∈ O×M | o ∈ pt(pp, this)∧ pp ∈ m},
which contains all methods combined with all location names that can execute
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them. In the example, T ={ε:m, o1:r, o1:p, o1:q, o1:s, o2:r, o2:p, o2:q, o2:s}. Now,
the analyzer every time that accounts for the cost of executing an instruction
inst, it checks at which location it is executing (e.g., o) and to which method
it belongs (e.g., m), and it accumulates c(o:m)∗cost(b). Thus, it is straightfor-
ward to modify an existing cost analyzer to include task-level cost centers. The
context-sensitive aspect refers to the fact that the whole cost analysis can be
made context-sensitive by considering the calling context when analyzing the
tasks [15]. As usual, the context is the chain of call sites (i.e., the program point
in which the task is spawned and those of its ancestor calling methods). The
length of the chains is up to a maximum k which is a fixed parameter of the
analysis. For instance, for k=2, we distinguish 14:4:p the task executing p from
the first invocation to m at L14 and 16:4:p the one arising from L16. Their asso-
ciated CCs are then o1:14:4:p and o2:16:4:p. In the formalization, we assume that
the context (call site chain) is part of the method name m and thus we write
CCs simply as c(o:m). Then, given an entry method p(x̄), the cost analyzer will
compute a context-sensitive task-level upper bound for the cost of executing p of
the form Ĉp(x̄)=

∑n
i=1 c(oi:mi)∗Ci, where oi:mi ∈ T , and Ci is a cost expression

that bounds the cost of the computation carried out by location oi executing
method mi, where mi contains the calling context. The notation Ĉp(x̄)|o:m is used

to obtain the cost associated with c(o:m) within Ĉp(x̄), i.e., the one obtained by
setting to zero all c(o′:m′) with o′ 6=o or m′ 6=m and to one c(o:m).

Example 5. For the method main shown in Fig. 2, the cost expression obtained by
using task-level CCs and k=0 (i.e., making it context insensitive) is the following:
Ĉ(i)=c(o1:r)∗r̂1+c(o1:p)∗i∗p̂1+c(o1:q)∗i∗q̂1+c(o1:s)∗ŝ1+c(o2:r)∗r̂2+c(o2:p)∗(i−1)∗p̂2+

c(o2:q)∗(i−1)∗q̂2+c(o2:s)∗ŝ2. To obtain the cost carried out by o1 when executing
q, we replace c(o1:q) by 1 and the remaining CCs by 0, resulting in Ĉ(i)|o1:q=i∗q̂1.
For k>0, we simply add the call site sequences in the CCs, e.g., c(o1:14:4:p).

May-Happen-in-Parallel Analysis. We use a MHP analysis [11,5] as a black
box and assume the same context and object-sensitivity as in the cost analysis.
We require that it provides us: (1) The set of MHP pairs, denoted ẼP , of the
form (o1:p1, o2:p2) which indicates that program point p1 running at location
o1 and program point p2 running at location o2 might execute in parallel. (2)
A function nact(o:m) that returns 1 if only one instance of m can be active at
location o or ∞ if we might have more than one ([5] provides both 1 and 2).

Example 6. An MHP analysis [5] infers for the main method in Fig. 2, among
others, the following set of MHP pairs at location o1, {(o1:18, o1:19), (o1:18, o1:20),

(o1:18, o1:21), (o1:19, o1:20), (o1:19, o1:21)}. In essence, each pair is capturing that
the corresponding methods might happen in parallel, e.g., (o1:18, o1:19) implies
that methods r and p might happen in parallel. The MHP analysis learns infor-
mation from the await to capture that only one instance of q can be active at
location o1, thus nact(o1:q)=1. On the contrary, the number of active calls to p
is greater than 1, then nact(o1:p)=∞.
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5 Peak Cost Analysis

r

p q

s

c1

c2

Fig. 3. Gt(o1) for Fig 2

In this section we present our framework to in-
fer the peak cost. It consists of two main steps:
we first infer in Sec. 5.1 the configurations that
the (abstract) location queue can feature (we use
the MHP information in this step); and in a sec-
ond step, we compute in Sec. 5.2 the cost associ-
ated with each possible queue configuration (we
use the total cost in this step). Finally, we discuss
in Sec. 5.3 an important extension of the basic
framework that can increase its accuracy.

5.1 Inference of Queue Configurations

Our goal now is to infer, for each abstract location in the program, all its non-
quantified configurations, i.e., the sets of method names that can be executing
in tasks that are simultaneously ready in the location’s queue at some state in
the execution. Configurations are non-quantified because we ignore how many
instances of a method can be pending in the queue and their costs.

Definition 2 (tasks queue graph). Given a program P , an abstract location
o ∈ O and the results of the MHP analysis ẼP , the tasks queue graph for o
Gt(o)=〈Vt, Et〉 is an undirected graph where Vt =M(o) and Et = {(m1,m2) |
(p1, p2) ∈ ẼP , p1∈m1, p2∈m2,m1 6=m2}.
It can be observed in the above definition that when we have two program
points that may-happen-in-parallel in the location’s queue, then we add an edge
between the methods to which those points belong.

Example 7. By using the MHP information for location o1 in Ex. 6, we obtain
the tasks queue graph Gt(o1) shown in Fig. 3 with the following set of edges
{(r, p), (r, q), (r, s), (p, s), (p, q)} (dotted lines will be explained later).

The tasks queue graph allows us to know the sets of methods that may be ready
in the queue simultaneously. This is because, if two methods might be queued at
the same time, there must be an edge between them in the tasks queue graph. It
is then possible to detect the subsets of methods that can be queued at the same:
those that are connected with edges between every two nodes that represent such
subset, i.e., they form a clique. Since we aim at finding the maximum number
of tasks that can be queued simultaneously, we need to compute the maximal
cliques in the graph. Formally, given an undirected graph G=〈V,E〉, a maximal
clique is a set of nodes C⊆V such that every two nodes in C are connected by
an edge, and there is no other node in V \C connected to every node in C.

Example 8. For Gt(o1) in Fig. 3, we have two maximal cliques: c1 = {p, q, r} and
c2 = {p, r, s}, which capture the states 7© and 9© of the queue of o1 (see Fig. 2).
Observe that the maximal cliques subsume other states that contain subsets of
a maximal clique. For instance, states 1©- 6© are subsumed by c1.
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1 Unit m1 () {
2 fa=x!a();
3 fb=x!b();
4 await fa?;
5 fc =x!c();
6 await fb?;
7 await fc ?;
8 }
9 Unit m2 () {

10 x! d();
11 x! e() ;
12 }

13 Unit ex1 () {
14 ff =this!m1();
15 await ff ?;
16 this ! m2();
17 }

18 Unit ex2 () {
19 ff =this!m2();
20 await ff ?;
21 this ! m1();
22 }
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Fig. 4. Queue Configurations Example

Definition 3 (queue configuration). Given a location o, we define its queue
configuration, denoted by K(o), as the set of maximal cliques in Gt(o).
Therefore, a queue configuration is a set of sets, namely each element in K(o)
is a set of method names which capture a possible configuration of the queue.
Clearly, all possible (maximal) configurations must be considered in order to
obtain an over-approximation of the peak cost.

Example 9. Let us see a more sophisticated example for queue configurations.
Consider the methods in Fig. 4 which have two distinct entry methods, ex1
and ex2. They both invoke method m1, which spawns tasks a, b and c. m1
guarantees that a, b and c are completed when it finishes. Besides, we know that
b and c might run in parallel, while the await instruction in L4 ensures that a
and c cannot happen in parallel. Method m2 spawns tasks d and e and does
not await for their termination. We show in the middle of Fig. 4 the different
configurations of the queue of x (at the program points marked on top) when
we execute ex1 (above) and ex2 (below). Such configurations provide a graphical
view of the results of the MHP analysis (which basically contains pairs for each
two elements in the different queue states). In the queue of ex1, we can observe
that the await instructions at the end of m1 guarantee that the queue is empty
before launching m2 (see queue at L16). To the right of the queue we show the
resulting tasks queue graph for ex1 obtained by using the MHP pairs which
correspond to the queues showed in the figure. Then, we have K(x)={{a, b},
{b, c}, {d, e}}. Note that these cliques capture the states of the queue at L3, L5
and L17, respectively. As regards ex2, the difference is that m2 is spawned before
m1. Despite the await at L21, m2 is not awaiting for the termination of d nor
e, thus at L21 the queue might contain d and e. As for m1, we have a similar
behaviour than before, but now we have to accumulate also d and e along the
execution of m1. The resulting tasks queue graph is showed to the right. It can
be observed that it is densely connected, and now K(x)={{d, e, a, b}, {d, e, b, c}}.
Such cliques correspond to the states of the queue at L3 and L5, respectively.
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5.2 Inference of Quantified Queue Configurations

In order to quantify queue configurations and obtain the peak cost, we need
to over-approximate: (1) the number of instances that we might have running
simultaneously for each task, (2) the worst-case cost of such instances. The main
observation is that the upper bounds on the total cost in Sec. 4 already contain
both types of information. This is because the cost attached to the CC c(o:m)
accounts for the accumulation of the resource consumption of all tasks running
method m at location o. We therefore can safely use Ĉ(x)|o:m as upper bound of
the cost associated with the execution of method m at location o.

Example 10. According to Ex. 5, the costs accumulated in the CCs of o1:q and
o1:p are Ĉ(i)|o1:p = i ∗ p̂ and Ĉ(i)|o1:q = i ∗ q̂. Note that o1:q is accumulating
the cost of all calls to q, as the fact that there is at most one active call to q is
not taken into account by the total cost analysis. This is certainly a sound but
imprecise over-approximation that will be improved in Sec. 5.3.

The key idea to infer the quantified queue configuration, or simply peak cost, of
each location is to compute the total cost for each element in the set K(o) and
stay with the maximum of all of them. Given an abstract location o and a clique
k ∈ K(o), we have that Ĉ(x)|k =

∑
m∈k Ĉ(x)|o:m is the cost for the tasks in k.

Definition 4. Given a program P (x) and an abstract location o, the peak cost

for o, denoted P̂(P (x), o), is defined as P̂(P (x), o) = max({Ĉ(x)|k | k ∈ K(o)}).
Intuitively, as the elements of K capture all possible configurations that the
queue can take, it is sound to take the maximum cost among them.

Example 11. Following Ex. 8, the quantified queue configuration, that gives the
peak cost, accumulates the cost of all nodes in the two cliques, Ĉ(i)|c1=r̂+i∗p̂+i∗q̂
and Ĉ(i)|c2=r̂+i∗p̂+ŝ. The maximum between both expressions captures the

peak cost for o1, P̂(main(i), o1) = max( {r̂+i∗p̂+i∗q̂, r̂+i∗p̂+ŝ}).
The following theorem states the soundness of our approach.

Theorem 1 (soundness). Given a program P with arguments x, a concrete

location lid, and its abstraction o, we have that P(P (x), lid) ≤ P̂(P (x), o).

5.3 Number of Tasks Instances

As mentioned above, the basic approach has a weakness. From the queue con-
figuration, we might know that there is at most one task running method m
at location o. However, if we use Ĉ(x)|o:m, we are accounting for the cost of all
tasks running method m at o. We can improve the accuracy as follows. First,
we use an instantiation of the cost analysis in Sec. 4 to determine how many
instances of tasks running m at o we might have. This can be done by defining
function cost in Sec. 4 as follows: cost(inst) = 1 if inst is the entry instruction to

a method, and 0 otherwise. We denote by Ĉc(x) the upper bound obtained using
such cost model that counts the number of tasks spawned along the execution,
and Ĉc(x)|o:m the number of tasks executing m at location o.
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Example 12. The expression that bounds the number of calls from main is Ĉc(i)=
c(o1:r)+i∗c(o1:p)+i∗c(o1:q)+c(o1:s)+c(o2:r)+(i−1)∗c(o2:p)+(i−1)∗c(o2:q)+c(o2:s).

It can be seen that CCs are the same as the ones used in Ex. 5. The difference
is that when inferring the number of calls we do not account for the cost of each
method but rather count 1. Then, Ĉc(i)|o1:q = i and Ĉc(i)|o2:q = i−1.

Let us assume that the same cost analyzer has been used to approximate Ĉ
and Ĉc, and that the analysis assumed the worst-case cost of m for all in-
stances of m. Then, we can gain precision by obtaining the cost as C̃(x)|o:m =

Ĉ(x)|o:m/Ĉc(x)|o:m if nact(o:m) = 1 and C̃(x)|o:m = Ĉ(x)|o:m, otherwise. Intu-
itively, when the MHP analysis tells us that there is at most one instance of m
(by means of nact) and, under the above assumptions, the division is achieving
the desired effect of leaving the cost of one instance only.

Example 13. As we have seen in Ex. 6, the MHP analysis infers nact(o1:p) =∞
and nact(o1:q) = 1. Thus, by the definition of C̃, the cost for p is C̃(i)|o1:p = i ∗ p̂
(the same obtained in Ex. 10). However, for q we can divide the cost accumulated

by all invocations to q by the number of calls to q, C̃(i)|o1:q = i ∗ q̂/i = q̂.

14:2:r

14:4:p

14:5:q

14:9:s 16:2:r

16:4:p

16:5:q

16:9:s

Fig. 5. Queue Config. for Fig. 2

Unfortunately, it is not always sound to
make such division. The problem is that the
cost accumulated in a CC for a method m
might correspond to the cost of executions of
m from different calling contexts that do not
necessarily have the same worst-case cost. If
we divide the expression Ĉ(x)|o:m by the num-
ber of instances, we are taking the average of
the costs, and this is not a sound upper bound
of the peak cost, as the following example il-
lustrates.

Example 14. Consider a method main′ which is as main of Fig. 2 except that
we replace L16 by this!m(x, i− 1), i.e., while main uses two different locations, x
and y, in main′ we only use x. Such modification affects the precision because it
merges o1 and o2 in a single queue, o1. Now, in main′, s, launched by the first call
to m, might run in parallel with q, spawned in the second call to m. Therefore,
in Fig. 3 a new edge that connects q and s appears, and consequently, the new
queue configuration contains all methods in just one clique {p, q, r, s}. Moreover,
CCs o1:q with o2:q are merged in a single CC o1:q. For main′, the cost of q̂ is
Ĉ(i)|o:q=i∗q̂+ (i−1)∗q̂, and the number of calls is Ĉc(i)|o:q=i+ (i−1). Assume that
the cost of q is q̂ = n ∗ 5 which is a function on the parameter n. The worst-case
cost for q̂ depends on the calling context: in the context at L14, we have q̂ = i∗5
while in L16, we have q̂ = (i−1)∗5. Then, the cost that we obtain for main′ is

Ĉ(i)|o:q=i∗i∗5+(i−1)∗((i−1)∗5). The division of Ĉ(i) by Ĉc(i) is not sound because
it computes the average cost of all calls to q, rather than the peak.
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Importantly, we can determine when the above division is sound in a static way.
The information we are seeking is within the call graph for the program: (1) If
there are not convergence nodes in the call graph (i.e., the call graph is a tree),
then it is guaranteed that we do not have invocations to the same method from
different contexts. In this case, if there are multiple invocations, it is because
we are invoking m from the same context within a loop. Typically, automated
cost analyzers assume the same worst-case cost for all loop iterations and, in
such case, it is sound to make the division. Note that if the total cost analysis
infers a different cost for each loop iteration, the accuracy improvement in this
section cannot be applied; (2) If there are convergence nodes, then we need to
ensure that the context-sensitive analysis distinguishes the calls that arise from
different points, i.e., we have different CCs for them. This can be ensured if the
length of the chains of call sites used in the context by the analysis, denoted
k, is larger than kd, the depth of the subgraph of the call graph whose root is
the first convergence node encountered. Note that, in the presence of recursive
methods, we will not be able to apply this accuracy improvement since the depth
is unbounded. Theorem 1 holds for C̃ if the context considered by the analysis
is greater than kd.

Theorem 2. Let P̃(P (x), o) be the peak cost computed using C̃. We have that

P(P (x), lid)≤P̃(P (x), o) if k>kd, where k is the length of the context used.

Example 15. Let us continue with main′ of Ex. 14. Assuming that p, q, r and
s do not make any further call, the call graph has m as convergence node,
and thus kd=1. Therefore, we apply the context-sensitive analysis with k=2.
The context-sensitive analysis distinguishes 14:4:p, 16:4:p, and, in q, 14:5:q and
16:5:q. The queue configuration is showed in Fig. 5. In contrast to Ex. 14 we
have three different cliques, K(o1)={{14:4:p, 14:2:r, 14:5:q}, {14:4:p, 14:2:r, 14:9:s,
16:4:p, 16:2:r, 16:5:q}, {14:4:p, 14:2:r, 14:9:s, 16:4:p, 16:2:r, 16:9:s}}, which capture
more precisely the queue states (e.g., we know that 16:5:q cannot be in the
queue with 16:9:s but it might be with 14:9:s). Besides, we have two differ-
ent CCs for q, 14:5:q and 16:5:q, which allow us to safely apply the division
as to obtain the cost of a single instance of q for the two different contexts.
We obtain Ĉ(i)|14:5:q=i∗i∗5 and Ĉ(i)|16:5:q=(i−1)∗((i−1)∗5), and for the number
of calls, Ĉc(i)|14:5:q=i and Ĉc(i)|16:5:q=i−1. Using such expressions we compute
C̃(i)|14:5:q = i∗5 and C̃(i)|16:5:q = (i−1)∗5 which are sound and precise over-
approximations for the cost due to calls to q.

6 Experimental evaluation

We have implemented our analysis in SACO [2] and applied it to some typical
examples of distributed systems: BBuffer, a bounded-buffer for communicating
producers and consumers; MailS, a client-server distributed system; Chat, a chat
application; DistHT, a distributed hash table; and P2P, a peer-to-peer network.
Experiments have been performed on an Intel Core i5 (1.8GHz, 4GB RAM),
running OSX 10.8. Table 1 summarizes the results obtained. Columns Bench.
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Context Insensitive Context Sensitive

Bench. loc #c T #q %q %m %M %P̂ #′
q %′

q %′
m %′

M %P̃
BBuffer 107 6 2.0 9 66.7% 50.0% 100% 78.1% 10 52.2% 17.6% 100% 31.6%

MailS 97 6 2.8 8 75.1% 71.6% 100% 81.7% 8 73.3% 71.6% 100% 81.7%

DistHT 150 4 2.5 8 69.4% 53.7% 100% 88.0% 8 69.4% 46.4% 100% 88.0%

Chat 328 10 2.4 16 66.0% 50.0% 100% 90.8% 16 66.0% 7.5% 100% 90.8%

P2P 259 9 28.0 26 52.9% 91.1% 100% 97.3% 32 32.3% 44.6% 100% 64.7%

Mean 66.0% 62.3% 100% 87.1% 58.6% 37.46% 100% 71.3%

Table 1. Experimental results (times in seconds)

and loc show, resp., the name and the number of program lines. Column #c

shows the number of locations identified by the analysis. Columns T and #q

show, resp., the time to perform the analysis and the number of cliques.

We aim at comparing the gain of using peak cost analysis w.r.t. total cost.
Such gain is obtained by evaluating the expression that divides the peak cost by
the total cost for 15 different values of the input parameters, and computing the
average. The gain is computed at the level of locations, by comparing the peak
cost for the location with the total cost for such location in all columns except
in %q, where we show the average gain at the level of cliques. Columns %m and
%M show, resp., the greatest and smallest gain among all locations. Column %P̂
shows the average gain weighted by the cost associated with each location (loca-
tions with higher resource consumption have greater weight). Columns #′

q, %′
q,

%′
m, %′

M , and %P̃ contain the same information for the context-sensitive analy-
sis. As we do not have yet an implementation of the context-sensitive analysis,
we have replicated those methods that are called from different contexts. DistHT

and Chat do not need replication. The last row shows the arithmetic mean of all
results.

We can observe in the table that the precision gained by considering all possi-
ble queue states (%q and %′

q) is significant. In the context-insensitive analysis, it
ranges from a gain of 53% to 75% (on average 66%). Such value is improved in the
context sensitive analysis, resulting in an average gain of 58.6%. This indicates
that the cliques capture accurately the cost accumulated in the different states
of the locations’ queues. The gain of the context sensitive analysis is justified by
the larger number of cliques (#′

q) in BBuffer and P2P. The maximal gains showed
in columns %m (and %′

m) indicate that the accuracy can be improved on average
62.3% (and 37.46%). The minimal gains in %M and %′

M are always 100%, i.e., no
gain. This means that in all benchmarks we have at least one state that accumu-
lates the cost of all methods executed at its location (typically because await is

never used). Columns %P̂ and %P̃ show, in BBuffer and P2P, that P̃ significantly

outperforms P̂. Such improvement is achieved by a more precise configuration
graph that contains more cliques, and by the division on the number of calls in
methods that require a significant part of the resource consumption. However,
in MailS, P̃ does not improve the precision of P̂. This is because the methods
that contain one active instance are not part of the cliques that lead to the peak
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cost of the location. Despite of the NP-completeness of the clique problem, the
time spent performing the clique computation is irrelevant in comparison with
the time taken by the upper bound computation (less than 50ms for all bench-
marks). All in all, we argue that our experiments demonstrate the accuracy of
the peak cost analysis, even in its context insensitive version, with respect to
the total cost analysis.

7 Conclusions, Related and Future Work

To the best of our knowledge, our work constitutes the first analysis framework
for peak cost of distributed systems. This is an essential problem in the context
of distributed systems. It is of great help to dimension the distributed system in
terms of processing requirements, and queue sizes. Besides, it paves the way to
the accurate prediction of response times of distributed locations. The task-level
analysis in [4] is developed for a specific cost model that infers the peak of tasks
that a location can have. There are several important differences with our work:
(1) we are generic in the notion of cost and our framework can be instantiated to
measure different types of cost, among them the task-level; (2) the distributed
model that we consider is more expressive as it allows concurrent behaviours
within each location (by means of instruction await), while [4] assumes a simpler
asynchronous language in which tasks are run to completion; (3) the analysis
requires the generation of non-standard recurrence equations, while our analysis
benefits from the upper bounds obtained using standard recurrence equations
for total cost, without requiring any modification. Indeed, the analysis in [4]
could be reformulated in our framework using the MHP analysis of [11,12].

Also, the peak heap consumption in the presence of garbage collection is a non
cumulative type of resource. The analysis in [6] presents a sophisticated frame-
work for inferring the peak heap consumption by assuming different garbage
collection models. As before, in contrast to ours, the analysis is based on gener-
ating non-standard equations and for a specific type of resource. In this case, the
differences are even more notable as the language in [6] is sequential. Analysis
and verification techniques of concurrent programs seek finite representations
of the program traces which avoid the exponential explosion in the number of
traces (see [8] and its references). In this sense, our queue configurations are a
coarse representation of the traces. As future work, we plan to further improve
the accuracy of our analysis by splitting tasks into fragments according to the
processor release points within the task. Intuitively, if a task contains an await
instruction we would divide into the code before the await and the code after.
This way, we do not need to accumulate the cost of the whole task if only the
fragment after the await has been queued.

Acknowledgments. This work was funded partially by the EU project FP7-
ICT-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu) and by the Spanish projects TIN2008-05624 and TIN2012-38137.
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rent java programs. In E. Ayguadé, G. Baumgartner, J. Ramanujam, and P. Sa-
dayappan, editors, LCPC’05, volume 4339 of LNCS, pages 152–169. Springer, 2005.

8. A. Farzan, Z. Kincaid, and A. Podelski. Inductive data flow graphs. In POPL,
pages 129–142. ACM, 2013.

9. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static
Estimation of Program Computational Complexity. In Proc. of POPL’09, pages
127–139. ACM, 2009.

10. J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized Resource Anal-
ysis. In Proc. of POPL’11, pages 357–370. ACM, 2011.

11. J. K. Lee and J. Palsberg. Featherweight x10: a core calculus for async-finish
parallelism. SIGPLAN Not., 45(5):25–36, 2010.

12. J. K. Lee, J. Palsberg, and R. Majumdar. Complexity results for may-happen-in-
parallel analysis. Manuscript, 2010.

13. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14:1–41, 2005.

14. M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Anal-
ysis. In Proc. of POPL’97, pages 1–14, Paris, France, January 1997. ACM.

15. Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your Contexts Well: Under-
standing Object-Sensitivity. In In Proc. of POPL’11, pages 17–30. ACM, 2011.

16. M. Sridharan and R. Bod́ık. Refinement-based context-sensitive points-to analysis
for Java. In PLDI, pages 387–400, 2006.

17. B. Wegbreit. Mechanical Program Analysis. Communications ACM, 18(9):528–
539, 1975.

18. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In SAS, volume 6887 of LNCS, pages
280–297. Springer, 2011.

16



Appendix H

Article Parallel Cost Analysis of
Distributed Systems, [7]

183



Parallel Cost Analysis of Distributed Systems ?
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Abstract. We present a novel static analysis to infer the parallel cost
of distributed systems. Parallel cost differs from the standard notion of
serial cost by exploiting the truly concurrent execution model of dis-
tributed processing to capture the cost of synchronized tasks executing
in parallel. It is challenging to analyze parallel cost because one needs to
soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. Our analysis works in
three phases: (1) It first performs a block-level analysis to estimate the
serial costs of the blocks between synchronization points in the program;
(2) Next, it constructs a distributed flow graph (DFG) to capture the
parallelism, the waiting and idle times at the locations of the distributed
system; Finally, (3) the parallel cost can be obtained as the path of max-
imal cost in the DFG. A prototype implementation demonstrates the
accuracy and feasibility of the proposed analysis.

1 Introduction

Welcome to the age of distributed and multicore computing, in which software
needs to cater for massively parallel execution. Looking beyond parallelism be-
tween independent tasks, regular parallelism involves tasks which are mutually
dependent [17]: synchronization and communication are becoming major bottle-
necks for the efficiency of distributed software. This paper is based on a model of
computation which separates the asynchronous spawning of new tasks to differ-
ent locations, from the synchronization between these tasks. The extent to which
the software succeeds in exploiting the potential parallelism of the distributed lo-
cations depends on its synchronization patterns: synchronization points between
dynamically generated parallel tasks restrict concurrency.

This paper introduces a novel static analysis to study the efficiency of compu-
tations in this setting, by approximating how synchronization between blocks of
serial execution influences parallel cost. The analysis builds upon well-established
static cost analyses for serial execution [2,8,21]. We assume that a serial cost
analysis returns a “cost” for the serial blocks which measures their efficiency.
Traditionally, the metrics used in cost analysis [19] is based on counting the

? This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the Spanish
MINECO project TIN2012-38137, and by the CM project S2013/ICE-3006.



number of execution steps, because this cost model appears as the best ab-
straction of time for software. Our parallel cost analysis could also be used in
combination with worst-case execution time (WCET) analysis [1] by assuming
that the cost of the serial blocks is given by a WCET analysis.

Previous work on cost analysis of distributed systems [2] accumulates costs
from different locations, but ignores the parallelism of the distributed execution
model. This paper presents, to the best of our knowledge, the first static analysis
to infer the parallel cost of distributed systems which takes into account the
parallel execution of code across the locations of the distributed system, to infer
more accurate bounds on the parallel cost. Our analysis works in the following
steps, which are the main contributions of the paper:

1. Block-level cost analysis of serial execution. We extend an existing cost anal-
ysis framework for the serial execution of distributed programs in order to
infer information at the granularity of synchronization points.

2. Distributed flow graph (DFG). We define the notion of DFG, which allows
us to represent all possible (equivalence classes of) paths that the execution
of the distributed program can take.

3. Path Expressions. The problem of finding the parallel cost of executing the
program boils down to finding the path of maximal cost in the DFG. Paths
in the DFG are computed by means of the single-source path expression
problem [18], which finds regular expressions that represent all paths.

4. Parallel cost with concurrent tasks. We leverage the previous two steps to
the concurrent setting by handling tasks whose execution might suspend and
interleave with the execution of other tasks at the same location.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer of parallel cost within the SACO system,
a static analyzer for distributed concurrent programs. Preliminary experiments
on some typical applications for distributed programs achieve gains up to 29%
w.r.t. a serial cost analysis. The tool can be used online from a web interface
available at http://costa.ls.fi.upm.es/web/parallel.

2 The Model of Distributed Programs

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered buffer
of pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its own
processor’s global storage, each task can post tasks to the buffer of any processor,
including its own, and synchronize with the reception of tasks (synchronization
will be presented later in Sec. 6). When a task completes, its processor becomes
idle again, chooses the next pending task, and so on.

2.1 Syntax

The number of distributed locations need not be known a priori (e.g., locations
may be virtual). Syntactically, a location will therefore be similar to an object and
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(newLoc)
fresh(lid ′), l′ = l[x→ lid ′]

loc(lid , tid , {tsk(tid ,m, l, 〈x = newLoc; s〉)} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid ′,⊥, {})

(async)
l(x) = lid1, fresh(tid1), l1 = buildLocals(z̄,m1)

loc(lid , tid , {tsk(tid ,m, l, 〈x.m1(z); s〉)} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l, s)}∪Q)‖loc(lid1, , {tsk(tid1,m1, l1, body(m1))})

(select)
select(Q) = tid ,

t = tsk(tid , , , s) ∈ Q, s 6= ε(v)

loc(lid ,⊥,Q) ; loc(lid , tid ,Q)

(return)
v = l(x)

loc(lid , tid , {tsk(tid ,m, l, 〈return x; 〉)} ∪ Q) ;
loc(lid ,⊥, {tsk(tid ,m, l, ε(v))} ∪ Q)

Fig. 1. Summarized Semantics for Distributed Execution

can be dynamically created using the instruction newLoc. The program consists
of a set of methods of the form M ::=T m(T x){s}. Statements s take the form
s::=s; s | x=e | if e then s else s | while e do s | return x | x=newLoc | x.m(z̄), where
e is an expression, x, z are variables and m is a method name. The notation z
is used as a shorthand for z1, . . . , zn, and similarly for other names. The special
location identifier this denotes the current location. For the sake of generality,
the syntax of expressions e and types T is left open.

2.2 Semantics

A program state S has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid the identifier of the active task which holds the location’s
lock or ⊥ if the lock is free, and Q the set of tasks at the location. Only the task
which holds the location’s lock can be active (running) at this location. All other
tasks are pending, waiting to be executed, or finished, if they have terminated
and released the lock. A task is a term tsk(tid ,m, l, s) where tid is a unique task
identifier, m the name of the method executing in the task, l a mapping from
local variables to their values, and s the sequence of instructions to be executed
or s = ε(v) if the task has terminated and the return value v is available.

The execution of a program starts from a method m, in an initial state with
an initial location with identifier 0 executing task 0 of the form S0=loc(0, 0,
{tsk(0,m, l, body(m))}). Here, l maps parameters to their initial values and local
references to null (standard initialization), and body(m) refers to the sequence of
instructions in the method m. The execution proceeds from S0 by evaluating in
parallel the distributed locations. The transition→ denotes a parallel transition
W in which we perform an evaluation step ; (as defined in Fig. 1) at every dis-
tributed location loci with i=1, . . . , n, i.e., W≡loc1‖ . . . ‖locn → loc′1‖ . . . ‖loc′m.
If a location is idle and its queue is empty, the evaluation simply returns the
same location state. Due to the dynamic creation of distributed locations, we
have that m ≥ n.

The transition relation ; in Fig. 1 defines the evaluation at each distributed
location. The treatment of sequential instructions is standard and thus omitted.
In NewLoc, an active task tid at location lid creates a location lid ′ with a free
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void m (int n) {
. . . // m1

x. p();
. . . // m2

y. q();
. . . // m3

}
void p () {
. . . // p1
y. s() ;
. . . // p2
}

Trace 1©
o x y

m1

m2

m3

p1

p2
s

q

P1

Trace 2©
o x y

m1

m2

m3

p1

p2

s

q

P2

Trace 3©
o x y

m1

m2

m3

p1

p2

q

s

P3

P1 = m̂1+m̂2+m̂3 P2 = m̂1+p̂1+ŝ+q̂ P3 = m̂1+m̂2+q̂+ŝ

Fig. 2. Motivating example

lock, which extends the program state. This explains that m≥n. Async spawns
a new task (the initial state is created by buildLocals) with a fresh task identifier
tid1 in a singleton queue for the location lid1 (which may be lid). We here
elide the technicalities of remote queue insertion in the parallel transition step,
which basically merges locations with the same identifier by taking the union
of the queues. Rule Select returns a task that is not finished, and it obtains
the lock of the location. When Return is executed, the return value is stored in
v. In addition, the lock is released and will never be taken again by that task.
Consequently, that task is finished (marked by adding instruction ε(v)).

3 Parallel Cost of Distributed Systems

The aim of this paper is to infer an upper bound which is an over-approximation
of the parallel cost of executing a distributed system. Given a parallel transition
W ≡ loc1‖ . . . ‖locn → loc′1‖ . . . ‖loc′m, we denote by P(W ) the parallel cost
of the transition W . If we are interested in counting the number of executed
transitions, then P(W ) = 1. If we know the time taken by the transitions,
P(W ) refers to the time taken to evaluate all locations. Thus, if two instructions
execute in parallel, the parallel cost only accumulates the largest of their times.
For simplicity, we assume that all locations execute one instruction in one cost
unit. Otherwise, it must be taken into account by the cost analysis of the serial
cost (see Sec. 8). Given a trace t ≡ So→ . . .→Sn+1 of the parallel execution,
we define P(t) =

∑n
i=0 P(Wi), where Wi ≡ Si → Si+1. Since execution is non-

deterministic in the selection of tasks, given a program P (x), multiple (possibly
infinite) traces may exist. We use executions(P (x)) to denote the set of all
possible traces for P (x).

Definition 1 (Parallel cost). The parallel cost of a program P on input values
x, denoted P(P (x)), is defined as max({P(t)|t ∈ executions(P (x))}).
Example 1. Fig. 2 (left) shows a simple method m that spawns two tasks by
calling p and q at locations x and y, resp. In turn, p spawns a task by calling
s at location y. This program only features distributed execution, concurrent
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behaviours within the locations are ignored for now. In the sequel we denote by
m̂ the cost of block m. m̂1, m̂2 and m̂3 denote, resp., the cost from the beginning
of m to the call x.p(), the cost between x.p() and y.q(), and the remaining cost of
m. p̂1 and p̂2 are analogous. Let us assume that the block m1 contains a loop that
performs n iterations (where n is equal to the value of input parameter n if it is
positive and otherwise n is 0) and at each iteration it executes 10 instructions,
thus m̂1=10 ∗ n. Let us assume that block m2 contains a loop that divides the
value of n by 2 and that it performs at most log2(n+ 1) iterations. Assume that
at each iteration it executes 20 instructions, thus m̂2=20 ∗ log2(n + 1). These
expressions can be obtained by cost analyzers of serial execution [2]. It is not
crucial for the contents of this paper to know how these expressions are obtained,
nor what the cost expressions are for the other blocks and methods. Thus, in
the sequel, we simply refer to them in an abstract way as m̂1, m̂2, p̂1, p̂2 etc. �

The notion of parallel cost P corresponds to the cost consumed between
the first instruction executed by the program at the initial location and the last
instruction executed at any location by taking into account the parallel execution
of instructions and idle times at the different locations.

Example 2. Fig. 2 (right) shows three possible traces of the execution of this
example (more traces are feasible). Below the traces, the expressions P1, P2 and
P3 show the parallel cost for each trace. The main observation here is that the
parallel cost varies depending on the duration of the tasks. It will be the worst
(maximum) value of such expressions, that is, P=max(P1, P2, P3, . . . ). In 2©
p1 is shorter than m2, and s executes before q. In 3©, q is scheduled before s,
resulting in different parallel cost expressions. In 1©, the processor of location y
becomes idle after executing s and must wait for task q to arrive. �

In the general case, the inference of parallel cost is complicated because: (1)
It is unknown if the processor is available when we spawn a task, as this depends
on the duration of the tasks that were already in the queue; e.g., when task q is
spawned we do not know if the processor is idle (trace 1©) or if it is taken (trace
2©). Thus, all scenarios must be considered; (2) Locations can be dynamically
created, and tasks can be dynamically spawned among the different locations
(e.g., from location o we spawn tasks at two other locations). Besides, tasks can
be spawned in a circular way; e.g., task s could make a call back to location
x; (3) Tasks can be spawned inside loops, we might even have non-terminating
loops that create an unbounded number of tasks. The analysis must approximate
(upper bounds on) the number of tasks that the locations might have in their
queues. These points make the static inference of parallel cost a challenging
problem that, to the best of our knowledge, has not been previously addressed.
Existing frameworks for the cost analysis of distributed systems [3,2] rely on a
serial notion of cost, i.e., the resulting cost accumulates the cost executed by all
locations created by the program execution. Thus, we obtain a serial cost that
simply adds the costs of all methods: m̂1+m̂2+m̂3+p̂1+p̂2+q̂+ŝ.
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4 Block-level Cost Analysis of Serial Execution

The first phase of our method is to perform a block-level cost analysis of serial
execution. This is a simple extension of an existing analysis in order to provide
costs at the level of the blocks in which the program is partitioned, between
synchronization points. In previous work, other extensions have been performed
that use costs at the level of specific program points [4] or at the level of complete
tasks [3], but the partitioning required by our parallel cost analysis is different.
Later, we need to be able to cancel out the cost associated to blocks whose
execution occurs in parallel with other blocks that have larger cost. The key
notion of the extension is block-level cost centers, as defined below.

Block Partitioning. The need to partition the code into blocks will be clear
when presenting the second phase of the analysis. Essentially, the subsequent
analysis needs to have cost information for the following sets of blocks: Binit, the
set of entry blocks for the methods; Bexit, the set of exit blocks for the methods,
and Bcall, the set of blocks ending with an asynchronous call. Besides these blocks,
the standard partitioning of methods into blocks used to build the control flow
graph (CFG) for the method is performed (e.g., conditional statement and loops
introduce blocks for evaluating the conditions, edges to the continuations, etc.).
We use B to refer to all block identifiers in the program. Given a block identifier
b, pred(b) is the set of blocks from which there are outgoing edges to block b in
the CFG. Function pred can also be applied to sets of blocks. We write pp ∈ b
(resp. i ∈ b) to denote that the program point pp (resp. instruction i) belongs
to the block b.

Example 3. In Fig. 2, the traces show the partitioning in blocks for the methods
m, p, q and s. Note that some of the blocks belong to multiple sets as defined
above, namely Binit = {m1, p1, s, q}, Bexit={m3, p2, s, q}, Bcall={m1,m2, p1}. For
instance, m1 is both an entry and a call block, and s, as it is not partitioned, is
both an entry and exit block. �

Points-to Analysis. Since locations can be dynamically created, we need an
analysis that abstracts them into a finite abstract representation, and that tells
us which (abstract) location a reference variable is pointing-to. Points-to analysis
[2,13,14] solves this problem. It infers the set of memory locations which a ref-
erence variable can point-to. Different abstractions can be used and our method
is parametric on the chosen abstraction. Any points-to analysis that provides
the following information with more or less accurate precision can be used (our
implementation uses [2,13]): (1) O, the set of abstract locations; (2) M, the set
of abstract tasks of the form o.m where o ∈ O and m is a method name; (3) a
function pt(pp, v) which for a given program point pp and a variable v returns
the set of abstract locations in O to which v may point to.

Example 4. In Fig. 2 we have three different locations, which are pointed to by
variables o, x, y. For simplicity, we will use the variable name in italics to refer
to the abstract location inferred by the points-to analysis. Thus, O={o, x, y}.
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The abstract tasks spawned in the program are M={o.m, x.p, y.s, y.q}. In this
example, the points-to abstraction is very simple. However, in general, locations
can be reassigned, passed in parameters, have multiple aliases, etc., and it is
fundamental to keep track of points-to information in an accurate way. �

Cost Centers. The notion of cost center is an artifact used to define the gran-
ularity of a cost analyzer. In [2], the proposal is to define a cost center for each
distributed component; i.e., cost centers are of the form c(o) where o ∈ O and
c( ) is the artifact used in the cost expressions to attribute the cost to the dif-
ferent components. Every time the analyzer accounts for the cost of executing
an instruction inst at program point pp, it also checks at which location the in-
struction is executing. This information is provided by the points-to analysis as
Opp = pt(pp, this). The cost of the instruction is accumulated in the cost centers
of all elements in Opp as

∑
c(o)∗cost(inst),∀o ∈ Opp, where cost(inst) expresses

in an abstract way the cost of executing the instruction. If we are counting steps,
then cost(inst) = 1. If we measure time, cost(inst) refers to the time to exe-
cute inst. Then, given a method m(x̄), the cost analyzer will compute an upper
bound for the serial cost of executing m of the form Sm(x̄) =

∑n
i=1 c(oi)∗Ci,

where oi ∈ O and Ci is a cost expression that bounds the cost of the compu-
tation carried out by location oi when executing m. Thus, cost centers allow
computing costs at the granularity level of the distributed components. If one
is interested in studying the computation performed by one particular compo-
nent oj , we simply replace all c(oi) with i 6= j by 0 and c(oj) by 1. The idea
of using cost centers in an analysis is of general applicability and the different
approaches to cost analysis (e.g., cost analysis based on recurrence equations
[19], invariants [8], or type systems [9]) can trivially adopt this idea in order to
extend their frameworks to a distributed setting. This is the only assumption
that we make about the cost analyzer. Thus, we argue that our method can work
in combination with any cost analysis for serial execution.

Example 5. For the code in Fig. 2, we have three cost centers for the three
locations that accumulate the costs of the blocks they execute; i.e., we have
Sm(n) = c(o)∗m̂1 + c(o)∗m̂2 + c(o)∗m̂3 + c(x)∗p̂1 + c(x)∗p̂2 + c(y)∗ŝ+ c(y)∗q̂. �

Block-level Cost Centers. In this paper, we need block-level granularity
in the analysis. This can be captured in terms of block-level cost centers B
which contain all blocks combined with all location names where they can be
executed. Thus, B is defined as the set {o:b ∈ O × B | o ∈ pt(pp, this) ∧
pp ∈ b}. We define Binit and Bexit analogously. In the motivating example,
B = {o:m1, o:m2, o:m3, x:p1, x:p2, y:q, y:s}. Every time the analyzer accounts
for the cost of executing an instruction inst, it checks at which location inst
is executing (e.g., o) and to which block it belongs (e.g., b), and accumulates
c(o:b) ∗ cost(inst). It is straightforward to modify an existing cost analyzer to
include block-level cost centers. Given a method m(x̄), the cost analyzer now
computes a block-level upper bound for the cost of executing m. This upper
bound is of the form Sm(x̄) =

∑n
i=1 c(oi:bi) ∗ Ci, where oi:bi ∈ B, and Ci is a
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cost expression that bounds the cost of the computation carried out by location
oi while executing block bi. Observe that bi need not be a block of m because
we can have transitive calls from m to other methods; the cost of executing
these calls accumulates in Sm. The notation Sm(x̄)|o:b is used to express the cost
associated to c(o:b) within the cost expression Sm(x̄), i.e., the cost obtained by
setting all c(o′:b′) to 0 (for o′ 6= o or b′ 6= b) and setting c(o:b) to 1. Given a set
of cost centers N = {o0:b0, . . . , ok:bk}, we let Sm(x̄)|N refer to the cost obtained
by setting to one the cost centers c(oi:bi) such that oi:bi ∈ N . We omit m in
Sm(x̄)|N when it is clear from the context.

Example 6. The cost of the program using the blocks in B as cost centers, is
Sm(n)=c(o:m1)∗m̂1+c(o:m2)∗m̂2+c(o:m3)∗m̂3+c(x:p1)∗p̂1+c(x:p2)∗p̂2+c(y:s)∗ŝ+
c(y:q)∗q̂. We can obtain the cost for block o:m2 as Sm(n)|o:m2 = m̂2. With the
serial cost assumed in Sec. 3, we have Sm(n)|o:m2 = 20 ∗ log2(n+ 1). �

5 Parallel Cost Analysis

This section presents our method to infer the cost of executing the distributed
system by taking advantage of the fact that certain blocks of code must execute
in parallel, thus we only need to account for the largest cost among them.

5.1 Distributed Flow Graph

The distributed flow graph (DFG), introduced below, aims at capturing the dif-
ferent flows of execution that the program can perform. According to the dis-
tributed model of Sec. 2, when the processor is released, any pending task of the
same location could start executing. We use an existing may-happen-in-parallel
(MHP) analysis [5,12] to approximate the tasks that could start their execution
when the processor is released. This analysis infers pairs of program points (x, y)
whose execution might happen in parallel. The soundness of the analysis guaran-
tees that if (x, y) is not an MHP pair then there are no instances of the methods
to which x or y belong whose program points x and y can run in parallel. The
MHP analysis can rely on a points-to analysis in exactly the same way as our
overall analysis does. Hence, we can assume that MHP pairs are of the form
(x:p1, y:p2) where x and y refer to the locations in which they execute. We use
the notation x:b1 ‖ y:b2, where b1 and b2 are blocks, to denote that the program
points of x:b1 and y:b2 might happen in parallel, and, x:b1 ∦ y:b2 to indicate that
they cannot happen in parallel.

Example 7. The MHP analysis of the example shown in Fig. 2 returns that
y:s ‖ y:q, indicating that s and q might happen in parallel at location y. In
addition, as we only have one instance of m and p, the MHP guarantees that
o:m1 ∦ o:m3 and x:p1 ∦ x:p2. �

The nodes in the DFG are the cost centers which the analysis in Sec. 4 has
inferred. The edges represent the control flow in the sequential execution (drawn
with normal arrows) and all possible orderings of tasks in the location’s queues
(drawn with dashed arrows). We use the MHP analysis results to eliminate the
dashed arrows that correspond to unfeasible orderings of execution.
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Definition 2 (Distributed flow graph). Given a program P , its block-level
cost centers B, and its points-to analysis results provided by function pt, we
define its distributed flow graph as a directed graph G = 〈V,E〉 with a set of
vertices V = B and a set of edges E = E1 ∪ E2 ∪ E3 defined as follows:

E1 ={o:b1 → o:b2 | b1 → b2 exists in CFG}
E2 ={o1:b1 → o2:minit | b1 ∈ Bcall, pp : x.m() ∈ b1, o2 ∈ pt(pp, x)}
E3 ={o:b1 99K o:b2 | b1 ∈ Bexit, b2 ∈ Binit, o:b1 ‖ o:b2}

Here, E1 is the set of edges that exist in the CFG, but using the points-to
information in B in order to find out at which locations the blocks are executed.
E2 joins each block that contains a method invocation with the initial block
minit of the invoked method. Again, points-to information is used to know all
possible locations from which the calls originate (named o1 above) and also the
locations where the tasks are sent (named o2 above). Arrows are drawn for all
possible combinations. These arrows capture the parallelism in the execution
and allow us to gain precision w.r.t. the serial execution. Intuitively, they allow
us to consider the maximal cost of the path that continues the execution and the
path that goes over the spawned tasks. Finally, dashed edges E3 are required for
expressing the different orderings of the execution of tasks within each abstract

o:m1

o:m2

o:m3

x:p1

x:p2

y:s

y:q

Fig. 3. DFG for Fig. 2

location. Without further knowledge, the exit
blocks of methods must be joined with the entry
blocks of others tasks that execute at the same
location. With the MHP analysis we can avoid
some dashed edges in the DFG in the following
way: given two methods m, whose initial block
is m1, and p, whose final block is p2, if we know
that m1 cannot happen in parallel with p2, then
we do not need to add a dashed edge between
them. This is because the MHP guarantees that
when the execution of p finishes there is no instance of method m in the queue
of pending tasks. Thus, we do not consider this path in E3 of the DFG.

Example 8. Fig. 3 shows the DFG for the program in Fig. 2. The nodes are the
cost centers in Ex. 6. Nodes in gray are the nodes in Bexit, and it implies that
the execution can terminate executing o:m3, x:p2, y:s or y:q. Solid edges include
those existing in the CFG of the sequential program but combined with the
location’s identity (E1) and those derived from calls (E2). Since y:s ‖ y:q (see
Ex. 7), the execution order of s and q at location y is unknown (see Sec. 3). This
is modelled by means of the dashed edges (E3). In contrast, since o:m1 ∦ o:m3

and x:p1 ∦ x:p2, we neither add a dashed edge from o:m3 to o:m1 nor from x:p2
to x:p1. �

5.2 Inference of Parallel Cost

The next phase in our analysis consists of obtaining the maximal parallel cost
from all possible executions of the program, based on the DFG. The execution
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paths in the DFG start in the initial node that corresponds to the entry method
of the program, and finish in any node in Bexit. The first step for the inference is
to compute the set of execution paths by solving the so-called single-source path
expression problem [18], which finds a regular expression (named path expression)
for each node v ∈ Bexit representing all paths from an initial node to v. Given
a DFG G, we denote by pexpr(G) the set of path expressions obtained from the
initial node to all exit nodes in G.

Example 9. To compute the set pexpr for the graph in Fig. 3, we compute the
path expressions starting from o:m1 and finishing in exit nodes, that is, the
nodes in Bexit. In path expressions, we use o:m1·o:m2 to represent the edge from
o:m1 to o:m2. Thus, for the nodes in Bexit we have eo:m3 = o:m1·o:m2·o:m3,
ex:p2 = o:m1·x:p1·x:p2, ey:s = o:m1·(x:p1·y:s | o:m2·y:q·y:s)·(y:q·y:s)∗ and ey:q =
o:m1·(x:p1·y:s·y:q | o:m2·y:q)·(y:s·y:q)∗. �

The key idea to obtain the parallel cost from path expressions is that the
cost of each block (obtained by using the block-level cost analysis) contains not
only the cost of the block itself but this cost is multiplied by the number of times
the block is visited. Thus, we use sets instead of sequences since the multiplicity
of the elements is already taken into account in the cost of the blocks. Given
a path expression e, we define sequences(e) as the set of paths produced by e

and elements(p) as the set of nodes in a given path p. We use the notions of
sequences and elements to define the set N (e).

Definition 3. Given a path expression e, N (e) is the following set of sets:

{s | p ∈ sequences(e) ∧ s = elements(p)}.
In practice, this set N (e) can be generated by splitting the disjunctions in

e into different elements in the usual way, and adding the nodes within the
repeatable subexpressions once. Thus, to obtain the parallel cost, it is sufficient
to compute N+(e), the set of maximal elements of N (e) with respect to set
inclusion, i.e., those sets in N (e) which are not contained in any other set in
N (e). Given a graph G, we denote by paths(G) =

⋃N+(e), e ∈ pexpr(G), i.e.,
the union of the sets of sets of elements obtained from each path expression.

Example 10. Given the path expressions in Ex. 9, we have the following sets:

N+(eo:m3) = {{o:m1, o:m2, o:m3}︸ ︷︷ ︸
N1

}, N+(ex:p2) = {{o:m1, x:p1, x:p2}︸ ︷︷ ︸
N2

}

N+(ey:s) = N+(ey:q) = {{o:m1, x:p1, y:s, y:q}︸ ︷︷ ︸
N3

, {o:m1, o:m2, y:s, y:q}︸ ︷︷ ︸
N4

}

Observe that these sets represent traces of the program. The execution captured
by N1 corresponds to trace 1© of Fig. 2. In this trace, the code executed at
location o leads to the maximal cost. Similarly, the set N3 corresponds to trace
2© and N4 corresponds to trace 3©. The set N2 corresponds to a trace where
x:p2 leads to the maximal cost (not shown in Fig. 2). Therefore, the set paths
is {N1, N2, N3, N4}. �
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Given a set N ∈ paths(G), we can compute the cost associated to N by using the
block-level cost analysis, that is, S(x̄)|N . The parallel cost of the distributed sys-
tem can be over-approximated by the maximum cost for the paths in paths(G).

Definition 4 (Inferred parallel cost). The inferred parallel cost of a program

P (x) with distributed flow graph G, is defined as P̂(P (x̄)) = max
N∈paths(G)

S(x̄)|N .

Although we have obtained the parallel cost of the whole program, we can easily
obtain the parallel cost associated to a location o of interest, denoted P̂(P (x̄))|o,
by considering only the paths that lead to the exit nodes of this location. In par-
ticular, given a location o, we consider the set of path expressions pexpr(G, o)
which are the subset of pexpr(G) that end in an exit node of o. The above defi-

nition simply uses pexpr(G, o) instead of pexpr(G) in order to obtain P̂(P (x̄))|o.

Example 11. The cost is obtained by using the block-level costs for all nodes
that compose the sets in paths. With the sets computed in Ex. 10, the overall
parallel cost is: P̂(m(n)) = max(S(n)|N1 ,S(n)|N2 ,S(n)|N3 ,S(n)|N4). Importantly,
P̂ is more precise than the serial cost because all paths have at least one missing
node. For instance, N1 does not contain the cost of x:p1, x:p2, y:s, y:q and N3

does not contain the cost of o:m2, o:m3, x:p2. Additionally, as o:m3 is the only
final node for location o, we have that P̂(m(n))|o = S(n)|N1 . Similarly, for location
y we have two exit nodes, y:s and y:q, thus P̂(m(n))|y = max(S(n)|N3 ,S(n)|N4). �

Recall that when there are several calls to a block o:b the graph contains only
one node o:b but the serial cost S(x̄)|o:b accumulates the cost of all calls. This
is also the case for loops or recursion. The nodes within an iterative construct
form a cycle in the DFG and by setting to one the corresponding cost center,
the serial cost accumulates the cost of all executions of such nodes.

Example 12. The program to the
right shows a modification of
method m that adds a loop which
includes the call y.q(). The DFG for
this code contains a cycle caused by
the loop, composed by the nodes
o:w, o:m3 and o:m4, where o:w
represents the entry block to the
while loop. The execution might
traverse such nodes multiple times
and consequently multiple instances
of y:q might be spawned.

void m (int n) {
. . . // m1 instr
x. p();
. . . //m2 instr
while(n > 0) {

n=n−1;
. . . //m3 instr
y. q();
. . . //m4 instr
}
. . . // m5 instr
}

o:m1

o:m2

o:w

o:m3

o:m4

o:m5

y:s

y:q

. . .

A serial cost analyzer (e.g.[2]) infers that the loop is traversed at most n times
and obtains a block-level serial cost of the form:

S(n) = c(o:m1)∗m̂1 + c(o:m2)∗m̂2 + n∗c(o:w)∗ŵ + n∗c(o:m3)∗m̂3 + n∗c(o:m4)∗m̂4+
c(o:m5)∗m̂5 + c(x:p1)∗p̂1 + c(x:p2)∗p̂2 + n∗c(y:q)∗q̂ + c(y:s)∗ŝ
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For the DFG we obtain some interesting sets that traverse the loop: N1 =

{o:m1, o:m2, o:w, o:m3, o:m4, o:m5} and N2 = {o:m1, o:m2, o:w, o:m3, o:m4, y:q, y:s}.
Observe that N1 represents a trace that traverses the loop and finishes in o:m5

and N2 represents a trace that reaches y:q by traversing the loop. The cost asso-
ciated to N1 is computed as S(n)|N1 = m̂1+m̂2+n∗ŵ+n∗m̂3+n∗m̂4+m̂5. Note that
S(n)|N1 includes the cost of executing the nodes of the loop multiplied by n, cap-
turing the iterations of the loop. Similarly, forN2 we have S(n)|N2=m̂1+m̂2+n∗ŵ+

n∗m̂3+n∗m̂4+n∗q̂+ŝ, which captures that q might be executed n times. �

Theorem 1. P(P (x̄)) ≤ P̂(P (x̄)).

6 Parallel Cost Analysis with Cooperative Concurrency

We now extend the language to allow cooperative concurrency between the tasks
at each location, in the style of concurrent (or active) object systems such as
ABS [11]. The language is extended with future variables which are used to
check if the execution of an asynchronous task has finished. In particular, an
asynchronous call is associated with a future variable f as follows f=x.p(). The
instruction await f? allows synchronizing the execution of the current task with
the task p to which the future variable f is pointing; f.get is used to retrieve the
value returned by the completed task. The semantics for these instructions is
given in Fig. 4. The semantics of Async+Fut differs from Async in Fig. 1 in
that it stores the association of the future variable to the task in the local variable
table l. In Await1, the future variable we are awaiting points to a finished task
and await can be completed. The finished task t1 is looked up at all locations in
the current state (denoted by Locs). Otherwise, Await2 yields the lock so any
other task at the same location can take it. In Get1 the return value is retrieved
after the task has finished and in Get2 the location is blocked allowing time to
pass until the task finishes and the return value can be retrieved.

Handling concurrency in the analysis is challenging because we need to model
the fact that we can lose the processor at the await instructions and another pend-
ing task can interleave its execution with the current task. The first extension
needed is to refine the block partitioning in Sec. 4 with the set of blocks: Bget,
the set of blocks starting with a get; and Bawait, the set of blocks starting with
an await. Such blocks contain edges to the preceding and subsequent blocks as
in the standard construction of the CFG (and we assume they are in the set of
edges E1 of Def. 2). Fortunately, task interleavings can be captured in the graph
in a clean way by treating await blocks as initial blocks, and their predecessors
as ending blocks. Let b be a block which contains a f.get or await f? instruction.
Then awaited(f, pp) returns the (set of) exit blocks to which the future variable
f can be linked at program point pp. We use the points-to analysis results to
find the tasks a future variable is pointing to. Furthermore, the MHP analysis
learns information from the await instructions, since after an await f? we know
that the execution of the task to which f is linked is finished and thus it will not
happen in parallel with the next tasks spawned at the same location.
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(async+fut)
l(x) = lid1, fresh(tid1), l′ = l[f → tid1], l1 = buildLocals(z̄,m1)

loc(lid , tid , {tsk(tid ,m, l, 〈f = x.m1(z); s〉} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid1, , {tsk(tid1,m1, l1, body(m1))})

(await1)
l(f) = tid1, loc(lid1, ,Q1) ∈ Locs, tsk(tid1, , , s1) ∈ Q1, s1 = ε(v)

loc(lid , tid , {tsk(tid ,m, l, 〈await f?; s〉)} ∪ Q) ; loc(lid , tid , {tsk(tid ,m, l, s)} ∪ Q)

(await2)
l(f) = tid1, loc(lid1, ,Q1) ∈ Locs, tsk(tid1, , , s1) ∈ Q1, s1 6= ε(v)

loc(lid , tid , {tsk(tid ,m, l, 〈await f?; s〉)}∪Q) ; loc(lid ,⊥, {tsk(tid ,m, l, 〈await f?; s〉)}∪Q)

(get1)
l(f) = tid1, tsk(tid1, , , s1) ∈ Locs, s1 = ε(v), l′ = l[x→ v])

loc(lid , tid , {tsk(tid ,m, l, 〈x=f.get; s〉)}∪Q) ; loc(lid , tid , {tsk(tid ,m, l′, s)}∪Q)

(get2)
l(f) = tid1, tsk(tid1, , , s1) ∈ Locs, s1 6= ε(v)

loc(lid , tid , {tsk(tid ,m, l, 〈x=f.get; s〉)}∪Q)
; loc(lid , tid , {tsk(tid ,m, l, 〈x=f.get; s〉)}∪Q)

Fig. 4. Summarized Semantics of Concurrent Execution

Definition 5 (DFG with cooperative concurrency). We extend Def. 2:

E4 ={o1:mexit → o2:b2 | either pp:f.get or pp:await f? ∈ b2,mexit ∈ awaited(f, pp)}
E5 ={o:b1 99K o:b2 | b1 ∈ pred(Bawait), b2 ∈ Bawait ∪ Binit, o:b1 ‖ o:b2}
E6 ={o:b1 99K o:b2 | b1 ∈ Bexit, b2 ∈ Bawait, o:b1 ‖ o:b2}
Here, E4 contains the edges that relate the last block of a method with the
corresponding synchronization instruction in the caller method, indicating that
the execution can take this path after the method has completed. E5 and E6

contain dashed edges that represent the orderings between parts of tasks split
by await instructions and thus capture the possible interleavings. E5 considers
the predecessor as an ending block from which we can start to execute another
interleaved task (including await blocks). E6 treats await blocks as initial blocks
which can start their execution after another task at the same location finishes.
As before, the MHP analysis allows us to discard those edges between blocks
that cannot be pending to execute when the processor is released. Theorem 1
also holds for DFG with cooperative concurrency.

Example 13. Fig. 5 shows an example where the call to method p is synchronized
by using either await or get. Method p then calls method q at location o. The syn-
chronization creates a new edge (the thick one) from x:p2 to the synchronization
point in block o:m3. This edge adds a new path to reach o:m3 that represents a
trace in which the execution of m waits until p is finished. For the graph in Fig. 5
we have that paths is {{o:m1, x:p1, x:p2, o:m3, o:q}, {o:m1, o:m2, o:m3, o:q}}. Ob-
serve that the thick edge is crucial for creating the first set in paths. The dif-
ference between the use of await and get is visible in the edges labelled with ∗©,
which are only added for await. They capture the traces in which the execution of
m waits for the termination of p, and q starts its execution interleaved between
o:m2 and o:m3, postponing the execution of o:m3. In this example, the edges
labelled with ∗© do not produce new sets in paths. �
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void m () {
. . . // m1 instr
f = x.p(this );
. . . //m2 instr
await f ? | f . get
. . . // m3 instr
}
void p (Node o) {
. . . // p1 instr
o. q();
. . . // p2 instr
}

o:m1

o:m2

o:m3

x:p1

x:p2

o:q

∗©
∗©

Fig. 5. DCG with synchronization

Finally, let us remark that our
work is parametric in the underlying
points-to and cost analyses for serial
execution. Hence, any accuracy im-
provement in these auxiliary analy-
ses will have an impact on the accu-
racy of our analysis. In particular, a
context-sensitive points-to analysis
[15] can lead to big accuracy gains.
Context-sensitive points-to analyses
use the program point from which
tasks are spawned as context infor-
mation. This means that two differ-
ent calls o.m, one from program point p1 and another from p2 (where p1 6= p2)
are distinguished in the analysis as o:p1:m and o:p2:m. Therefore, instead of
representing them by a single node in the graph, we will use two nodes. The ad-
vantage of this finer-grained information is that we can be more accurate when
considering task parallelism. For instance, we can have one path in the graph
which includes a single execution of o:p1:m (and none of o:p2:m). However, if the
nodes are merged into a single one, we have to consider either that both or none
are executed. There are also techniques to gain precision in points-to analysis in
the presence of loops [16] that could improve the precision of our analysis.

7 Experimental evaluation

We have implemented our analysis in SACO and applied it to some distributed
based systems: BBuffer, the typical bounded-buffer for communicating several
producers and consumers; MailServer, which models a distributed mail server
system with multiple clients; Chat, which models chat application; DistHT, which
implements and uses a distributed hash table; BookShop, which models a web
shop client-server application; and P2P, which represents a peer-to-peer network
formed by a set of interconnected peers. Experiments have been performed on
an Intel Core i7 at 2.0GHz with 8GB of RAM, running Ubuntu 14.04. Table 1
summarizes the results obtained for the benchmarks. Columns Benchmark and
loc show, resp., the name and the number of program lines of the benchmark.
Columns #N and #E show the number of nodes and edges of the DFG with
concurrency (Def. 5). Columns #F and #P contain the number of terminal nodes
in the DFG and the number of elements in the set paths. Columns TS and TP̂
show, resp., the analysis times for the serial cost analysis and the additional
time required by the parallel cost analysis (in milliseconds) to build the DFG
graphs and obtain the cost from them. The latter includes a simplification of
the DFG to reduce the strongly connected components (SCC) to one node. Such
simplification significantly reduces the time in computing the path expressions
and we can see that the overall overhead is reasonable.

Column %P̂ aims at showing the gain of the parallel cost P̂ w.r.t. the serial

cost S by evaluating P̂(ē)/S(ē)∗100 for different values of ē. Namely, %P̂ is the av-
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Benchmark loc #N #E #F #P TS TP̂ #I %m %a %P̂
BBuffer 105 37 50 7 50 256 26 1000 3.0 19.7 77.4

MailServer 115 28 35 6 36 846 12 1000 61.1 68.6 88.5

Chat 302 84 245 25 476 592 126 625 5.7 56.0 85.4

DistHT 353 38 47 6 124 950 49 625 3.7 25.5 76.3

BookShop 353 60 63 7 68 2183 214 2025 9.2 50.9 71.1

P2P 240 168 533 27 730 84058 1181 512 13.0 85.9 95.2

Table 1. Experimental results (times in ms)

erage of the evaluation of the cost expressions P̂(ē) and S(ē) for different values
of the input arguments ē to the programs. The number of evaluations performed
is shown in column #I. The accuracy gains range from 4.8% in P2P to 28.9%
in BookShop. The gain of more than 20% for DistHT, BookShop and BBuffer is
explained by the fact that these examples take advantage of parallelism: the dif-
ferent distributed locations execute a similar number of instructions and besides
their code mostly runs in parallel. MailServer, Chat and P2P achieve smaller gains
because the blocks that are not included in the path (those that are guaran-
teed to happen in parallel with longer blocks) are non-recursive. Thus, when the
number of instructions is increased, the improvements are reduced proportion-
ally. Moreover, Chat and P2P create very dense graphs, and the paths that lead to
the maximum cost include almost all nodes of the graph. Column %m shows the
ratio obtained for the location that achieves the maximal gain w.r.t. the serial
cost. In most examples, except in MailServer, such maximal gain is achieved in
the location that executes the entry method. MailServer uses synchronization in
the entry method that leads to a smaller gain. Column %a shows the average
of the gains achieved for all locations. The average gain ranges from 80.3% to
31.4%, except for P2P, which has a smaller gain 14.1% due to the density of its
graph as mentioned above.

8 Conclusions and Related Work

We have presented what is to the best of our knowledge the first static cost anal-
ysis for distributed systems which exploits the parallelism among distributed
locations in order to infer a more precise estimation of the parallel cost. Our
experimental results show that parallel cost analysis can be of great use to know
if an application succeeds in exploiting the parallelism of the distributed loca-
tions. There is recent work on cost analysis for distributed systems which infers
the peak of the serial cost [3], i.e., the maximal amount of resources that a
distributed component might need along its execution. This notion is different
to the parallel cost that we infer since it is still serial; i.e., it accumulates the
resource consumption in each component and does not exploit the overall par-
allelism as we do. Thus, the techniques used to obtain it are also different: the
peak cost is obtained by abstracting the information in the queues of the dif-
ferent locations using graphs and finding the cliques in such graphs [3]. The
only common part with our analysis is that both rely on an underlying resource
analysis for the serial execution that uses cost centers and on a MHP analysis,
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but the methods used to infer each notion of cost are fundamentally different.
This work is improved in [4] to infer the peak for non-cumulative resources that
increase and decrease along the execution (e.g., memory usage in the presence of
garbage collection). In this sense, the notion of parallel cost makes sense only for
cumulative resources since its whole purpose is to observe the efficiency gained by
parallelizing the program in terms of resources used (and accumulated) in par-
allel by distributed components. Recent work has applied type-based amortized
analysis for deriving bounds of parallel first-order functional programs [10]. This
work differs from our approach in the concurrent programming model, as they
do not allow explicit references to locations in the programs and there is no dis-
tinction between blocking and non-blocking synchronization. The cost measure
is also quite different from the one used in our approach.

To simplify the presentation, we have assumed that the different locations
execute one instruction in one cost unit. This is without loss of generality because
if they execute at a different speed we can weight their block-level costs according
to their relative speeds. We argue that our work is of wide applicability as it can
be used in combination with any cost analysis for serial execution which provides
us with cost information at the level of the required fragments of code (e.g.,
[8,9,21]). It can also be directly adopted to infer the cost of parallel programs
which spawn several tasks to different processors and then use a join operator to
synchronize with the termination of all of them (the latter would be simulated
in our case by using a get instruction on all spawned tasks). As future work, we
plan to incorporate in the analysis information about the scheduling policy used
by the locations (observe that each location could use a different scheduler).
In particular, we aim at inferring (partial) orderings among the tasks of each
location by means of static analysis.

Analysis and verification techniques for concurrent programs seek finite repre-
sentations of the program traces to avoid an exponential explosion in the number
of traces (see [7] and its references). In this sense, our DFG’s provide a finite rep-
resentation of all traces that may arise in the distributed system. A multithread
concurrency model entails an exponential explosion in the number of traces,
because task scheduling is preemptive. In contrast, cooperative concurrency as
studied in this paper limits is gaining attention both for distributed [11] and for
multicore systems [6,20], because the amount of interleaving between tasks that
must be considered in analyses is restricted to synchronization points which are
explicit in the program.
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Abstract. We present the first static resource analysis of timed concur-
rent object programs. Instead of measuring the total resource consump-
tion over a complete execution, we measure the resource consumption at
different moments in time, that is, the resource consumption over time.
To obtain such a measure we perform a program transformation that
generates a program without time whose resource consumption corre-
sponds to the resource consumption of the timed program during time t.
The transformed program can then be analyzed with a combination of
existing tools. These provide upper bounds that safely approximate the
resource consumption of all possible behaviors of the program at all pos-
sible times. We implemented a prototype of the approach and evaluated
it on a complex program to demonstrate its feasibility.

1 Introduction

The use of static analysis to infer upper bounds on the resource consumption of
software systems is a very active area of research. Many tools have been recently
developed [7, 8, 10, 11, 15]. However, most effort has been focused on the analysis
of sequential programs. There is some initial research that tries to apply resource
analysis techniques to distributed and concurrent systems [1, 2, 12]. In contrast
to sequential systems, in a concurrent system it is not only important to estimate
the amount of consumed resources but also when they are consumed. If we have
a set of tasks to be executed, a system will behave differently, depending on
whether the tasks are scheduled simultaneously, sequentially, etc. Some aspects
of this richer concept of resource consumption are already explored in [2, 12].

We propose a novel approach for measuring concurrent resource consumption
based on a discrete time model. We present a static analysis that infers upper
bounds of the resource consumption over time. These upper bounds are expressed
as a function of the entry parameters of the program and the elapsed time
and allow to explore how resource consumption varies in a given program as
time advances. In our program the explicit aspects of time are captured in two
primitives, await duration(t) and until (t′), that suspend a task for a certain period
of time t or until the absolute time has reached t′. The main advantage of this
approach is that, by simply placing these time primitives at different locations
inside a program, we can obtain different kinds of behavior and analyze their
resource consumption.



The target of our analysis is a language based on concurrent objects. In this
language, each object owns a processor and executes in parallel with others.
Each object contains a set of tasks and only one task per object can be exe-
cuted at any given time, while the scheduling of tasks is non-deterministic and
non-preemptive. Communication and synchronization among objects is based
on asynchronous message passing and future variables. The language is inspired
by ABS [13] and the time primitives are (slightly simplified) taken from [6, 14].
However, the presented approach could be easily adopted to other concurrency
models based on creating and joining tasks.

To the best of our knowledge, our paper presents the first static resource anal-
ysis that analytically derives sound symbolic upper bounds for timed concurrent
programs. The analysis generates a set of upper bounds that summarize analyt-
ically the resource consumption of a program over time. The main contributions
of this work are:

– We define the novel concept of resource consumption over time (Sec. 3).
– We develop a sound program transformation that generates an untimed pro-

gram from a timed program (Sec. 4).
– We show how we can analyze the resulting untimed program with a combi-

nation of existing tools and how the results can be interpreted (Sec. 5).
– We illustrate the flexibility of the timed approach by inferring the peak cost

of an example borrowed from [2] (Sec. 6).

2 Timed Concurrent Programs

We adopt a lightweight object-oriented language. A program P consists of a set
of classes, each of them defines a set of fields and a set of methods. The set
of types includes the class names, the integer (Int) primitive type, the set of
future variable types fut(T ) and Unit. The latter is the default return type of
methods (like V oid in C). The notation T is used as a shorthand for T1, ...Tn,
and similarly for other names. Pure expressions (p) have no side effects. A pure
expression is local (naming convention pl) if it does not depend on any field.
The abstract syntax of class declarations CL, method declarations M , types T ,
variables v (x for local variables), and statements s is:

CL ::=class C {T f ;M} M ::=T m(T x){s; return p} v ::=x | this .f
s ::=s; s | v = e | if (p) s else s | while(p) s

await x? | await duration(pl) | until (pl) | release | cost p
e ::=new C(p) | x!m(p) | x.get | p T ::=C | Int |fut(T ) | Unit

We assume that all methods have a single return instruction at the end of the
method. If the method returns Unit, the return instruction is empty return.
Each object encapsulates a local heap which is not accessible from outside this
object, i.e., fields are always accessed using the this object, and any other object
can only access such fields through method calls. We assume that each program
includes a method called main(z) with a set of initial parameters z, from which
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c l a s s Hndset ( ts , smss ) {
Uni t no rma lBehav io r (mx , dur , t c ) {

i f (now ( )>t c && now ( )<t c +20)
midnightWindow (mx , dur , t c ) ;

e l s e {
t s ! c a l l ( dur ) ;
await durat ion (1 ) ;
no rma lBehav io r (mx , dur , t c ) ;

}}
Uni t midnightWindow (mx , dur , t c ) {

i f (now ( ) >= tc+20) {
norma lBehav io r (mx , dur , t c ) ;
} e l s e {

I n t i = 0 ;
whi le ( i < mx) {

smss ! sendSMS ( ) ;
i = i + 1 ;

}
await durat ion (1 ) ;
midnightWindow (mx , dur , t c ) ;

}}
}

c l a s s PhoneSvr{
Uni t c a l l ( dur ) {

whi le ( dur>0) {
cost 1 ;
dur = dur−1;
await durat ion (1 ) ;

}}
}

c l a s s SMSSvr{
Uni t sendSMS ( ) {

cost 1 ;
}

}

Uni t main (mx , dur , t c ) {
SMSSvr sms=new SMSSvr ( ) ;
PhoneSvr t s=new PhoneSvr ( ) ;
Hndset hs=new Hndset ( ts , sms ) ;
hs ! no rma lBehav io r (mx , dur , t c ) ;
}

Fig. 1. A timed program

execution will start. The main method does not belong to any class and has no
fields. The concurrency model is as follows: each object has a lock that is shared
by all the tasks that belong to the object. Data synchronization is by means of
future variables (denoted y): an await y? instruction is used to synchronize with
the result of executing a task y=x!m(p), where await y? is suspended until the
result assigned to the future variable y is available (i.e., the task is finished).
During suspension the object’s lock is released so that another pending task
on that object can take it. In contrast to await, the expression y.get blocks its
object (no other task of the same object can run) until y is available. Finally,
the instruction release releases the object’s lock unconditionally.

Time is a discrete magnitude. A timed program has a global clock common to
all concurrent components. The current time can be accessed through the pure
expression now() (which simply reads the value of the clock). Time is advanced
through the primitive await duration(pl) which releases the object’s lock until
time has advanced pl units (relative time progress) or until (pl) which releases
the object’s lock until time is at least pl (absolute time progress). Time only
advances when no task can progress any further.

2.1 Explicit Cost Model

We adopt the standard approach to obtain a parametric cost model. We intro-
duce a new statement cost p where p is a pure expression of integer type. When
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a statement cost p is executed, the result of evaluating p determines the amount
of resources consumed. The choice of the cost model (where the cost statements
are introduced) determines the resources that we want to observe. For exam-
ple, if we introduce a statement cost 1 after every instruction, we will infer an
upper bound on the number of executed instructions. Or we could add a cost
instruction to each new C instruction to measure the number of objects created.
Both time and cost annotations can be introduced automatically according to
the underlying architecture, network topology, or any other given criterion.

Example 1. Fig. 1 illustrates an example of a timed program with cost anno-
tations. The return instructions have been omitted given that all the methods
return Unit. The parameter types have also been omitted (they are all integers).
The program contains 3 classes: A phone server PhoneSvr that might process
calls of different duration. Each call lasts calltime time units and consumes one
resource per time unit; An SMS server SMSSvr that can process SMSs. Each
SMS is processed instantly consuming a resource unit. And the class Hndset that
models a possible behavior of the clients. In particular, it simulates a scenario
where the servers are receiving calls. The duration of calls is given by the param-
eter dur. At time tc, the behavior changes and we enter the midnight window
where we receive mx SMS per time unit. This exceptional behavior lasts until
time is tc+20 when it changes back to normal. This behavior is modelled by two
mutually recursive methods normalBehavior and midnightWindow. Finally, the main
method creates an SMS server sms, a phone server ts and calls normalBehavior.

2.2 Operational Semantics

A program state S is a set S = Ob ∪ T ∪ {clk(t)} where Ob is the set of all
created objects, T is the set of tasks (including finished tasks) and clk(t) is the
global clock with the current time t. The associative and commutative union
operator on states is denoted by white-space. An object is a term ob(o, a, lk)
where o is the object identifier, a is a mapping from the object fields to their
values, and lk the identifier of the active task that holds the object’s lock or ⊥
if the object’s lock is free. Only one task can be active (running) in each object
and hold its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(tk , o, l, s) where tk is
a unique task identifier, o identifies the object to which the task belongs, l is
a mapping from local (possibly future) variables to their values, and s is the
sequence of instructions to be executed or s = ε(val) if the task has terminated
and the return value val is available. Created objects and tasks never disappear
from the state in the semantics.

Given a program P with a main method main(z) and a set of initial values val,
the execution of a program starts from the initial state S0 (val) = {obj(0, f,⊥),
tsk(0, 0, buildLoc(val,main), body(main)), clk(1)} where we have an initial ob-
ject with identifier 0 with a free lock ⊥. f is an empty mapping (since main

has no fields). The local state is generated by buildLoc(val,main) that maps
the main method parameters z to the given entry values val and the rest
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(activate)

ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, {take; s})
. . . . . . . . . . . . . . . . .

→ ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, s)
. . . . . . . . . .

(release)

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {release; s})
. . . . . . . . . . . . . . . . . . .

→ ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, {take; s})
. . . . . . . . . . . . . . . . .

(assignment)

val = eval(p, a, l), l′ ] a′ = (l ] a)[v → val]

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {v = p; s})
. . . . . . . . . . . . . . . . . .

→ ob(o, a′, tk)
. . . . . . . . .

tsk(tk , o, l′, s)
. . . . . . . . . . .

(cost)

c = eval(p, a, l)

ob(o, a, tk) tsk(tk , o, l, {cost p; s})
. . . . . . . . . . . . . . . . . .

c→ tsk(tk , o, l, s)
. . . . . . . . . .

(await1)

l(y) = tk1, (lk = tk ∨ lk = ⊥)

ob(o, a, lk)
. . . . . . . .

tsk(tk , o, l, {await y?; s})
. . . . . . . . . . . . . . . . . . . .

tsk(tk1, o1, l1, ε(v))
→ ob(o, a, tk)

. . . . . . . .
tsk(tk , o, l, s)
. . . . . . . . . .

(await2)

l(y) = tk1, s1 6= ε(v)

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {await y?; s})
tsk(tk1, o1, l1, s1))→ ob(o, a,⊥)

. . . . . . . .

(return)

val = eval(p, a, l)

ob(o, a, tk)
. . . . . . . .

tsk(tk , o, l, {return p})
. . . . . . . . . . . . . . . . . .

→ ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, ε(val))
. . . . . . . . . . . . . .

(get)

l(y) = tk1, l
′ = l[x→ v]

ob(o, a, tk) tsk(tk , o, l, {x=y.get; s})
. . . . . . . . . . . . . . . . . . . .

tsk(tk1, o1, l1, ε(v))
→ tsk(tk , o, l′, s)

. . . . . . . . . . .

(New-Object)

fresh(o′), l′ = l[x→ o′]
a′ = initAtts(eval(p, a, l), C)

ob(o, a, tk) tsk(tk , o, l, {x = new C(p); s})
. . . . . . . . . . . . . . . . . . . . . . . . .

→ tsk(tk , o, l′, s)
. . . . . . . . . . .

ob(o′, a′,⊥)

(Async-Call)

l(x) = o1 6= null , l′ = l[y → tk1],
fresh(tk1), l1 = buildLoc(eval(p, a, l),m)

tsk(tk , o, l, {y = x!m(p); s})
. . . . . . . . . . . . . . . . . . . . . .
ob(o, a, tk)→ tsk(tk , o, l′, s)

. . . . . . . . . . .
tsk(tk1, o1, l1, body(m))

Fig. 2. Semantics

of local variables to default values. The initial time is one. Given a method
M ::=T m(T x){s; return p}, the function body(M) returns {take; s; return p} i.e.
the sequence of statements of the method preceded by an auxiliary instruction
take that fetches the lock.

Execution proceeds from S0 by applying non-deterministically the semantic
rules depicted in Figs. 2 and 3. We omit the rules for if and while as they are
standard, they can be found in the App. B. The operational semantics is given
in a rewriting style where a step is a transition of the form ab

c→ b ′ n, where
the dotted underlining indicates that term b is rewritten into b′; we look up the
term a but do not modify it and hence it is not included in the subsequent state;
term n is newly added to the state; and c is the cost of the transition according to
the cost model. We omit c if it is zero. For simplicity, we assume that only local
variables are assigned in the rules New-Object,Async-Call and Get. Fields can
still be modified with the rule Assignment. Transitions are applied according to
the rules as follows.
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(await duration)

t′ = t

tsk(tk , o, l, {await duration(pl); s}). . . . . . . . . . . . . . . . . . . . . . . . . . . .
ob(o, a, tk) clk(t)

→ tsk(tk , o, l, {until (pl + t′); s})
. . . . . . . . . . . . . . . . . . . . . . . .

(until2)

t′ = eval(pl, l), t
′ > t

tsk(tk , o, l, {until (pl); s}). . . . . . . . . . . . . . . . . . . .
ob(o, a, tk)
. . . . . . . .

clk(t)

→ ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, { untilp (pl); s}). . . . . . . . . . . . . . . . . . . . .
(until1)

t′ = eval(pl, l), t
′ ≤ t

ob(o, a, tk) tsk(tk , o, l, {until (pl); s}). . . . . . . . . . . . . . . . . . . .
clk(t)→ tsk(tk , o, l, s)

. . . . . . . . . .

(until3)

t′ = eval(pl, l), t
′ ≤ t

ob(o, a,⊥)
. . . . . . . .

tsk(tk , o, l, { untilp (pl); s}). . . . . . . . . . . . . . . . . . . . .
clk(t)→ ob(o, a, tk)

. . . . . . . .
tsk(tk , o, l, s)
. . . . . . . . . .

(tick)

canAdv, t′ = t+ 1

clk(t)
. . . .

→ clk(t′)
. . . . .

Fig. 3. Time semantics

Activate: A task that has a take statement obtains its object’s lock if it is free.
Release: release unconditionally yields the object’s lock so any other task of the
same object can take it. The instruction take is added to the pending instructions.
Assignment: The variable v gets assigned to the result of evaluating the pure
expression p given the current state a and l (denoted eval(p, a, l)). The notation
l′ = l[v → val] denotes that the mapping l′ is equal to l for all values except v
where l′(v) = val. We assume local variables and fields are always different. If
v is a local variable, l is updated l′ = l[v → val]. If v is a field, a is updated
a′ = a[v → val]. We express that as l′ ] a′ = (l ] a)[v → val].
Cost: c resource units are consumed where c is the result of evaluating the
expression p in the current state. As the object o is not modified, it is not
included in the resulting state.
Await1: The (local) future variable we are waiting for points to a finished task
and the await is completed. The finished task t1 is only looked up but it does
not disappear from the state as its return value may be needed later on. To
complete the await, the object’s lock must be free or in the task tk . As a result
of applying the rule, the task tk obtains (or keeps) the object’s lock.
Await2: If the task we are awaiting for is not finished, We release the lock.
Return: When return is executed, the return value val is stored (by adding
the instruction ε(val)) so that it can be obtained by the future variables that
reference the task. Besides, the lock is released and will never be taken again by
that task. Consequently, that task is finished.
Get: An x = y.get instruction waits for the (local) future variable but without
yielding the lock. It stores the value associated with the future variable y in x.
New-Object: An active task tk in object o creates an object o′ of type C, its
fields are initialized with default values and the given parameters eval(p, a, l)
(initAtts) and o′ is introduced to the state with a free lock.
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Async Call: A method call creates a new task (the initial state is created by
buildLoc using the calling values eval(p, a, l)) with a fresh task identifier t1 which
is associated to the corresponding future variable y in l′.
Await duration: It generates an until (pl + t′) instruction that substitutes the
original await duration(pl) where t′ is a constant with the current time of the
clock.
Until1: If the current time is greater or equal than the time we are waiting for
and the task has the object’s lock, we complete the until (pl) instruction. The
time we are waiting for is the result of evaluating the pure local expression pl.
We write eval(pl, l) to emphasize that pl does not depend on the object’s state.
Until2: If we have not reached the time we are waiting for, we release the lock.
we substitute untilp (pl) for until (pl). untilp (pl) will be able to take back the lock.
Its behavior is analogous to the auxiliary instruction take with respect to release.
Until3: If the current time is greater or equal than the time we are waiting for
and the lock is free, we complete the instruction untilp (pl) and obtain the lock.
Tick: The rule tick makes the time advance one unit. It is only applicable if
no task can progress. This behavior reflects the run-to-completion policy and is
enforced by the function canAdv. The latter is true only when no other semantic
rule can be applied to any task of the current state.

3 Cost over Time

The traditional definition of cost used in static resource analysis is concerned
with the total amount of resources consumed during the complete execution of
a program. Given program P and input values val, we can define the cost of a
trace as follows:

Definition 1 (Cost of a trace). Let tr(val) = S0(val)
c0→ S1

c1→ · · · be a
(possibly infinite) execution trace where val are the input values of the main
method and ci the cost of the semantic transition leading to state Si+1. The cost
of executing tr(val) is Costtr(val) =

∑
i ci i.e. the sum of the costs of the all

transitions in the trace tr.

Let T RP be the set of all possible traces of a program for all possible input
values, we define an upper bound of such a program:

Definition 2 (Upper bound). Let T be the types of the input parameters of
a program P, an upper bound function is defined as ub : T → R. ub(x) is a
valid upper bound of P iff for all input values val and traces tr(val) ∈ T RP :
Costtr(val) ≤ ub(val).

A conditional upper bound is an upper bound ub with a precondition such that
the upper bound is only valid when the input parameters satisfy the precondition.

The main problem with this upper bound definition is that it does not give
any information on how and when the resources are consumed. In the example
from Fig. 1 the total resource consumption is not bounded since it consists of an
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Fig. 4. Resource consumption profiles of the model from Fig. 1 which coincide with
their inferred upper bounds

infinite execution that consumes a non-zero amount of resources at each iteration.
For programs with timed behavior, we are interested in their consumption over
time, that is, the maximum possible amount of resources consumed at a moment
in time t.

Example 2. In Fig. 4, we show the resource consumption over time of our pro-
gram from Fig. 1 given different possible input parameters. We generated values
by executing the program with specific input values, and derived concrete values
from our analytically obtained upper bounds. In all three cases, the upper bounds
are precise. The first parameter of main determines the height of the midnight
window, the second the duration of the calls, and the third when the midnight
window takes place. Note that when a call is started, its cost is distributed in
time. In the third profile, we can see how at the start of the midnight window
there are still some calls in progress which cause an extra peak in resource con-
sumption. On the other hand, when the midnight window ends, it takes some
time until the cost goes back to 5 as calls are started one at a time.

Definition 3 (Cost of a trace in time). Let tr(val) = S0(val)
c0→ S1

c1→ · · ·
be an execution trace as above. The cost of executing such a trace at time tg
is the sum of the cost of all transitions where the time is tg. Costtr(val)(tg) =∑
i|clk(tg)∈Si+1

ci.

The goal of our analysis is to approximate (safely) the behavior of systems
over time by obtaining a set of (conditional) upper bounds that are parametrized
by the time we want to observe.

Definition 4 (Time-parametrized upper bound). Let T be the types of the
input parameters of a program P. A time-parametrized upper bound function has
type ub : (T ,N) → R. Then ub(x, tg) is a valid time-parametrized upper bound
of P iff for all input values val, tg ∈ N and tr(val) ∈ T RP : Costtr(val)(tg) ≤
ub(val, tg).
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1 : α(cost c) ⇒ if (tg==now()) cost c;
2 : α(y = x!m(v)) ⇒ y = x!m(v, tg)
3 : α(s1; s2) ⇒ α(s1);α(s2)
4 : α( if (p) s1 else s2) ⇒ if (p) α(s1) else α(s2)
5 : α(while(p) s) ⇒ while(p) α(s)
6 : α(s) ⇒ s otherwise

Fig. 5. Transformation over the statements

4 Program Transformation

To analyze timed programs we use a sound program transformation that gen-
erates untimed programs which can be analyzed by standard tools. In a first
step (Sec. 4.1) we transform a given program P into a program Ptg such that
the resource consumption of P at time tg is the same as the total resource con-
sumption of Ptg. Then we perform a second transformation (Sec. 4.2) that safely
models the advance of time.

4.1 Cost Model Specialization

To achieve the desired effect, every method (including the main method) is
equipped with an extra parameter tg that holds the time we want to observe.
We assume tg is disjoint with the existing variable names. The statements of
each method are transformed using the function α defined in Fig. 5. A method
declaration T m(T x){s; return p; } becomes T m(T x, Int tg){α(s); return p; }.

The function α defined in Fig. 5 works as follows: (1) we substitute every cost
statement by a conditional statement that only consumes resources if the current
time is tg; (2) tg is added to the method calls as a parameter; (3),(4) and (5) the
tranformation of non-atomic statements is the transformation of the statements
that compose them; and (6) the remaining statements are not modified.

To prove soundness of the transformation, we define the concept of extended
local state and α-equivalent state.

Definition 5 (Extended local state). Let l be a local state of a task, then
ltg = l + [tg → y] is a mapping where for every x ∈ Dom(l), l(x) = ltg(x) and
ltg(tg) = y. We call ltg an extended local state of l with tg.

Definition 6 (α-equivalent state). Define an extended execution state Sα:
Sα = {e | e ∈ S ∧ e 6= tsk(tk , o, l, s)}∪

{tsk(tk , o, l + [tg → tgo], α(s)) | tsk(tk , o, l, s) ∈ S}
We apply the transformation α to all the pending statements of all the tasks in S
and take their extended local state. The objects and the clock remain unchanged;
tg0 denotes the unique initial value of the variable tg throughout the execution.

We use the function α for two purposes: the function defines the transforma-
tion over the original program and, at the same time, we use it to establish a
relation between execution states of the original and transformed program.
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1 : τ(y = x!m(p)) ⇒ y = x!m(p, time)
2 : τ(until (pl)) ⇒ release; time = max(pl, time);
3 : τ(await duration(pl)) ⇒ release; time = max(time+ pl, time);
4 : τ(await y?) ⇒ await y?; time = max(time, y.time);
5 : τ( untilp (t)) ⇒ take; time = max(t, time);
6 : τ(s1; s2) ⇒ τ(s1); τ(s2)
7 : τ( if (p) s1 else s2) ⇒ if (p) τ(s1) else τ(s2)
8 : τ(while(p) s) ⇒ while(p) τ(s)
9 : τ(s) ⇒ s otherwise

Fig. 6. Second transformation over the statements

Theorem 1 (Soundness). Given a program P and its transformed program
Ptg, for every trace tr(val) ∈ T RP whose final state is S, there is a trace
tr ′(val, tg0) ∈ T RPtg

whose final state is Sα and Costtr(val)(tg0) = Costtr ′(val,tg0)
.

This states that each behavior of the original program can be simulated by
the transformed program. In addition, the transformed program Ptg captures
the amount of the total cost consumed at time tg0 (the input parameter).

Proof idea By induction on the length of a trace. We show that for each step
S

c→ Snew in P, there is a step or a sequence of steps in the transformed program
between α-equivalent states Sα

c1→ S1
c2→ · · · cm→ Sαnew. Moreover, the cost

∑m
i=1 ci

is c if clk(tg0) ∈ S and 0 if clk(t′) ∈ S for t′ 6= tg0. We can apply the same
semantic rules in the original and the transformed program for all cases except
for rule (Cost) and reach an α-equivalent state (the addition of the variable tg
does not affect the behavior). For rule (Cost) we show that the cost is consumed
only if the time is equal to tg (thanks to the conditional statement) and the
resulting state is an α-equivalent state. A detailed proof is in App. B.1. ut

Corollary 1. An upper bound of Ptg is a time-parametrized upper bound of P.

4.2 Rendering Time Explicit

Now we eliminate timing behavior from our programs. That transformation takes
a program Ptg and generates etPtg (explicit time program). The program etPtg
does not contain any timing constructs. The transformation adds a new param-
eter time to each method of the program (disjoint from all existing variable
names). We transform the program in such a way that the local variable time
of every task coincides with the global clock whenever the task is executing.

After the execution of each method the value of variable time is returned
together with its original return value. For the technical realization we as-
sume that future variables now store a pair of values. The original value is
accessed with y.get and the time value with y.time. A method declaration
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Transformed call Transformed normalBehavior

1 c a l l ( dur , tg , t ime ) {
2 whi le ( dur>0) {
3 i f ( tg==time )
4 cost 1 ;
5 dur= dur−1;
6 r e l e a s e ; t ime=max(

t ime+1, t ime ) ;
7 }
8 re tu rn t ime }

9 norma lBehav io r (mx , dur , tc , tg , t ime ) {
10 i f ( t ime>t c && time<t c +20)
11 midnightWindow (mx , dur , tc , tg , t ime ) ;
12 e l s e {
13 t s ! c a l l ( dur , tg , t ime ) ;
14 r e l e a s e ; t ime=max( t ime+1, t ime ) ;
15 norma lBehav io r (mx , dur , tc , tg , t ime ) ;
16 }
17 re tu rn t ime }

Fig. 7. Some methods of the transformed program

T m(T x){s; return p} becomes (T, Int) m(T x, Int time){τ(s); return (p, time)}.
Methods that did not return a value now return time.

Method statements are transformed using the function τ defined in Fig. 6.
(1) Whenever a method is called, the current time is passed as a parameter.
Hence, new tasks have a local time that starts when the task is created. For
the until (pl) (2) and await duration(pl) (3) statements the lock is released and
time is updated. (4) When we execute an await y? we compare the current
local time and the time returned by the future and keep the maximum. (5)
untilp (t) is an auxiliary statement used when the lock of the task has been
released. We substitute it by the auxiliary instruction take generated by release

and then update the time value. This way the transformations of until (pl) and
untilp (t) are coherent. Note that untilp (t) cannot appear in a program because
it is an auxiliary instruction. However, by defining its transformation, we can
use τ to define τ -equivalent execution states and prove the soundness of the
transformation (see Def. 8 and Thm. 4.2). (6) (7) and (8) the tranformation
of non-atomic statements is the transformation of the statements that compose
them. (9) The remaining statements are not modified. Finally, every reference
to now() is substituted by a reference to the new local variable time.

Example 3. In Fig. 7 we show some of the transformed methods. Every method
has two additional parameters tg and time; the references to now() have been
substituted by time (lines 3 and 10); The await duration(1) instructions have
been replaced by a release followed by an update of the variable time (lines 6
and 14); the methods return the time (lines 8 and 17) and the cost statement in
method call is wrapped into a conditional statement (line 3).

This transformation is valid for non-blocking programs. Intuitively, a program
is blocking if we can have a situation where a task is waiting for the completion
of another without releasing its object’s lock (only possible with y.get instruc-
tions). In that case, other tasks in the same object could be delayed in time
although they are ready to execute because they cannot access the lock. A suf-
ficient condition to guarantee that a program is non-blocking is that every y.get
instruction is preceded by an await y?. Given that condition, the task related to
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y is guaranteed to be finished when y.get is reached and the y.get instruction
will be completed immediately without blocking.

Definition 7 (Non-blocking program). A program P is non-blocking iff for
every reachable state S, if tsk(tk , o, l, y.get; s) ∈ S such that l(y) = tk1, then
tsk(tk1, o1, l1, ε(v)) ∈ S.

Similar to the previous transformation we can define a τ -equivalent execution
state of S by applying the transformation to all the pending statements of all
the tasks in S, obtaining their extended local state and removing the clock. The
objects remain unchanged. A necessary condition for a state to be τ -equivalent is
that the values of the local variables time in all the tasks that hold the object’s
lock correspond to the global clock. The tasks without the lock may have an
outdated time value (smaller or equal than the global clock).

Definition 8 (τ-equivalent state). Let S be a state of the original program
with clk(t) ∈ S. Then a τ -equivalent state Sτ to S is defined as:
Sτ = {ob(o, a, lk) | ob(o, a, lk) ∈ S}∪

{tsk(tk , o, l + [time→ Ttk ], {τ(s); return (p, time)})
| tsk(tk , o, l, {s; return p}) ∈ S}

where Ttk represents the current time of each task. We require that Ttk ≤ t for
all tasks and Ttk = t for the tasks that have the lock.

Theorem 2 (etPtg Simulates Ptg). Given a non-blocking program Ptg and its
transformed program etPtg, then for every trace tr(val) ∈ T RPtg with states

S1..n there is a trace tr ′(val, 1) ∈ T RetPtg
that contains the τ -equivalent states

Sτ1..n, in the same order, Sτn being the final state of tr ′ and Costtr(val)(tg) =

Costtr ′(val,1). Note that tr ′ can have intermediate states that do not have an
equivalent in tr. Additionally, consecutive states in tr might have a single τ -
equivalent state in tr ′.

Proof idea By induction on the length of a trace. The base case is trivial. In
the inductive step, we assume that we have a trace tr ∈ T RPtg

of length n and
a trace tr′ ∈ T RetPtg

such that tr′ contains n τ -equivalent states to the ones
appearing in tr in the same order (tr′ can have additional intermediate states).
The cost of tr and tr′ is equal. We prove that for any step from the final state
of tr S

c→ Snew, there is a step or sequence of steps in the transformed program
that reaches a τ -equivalent state with the same resource consumption.

For the rules that are applied to a task with a lock and that are not affected
by τ we apply the same rule to the transformed program and obtain the desired
state. The fact that the program is non-blocking implies that when we apply
(Tick), all the locks must be free. If we apply (Tick) in Ptg, all the local variables
time become outdated but as the tasks do not have the lock, the state in tr′ is
still τ -equivalent. For the rules (Await1), (Until1), (Until2), and (Until3) we
have to prove that the assigned time in tr′ corresponds to the clock in tr. The idea
is that since the rules are applicable (the awaited task is finished or the awaited
time is reached), the clock cannot advance before they are applied (this is only
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valid for non-blocking programs). Therefore, max(time, v.time), max(pl, time)
and max(t, time) yield the correct value of the clock and the reached state in
tr′ is τ -equivalent. Similarly, since the rule (Activate) is applicable (a release

or task creation), the clock cannot have advanced and the variable time is not
outdated. The statement await duration(d) can be reduced to until (t + d). A
detailed proof can be found in App. B.2. ut

Corollary 2. An upper bound of etPtg is an upper bound of Ptg.

Note that theorem states the soundness of the transformation but not its
completeness. The transformation is in fact not complete. That is, the trans-
formed program can have additional behaviors that are not present in the origi-
nal program. In particular, if we have an until (pl) statement, it is possible that
when executed eval(pl, l) ≤ t and the semantic rule Until1 is applied. This rule
does not release the lock. However, the corresponding transformed program will
always release the lock τ(until (pl)) = release; time = max(pl, time);. The trans-
formed program could then schedule another pending task whereas the original
program cannot do the same. However, we do not expect any additional loss
of precision for this reason because the later analyses already conservatively
approximate a possible release of the lock in any instruction that contains a
conditional release (such as await y?).

5 Analyzing Untimed Programs

We are able to apply existing tools for resource analysis on transformed programs
to obtain an upper bound or a set of upper bounds, but it is crucial to ensure
high precision of the analysis (cf. Fig. 4). To achieve this we combine the frontend
of the resource analyzer COSTABS [1] with the more recent solver CoFloCo1

[10]. The input of COSTABS is an untimed ABS program (i.e., a superset of
the language in Sect. 2) and generates a set of cost equations that characterize
the cost of the program and can be solved by CoFloCo. Cost equations are
non-deterministic recurrence equations annotated with constraints.

Example 4. COSTABS+CoFloCo generates 15 conditional upper bounds for the
main method of our example. We show some of them, the complete data from
the example can be found in App. A.

# Upper Bound Precondition
6 tg (mx ≥ 1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1 ∧ tc ≥ tg + 1)

8 mx+ tc (mx ≥ 1∧tc ≥ 1∧tg ≥ tc+2∧dur ≥ tg+1∧tc+18 ≥ tg)∨(dur =
tg ∧ mx ≥ 1 ∧ tc ≥ 2 ∧ tc + 18 ≥ dur ∧ dur ≥ tc + 2) ∨ (tg =
tc+ 19∧mx ≥ 1∧ tg ≥ 20∧ dur ≥ tg + 1)∨ (tg = tc+ 1∧mx ≥
1 ∧ tg ≥ 2 ∧ dur ≥ tg + 1)

12 tg − tc− 19 (mx ≥ 1∧tc ≥ 1∧tg ≥ tc+21∧tg ≥ dur+tc∧dur+tc+18 ≥ tg)
15 mx+ dur + tc− tg (mx ≥ 1∧tg ≥ dur+1∧tg ≥ tc+2∧tc+18 ≥ tg∧dur+tc ≥ tg+2)

1 Other resource analysis tools could be used as long as they admit a parametric cost
model, i.e., it is must be possible to establish the cost at each program point.
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Fig. 8. A resource consumption profile generated to observe other upper bounds
1Uni t m(p , q , r , s , n ) {
2 awa i t d u r a t i o n ( nondet ) ;
3 t h i s ! r ( r ) ;
4 whi le (n>0){
5 t h i s ! p ( p ) ;
6 y=t h i s ! q ( q ) ;
7 await y ? ;
8 awa i t d u r a t i o n ( nondet ) ;
9 awa i t d u r a t i o n (1 ) ;

10 n=n−1;
11 } t h i s ! s ( s ) ;
12}

13Uni t r /p/q/ s ( c ) {
14 awa i t d u r a t i o n ( nondet ) ;
15 cost c ;
16}

# Upper bound Precondition

1 max(s, q) + r + n ∗ p n ≥ 3 ∧ tg ≥ n
2 q + r + (tg + 1) ∗ p tg ≥ 2 ∧ n ≥ tg + 2

Fig. 9. A timed model annotated to obtain peak cost

In Fig. 4, we could observe the precision of the upper bounds that correspond
to the resource consumption in simulations for concrete inputs. By examining the
upper bounds, we can get a good approximation of the different behaviors of the
program. Preconditions can be useful to see under which conditions a program
behaves differently. In particular, we can generate test data from preconditions
that generate a certain behavior. We used this idea to create execution patterns
of our example that were not observed in the initial simulations, for example
upper bound #15 in Fig. 8. The upper bounds here are also tight and the
intervals where each upper bound is valid are annotated with its number.

6 Inferring Peak Cost

In Fig. 9, we introduce a new example to illustrate how explicit time primitives
can be used for the purpose of modelling peak cost. The example is an adaptation
of the running example from [2]. In the original example, the methods r,p,q and
s are left unspecified. We assume they have all the same implementation and
consume the amount c of resources which is given by the input parameter. With
peak cost we mean the following: at any time tg there is a set of pending tasks
that could be executed simultaneously. Let C(tg) be the sum of the cost of these
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tasks at tg. Then the peak cost is the maximum value that C(tg) attains. In [2]
the notion of simultaneity is defined based on synchronization points await y?
(line 7). In order to emulate the behavior that corresponds to peak cost analysis,
we simply make time advance one unit right after each synchronization point
(line 9 in gray). In addition, with this concept of simultaneity, tasks do not
need to start executing immediately but can be delayed an indefinite amount of
time. We can model that by inserting a non-deterministic await duration(nondet)
whenever a method starts or restarts to execute (lines 2, 8 and 14).

After adding these annotations we apply our analysis and obtain upper
bounds of the peak cost. On the right side of Fig. 9 we display the two main
conditional upper bounds (we leave out some border cases) computed by our
analysis. The first one corresponds to the result obtained by [2] and captures
that there can be n pending instances of task p to be executed simultaneously,
but only one instance of q as the program waits for each instance to finish before
calling the next one. This is the peak cost for executing the complete program
as reflected in the precondition tg ≥ n. The second upper bound gives more fine-
grained information on how the tasks might accumulate in the loop as time tg
passes. This kind of analysis cannot be obtained with the method of [2], because
it involves analyzing timed behavior.

7 Related Work, Conclusions and Future Work

To the best of our knowledge, we present the first resource analysis for timed
concurrent object-oriented programs. The analysis is based on an inexpensive
program transformation into untimed programs. The untimed programs can be
analyzed with existing tools for resource analysis [7, 8, 10, 11, 15] so our analysis
directly benefits from any improvement of these techniques. Because the timing
behavior is parametric, our analysis opens multiple possibilities for reasoning
about concurrent programs. For instance, we could generate timing annotations
according to a network model and observe how processing power is consumed.

The most closely related work is about resource analysis of concurrent objects
[1, 2]. The main focus of [1] is on how to deal with shared memory in concurrent
applications and they propose the notion of cost centers as a way of computing
the cost of different components (objects) separately. In contrast, our approach
analyzes cost over time—it can be seen as a layer on top of their analysis. As
mentioned in Sec. 6, paper [2] does not measure total cost but peak cost, i.e., the
maximum cost a component can consume at any given time. The crucial differ-
ence is that in our analysis the cost is determined by the explicit time behavior,
whereas [2] abstracts away from timed behavior and uses the maximal degree
of parallelism obtained from a May-Happen-in-Parallel analysis [3]. Because we
have explicit time primitives, we can infer upper bounds that depend on time.
Additionally, we can infer peak cost parametrized with time (see Sec. 6). The
authors of paper [12] define a type system to infer upper bounds on two cost
models (work and depth) for functional programs. work is the total cost of the
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program and depth is similar to the maximum time that can be reached in any
part of the program if we make time advance each time resources are consumed.

Timed automata [4] have been widely used in the analysis of timed systems.
In particular, they have been applied to concurrent object-oriented programs [9],
however, with a different focus: to transform such programs into timed automata
to check their schedulability. Priced timed automata [5] model systems with
both time and resources, but they differ from our setting in crucial ways, having
continuous time and no input parameters. They also focus on different properties,
such as minimum-cost reachability.

Our current analysis does not support blocking programs. When we have
a blocking program, there can be extra delays in tasks after instructions that
release an object’s lock (await y?, release, and await duration(t)). These extra
delays depend on the blocking instructions that might interleave with such tasks
and they must be taken into account to update the time variable correctly. How
to approximate blocking programs safely and precisely is left to future work.
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Abstract. We present a novel static analysis for inferring precise com-
plexity bounds of imperative and recursive programs. The analysis oper-
ates on cost equations. Therefore, it permits uniform treatment of loops
and recursive procedures. The analysis is able to provide precise upper
bounds for programs with complex execution flow and multi-dimensional
ranking functions. In a first phase, a combination of control-flow refine-
ment and invariant generation creates a representation of the possible
behaviors of a (possibly inter-procedural) program in the form of a set
of execution patterns. In a second phase, a cost upper bound of each
pattern is obtained by combining individual costs of code fragments.
Our technique is able to detect dependencies between different pieces of
code and hence to compute a precise upper bounds for a given program.
A prototype has been implemented and evaluated to demonstrate the
effectiveness of the approach.

1 Introduction

Automatic resource analysis of programs has been subject to intensive research
in recent years. This interest has been fuelled by important advances in termina-
tion proving, including not only ranking function inference [6, 16], but complete
frameworks that can efficiently prove termination of complex programs [3, 7, 10].
Termination proving is, however, only one aspect of resource bound inference.

There are several approaches to obtain upper bounds for imperative programs
[3, 8, 9, 12–15, 17, 18]. Most pay little attention to interprocedural, in particular,
to recursive programs. Only SPEED [14] and the recent paper [8] address recur-
sive procedures. The extent to which SPEED can deal with complex recursive
procedures is hard to evaluate (they provide only one example). The approach
of [8] ignores the output of recursive calls which, however, can be essential to
obtain precise bounds (see Fig.1).

A different line of work is based on Cost Equations, a particular kind of
non-deterministic recurrence relations, annotated with constraints. This is the
approach followed by the COSTA group [1, 2, 4, 5]. One advantage of Cost Equa-
tions is that they can deal with both loops and recursion in a uniform manner.
However, the approach does not cope well with loops that exhibit multiple phases
or with programs whose termination proof requires multiple linear ranking func-
tions for a single loop/recursive procedure.



Program 1
1main ( i n t m, i n t n ) {
2 // assume (m>n>0)
3 boo l fwd=f a l s e ;
4 whi le ( n > 0) {
5 n=move (n ,m, fwd ) ;
6 i f ( ? ) fwd=t rue ;
7 }
8}
9 i n t move ( i n t n ,m, boo l fwd ) {

10 i f ( fwd ) {
11 i f (m > n && ?) {
12 . . . ; // [ Cost 2 ]
13 re tu rn move ( n+1,m, fwd ) ;
14 }
15 } e l s e {
16 i f ( n > 0 && ?) {
17 . . . ; // [ Cost 1 ]
18 re tu rn move (n−1,m, fwd ) ;
19 }
20 }
21 re tu rn n ;
22}

Fig. 1. Program example

We use the program in Fig.1 to illus-
trate some of the problems we address
in this paper. The program is annotated
with structured comments containing cost
labels of the form [Cost x]. These indi-
cate that at the given program point x re-
source units are consumed. The program
consists of two methods. Method move be-
haves differently depending on the value
of boolean variable fwd. If fwd is true, it
may call itself recursively with n′ = n+ 1
and consume two resource units. If fwd is
false, it may call itself with n′ = n−1 and
consume one resource unit. Method main

has a loop that calls move and updates the
value of n with the result of the call. Ad-
ditionally, at any iteration, it can change
the value of fwd to true.

This example is challenging for several
reasons: (i) move behaves differently de-
pending on the value of fwd, so we ought
to analyse its different behaviors sepa-
rately; (ii) the return value of move influ-
ences the subsequent behavior of the main method and has to be taken into
account; (iii) the main method might not terminate and yet its cost is finite.
Moreover, the upper bound of terminating and non-terminating executions is
different. Below we present a table that summarizes the possible upper bounds
of this program.

Execution pattern (1) (2) (3)
Upper bound n+ 2m 2(m− n) n
Terminating × × X

Pattern (1) occurs when move

decrements n for a while but without
reaching 0 (the initial n is an upper
bound of the cost); then the guard in
line 6 is true and move increases n up to m, incurring a cost of 2m. The loop in
main never terminates because n does not reach 0. In pattern (2) the guard in
line 6 is true at the beginning and move increases n to m consuming 2 ∗ (m− n).
Finally, in pattern (3), the guard in line 6 is never true (or only when n = 0).
Then move decrements n to 0 and the main loop may terminate, consuming n
resource units.

The techniques presented in our paper can deal fully automatically with com-
plex examples such as the program above. Our main contributions are: first, a
static analysis for both imperative and (linearly) recursive programs that can in-
fer precise upper bounds for programs with complex execution patterns as above.
The analysis combines a control-flow refinement technique in the abstract con-
text of cost equations and a novel upper bound inference algorithm. The latter
exploits dependencies between different parts of a program during the computa-
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tion of upper bounds and it takes into account multiple upper bound candidates
at the same time. Second, we provide an implementation of our approach. It
is publicly available (see Sec. 6) and it has been evaluated in comparison with
KoAT [8], PUBS [1] and Loopus[17]. The experimental evaluation shows how
the analysis deals with most examples presented as challenging in the literature.

2 Cost Equations

In this section, we introduce the necessary concepts for the reasoning with cost
equations. The symbol x represents a sequence of variables x1, x2, · · · , xn of any
length. The expression vars(t) denotes the set of variables in a generic term t.
A variable assignment α : V 7→ D maps variables from the set of variables V to
elements of a domain D and α(t) denotes the replacement of each x ∈ vars(t) by
α(x). A linear expression has the form q0+q1∗x1+· · ·+qn∗xn where qi ∈ Q and
x1, x2, · · · , xn are variables. A linear constraint is l1 ≤ l2, l1 = l2 or l1 < l2, where
l1 and l2 are linear expressions. A cost constraint ϕ is a conjunction of linear
constraints l1 ∧ l2 ∧ · · · ∧ ln. The expression ϕ(x̄) represents a cost constraint ϕ
instantiated with the variables x̄. A cost constraint ϕ is satisfiable if there exists
an assignment α : V 7→ Z such that α(ϕ) is valid (α satisfies ϕ).

Definition 1 (Cost expression). A cost expression e is defined as:

e ::= q | nat(l) | e+ e | e ∗ e | nat(e− e)|max(S) | min(S)

where q ∈ Q+, l is a linear expression, S is a non-empty set of cost expressions
and nat(e) = max(e, 0). We often omit nat() wrappings in the examples.

Definition 2 (Cost equation). A cost equation c has the form 〈C(x) = e +∑n
i=1Di(yi), ϕ〉 (n ≥ 0), where C and Di are cost relation symbols; all variables

x, yi, and vars(e) are distinct; e is a cost expression; and ϕ is a conjunction of
linear constraints that relate the variables of c.

A cost equation 〈C(x) = e+
∑n

i=1Di(yi), ϕ〉 states that the cost of C(x) is e
plus the sum of the costs of each Di(yi). The relation ϕ serves two purposes: it
restricts the applicability of the equation with respect to the input variables and
it relates the variables x, vars(e), and yi. One can view C as a non-deterministic
procedure that calls D1, D2, . . . , Dn.

Fig. 2 displays the cost equations corresponding to the program in Fig. 1.
To simplify presentation in the examples we reuse some variables in different
relation symbols. In the implementation they are in fact different variables with
suitable equality constraints in ϕ.

We restrict ourselves to linear recursion, i.e., we do not allow recursive equa-
tions with more than one recursive call. Our approach could be combined with
existing analyses for multiple recursion such as the one in [4]. Input and output
variables are both included in the cost equations and treated without distinction.
By convention, output variable names end with “o” so they can be easily recog-
nized. In a procedure, the output variable corresponds to the return variable (no
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SCC Nr Cost Equation

S1 1 main(n,m) = while(n,m, 0) n ≥ 1 ∧m ≥ n + 1

S2 2 while(n,m, fwd) = 0 n ≤ 0
3 while(n,m, fwd) = move(n,m, fwd, no) + while(no,m, fwd) n > 0
4 while(n,m, fwd) = move(n,m, fwd, no) + while(no,m, 1) n > 0

S3 5 move(n,m, fwd, no) = 2 + move(n + 1,m, fwd, no) fwd = 1 ∧ n < m
6 move(n,m, fwd, no) = 0 fwd = 1 ∧ n = no
7 move(n,m, fwd, no) = 1 + move(n− 1,m, fwd, no) fwd = 0 ∧ n > 1
8 move(n,m, fwd, no) = 0 fwd = 0 ∧ n = no

Fig. 2. Cost equations of the example program from Fig. 1

in the method move). In a loop, the output variables are the local variables that
might be modified inside the loop. In the while loop from Fig.2, we would have
while(n,m, fwd, no, fwdo) where no and fwdo are the final values of n and fwd,
but the cost equations have been simplified for better readability.

Generating Cost Equations Cost equations can be generated from source code or
low level representations. Loop extraction and partial evaluation are combined
to produce a set of cost equations with only direct recursion [1]. The details
are in the cited papers and omitted for lack of space. The resulting system is a
sequence of strongly connected components (SCCs) S1, . . . , Sn such that each Si

is a set of cost equations of the form 〈C(x) = e+
∑k

j=1Dj(yj) +
∑n

j=1 C(yj), ϕ〉
with k ≥ 0 and n ∈ {0, 1} and each Dj ∈ Si′ where i′ > i. Each SCC is a
set of directly recursive equations with at most one recursive call and k calls to
SCCs that appear later in the sequence. Hence, S1 is the outermost SCC and
entry point of execution while Sn is the innermost SCC and has no calls to other
SCCs. Each resulting cost equation is a complete iteration of a loop or recursive
procedure.

Example 1. In Fig. 2, the cost equations of Program 1 are grouped by SCC.
Each SCC defines only one cost relation symbol: main, while, and move occur
in S1, S2, and S3, respectively. However, the cost equations in any SCC may
contain references to equations that appear later. For instance, equations 3 and
4 in S2 have references to move in S3.

A concrete execution of a relation symbol C in a set of cost equations is
generally defined as a (possibly infinite) evaluation tree T = node(r, {T1, . . . Tn}),
where r ∈ R+ is the cost of the root (an instance of the cost expression in C)
and T1, . . . Tn are sub-trees corresponding to the calls in C. In the following we
will not need this general definition. A formal definition of evaluation trees and
their semantics is in [1].

3 Control-flow Refinement of Cost Equations

As noted in Sec. 1, we have to generate all possible execution patterns and
discard unfeasible patterns that might reduce precision or even prevent us from
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obtaining an upper bound. Our cost equation representation allows us to look
at one SCC at a time. If we consider only the cost equations within one SCC,
we have sequences of calls instead of trees (we are only considering SCCs with
linear recursion). That does not prevent each cost equation in the sequence from
having calls to other SCCs.

Example 2. Given S3 from Fig. 2, the sequence 5 · 5 · 6 represents a feasible
execution where equation 5 is executed twice followed by one execution of 6. On
the other hand, the execution 5 · 8 is infeasible, because the cost constraints of
its elements are incompatible (fwd = 1 and fwd = 0).

Given an SCC C consisting of cost equations SC , we can represent its execu-
tion patterns as regular expressions over the alphabet of cost equations in SC .
We use a specific form of execution patterns that we call chain:

Definition 3 (Phase, Chain). Let SC = c1, . . . , cr be the cost equations of an
SCC C. A phase is a regular expression (ci1 ∨ . . . ∨ cim)+ over SC (executed a
positive number of times). A special case is a phase where exactly one equation
is executed: (ci1 ∨ . . . ∨ cim).

A chain is a regular expression over SC composed of a sequence of phases
ch = ph1 · ph2 · · · phn such that its phases do not share any common equation.
That is, if c ∈ phi, then c 6∈ phj for all j 6= i.

We say that a cost equation that has a recursive call is iterative and a cost
equation with no recursive calls is final. Given an SCC C consisting of cost
equations SC , we use the name convention i1, i2 . . . in for the iterative equations
and f1, f2 . . . fm for the final equations in SC . All possible executions of an SCC
can be summarized in three basic chains: (1) chn = (i1∨ i2∨· · ·∨ in)+ · (f1∨f2∨
· · ·∨fm) an arbitrary sequence of iterations that terminates with one of the base
cases; (2) chb = (f1∨f2∨· · ·∨fm) a base case without previous iterations; (3) an
arbitrary sequence of iterations that never terminates chi = (i1 ∨ i2 ∨ · · · ∨ in)+.

Example 3. The basic chains of method move (SCC S3 of Fig.2) are: chn =
(5∨ 7)+(6∨ 8), chb = (6∨ 8) and chi = (5∨ 7)+. Obviously, these chains include
a lot of unfeasible call sequences which we want to exclude.

3.1 Chain Refinement of an SCC

Our objective is to specialize a chain into more refined ones according to the
constraints ϕ of its cost equations. To this end, we need to analyse the possible
sequences of phases in a chain. We use the notation c ∈ ch to denote that the
cost equation c appears in the chain ch.

Definition 4 (Dependency). Let c, d ∈ ch, c = 〈C(x̄c) = . . . + C(z̄), ϕc〉,
d = 〈C(x̄d) = . . . , ϕd〉; then c � d iff the constraint ϕc ∧ ϕd ∧ (z̄ = x̄d) is
satisfiable. Intuitively, c � d iff d can be executed immediately after c. The
relation �∗ is the transitive closure of �.
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We generate new phases and chains according to these dependencies. Define
c ≡ d iff c = d (syntactic equality) or c �∗ d and d �∗ c. Each equivalence class
in [c]≡ gives rise to a new phase. If [c]≡ = {c} and c 6� c, the new phase is (c).
If [c]≡ = {c1, . . . , cn}, the new phase is (c1 ∨ · · · ∨ cn)+. To simplify notation
we identify an equivalence class with the phase it generates. Then ph ≺ ph′ iff
ph 6= ph′, c ∈ ph, d ∈ ph′ and c � d. ch′ = ph1 · · · phn is a valid chain iff for all
1 ≤ i < n: phi ≺ phi+1.

Example 4. The dependency relation of move (SCC S3 from Fig. 2) is the fol-
lowing: 5 � 5, 5 � 6, 7 � 7 and 7 � 8. This produces the following phases:
(5)+, (7)+, (6) and (8), which in turn give rise to chains: non-terminating chains
(5)+, (7)+; terminating chains (5)+(6), (7)+(8) and the base cases (6), (8). This
refinement captures the important fact that the method cannot alternate the
behavior that increases n (cost equation 5) with the one that decreases it (cost
equation 7).

Theorem 1 (Refinement completeness). Let ch1, . . . , chn be the generated
chains for a SCC S from the basic chains of S. Any possible sequence of cost
equation applications of S is covered by at least one chain chi, i ∈ 1..n (a proof
can be found in [11]).

3.2 Forward and Backward Invariants

We can use invariants to improve the precision of the inferred dependencies and
to discard unfeasible execution patterns. Given a chain ch = ph1 · · · phn in Si

with C as cost relation symbol, we can infer forward invariants (fwdInv) that
propagate the context in which the chain is called from ph1 to the subsequent
phases. Additionally, we can propagate the relation between the variables from
the final phase phn to the previous phases until calling point ph1, obtaining
backward invariants (backInv). These invariants provide us with extra informa-
tion at each phase phi coming from the phases that appear before (fwdInv) or
after (backInv) phi.

fwdInv ch(phi) and backInv ch(phi) denote forward and backward invariants
valid at any application of the equations in the phase phi of chain ch. If it is
obvious which chain is referred to, we leave out the subscript ch. The forward
invariant at the beginning of a chain ch in an SCC Si is given by the conditions
under which ch is called in other SCCs. The backward invariant at the end of
a chain ch is defined by the constraints ϕ of the base case phn for terminating
chains. For non-terminating chains, the backward invariant at the end of a chain
is the empty set of constraints (true). The backward invariant of the first phase
of a chain ch represents the input-output relations between the variables. It can
be seen as a summary of the behavior of ch. The procedure for computing these
invariants can be found in [11].

Additionally, we define ϕph and ϕph∗ for iterative phases. The symbol ϕph

represents the relation between the variables before and after any positive num-
ber of iterations of ph, while ϕph∗ represents the relation between the variables
before and after zero or more iterations.
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Example 5. Some of the inferred invariants for the chains of S3 of our example:
backInv (5)+(6)((5)+) = fwd = 1 ∧m > n ∧m ≥ no ∧ no > n
backInv (7)+(8)((7)+) = fwd = 0 ∧ n > 0 ∧ no ≥ 0 ∧ n > no
These invariants reflect applicability conditions (Such as fwd = 0) and the
relation between the input and the output variables. For example, no > n holds
when n is increased and n > no when it is decreased. The condition m ≥ no is
derived from the fact that at the end of phase (5)+ we have m > n, in phase (6)
n′ = no′ and the transition is n′ = n+ 1 ∧ no′ = no.

We can use forward and backward invariants to improve the precision of
the inferred dependencies. At the same time, a more refined set of chains will
allow us to infer more precise invariants. Hence, we can iterate this process
(chain refinement and invariant generation) until no more precision is achieved
or until we reach a compromise between precision and performance. We can
also use the inferred invariants to discard additional cost equations or chains.
Let c = 〈C(x̄) = . . . + C(z̄), ϕ〉 ∈ phi, if ϕ ∧ backInvch(phi) ∧ fwdInv ch(phi) is
unsatisfiable, c cannot occur and can be eliminated from phi in the chain ch. If
any invariant belonging to a chain is unsatisfiable its pattern of execution cannot
possibly occur and the chain can be discarded.

3.3 Terminating Non-termination

In our refinement procedure, we distinguish terminating and non-terminating
chains explicitly. Given a chain ph1 · · · phn, it is assumed that every phase phi
with i ∈ 1..n−1 is terminating. This is safe, because for each phi that is iterative
we generated another chain of the form ph1 · · · phi, where phi is assumed not to
terminate. That is, we consider both the case when phi terminates and when it
does not terminate. Given a non-terminating chain, if we prove termination of
its final phase, we can safely discard that chain.

Consider a phase (c1 ∨ c2 ∨ . . . ∨ cm)+, we obtain a (possibly empty) set of
linear ranking functions for each ci, denoted RFi, using the techniques of [16,
6]. A linear ranking function of a cost equation 〈C(x) = · · · + C(x′), ϕ〉 with a
recursive call C(x′) is a linear expression f such that (1) ϕ⇒ f(x) ≥ 0 and (2)
ϕ⇒ f(x)− f(x′) ≥ 1.

For each ranking function f of ci, we check whether its value can be incre-
mented in any other cj = 〈C(x) = · · ·+ C(x′), ϕj〉, j 6= i (whether ϕj ∧ f(x)−
f(x′) < 0 is satisfiable). If f can be increased in cj we say that f depends on
cj . As in [3], the procedure for proving termination consists in eliminating the
cost equations that have a ranking function without dependencies first. Then,
incrementally eliminate the cost equations that have ranking functions whose
dependencies have been already removed until there are no cost equations re-
maining. The set of ranking functions and their dependencies will be used again
later to introduce specific bounds for the number of calls to each ci.

Example 6. The ranking functions for the phases (5)+ and (7)+ are m− n and
n respectively. With such ranking functions, we can discard the non-terminating
chains (5)+ and (7)+. The remaining chains are (5)+(6), (7)+(8), (7) and (8).
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Nr Cost Equation

3.1 while(n,m, fwd) = move(5)+(6)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 1 ∧m > n ∧m ≥ no ∧ no > n

3.2 while(n,m, fwd) = move(6)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 1 ∧ no = n

3.3 while(n,m, fwd) = move(7)+(8)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 0 ∧ no ≥ 0 ∧ n > no

3.4 while(n,m, fwd) = move(8)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 0 ∧ n = no

Fig. 3. Refinement of Cost equation 3 from Fig. 2

3.4 Propagating Refinements

The refinement of an SCC Si in a sequence S1, . . . , Sn can affect both prede-
cessors and successors of Si. The initial forward invariants from SCCs that are
called in Si, the forward invariants of the SCCs Si+1, . . . , Sn might be strength-
ened by the refinement of Si. The preceding SCCs that have calls to Si can
be specialized so they call the refined chains. The backward invariants can be
included in the calling cost equations thus introducing a “loop summary” of Si’s
behavior.

Each cost equation containing a call to Si, say 〈D(x̄) = . . .+Cch(z̄), ϕ〉 ∈ Sj

with j < i, can be replaced with a set of cost equations 〈D(x̄) = . . .+Cch′(z̄), ϕ
′〉,

where ch′ = ph1ph2 · · · phm is one of the refined chains of ch, and ϕ′ := ϕ ∧
backInvch′(ph1). If ϕ′ is unsatisfiable, the cost equation can be discarded.

Example 7. We propagate the refinement of method move (SCC S3) to while
(SCC S2). Fig. 3 shows how cost equation 3 is refined by substituting the calls to
move by calls to specific chains of move and by adding the backward invariants
of the callees to its cost constraint ϕ. Analogously, cost equation 4 is refined into
4.1, 4.2, 4.3, and 4.4. The only difference is that the latter have a recursive call
to while with fwd = 1. The cost equations of move are not changed because
the do not have calls to other SCCs.

The new phases are (3.1∨ 3.2∨ 4.1∨ 4.2)+, (3.3∨ 3.4)+, (4.3), (4.4) and (2).
Phase (3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ represents iterations of the loop when fwd = 1.
The fact that fwd is explicitly set to 1 in 4.1 and 4.2 does not have any effect.
Phase (3.3∨ 3.4)+ represents the iterations when fwd = 0 and is kept that way
in the recursive call. Finally, (4.3) and (4.4) are the cases where fwd is changed
from 0 to 1. If we use the initial forward invariant n ≥ 1 ∧m > n of main (in
SCC S1), we obtain the following chains:

Pattern (1) Pattern (2) Pattern (3)

(3.3 ∨ 3.4)+(4.3)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (4.3)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (3.3 ∨ 3.4)+(2)
(3.3 ∨ 3.4)+(4.4)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (4.4)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (3.3 ∨ 3.4)+

They are grouped according to the execution patterns that were intuitively pre-
sented in Sec. 1. Note that neither (3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ or (3.3 ∨ 3.4)+ are
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always terminating as we can iterate indefinitely on 3.2, 4.2 and 3.4. These cases
correspond to a call to move that immediately returns without modifying n.
Therefore, we cannot discard any of the non-terminating chains.

4 Upper Bound Computation

4.1 Cost Structures

At this point, a refined program consists of a sequence of SCCs S1, . . . , Sn where
each SCC Si contains a set of chains. We want to infer safe upper bounds for
each chain individually but, at the same time, take their dependencies into ac-
count. The standard approach on cost equations [1] consists in obtaining a cost
expression that represents the cost of each SCC Si and substituting any call to
that Si by the inferred cost expression. That way, we can infer closed-form upper
bounds for all SCCs in a bottom up approach (From Sn to S1). This approach
turns out not to be adequate to exploit the dependencies between different parts
of the code as we illustrate in the next example.

Example 8. Let us obtain an upper bound for method main when it behaves as
in chain (3.3 ∨ 3.4)+(2). This is a simple pattern, where move only increases or
leaves n unchanged. Following the standard approach, we first obtain the upper
bound for move when called in 3.3 and 3.4, that is, when move behaves as in
(7)+(8) and (8). By multiplying the maximum number of recursive calls with the
maximum cost of each call the upper bound we obtain is n and 0, respectively.
The cost of (3.3∨3.4)+(2) is then the maximum cost of each iteration nmultiplied
by the maximum number of iterations. However, 3.4 can iterate indefinitely, so
we fail to obtain an upper bound.

If we apply the improved method of [4] after the refinement, we consider 3.3
and 3.4 independently. Phase 3.3 has zero cost and 3.4 has a ranking function
n, yielding a bound of n2 for this chain (while a more precise bound is n).

To overcome this problem, we define a new upper bound computation method
based on an intermediate structure that summarizes all the cost components
while maintaining part of the internal structure of what generated the cost.

Definition 5 (Cost Structure). A cost structure CT is a pair SE : CS.
Here SE is a cost expression of the form SE =

∑n
i=1 SEi ∗ ivi + e (n ≥ 0),

where e is a cost expression and ivi is a symbolic variable representing a natural
number. We refer to the ivi as iteration variables, to a product SEi ∗ ivi as
iteration component and to SE as structured cost expression. CS is a (possibly
empty) set of constraints of the form

∑m
j=1 ivj ≤ e (m ≥ 1), such that all its

iteration variables appear in SE. The constraints relate iteration variables with
cost expressions. We use the notation

∑
iv ≤ e when the number of iteration

variables is irrelevant.

Intuitively, a structured cost expression represents a fixed cost e plus a set
of iterative components SEi ∗ ivi, where each iterative component is executed
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ivi times and each iteration has cost SEi. The set of constraints CS binds the
values of the iteration variables iv and can express dependencies among iteration
components. For instance, a constraint iv1 + iv2 ≤ e expresses that the iteration
components iv1 and iv2 are bound by e and that the bigger iv1 is, the smaller
iv2 must be.

We denote with IV the set of iteration variables in a cost structure. Let
val : IV → E be an assignment of the iteration variables to cost expressions,
a valid cost of a cost structure CT =

∑n
i=1 SEi ∗ ivi + e : CS is defined as

val(SE) =
∑n

i=1 val(SEi) ∗ val(ivi) + e such that val(CS) is valid.1 A cost
structure can represent multiple upper bound candidates.

Example 9. Consider a cost structure a∗ iv1 +b∗ iv2 +c : {iv1 ≤ d, iv1 + iv2 ≤ e}
where a, b, c, d, and e are cost expressions. If a > b and d < e, an upper bound is
a ∗ d+ b ∗ nat(e− d) + c (The nat() wrapping can be omitted). In case of a < b,
an upper bound is b ∗ e+ c.

We follow a bottom up approach from Sn to S1 and infer cost structures
for cost equations, phases and chains, detailed in Secs. 4.3, 4.4, and 4.5 below.
Sec. 4.2 contains a complete example. In Sec. 5, we present a technique to obtain
maximal cost expressions from cost structures. They key of the procedure is to
safely combine individual cost structures while detecting dependencies among
them. The intermediate cost structures are correct, that is, at the end of our
analysis of our example (Fig. 1) we will not only have upper bounds of main
but also a correct upper bound of move.

We define the operations that form the basis or our analysis.

Definition 6 (Cost Expression Maximization). Given a cost expression e,
a cost constraint ϕ, and a set of variables v, the operation bd(e, ϕ, v) returns a
set E of cost expressions that only contain variables in v and that are safe upper
bounds. That is, for each e′ ∈ E, we have that for all variable assignments to
integers α : vars(e′)∪vars(e)→ Z that satisfy ϕ: α(e′) ≥ α(e). It is possible that
bd(e, ϕ, v) returns the empty set. In this case, no finite upper bound is known.

For bd(e, ϕ, v̄) = {e1, . . . , en} define min(bd(e, ϕ, v̄)) = min(e1, . . . , en). Note
that if bd(e, ϕ, v̄) = ∅, min(bd(e, ϕ, v̄)) = ∞. Cost expression maximization can
be implemented using geometrical projection over the dimensions of v̄ in the
context of the polyhedra abstract domain or as existential quantification of the
variables of e and ϕ that do not appear in v̄. This operation is done independently
for each l in the cost expression. The results can be safely combined as linear
expressions appear always inside a nat() in cost expressions.

Definition 7 (Structured Cost Expression Maximization). We define
recursively the bound of a structured cost expression as Bd(

∑n
i=1 SEi ∗ ivi +

e, ϕ, v̄) =
∑n

i=1Bd(SEi, ϕ, v̄) ∗ ivi + min(bd(e, ϕ, v̄)).

1Cost structures have some similarities to the multiple counter instrumentation
described in [14]. Iteration variables can be seen as counters for individual loops or
recursive components and constraints represent dependencies among these counters.
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SCC Chain Execution

2 (3.3 ∨ 3.4)+(2) c3.?(x1)→ · · · c3.3(xi) → · · · → c3.?(xf )→ c2(xf+1)
↓ · · · ↓ · · · ↓

3 (7)+(8) c7(y1) → · · · → c7(yf )→ c8(yf+1)

Fig. 4. Schema of executing chain (3.3 ∨ 3.4)+(2)

4.2 Example of upper bound computation

Fig. 4 represents the execution of chain (3.3 ∨ 3.4)+(2). The execution of the
phase (3.3 ∨ 3.4)+ consists on a series of applications of either 3.3 or 3.4. Each
equation application has a call to move. In particular, 3.3 calls move(7)+(8) and
3.4 calls move(8). In Fig. 4, only one call to move(7)+(8) is represented. cn(x)
represents an instance of cost equation n with variables x.

Cost of move In order to compute the cost of the complete chain, we start by
computing the cost of the innermost SCCs. In this case, the cost of move. The
cost of one application of 8 (c8(yf+1)) and 7 (c7(yi)) are 0 and 1 respectively
(taken directly from the cost equations in Fig. 2). The cost of phase (7)+ is the
sum of the costs of all applications of c7: c7(y1), c7(y2), · · · , c7(yf ). If c7 is applied
iv7 times, the total cost will be 1 ∗ iv7. Instead of giving a concrete value to iv7,
we collect constraints that bind its value and build a cost structure. In Sec. 3.3
we obtained the ranking function n for 7 so we have iv7 ≤ nat(n1). Moreover,
the number of iterations is also bounded by nat(n1−nf ), the difference between
the initial and the final value of n in phase (7)+ (see Lemma 1). Consequently,
the cost structure for (7)+ is 1 ∗ iv7 : {iv7 ≤ n1, iv7 ≤ n1 − nf} (we omit
the nat() wrappings). If we had more ranking functions for 7, we could add
extra constraints. This is important because we do not know yet which ranking
function will yield the best upper bound. Additionally, we keep the cost per
iteration and the number of iterations separated so we can later reason about
them independently (detect dependencies). The cost of (7)+(8) is the cost of (7)+

plus the cost of (8) but expressed according to the initial variables y1. We add the
cost structures and maximize them (Bd) using the corresponding invariants. We
obtain 1 ∗ iv7 : {iv7 ≤ n1, iv7 ≤ n1 − no1} (because nf > nf+1 = nof+1 = no1).

Cost of one application of 3.3, 3.4 and 2 The cost of (2) is 0. The cost of one
application of 3.4 is the cost of a call to move(8), that is, 0. Conversely, the
cost of one application of 3.3 is the cost of one call to move(7)+(8). We want the
cost of c3.3(xi) expressed in terms of the entry variables xi and the variables
of the corresponding recursive call xi+1. We maximize the cost structure of
move(7)+(8) using the cost constraints of 3.3 (ϕ3.3). This results in the cost
structure 1 ∗ iv7 : {iv7 ≤ ni, iv7 ≤ ni − ni+1} (the output no is ni+1 in the
recursive call).

Cost of phase (3.3 ∨ 3.4)+ The cost of phase (3.3 ∨ 3.4)+ is the sum of the cost
of all applications of c3.3 and c3.4: c3.?(x1), c3.?(x2), · · · , c3.?(xf ). We group the
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summands originating from 3.3 and from 3.4 and assume that c3.3 and c3.4 are
applied iv3.3 and iv3.4 times respectively. The sum of all applications of c3.4 is
0∗iv3.4 = 0. However, the cost of each c3.3(xi) might be different (depends on xi)
so we cannot simply multiply. Using the invariant ϕ(3.3∨3.4)∗ and ϕ3.3 we know
that n1 ≥ ni∧ni > ni+1∧ni+1 ≥ 0. Maximizing each of these constraints yields
iv7 ≤ n1 and we obtain a cost structure 1 ∗ iv7 : {iv7 ≤ n1} that is greater or
equal than all 1 ∗ iv7 : {iv7 ≤ ni, iv7 ≤ ni − ni+1} (because n1 ≥ ni). Therefore,
a valid (but imprecise) cost of (3.3 ∨ 3.4)+ is (1 ∗ iv7) ∗ iv3.3 : {iv7 ≤ n1, iv3.3 ≤
n1, iv3.3 ≤ n1−nf} (n is a ranking function of 3.3). If we solve the cost structure,
we will obtain the upper bound n2.

Inductive constraint compression Because we kept the different components of
the cost separated, we can easily obtain a more precise cost structure Each call
to move starts where the last one left it and all of them together can iterate
at most n times. This is reflected by the constraint iv7 ≤ ni − ni+1. We can
compress all the iterations (n1 − n2) + (n2 − n3) + · · ·+ (nf−1 − nf ) ≤ n1 − nf ,
pull out the iteration component 1∗ iv7 and obtain a more precise cost structure
(1 ∗ iv7) + (0 ∗ iv3.3) : {iv7 ≤ n1 − nf , iv3.3 ≤ n1, iv3.3 ≤ n1 − nf}. Then, we can
eliminate (0 ∗ iv3.3) arriving at (1 ∗ iv7) : {iv7 ≤ n1−nf} which will result in an
upper bound n.

4.3 Cost Structure of an Equation Application

Consider a cost equation c = 〈C(x̄) =
∑n

i=1Di(ȳi)+e+C(x̄′), ϕ〉, where C(x̄′) is
a recursive call. We want to obtain a cost structure SEc : CSc that approximates
the cost of

∑n
i=1Di(ȳi) + e and we want such a cost structure to be expressed

in terms of x̄ and x̄′.

Example 10. Consider cost equation 3.3 from Fig. 3 which is part of SCC S2:
while(n,m, fwd) = move(7)+(8)(n

′′,m′′, fwd′′, no) + while(n′,m′, fwd′)
Assume ϕ contains n′′ = n∧n′ = no. The cost of one application of 3.3 is the cost
of move(7)+(8)(n,m, fwd, no) expressed in terms of n,m, fwd and n′,m′, fwd′.
Let the cost of move(7)+(8) be 1 ∗ iv7 : {iv7 ≤ n′′, iv7 ≤ n′′ − no}, then we
obtain an upper bound by maximizing the structured cost expression and the
constraints in terms of the variables n,m, fwd and n′,m′, fwd′. The obtained
cost structure is 1 ∗ iv7 : {iv7 ≤ n, iv7 ≤ n− n′}.

Let SEi : CSi be the cost structure of the chain Di, then the structured cost
expression can be computed as SEc =

∑n
i=1Bd(SEi, ϕ, x̄)+min(bd(e, ϕ, x̄)). By

substituting each call Di(ȳi) by its structured cost expression and maximizing
with respect to x̄, we obtain a valid structured cost expression in terms of the
entry variables.

A set of valid constraints CSc is obtained simply as the union of all sets
CSi expressed in terms of the entry and recursive call variables (x̄ and x̄′):
CSc ⊇ {

∑
iv ≤ e′|∑ iv ≤ e ∈ CSi, e

′ ∈ bd(e, ϕ, x̄x̄′)}. Should the cost equation
not have a recursive call, all the maximizations will be performed only with
respect to the entry variables x̄.
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Constraint Compression In order to obtain tighter bounds, one can try to detect
dependencies among the constraints when they have a linear cost expression. Let∑
ivi ≤ nat(li) ∈ CSi and

∑
ivj ≤ nat(lj) ∈ CSj , j 6= i. Now assume there

exist lnew ∈ bd(li + lj , ϕ, x̄x̄′), l′i ∈ bd(li, ϕ, x̄x̄′), and l′j ∈ bd(lj , ϕ, x̄x̄′) such that
ϕ ⇒ (lnew ≤ (l′i + l′j) ∧ lnew ≥ li ∧ lnew ≥ lj). nat(lnew) might bind nat(li)
and nat(lj) tighter than nat(l′i) and nat(l′j). Then we can add

∑
ivi +

∑
ivj ≤

nat(lnew) to the new set of constraints CSc.

Example 11. Suppose the cost equation from the previous example had two
consecutive calls to move: while(n,m, fwd) = move(7)+(8)(n1,m1, fwd1, no1) +
move(7)+(8)(n2,m2, fwd2, no2) +while(n′,m′, fwd′) with {n1 = n∧ no1 = n2 ∧
no2 = n′} ⊆ ϕ. The resulting cost structure would be 1 ∗ iv7.1 + 1 ∗ iv7.2 ∗ 2 :
{iv7.1 ≤ n, iv7.1 ≤ n−n′, iv7.2 ≤ n, iv7.2 ≤ n−n′} (iv7.1 and iv7.2 correspond to
the iterations of the two instances of phase (7)+). However, we could compress
iv7.1 ≤ n1 − no1 and iv7.2 ≤ n2 − no2 (from Ex. 10) into iv7.1 + iv7.2 ≤ n − n′
and add it to the final set of constraints. This set represents a tighter bound and
captures the dependency between the first and the second call.

4.4 Cost Structure of a Phase

Refined phases have the form of a single equation (c) or an iterative phase
(c1 ∨ c2 ∨ . . . ∨ cn)+. The cost of (c) is simply the cost of c. The cost of an
iterative phase is the sum of the costs of all applications of each ci (see Sec. 4.2).
Let CTi = SEi : CSi be the cost of one application of ci, we group the summands
according to each ci and assign a new iteration variable ivi that represents the
number of times such a cost equation is applied. The total cost of the phase is∑n

i=1(
∑ivi

j=1 SEi(xj)) where SEi(xj) is an instance of SEi with the variables
corresponding to the j-th application of ci.

For each ci in the phase (c1 ∨ c2 ∨ . . . ∨ cn)+ we obtain a structured cost
expression Bd(SEi, ϕph∗ , x̄1) where ϕph∗ is an auxiliary invariant that relates x̄1
(the variables at the beginning of the phase) to any x̄j as defined in Sec. 3.2.
That structured cost expression is valid for any application of ci during the
phase. This allows us to transform each sum

∑ivi

j=1 SEi(x̄j) into a product ivi ∗
Bd(SEi, ϕph∗ , x̄1). Similarly, we maximize the cost expressions in the constraints.
A set of valid constraints is CSph =

⋃n
i=1({∑ ivi ≤ e′i|

∑
ivi ≤ ei ∈ CSi, e

′
i ∈

bd(ei, ϕph∗ ∧ ϕci , x̄1}) ∪ CSnew, where CSnew is a new set of constraints that
bounds the new iteration variables (iv1, iv2, · · · , ivn). The maximization of the
constraints is equivalent to the maximization of the iteration variables inside
SEi (a proof can be found in [11]).

Bounding the iterations of a phase To generate the constraints in CSnew, we use
the ranking functions and their dependencies obtained when proving termination
(see Sec. 3.3).

Example 12. Consider a phase formed by the following cost equations expressed
in compact form (we assume that all have the condition a, b, c ≥ 0):
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1 : p(a, b, c) = p(a− 1, b, c) 2 : p(a, b, c) = p(a + 2, b− 1, c) 3 : p(a, b, c) = p(a, c, c− 1)

(3) has a ranking function c with no dependencies. We can add iv3 ≤ c to the
constraints. (2) has b as a ranking function but it depends on (3). Every time (3)
is executed, b is “restarted”. Fortunately, the value assigned to b has a maximum
(the initial c). Therefore, we can add the constraint iv2 ≤ b+ c ∗ c. Finally, (1)
has a as a ranking function that depends on (2). a is incremented by 2 in every
execution of (2) whose number of iterations is at most b + c ∗ c. We add the
constraint iv1 ≤ a+ 2 ∗ (b+ c ∗ c).

More formally, we have a set RFi for each ci in a phase. Each f ∈ RFi

has a (possibly empty) dependency set to other cj . Given a ranking function f
that occurs in all sets RFi1 , . . . , RFim for a maximal m, ik ∈ 1..n. If f has no
dependencies, then nat(f) expressed in terms of x̄1 is an upper bound on the
number of iterations of ci1 , . . . , cim and we add

∑m
k=1 ivik ≤ nat(f) to CSnew.

If f depends on cj1 , . . . , cjl (ji ∈ 1..n) and ubj1 , . . . , ubjl are upper bounds
on the number of iterations of cj1 , . . . , cjl , then we distinguish two types of
dependencies: (1) if cji increases f by a constant tji then each execution of
cji can imply tji extra iterations. We add ubji ∗ tji to f ; (2) otherwise, if f

can be “restarted” in every execution of cji , then Rf
ji
∈ bd(f(x̄3), ϕph∗(x̄1x̄2) ∧

ϕcji
(x̄2x̄3), x̄1) represents the maximum value that f can take in cji (if it exists)

and we add ubji ∗ nat(Rf
ji

). Taken together, we can add
∑m

k=1 ivik ≤ nat(f) +∑p
i=1 ubji ∗ tji +

∑l
i=p ubji ∗ nat(R

f
ji

) to CSnew where cj1 , cj2 · · · cip are the
dependencies of type (1) and cip , cip+1

· · · cil the ones of type (2).
On top of this, we add constraints that depend on the value of the variables

after the phase (see the cost of (7)+ Sec.4.2). This will allow us to perform
constraint compression afterwards.

Lemma 1. Given a sequence of r calls ci1(x̄1) · ci2(x̄2) · · · cir (x̄r) · c′(x̄r+1),
during which ci occurred p times and f ∈ RFi, and for all 〈cij (x̄j) = · · · +
cij+1

(x̄j+1), ϕ〉, ϕ⇒ (f(x̄j)− f(x̄j+1) ≥ 0). We have that f(x̄1)− f(x̄r+1) ≥ p.

If f is a ranking function in RFi1 , . . . , RFim as above, if f has no dependen-
cies, we can use Lemma 1 (a proof can be found in [11]) to add

∑m
k=1 ivik ≤

nat(f(x̄1)−f(x̄f )) to CSnew where x̄f are the variables at the end of the phase.

Inductive constraint compression We generalize the constraint compression pre-
sented in Sec. 4.3. Instead of compressing two constraints, we compress an arbi-
trary number of them inductively. This is the mechanism used to obtain a linear
bound for the chain (3.3 ∨ 3.4)+ at the end of Sec. 4.2.

When a constraint is compressed, its iteration variables should be removed
from constraints that cannot be compressed. Removing an iteration variable
from a constraint is always safe but can introduce imprecision.

Given a cost expression ei that we want to compress to
∑
iv ≤ ei, we start

with a copy e′i of e1 as our candidate. First, prove the base case ϕi ⇒ e′i ≥ ei
(which is trivial given that ei and e′i are equal). Then prove the induction step
ϕph(x̄1x̄2)∧ϕph∗(x̄2x̄3)∧ϕi(x̄3x̄4)⇒ e′i(x̄1x̄4) ≥ e′i(x̄1x̄2)+ei(x̄3x̄4). Assuming e′i
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is valid for a number of iterations (represented as ϕph(x̄1x̄2)), this shows that it is
valid for one more iteration (ϕi(x̄3x̄4)) even if there are interleavings with other
cj (ϕph∗(x̄2x̄3)). Once we proved that, we can add the constraint

∑
iv′ ≤ e′i and

pull the corresponding iteration components out of the corresponding product
(a proof can be found in [11]).

If we can prove the stronger inequality e′i(x̄1x̄4) ≥ e′i(x̄1x̄2) + ei(x̄3x̄4) + 1,
then we know that e′i also decreases with the iterations of ci. In this case we derive
a new constraint

∑
iv′+ ivi ≤ e′i. We can generalize this procedure to compress

constraints that originate from different equations. This is demonstrated by the
following example.

Example 13. Consider the phase (3.1∨3.2∨4.1∨4.2)+. Both 3.1 and 4.1 have a
call to move(5)+(6) and their cost structures are iv5.1 ∗ 2 : {iv5.1 ≤ n′−n, iv5.1 ≤
m − n} and iv5.2 ∗ 2 : {iv5.2 ≤ n′ − n, iv5.2 ≤ m − n}. We can compress both
iteration variables obtaining iv5.1 ∗ 2 + iv5.2 ∗ 2 : {iv5.1 + iv5.2 ≤ n′ − n} (3.2
and 4.2 have zero cost) that when maximized will give us iv5.1 ∗ 2 + iv5.2 ∗ 2 :
{iv5.1 + iv5.2 ≤ m− n} which represents the upper bound 2(m− n).

4.5 Cost Structure of a Chain

Given a chain ch = ph1 · · · phn whose phases have cost structures CT1, . . . CTn,
we want to obtain a cost structure CTch = SEch : CSch for the total cost of
the chain. This is analogous to computing the cost structure of an equation in
Sec. 4.3. One constructs a cost constraint ϕch relating all variables of the calls
to the entry variables and to each other: ϕch = ϕph1

(x1x2) ∧ ϕph2
(x2x3) ∧ · · · ∧

ϕphn(xn). This cost constraint can be enriched with the invariants of the chain.
The structured cost expression is SEch =

∑n
i=1Bd(SEi, ϕch, x̄) and the con-

straints are CSc ⊇ {
∑
iv ≤ e′|∑ ivi ≤ e ∈ CSi, e

′ ∈ bd(e, ϕch, x̄)}. Again, we
can apply constraint compression to combine constraints from different phases.

Example 14. The cost of patterns (2) and (3) in Ex. 7 derive directly from the
cost of their phases (see Sec. 4.2 and Ex. 13). We examine the cost of pattern
(1), that is, (3.3∨3.4)+(4.3)(3.1∨3.2∨4.1∨4.2)+. Considering that variables are
subscripted with 1, 2 and 3 for their value before the first, second and third phase,
the cost structures of the phases are: 1∗iv7.1 : {iv7.1 ≤ n1−n2}, 1∗iv7.2 : {iv7.2 ≤
n2 − n3} and iv5.1 ∗ 2 + iv5.2 ∗ 2 : {iv5.1 + iv5.2 ≤ n4 − n3}. The joint invariants
guarantee that n3 ≥ 0∧n4 ≤ m. We can compress the constraints iv7.1 ≤ n1−n2
and iv7.2 ≤ n2−n3 and maximize with respect to the initial variables obtaining
1 ∗ iv7.1 + 1 ∗ iv7.2 + 2 ∗ iv5.1 + 2 ∗ iv5.2 : {iv7.1 + iv7.2 ≤ n1, iv5.1 + iv5.2 ≤ m1}.
Such a cost structure represents the bound n+ 2m as expected.

5 Solving Cost Structures

Solving a cost structure SE : CS means to look for a maximizing assignment
valmax from iteration variables to cost expressions (without iteration variables)
such that CS ⇒ valmax(SE) ≥ SE is valid. Even though iteration variables
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range over natural numbers, we consider a relaxation of the problem where
iteration variables can take any non-negative real number. The maximization of
valmax(SE) represents the cost structure SE where each iv has been substituted
by valmax(iv) and valmax(SE) is an upper bound of the cost structure SE : CS.

Let SE =
∑n

i=1 SEi∗ivi+e, The maximization of each SEi can be performed
independently, because its iteration variables depend neither on other iteration
variables of SEj for j 6= i nor on any ivi. Let ei be the maximization of SEi,
then we obtain

∑n
i=1 ei ∗ ivi + e as well as a set of constraints over the ivi. As

the ei’s can be symbolic expressions, not necessarily comparable to each other,
we need a procedure to find an upper bound independently of the ei.

We group iteration components (Def. 5) based on dependencies. Two iteration
components depend on each other if their iteration variables appear together in
a constraint. An iteration group IG is a partial cost structure

∑m
i=1 eji ∗ivji : CS

(1 ≤ ji ≤ n for i ∈ 1..m) where its iteration components depend on each other.
A constraint

∑m
i=1 ivji ≤ e is active for assignment val iff

∑m
i=1 val(ivji) = e.

Let C =
∑m

i=1 ivji ≤ e, C ′ =
∑m+k

i=1 ivji ≤ e′ be constraints such that C ⊆ C ′

and val any assignment: (i) If C is active for val, then C = e and we substitute∑m+k
i=m+1 ivji ≤ nat(e′ − e) for C ′ making the two constraints independent; (ii)

If C is not active, we ignore C and consider the rest of the constraints.
Consider an IG SE : CS that we want to maximize. For each C,C ′ ∈

CS with C ⊆ C ′, we use the observation in the previous paragraph to derive
simplified constraints CS1, CS2. We solve both constraints and obtain val1, val2.
The maximum cost of IG is min(val1(SE), val2(SE)). Constraints with only one
iv can always be reduced. We repeat the procedure until the constraints cannot
be further simplified. The constraints can now be grouped into irreducible IGs.
A trivial IG is one with a single iv constraint iv ≤ e whose maximal assignment
is val(iv) = e. All constraints in an irreducible, non-trivial IG have at least two
iteration variables.

Example 15. Consider the following cost structure iv1∗1+iv2∗(b)+iv3∗(iv4∗2) :
{iv1 + iv2 + iv3 ≤ a+ b, iv1 + iv2 ≤ c, iv4 ≤ d}. First, we maximize the internal
iteration component iv4∗2 which contains a trivial IG iv4 ≤ d. The result is iv1∗
1+iv2∗(b)+iv3∗(2d) : {iv1+iv2+iv3 ≤ a+b, iv1+iv2 ≤ c}. This cost structure
forms a single IG with two constraints one contained in the other. (1) We assume
iv1 + iv2 ≤ c is active. Then we have {iv3 ≤ nat(a+ b− c), iv1 + iv2 ≤ c} which
contains two irreducible IG. The first one is iv3 = nat(a+ b− c) and the second
one has two possibilities iv1 = c, iv2 = 0 or iv1 = 0, iv2 = c (Thm. 2 below). The
result is then nat(a+b−c)+max(b∗c, 2d∗c). (2) If iv1+iv2 ≤ c is not active, we
have only iv1+iv2+iv3 ≤ a+b which yields max(a+b, b∗(a+b), 2d∗(a+b)). The
cost is min(nat(a+ b− c) +max(b ∗ c, 2d ∗ c),max(a+ b, b ∗ (a+ b), 2d ∗ (a+ b))).

We could have dropped the second constraint from the beginning and obtain
a less precise bound max(a + b, b ∗ (a + b), 2d ∗ (a + b)). We can even split the
constraint iv1 + iv2 + iv3 ≤ a+ b into iv1 ≤ a+ b, iv2 ≤ a+ b and iv3 ≤ a+ b and
obtain (1+b+2d)∗(a+b). That way we can balance precision and performance.

Definition 8 (IG dependency graph). Let IG = SE : CS. Its dependency
graph G(IG) is defined as follows: for each C ∈ CS G has a node C. For each
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C ∩C ′ such that C,C ′ ∈ CS and C ∩C ′ 6= ∅ G has a node d(C ∩C ′), and edges
from C to d(C ∩ C ′) and from d(C ∩ C ′) to C ′.

Example 16. Given the IG {iv1 + iv2 ≤ a, iv2 + iv3 ≤ b, iv2 + iv4 ≤ c}, its
dependency graph contains the nodes n1 = ”iv1+iv2 ≤ a”, n2 = ”iv2+iv3 ≤ b”,
n3 = ”iv2+ iv4 ≤ c” and n4 = ”d(iv2)”. The edges are (n1, n4), (n2, n4), (n3, n4).

Theorem 2. Given an irreducible, non-trivial IG. If G(IG) is acyclic there
exists a maximizing assignment valmax such that there is an active constraint
with only one non-zero iteration variable.

If G(IG) is acyclic, we apply Thm. 2 to solve IG incrementally. Let Ci =∑r
j=1 ivij ≤ e ∈ CS: we obtain a partial assignment valik such that valik(ivk) =

e for some ivk ∈ Ci and all other iteration variables in Ci being assigned 0. We
update CS with valik and obtain a constraint system with less iteration variables
and constraints whose graph is still acyclic, and so on. Once no iteration variable
is left, we end up with a set of assignments MaxV al. The maximum cost of
IG = SE : CS is maxval∈MaxV alval(SE).

Example 17. We obtain one of the assignments in MaxV al for the IG of Ex. 16.
We take the constraint iv1 + iv2 ≤ a and assign iv1 = a and iv2 = 0. The
resulting constraints are iv3 ≤ b and iv4 ≤ c that are trivially solved. The
resulting assignment is iv1 = a, iv2 = 0, iv3 = b and iv4 = c.

The requirement of G(IG) being acyclic can be relaxed. A discussion and the
proof of Thm. 2 is in [11]. One can always obtain an acyclic IG by dropping
constraints or by removing iteration variables from a given constraint. Such
transformations are safe since they only relax the conditions imposed on the
iteration variables. In practice, we perform a pre-selection of the constraints to
be considered based on heuristics to improve performance.

6 Related Work and Experiments

This work builds upon the formalism developed in the COSTA group [1, 2, 4,
5], however, the are important differences in how upper bounds are inferred. In
[1], upper bounds are computed independently for each SCC and then combined
without taking dependencies into account. The precision of that approach is im-
proved in [2] for certain kinds of loops. The paper [5] presents a general approach
for obtaining amortized upper bounds that, although powerful, does not scale
well. In [4] SCCs are decomposed into sparse cost equations systems. Then it is
possible to use the ideas of [5] to solve the sparse cost equations precisely.

In our work, we also decompose programs, but driven by possible sequences
of cost applications. This technique, known as control-flow-refinement, has been
applied to the resource analysis of imperative programs in [13, 9]. In addition,
our refinement technique can deal with programs with linear recursion (non nec-
cessarily tail recursive) and multiple procedures. In our analysis we do not refine
the whole program at once. Instead, we refine each SCC and then propagate
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the changes. Our technique allows to leave parts of the program unrefined to
increase performance. Paper [15] uses disjunctive invariants to summarize inner
loops instead of control-flow-refinement. This technique can also deal with some
kinds of non-terminating programs. However, it can only bound the number of
visits to a single location in a single procedure. In contrast, our tool can count
the number of visits to several locations in multiple procedures derived from cost
annotations. The tool Loopus [18] uses disjunctive invariants, collects the inner
paths of each loop and also uses contextualization which is a form of control-flow
refinement. Both [15, 18] obtain ranking functions based on given patterns and
combine them using proof rules. Instead, we infer linear ranking functions us-
ing linear programming [16, 6] and combine them to form lexicographic ranking
functions (see Sec. 4.4).

SPEED [14] makes use of multiple counters to bound and detect dependen-
cies of different loops. SPEED computes cost summaries for the (non-recursive)
procedure calls. Therefore, it cannot detect dependencies among different pro-
cedure calls. KoAT [8] adopts an iterative approach, where size analysis and
complexity analysis are interleaved and improve each other. That paper also ex-
tends transitions systems to deal with inter-procedural and recursive programs.
Very recently, a new version of Loopus has been released [17]. They use a simple
abstraction and achieve very high performance and great effectiveness. They can
also obtain amortized cost for complex nested loops. However, their analysis is
limited to imperative programs and cannot deal with recursion.

1 log n n n log n n2 n3 > n3 No res.
CoFloCo 115 0 141 0 52 2 3 318

KoAT 117 0 120 0 51 0 4 339
PUBS 90 2 85 5 37 3 3 406

Loopus3 128 0 140 0 73 11 4 275

CoFloCo 1 0 16 0 14 7 0 1
PUBS 1 2 13 3 12 6 0 2

Loopus3 2 0 11 0 7 4 0 15

For our experimen-
tal evaluation we took
the problem set used by
KoAT’s evaluation2 [8],
except those with multi-
ple recursion (670 prob-
lems). We executed each
problem with PUBS [1],
KoAT, and our tool Co-
FloCo (SPEED and the first version of Loopus [18] are not publicly available).
The problems are taken from the literature on resource analysis [3, 13–15, 18]
and include most of the problems used in the evaluation of [7] (631 problems
in the first part of the table) and the ones of the evaluation of PUBS [1] (39
problems in the second part).

The problems of the first part were automatically translated from KoAT’s
input format to cost equations. That includes performing loop extraction (and
generating invariants for PUBS). No slicing took place so the input cost equations
might have many more variables than needed. For the second set we used the
original cost equations for PUBS and CoFloCo. We decided not to include these
problems for KoAT as the translation generated in [8] is not sound (we found
several problems where KoAT yields an incorrect upper bound). We summarize
the number of problems solved by each tool in different complexity categories.

2http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity/
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Each problem was run with a time-out of 60 secs. The same set of problems3

has been used to evaluate the new version of Loopus [17]. We include the results
of their evaluation4 in a shaded row to emphasize that we did not run the
experiments ourselves.

CoFloCo obtains a bound asymptotically better than KoAt in 60 problems
and better than PUBS in 109 problems. Conversely, KoAt obtains a better bound
than CoFloCo in 23 problems and PUBS is better than CoFloCo in 11 prob-
lems. CoFloCo obtains better results than Loopus in 48 of the problems analyzed
by both. Loopus obtains better results than CoFloCo in 93 problems. How-
ever, in 51 of these problems, Loopus reports an upper bound as a function of
call to nondet line X where X is a line number. It seems that Loopus assumes
a specific symbolic value whenever a non-deterministic assignment is executed
whereas CoFloCo does not make such an assumption and fails to provide a
bound. The complete experimental data and the implementation are available.5

At this time, CoFloCo is just prototype and can be greatly improved. It
fails on 27 problems because of irreducible loops. Irreducible loops can be trans-
formed and the approach could be extended to handle other domains including
non-linear constraints, logarithmic bounds, etc. The invariants could also be im-
proved with the termination information of Sec.3.3 following the ideas of [8].
CoFloCo had 94 time-outs. Most occurred with problems with many variables
where slicing could be applied. In some occasions, the control-flow-refinement of
cost equations can generate exponentially many chains. However, these chains
have many fragments in common and part of the invariant and upper bound com-
putation can be reused. Moreover, some SCCs can be left unrefined to achieve
a compromise between performance and precision.

We presented a control-flow-refinement algorithm that can be applied to lin-
ear recursive programs (other approaches do not support recursion). The algo-
rithm distinguishes terminating and non-terminating executions explicitly which
allows obtaining better invariants for the terminating executions. This also al-
lows to have intermediate cost expressions depending on the output variables
(see the cost of (7)+(8)) and thus obtain amortized cost bounds. We obtain
an upper bound for each execution pattern (chain), which often provides more
precise information than a generic upper bound for any possible execution. The
upper bounds are also precise because cost structures allow us to maintain several
upper bound candidates, detect dependencies among different parts of the code
(using constraint compression) and obtain complex upper bound expressions.

Acknowledgements Research partly funded by the EU project FP7-610582 EN-
VISAGE: Engineering Virtualized Services. We thank the anonymous reviewers
for their careful reading which resulted in numerous improvements. We thank
S. Genaim for valuable discussions and help with the experiments.

318 problems included here were left out of the evaluation of Loopus.
4http://forsyte.at/static/people/sinn/loopus/CAV14/
5www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/
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Abstract. We present the main concepts, usage and implementation of
SACO, a static analyzer for concurrent objects. Interestingly, SACO is
able to infer both liveness (namely termination and resource bounded-
ness) and safety properties (namely deadlock freedom) of programs based
on concurrent objects. The system integrates auxiliary analyses such as
points-to and may-happen-in-parallel, which are essential for increasing
the accuracy of the aforementioned more complex properties. SACO pro-
vides accurate information about the dependencies which may introduce
deadlocks, loops whose termination is not guaranteed, and upper bounds
on the resource consumption of methods.

1 Introduction

With the trend of parallel systems, and the emergence of multi-core comput-
ing, the construction of tools that help analyzing and verifying the behaviour
of concurrent programs has become fundamental. Concurrent programs contain
several processes that work together to perform a task and communicate with
each other. Communication can be programmed using shared variables or mes-
sage passing. When shared variables are used, one process writes into a variable
that is read by another; when message passing is used, one process sends a mes-
sage that is received by another. Shared memory communication is typically
implemented using low-level concurrency and synchronization primitives These
programs are in general more difficult to write, debug and analyze, while its main
advantage is efficiency. The message passing model uses higher-level concurrency
constructs that help in producing concurrent applications in a less error-prone
way and also more modularly. Message passing is the essence of actors [1], the
concurrency model used in concurrent objects [9], in Erlang, and in Scala.

This paper presents the SACO system, a S tatic Analyzer for C oncurrent
Objects. Essentially, each concurrent object is a monitor and allows at most
one active task to execute within the object. Scheduling among the tasks of
an object is cooperative, or non-preemptive, such that the active task has to
release the object lock explicitly (using the await instruction). Each object has
an unbounded set of pending tasks. When the lock of an object is free, any task
in the set of pending tasks can grab the lock and start executing. When the
result of a call is required by the caller to continue executing, the caller and the



callee methods can be synchronized by means of future variables, which act as
proxies for results initially unknown, as their computations are still incomplete.

The figure below overviews the main components of SACO, whose distin-
guishing feature is that it infers both liveness and safety properties.
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SACO receives as input a program and a selection of the analysis parameters.
Then it performs two auxiliary analyses: points-to and may-happen-in-parallel
(MHP), which are used for inferring the more complex properties in the next
phase. As regards to liveness, we infer termination as well as resource bound-
edness, i.e., find upper bounds on the resource consumption of methods. Both
analyses require the inference of size relations, which are gathered in a previous
step. Regarding safety, we infer deadlock freedom, i.e., there is no state in which
a non-empty set of tasks cannot progress because all tasks are waiting for the
termination of other tasks in the set, or otherwise we show the tasks involved
in a potential deadlock set. Finally, SACO can be used from a command line
interface, a web interface, and an Eclipse plugin. It can be downloaded and/or
used online from its website http://costa.ls.fi.upm.es/saco.

2 Auxiliary Analyses

We describe the auxiliary analyses used in SACO by means of the example below:

1 class PrettyPrinter{
2 void showIncome(Int n){. . .}
3 void showCoin(){. . .}
4 }//end class
5 class VendingMachine{
6 Int coins;
7 PrettyPrinter out;
8 void insertCoins(Int n){
9 Fut〈void〉 f;

10 while (n>0){
11 n=n−1;
12 f=this ! insertCoin();
13 await f?; }
14 }

15 void insertCoin(){
16 coins=coins+1;
17 }
18 Int retrieveCoins(){
19 Fut〈void〉 f;
20 Int total=0;
21 while (coins>0){
22 coins=coins−1;
23 f=out ! showCoin();
24 await f?;
25 total=total+1; }
26 return total;
27 }
28 }//end class

29 //main method
30 main(Int n){
31 PrettyPrinter p;
32 VendingMachine v;
33 Fut〈Int〉 f;
34 p=new PrettyPrinter();
35 v=new VendingMachine(0,p);
36 v ! insertCoins(n);
37 f=v ! retrieveCoins();
38 await f?;
39 Int total=f.get;
40 p!showIncome(total);
41 }

We have a class PrettyPrinter to display some information and a class VendingMachine

with methods to insert a number of coins and to retrieve all coins. The main

method is executing on the object This, which is the initial object, and receives
as parameter the number of coins to be inserted. Besides This, two other con-
current objects are created at Line 34 (L34 for short) and L35. Objects can be
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seen as buffers in which tasks are posted and that execute in parallel. In par-
ticular, two tasks are posted at L36 and L37 on object v. insertCoins executes
asynchronously on v. However, the await at L38 synchronizes the execution of
This with the completion of the task retrieveCoins in v by means of the future
variable f. Namely, at the await, if the task spawned at L37 has not finished, the
processor is released and any available task on the This object could take it. The
result of the execution of retrieveCoins is obtained by means of the blocking get

instruction which blocks the execution of This until the future variable f is ready.
In general, the use of get can introduce deadlocks. In this case, the await at L38
ensures that retrieveCoins has finished and thus the execution will not block.

Points-to Analysis. Inferring the set of memory locations to which a reference
variable may point-to is a classical analysis in object-oriented languages. In
SACO we follow Milonava et al. [11] and abstract objects by the sequence of
allocation sites of all objects that lead to its creation. E.g., if we create an
object o1 at program point pp1, and afterwards call a method of o1 that creates
an object o2 at program point pp2, then the abstract representation of o2 is
pp1.pp2. In order to ensure termination of the inference process, the analysis is
parametrized by k, the maximal length of these sequences. In the example, for
any k ≥ 2, assuming that the allocation site of the This object is ε, the points-to
analysis abstracts v and out to ε.35 and ε.34, respectively. For k = 1, they would
be abstracted to 35 and 34. As variables can be reused, the information that
the analysis gives is specified at the program point level. Basically, the analysis
results are defined by a function P(op, pp, v) which for a given (abstract) object
op, a program point pp and a variable v, it returns the set of abstract objects
to which v may point to. For instance, P(ε, 36, v) = 35 should be read as: when
executing This and instruction L36 is reached, variable v points to an object
whose allocation site is 35. Besides, we can trivially use the analysis results to find
out to which task a future variable f is pointing to. I.e., P(op, pp, f) = o.m where
o is an abstract object and m a method name, e.g., P(ε, 37, f) = 35.retrieveCoins.
Points-to analysis allows making any analysis object-sensitive [11]. In addition, in
SACO we use it: (1) in the resource analysis in order to know to which object the
cost must be attributed, and (2) in the deadlock analysis, where the abstraction
of future variables above is used to spot dependencies among tasks.

May-Happen-in-Parallel. An MHP analysis [10, 3] provides a safe approximation
of the set of pairs of statements that can execute in parallel across several objects,
or in an interleaved way within an object. MHP allows ensuring absence of data
races, i.e., that several objects access the same data in parallel and at least one
of them modifies such data. Also, it is crucial for improving the accuracy of
deadlock, termination and resource analysis. The MHP analysis implemented in
SACO [3] can be understood as a function MHP(op, pp) which returns the set
of program points that may happen in parallel with pp when executing in the
abstract object op. A remarkable feature of our analysis is that it performs a
local analysis of methods followed by a composition of the local results, and it
has a polynomial complexity. In our example, SACO infers that the execution
of showIncome (L2) cannot happen in parallel with any instruction in retrieveCoins
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(L18–L27), since retrieveCoins must be finished in the await at L38. Similarly, it
also reveals that showCoin (L3) cannot happen in parallel with showIncome. On the
other hand, SACO detects that the await (L24) and the assignment (L16) may
happen in parallel. This could be a problem for the termination of retrieveCoins,
as the shared variable coins that controls the loop may be modified in parallel,
but our termination analysis can overcome this difficulty. Since the result of the
MHP analysis refines the control-flow, we could also consider applying the MHP
and points-to analyses continuously to refine the results of each other. In SACO
we apply them only once.

3 Advanced Analyses

Termination Analysis. The main challenge is in handling shared-memory con-
current programs. When execution interleaves from one task to another, the
shared-memory may be modified by the interleaved task. The modifications can
affect the behavior of the program and change its termination behavior and its
resource consumption. Inspired by the rely-guarantee principle used for com-
positional verification and analysis [12, 5] of thread-based concurrent programs,
SACO incorporates a novel termination analysis for concurrent objects [4] which
assumes a property on the global state in order to prove termination of a loop
and, then, proves that this property holds. The property to prove is the finite-
ness of the shared-data involved in the termination proof, i.e., proving that such
shared-memory is updated a finite number of times. Our analysis is based on a
circular style of reasoning since the finiteness assumptions are proved by proving
termination of the loops in which that shared-memory is modified. Crucial for
accuracy is the use of the information inferred by the MHP analysis which allows
us to restrict the set of program points on which the property has to be proved
to those that may actually interleave its execution with the considered loop.

Consider the function retrieveCoins from Sec. 2. At the await (L24) the value
of the shared variable coins may change, since other tasks may take the object’s
lock and modify coins. In order to prove termination, the analysis first assumes
that coins is updated a finite number of times. Under this assumption the loop is
terminating because eventually the value of coins will stop being updated by other
tasks, and then it will decrease at each iteration of the loop. The second step is
to prove that the assumption holds, i.e., that the instructions updating coins are
executed a finite number of times. The only update instruction that may happen
in parallel with the await is in insertCoin (L16), which is called from insertCoins and
this from main. Since these three functions are terminating (their termination
can be proved without any assumption), the assumption holds and therefore
retrieveCoins terminates. Similarly, the analysis can prove the termination of the
other functions, thus proving the whole program terminating.

Resource Analysis. SACO can measure different types of costs (e.g., number
of execution steps, memory created, etc.) [2]. In the output, it returns upper
bounds on the worst-case cost of executing the concurrent program. The results
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of our termination analysis provide useful information for cost: if the program
is terminating then the size of all data is bounded (we use x+ to refer to the
maximal value for x). Thus, we can give cost bounds in terms of the maximum
and/or minimum values that the involved data can reach. Still, we need novel
techniques to infer upper bounds on the number of iterations of loops whose
execution might interleave with instructions that update the shared memory.
SACO incorporates a novel approach which is based on the combination of local
ranking functions (i.e., ranking functions obtained by ignoring the concurrent
interleaving behaviors) with upper bounds on the number of visits to the in-
structions which update the shared memory. As in termination, the function
MHP is used to restrict the set of points whose visits have to be counted to
those that indeed may interleave.

Consider again the loop inside retrieveCoins. Ignoring concurrent interleavings,
a local ranking function RF = coins is easily computed. In order to obtain an
upper bound on the number of iterations considering interleavings, we need to
calculate the number of visits to L16, the only instruction that updates coins and
MHP with the await in L24. We need to add the number of visits to L16 for every
path of calls reaching it, in this case main–insertCoins–insertCoin only. By applying
the analysis recursively we obtain that L16 is visited n times. Combining the
local ranking function and the number of visits to L16 we obtain that an upper
bound on the number of iterations of the loop in retrieveCoins is coin+∗n.

Finally, we use the results of points-to analysis to infer the cost at the level of
the distributed components (i.e., the objects). Namely, we give an upper bound
of the form c(ε)*(. . . )+c(35)*(coin+∗n. . . )+ c(34)*(. . . ) which distinguishes the
cost attributed to each abstract object o by means of its associated marker c(o).

Deadlock Analysis. The combination of non-blocking (await) and blocking (get
) mechanisms to access futures may give rise to complex deadlock situations.
SACO provides a rigorous formal analysis which ensures deadlock freedom, as
described in [6]. Similarly to other deadlock analyses, our analysis is based on
constructing a dependency graph which, if acyclic, guarantees that the program
is deadlock free. In order to construct the dependency graph, we use points-to
analysis to identify the set of objects and tasks created along any execution.

p34

v35

main

p34.showCoin

v35.retrieveCoins

v35.insertCoins

v35.insertCoin

38
24

13

Given this information, the construction of
the graph is done by a traversal of the pro-
gram in which we analyze await and get

instructions in order to detect possible
deadlock situations. However, without fur-
ther temporal information, our dependency
graphs would be extremely imprecise. The crux of our analysis is the use of the
MHP analysis which allows us to label the dependency graph with the program
points of the synchronization instructions that introduce the dependencies and,
thus, that may potentially induce deadlocks. In a post-process, we discard un-
feasible cycles in which the synchronization instructions involved in the circular
dependency cannot happen in parallel. The dependency graph for our example is
shown above. Circular nodes represent objects and squares tasks. Solid edges are
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tagged with the program point that generated them (await or get instructions).
Dotted edges go from each task to their objects indicating ownership. In our
example, there are no cycles in the graph. Thus, the program is deadlock free.

4 Related Tools and Conclusions

We have presented a powerful static analyzer for an actor-based concurrency
model, which is lately regaining much attention due to its adoption in Erlang,
Scala and concurrent objects (e.g., there are libraries in Java implementing con-
current objects). As regards to related tools, there is another tool [7] which
performs deadlock analysis of concurrent objects but, unlike SACO, it does not
rely on MHP and points-to analyses. We refer to [3, 6] for detailed descriptions
on the false positives that our tool can give. Regarding termination, we only
know of the TERMINATOR tool [8] for thread-based concurrency. As far as we
know, there are no other cost analyzers for imperative concurrent programs.
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