- NVISAGE

Project N°: FP7-610582
Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services
Instrument: Collaborative Project
Scheme: Information & Communication Technologies

Deliverable D3.1
Code Generation

Date of document: T24

SEVENTH FRAMEWORK
PROGRAMME

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: CWI

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU | Public v
PP | Restricted to other programme participants (including Commission Services)

RE | Restricted to a group specified by the consortium (including Commission Services)

CO | Confidential, only for members of the consortium (including Commission Services)

Executive Summary:

Code Generation

This document summarises deliverable D3.1 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eul

D3.1 reports on the results achieved for automatic generation of target code from ENVISAGE’s modeling
language. The deliverable is a prototype and description of the code generation tool.

The main focus of this deliverable is to present the effort towards making the Abstract Behavioral
Specification language an easy to use and flexible language for designing applications that concretely run
programs to be used in research and development as well as industry. In this deliverable we want to promote
ABS as a programming language in order to observe its behavior when executing on actual hardware. We
want to be able to detect issues that are frequent in large-scale parallel and distributed programs such as
performance bottlenecks, synchronization issues, resource provisioning and concurrency problems.

The main objective of this task is to generate executable code and test it exactly like applications written
in other programming languages to achieve a reliable and efficient end product. We will see how error-prone
the generated code is from simple software bugs and runtimes errors to reliability issues of larger applications
like resource starvation and hardware failures. We selected the following languages to serve as backends from
our code generation tool:

e Java, a very well-known and mainstream language at industry-level for developing large-scale applica-
tions.

e Haskell, a functional language that allows a very intuitive and simple mapping of all the ABS features.

List of Authors

Frank de Boer (CWI)

Nikolaos Bezirgiannis (CWI)
Vlad Serbanescu (CWI)
Behrooz Nobakht (CWI)
Elvira Albert (UCM)

Enrique Martin-Martin (UCM)

http://www.envisage-project.eu

Contents

|1 Technical Summary|

|

[2.1 Motivation and Challenges|.
[2.1.1 ABS Functional Layer|
[2.1.2 Cooperative Schedulingl

2.2 Architectural Overviewl.

ossar

[A.1 Programming with Actorsin Java §.o
[A.2 ABS: a high-level modeling language for Cloud-Aware Programmingl
[A.3 A Formal, Resource Consumption-Preserving Translation ot Actors to Haskell|
[A.4 Benchmarking the ABS backends| oo

...

10
11
12
12
13

14

16

18

Chapter 1

Technical Summary

Deliverable D3.1 documents the design and implementation of two of recent backend developments for Ab-
stract Behavior Intefaces ABS in the context of Envisage project.

ABS can be compiled to a target programming language, referred to as a backend. A generic architecture
for modelling, implementation and tooling of a backend is created such that:

e it facilitates a generic common set of necessary libraries for every backend implementation

o it facilitates modular development of components for every backend that is required for verification and
quality assurance

e it does not impose any specific limitation/requirement for the backend development

The architecture is presented in Figure [1.1}

Modelling Implementation Tooling

ABS
Haskell
IDE

ABS
Haskell
AST

ABS
Haskell
Compiler

Haskell

Language

ABS
Grammar
BNFC

ABS
Language
Semantics

ABS.cf

A

A ABS
Java
IDE
ABS ABS ﬁ N
as Java |— =
Java 8 API Compiler ABS Java
Java
Maven

Figure 1.1: Generic architecture for ABS backend development

In Figure [L.1}

e ABS modelling language specifies the language features and provides formal semantics on top of which
the development is based.

e ABS.cf is the central ABS language syntax grammar as an LBNF grammar used by BNFC [ﬂ

"http://bnfc.digitalgrammars.com/

http://bnfc.digitalgrammars.com/

Envisage Deliverable D3.1 Code Generation

e Haskell Language or ABS as Java 8 API present parts of the target language features or runtime that
provide semantic mapping to that of the ABS language. This component of the architecture essentially
enables programmers to use ABS language features, if it fits, without the need to first compile ABS to
the target language as an initial requirement.

e The Abstract Syntax Tree (AST) generated for a particular target language (Java or Haskell) by BNFC.
This component of the architecture provides extension points such that it facilitates model checking
and type checking tools to be able to apply their logic during/orthogonal to the compilation phases.

e Compiler (e.g. Haskell or Java) is the compiler component that translates an ABS program into the
target language source.

e Tooling and IDE development refers to how different tooling development can depend on the “imple-
mentation” layer components of the architecture to provide better support of the ABS language to the
backend language programmer.

The main technical contents of D3.1 consists of the four main appendices:

1. The library used in the code generation process of the executable Java code based on paper [9]
2. The cloud computing features of ABS based on paper [6]
3. The formal translation of ABS into Haskell based on paper [4]

4. The benchmark evaluation for all existing backends in ABS.

The rest of the deliverable briefly describes the two backends that generate executable code. The code
will be translated in two programming languages that best fit the project overall aim and impact on the
industry as well as supporting all the features that our modeling language has. In Chapter [2| we motivate
the choice for choosing the Java language and explain the process of translating ABS modeling code into
Java executable code. The code generation tool is available online on the github repository at https:
//github.com/Crisp0SS/jabsc.git. In Chapter [3| we present the motivation for selecting Haskell and
describe the link between each language feature of ABS and its corresponding syntax in Haskell. Chapter []
presents our effort to provide resource bounds for the compiled programs in the Haskell backend.

One of the goals within the code generation task is to be able to provide also resource bounds for the
compiled programs. For this, ideally the upper bounds obtained by the resource analysis of the ABS models
should be “transferred” to the compiled code. In order to ensure the soundness of this step, we have formally
proved that the transformation preserves the resource consumption. We have done this for the concurrent-
object subset of the ABS language and the Haskell compiler, i.e., given a cost model that assigns a cost to
each instruction of the ABS language, we prove that the cost of executing the Haskell-translated program is
the same as executing the original ABS program since both execute the same instructions. The proof required
to make a formal statement of the soundness of the translation of ABS into Haskell which is expressed in
terms of a simulation relation between the operational ABS semantics and the semantics of the generated
Haskell code. The soundness claim ensures that every Haskell derivation has an equivalent one in the ABS
code. However, since for efficiency reasons, the translation fixes a selection order between the objects and
the tasks within each object, we do not have a completeness result. Having the soundness result we can
easily ensure that the upper bounds on the resource consumption obtained by the resource analysis of the
original ABS program are preserved during the Haskell compilation. Thus, they are valid upper bounds for
the Haskell-translated program as well.

https://github.com/CrispOSS/jabsc.git
https://github.com/CrispOSS/jabsc.git

Chapter 2

Java Backend

2.1 Motivation and Challenges

The Abstract Behavioural Specification (ABS) language [8] offers several layers of modelling parallel and
distributed applications with possibilities for static analysis for costs and correctness|3, B 2, [7]. One of
the most important layers of ABS is its object-oriented model which offers a Java-like syntax enhanced
with several new constructs and annotations that allow design of distributed applications for grid and cloud
environments. Furthermore, applications can be modeled with custom defined schedulers that model the
behaviour needed by the service provider using constructs for asynchronous method calls and preemption.
ABS objects are constructed implicitly with scheduling queues with a default first-in-first-out (FIFO) order.
Another significant part of ABS is its functional layer that allows modeling of applications using a functional
paradigm that supports high stacks of recursion, pattern matching and efficient evaluations of data structures
at runtime.

At a conceptual and modeling level the code is very easy to write and analyze it, however from this model
we need to generate a program that will execute the distributed application in a cloud environment with
the modeled scheduling possibilities and both functional and object-oriented paradigms, as our final goal is
to generate valid production code. This means that we need to translate into an object-oriented language
(Java) the execution of an object’s methods invocations, preemption and process queue, as well as recursive
functions, data type definitions, predicates and lambda expressions. To do this, until Java 8, we only had
the possibility of modeling parallel execution with Java Threads and this resulted in the creation of a large
number for this particular scenario. With the introduction of lambda expressions in Java 8 the only issue
that we need to solve is how to efficiently save the call stack when the need for preemption appears without
using a memory-expensive Thread. In this section of our deliverable we explain the challenges imposed by
these two layers of ABS and how we tackled them using the features of Java 8 and significantly changed the
old Java backend results presented in Appendix [A.4]

2.1.1 ABS Functional Layer

The functional programming paradigm that is available in ABS is very difficult to translate into executable
code in Java. First we have the issue of data types which in a functional language can be defined as
predicates whose recursion can extend infinitely. FEvaluating such expressions in Java is not possible as
Java does not have a lazy-evaluation mechanism and this severely affects performance and even breaks the
program. Another issue is the pattern matching instructions which, even assuming it passes the evaluation
issue mentioned before, still requires every data type declaration to translate into a Java class and every data
definition into a Java object resulting in a very inefficient program memory-wise. This limits the support
of ABS functional layer. We have to keep in mind that Java is a widely used programming language by
software developers. While we want to use ABS to significantly reduce bugs and easy design through formal
verification, we want to have generated code that is comparable and usable in terms of performance and
resource usage to code written directly in Java. However, limiting the features translated from ABS means the

Envisage Deliverable D3.1 Code Generation

code can no longer be validated by static analysis tools and formally verified. This particular problem enforces
even further the development of a Foreign Language Interface such that ABS can directly use constructs
from its backends that bypass the type checking and formal verification tests. Therefore ABS features can
be fully supported and benefit from formal verification tools and certain lower level implementations of the
program can be ignored and left to each backend’s compiler to detect any errors.

2.1.2 Cooperative Scheduling

In the ABS language, the core language contains constructs for the two finest levels of granularity in parallel
computing which are scheduling method calls within an object and scheduling objects within a task. To
model this cooperative scheduling as used by ABS in Java we need to use Threads to map each method call
and a Thread pool to map each object. Therefore a construct of an asynchronous method call requires the
creation of a new Thread inside a thread pool along with the start of this thread executing the method.
Our research question results from the fact that each object is supposed to execute on one thread. In Java
each object will be in fact a Thread pool containing the number of threads corresponding to the number of
method calls invoked by the object to support that finest level of scheduling featured by ABS. This is done
despite only one method running at most on that object. This underlying thread model significantly affects
performance of an ABS-modelled application that is translated into Java code.

Java 8 new features allow wrapping of method calls into lightweight lambda expressions such that they
can be put into a scheduling queue of a ForkJoinPool to which the running objects are mapped, significantly
reducing the number of idle Threads at runtime. We chose this data structure over the more general Executor
Services due its suitability to numerous small tasks that they have to process. The only drawback is that if
a method call contains a recursive stack of synchronous calls, upon preemption this stack needs to be saved,
a scenario which cannot be achieved through lambda expressions. To solve this issue we divided our research
in two directions:

e On every preemption, we calculate the continuation and enqueue the rest of the call into the message
queue.

e On every preemption, we try to optimally suspend the message thread until the continuation of the
call is released.

The first direction is still in progress, as we have a fundamental technical limitation in the JVM /compiler.
It is difficult to ask the JVM to make the rest of a method turn into another method call in the object’s
message queue. The second direction however offers the following possible scenario:

e Each asynchronous call/invocation is a message delivered in the corresponding object’s queue.
e All objects in the same Concurrent Object Group (COG) compete for one Thread.

e A Sweeper Thread decides which task should be created and be available for execution from the
available queues.

e A thread pool executes available tasks based on a work stealing mechanism.

The only challenge now is when an execution of multiple synchronous calls is preempted. This results
in a call stack and context that need to be saved within a thread. To do this the executing thread from
the pool is suspended and will compete again, upon release, with the other available tasks in the COG for
selection by the Sweeper Thread to be made available to the thread pool.

2.2 Architectural Overview

In this section we present a high-level description of the Java backend used to generate executable code
from ABS to Java. The motivation behind using Java is because it is one of the mainstream object ori-
ented programming languages in terms of usability and ease of learning. Its usage covers several domains

Envisage Deliverable D3.1 Code Generation

(—y ABS Java AST ﬁ

ABS Modelling Grﬁfﬂ o Executable Code
Language BNFC in Java 8
ABS-API
in Java 8

Figure 2.1: Code Generation Flow

within Computer Science such as mobile development, embedded systems, high performance applications,
distributed web services and cloud computing. Java has support for both a concurrent model and remote
method invocation standard to facilitate the translation of ABS’s object-oriented layer and concurrency
model. Oracle’s Java 8 has also introduced modeling functions as lambda expressions, making it easier and
more intuitive to map ABS’s functional layer into Java. Finally, ABS further presents features for cloud
resource management in terms of deployment components for which Java has libraries to support communi-
cation with the most important cloud APIs.

In order to have a stable and reliable code generation tool using the Java backend, it is clear that we
require an aggregation of a lot of built-in, as well as external libraries that already exist in Java 8. To this
end, we developed an extra module into the code generation tool, named the ABS-API which provides a
wrapper over a lot of the libraries that we need. This API provides a set of operations that have a one-to-one
translation to ABS features. Figure presents an overview of the control flow of the code generation
tool. With this architecture that aggregates Java 8 features to support ABS layers of programming, an
interesting research question would be to use reverse engineering techniques for automated model extraction
for a large-scale application written directly in Java code.

The control flow uses two main modules:

e The BNFC tool : that uses the ABS grammar to generate the AST in the Java language.

e The ABS-API library: that is used by the compiler to generate constructs in the final source files.
The translation process goes though 3 steps:

1. Parsing the ABS source file written using ABS language semantics and generation of the ABS AST.
2. The traversal of the AST that was generated in the Java language.

3. The construction of the Java source file with the aid of the ABS-API library in Java 8.

2.3 Benchmarks

Using this improved architecture for generating code in Java 8, we benchmarked our tool with the tests that
are currently supported. The results are presented in Figure 2.2 in comparison with the performance times
obtained with those in Appendix for the old Java backend. We observe a significant improvement in all
tests performed, with 5 out of 16 tests significantly completing faster due to the lack of CPU or memory
overhead. This initial result validates our approach and supports the use of Java to translate ABS code. With
this new solution we can generate efficient production code that does not affect the program’s performance
at runtime despite the limitations of Java for functional programming or its expensive thread model.

Envisage Deliverable D3.1 Code Generation

Time (seconds)

Time (seconds)

Time (seconds)

Figure 2.2: Java Backend (jabsc) Benchmarks

Chapter 3

Haskell Backend

In this section, we introduce another backend approach for ABS that predates the Java backend intro-
duced before in Chapter 2l This ABS backend targets the Haskell programming language: Haskell is a
purely-functional language with a by-default lazy evaluation strategy that employs static typing with both
parametric and ad-hoc polymorphism. Haskell is widely known in academia and the language makes everyday
more and more appearances in industry too EL attributed to the fact that Haskell offers a good compromise
between execution speed and abstraction level. An example of a successful tool built exclusively in Haskell is
the BNF Converter (BNFC) which generates lexers and parsers for multiple languages (Java, Haskell, C-+-+,
...) solely from a BNF grammar. We ourselves make use of the BNFC compiler tool for our ABS-to-Haskell
backend, which was later adopted also by the ABS-to-Java backend as can be seen in Figure [I.1]

Motivation and Challenges When starting off the ABS-to-Haskell backend, the initial motivation was
to develop a backend that can generate more efficient executable code compared to the reportedly slower at
the time Maude and ex-Java ABS backends, which, in retrospect, are more appropriate for simulating and
debugging ABS code than running it in production.

The translation of ABS to Haskell was relatively straightforward since the languages share many similar-
ities, with the exception being the OO and subtype polymorphism that remained a particular challenge (see
Section . After completing the implementation of the full ABS standard (which was the result of the
previous HATS EU project) we extended the language with exceptions and preliminary support for Deploy-
ment Components in the Cloud (a goal of the current Envisage EU project). For this Cloud extension we
were motivated by the fact, Haskell’s programming model adheres to data immutability and “share-nothing”
ideologies, which potentially deems Haskell as a better fit for transitioning ABS to the “Cloud”.

Advantages The improved execution speed and the extension to the Cloud are the two main advantages
that come with the ABS-to-Haskell backend, as it can be witnessed by the benchmarks in the Appendix
and experimental results in Appendix respectively. The concurrency /threading model of Haskell proved
to be well-suited for ABS’ cooperative multitasking. On another level, by using Haskell our compiler infras-
tructure does not require anymore implementing a separate ABS typechecker and, instead the underlying
Haskell typechecker can be used in-place for type-checking ABS programs. We further exploit the Haskell
type-checker for (partially) inferring types in ABS programs, since Haskell has built-in support for Hindley-
Milner type inference. Haskell is purely functional, and as such, the ABS-translated code is guaranteed (by
the type-system) to not mix side-effectful object-oriented code inside purely-functional ABS code. Finally,
since both languages are very similar and stay on the same (high) level of abstraction, it enabled us to prove
the correctness and resource preservation of this ABS-to-Haskell translation, and is detailed in Chapter

"https://wiki.haskell.org/Haskell_in_industry

10

https://wiki.haskell.org/Haskell_in_industry

Envisage Deliverable D3.1 Code Generation

3.1 Translating to Haskell

Our compiler, which is written in Haskell itself, translates input ABS programs to Haskell equivalent pro-
grams. This translation is very straightforward for a number of reasons: 1) the two languages are more or
less the same at their core, i.e. purely-functional languages with ADTs and parametric-polymorphism; 2)
ABS interfaces are simply a subset of Haskell’s typeclasses (ad-hoc polymorphism); 3) ABS classes become
algebraic datatypes (ADTs) acting as records (containers) of their fields, and objects become merely values
of such types; 4) the bodies of methods (statements) become side-effectful (monadic) code. As mentioned
earlier, mixing monadic code in pure code is disallowed by Haskell; 5) ABS modules simply become Haskell
modules as the original ABS module system was inspired by Haskell’s. We extend standard ABS with equiva-
lent Haskell features, i.e. type inference, parametric type synonyms, exceptions-as-datatypes and we modify
the past Foreign Function Interface (specifically designed Java with new syntactic and semantic support
for interfacing to Haskell libraries: the user has to simply prefix an import declaration with foreign, e.g.
foreign import IOArray from Data.Array.I0. This “foreign-importing” can be achieved because ABS
and Haskell have the same calling conventions and 1-to-1 datatatype correspondence.

Despite the straightforward translation, a major challenge was to implement ABS’ nominal subtyping:
an ABS object with (interface) type I2 can be upcasted to any of its parent interfaces I1 at runtime, thus
restricting its API (interface) exposal, as in the example:

{ I1 o1 = new C1Q);
I2 ol_ = new C1();

I2 02 = new C2();
List<I1> s = list[ol, ol1_, o02]; %}

In the above block, list s contains three objects, the first two instantiated by the same class, but typed
with a different interface, whereas the second two are of the same interface but different class. However, since
Haskell lists are homogeneous and Haskell is lacking builtin support for any subtyping, we have to do a type
“trickery” to allow this list expression to type check. A new expression returns an object reference (ObjectRef)
to the class’ record. Thus the new expressions at lines 1 and 2 are typed in Haskell by (ObjectRef C1) and
(ObjectRef C2) respectively. We create a wrapper datatype that instead types them by interface, hiding
inside their class type.

data 12 =V a . (I2_ a) = 12 (ObjectRef a)

In Haskell, this is called (despite the V construct) an existential type. Now o1 and o2 are both typed by
I2. The third object however is typed by the supertype interface I1. For that reason we have to upcast all
subtypes; we do that with the method up defined in the typeclass Sub as. We not forget to upcast also the
equality function (==), which checks for object reference equality, and not structural equality.
class Sub sub sup where
up :: sub — sup

instance Sub 11 I1 where

up T = T
instance Sub 12 I2 where

up T = T
instance Sub I2 I1 where

up (12 a) = I1 a

This approach to nominal subtyping for Haskell leads to the generation of few boilerplate code and
insignificant runtime performance overhead, as the places that subtyping can occur in ABS is limited (mainly,
assignment and argument passing).

The generated Haskell code is subsequently typechecked by a standard Haskell compiler without the need
of an external ABS typechecker; thus the final program will always be ABS-type safe, in the sense that all
type errors are caught at compile time and no type-error escapes to runtime. However, a specialized ABS
typechecker (as the one provided in the original abstools suite: https://github.com/abstools/abstools)
may yield more precise and user-friendly type-error messages than the “general” Haskell typechecker; in other
words, the Haskell typechecker cannot be fully aware of all the ABS language constructs. The ABS-to-Haskell

11

https://github.com/abstools/abstools

Envisage Deliverable D3.1 Code Generation

compiler is actively developed and situated at https://github.com/bezirg/abs2haskell| with including
installation instructions.

3.2 Parallel Runtime

The translated Haskell code is linked against our custom concurrent runtime framework, based on GHC’s
(Glasgow Haskell Compiler) runtime system (RTS), featuring SMP-enabled threads (Symmetric MultiPro-
cessing parallelism, also known as multicore). Each alive Concurrent Object Group (COG) becomes simply a
separate Haskell thread; Haskell’s threads are very lightweight (green threads, i.e. small memory footprint),
thus enabling us to spawn millions of COGs inside a single machine.

Each COG-thread retains an ABS process queue that holds processes to be executed; a new ABS process
is created and put in the end of the queue upon each asynchronous method call. Processes are implemented
as coroutines (which are themselves implemented as first-class continuations) and not as threads, something
that allows us to store them inside the process queue as data. A continuation is a data-structure that contains
the current execution state of the program (program counter, local variables, and the call stack) that when
invoked, will replace the current state of the program with the continuation’s saved state. This allows us to
fully implement the cooperative multitasking of the ABS language: when a running process calls suspend or
await its continuation will be captured and stored in the end of the queue; the COG will then pick the next
(suspended) process from the head of the queue, essentially cooperatively (willfully) letting another process
to execute.

This concurrency scheme based on continuations suffices to model ABS cooperative multitasking; however,
it will result in needless resumption of processes that are not enabled; for example, consider a process that
is suspended by calling await f£? on a future f and put at the end of the COG’s process queue. After a
while, it will end up in the head of the queue where the COG will resume its execution, only to find out that
the process has to be suspended again, since the future has not been resolved yet. This situation is more
known by the term busy-wait polling and applies not only for futures but also when awaiting for arbitrary
boolean expressions too. To alleviate busy-wait polling, we use a so-called process-disabled table where
processes (continuations) are stored if they are known that their resumption cannot continue. The COG
will not reschedule a disabled process of this table until its dependencies (future or boolean expression) are
resolved. A (possibly different) COG will later inform this COG that some dependency (again, future or
boolean expression) has been resolved and instruct the COG to update its process-disabled table based on
the new information. The COG will then re-enable processes that have resolved all their dependencies and
put them back in the end of its process queue for later resumption. This implementation technique avoids
busy-wait polling, thus improving execution speed.

3.3 Cloud Runtime

We extend the parallel ABS-to-Haskell runtime with support for Deployment Components that provide a
suitable abstraction of the Virtual Machines provided by the Cloud and which allow the application to
distribute itself among multiple machines. The ABS programmer can dynamically create, monitor and
shutdown such Deployment Components (Virtual Machines) and most importantly assign new objects to
them. As such, an ABS cloud-application is consisted by a bunch of inter-VM communicating objects,
effectively forming a distributed-object system which can control its own deployment and still benefit from
the (local) parallelism.

The distributed communication of ABS processes is realized by Cloud-Haskell, which is a Haskell library
for type-safe, fault-tolerant distributed programming. The distribution model of Cloud-Haskell resembles
that of the Erlang programming language with the difference being that Cloud-Haskell has extra support
for type-safe and version-safe message passing, a feature that we also make very much use in our Cloud
Runtime extension. The resulted remote communication remains transparent to the user: new objects can
be remotely created inside a different machine and asynchronous calls be made to remote objects (living inside

12

https://github.com/bezirg/abs2haskell

Envisage Deliverable D3.1 Code Generation

a remote machine) without changing the syntax and semantics of the ABS language. To achieve this, all
ABS data (both datatypes and objects, passed to arguments) as well as methods have to be serialized before
transmitting and deserialized at the other end. Primitive values and ADTs can be automatically serialized
by Haskell; object and future references are serialized to proxy references which contain an ID uniquely
identified across the distributed system (network). while leaving out their actual attributes/future results.
Thanks to Cloud-Haskell, an asynchronous method call can be easily serialized to a so-called static closure, a
datastructure that contains a known-at-compile-time code-pointer to the method and the serialization of all
of its arguments. This implementation approach does not transfer the method-body’s code (source-, byte-
or machine-code).

The ABS user can create new Deployment Components (machines) just as creating objects (since DCs
are modelled as objects). The DC class that is chosen dictates what kind of machine will be created;
we currently provide library support 3 DC classes talking to 3 different providers: OpenNebula, Microsoft
Azure and Local (similar to Docker containers). The network communication is left to Cloud-Haskell and
is provider-dependent: OpenNebula and Azure with TCP and Local with in-memory transport. We plan to
extend our library with support for more (cloud) providers.

Currently we are investigating the migration of ABS processes between DCs (machines); this can theoret-
ically be achieved since ABS processes are merely data, and thus can be serialized and remotely transferred
(migrated) from machine to machine. Our support for Deployment Components follows the syntax and
semantics as it was first defined in the Deliverable D1.1 “Modeling of Systems”; the Appendix contains
more information about the current implementation. We shortly plan to adopt the revised and more elabo-
rate approach to Deployment Components (dynamic deployment) as defined in the recent Deliverable D1.3.1
“Modeling of Deployment”.

3.4 Benchmarks

We compared all the current ABS backends for their execution speed and memory consumption in a series of
sequential and parallel ABS programs that try to cover all aspects of the ABS language. These synthesized
ABS benchmarks programs can be found at https://github.com/abstools/abs-bench). The benchmark
results that are laid out in Appendix [A.4] indicate that the Haskell backend is the fastest both in terms
of elapsed time and memory residency. Specifically, the Haskell backend is on average 13x faster while
taking up 15x less memory than the new Java backend; this may be attributed to the fact that the new
Java backend relies on Java’s heavyweight threads. Two other downsides of the new Java backend is that,
firstly, it currently does not support (user-defined) algebraic datatypes (hence the err in the results table)
and, secondly, it suffers from process starvation: there are certain correct ABS programs that terminate but
unfortunately in the new Java backend they hang, because the employed threading model (static threadpool)
limits how many “processor” units (COGs) can run concurrently. The old Java backend is slower than the
new Java backend, and consequently slower than the Haskell backend (256x more time and 84x more
memory); the reason may be attributed to factors affecting also the new Java backend and also the fact
that the old Java backend uses spin-waiting when monitoring active objects for their await conditions. The
Erlang backend takes 596x more time and 17x more memory than the Haskell backend, since the backend
follows the apparently slower, process-oriented approach, i.e. each ABS process is implemented as a separate
lightweight thread: the COG’s ABS processes are sitting in a token ring—the process holding the token can
execute unless it is blocked in which case the token is passed that may cause needless spinning in certain
cases. The Maude backend is extremely slow compared to all other backends since it is an interpreter, but
surprisingly consumes comparable memory to Haskell (9x more memory than Haskell), and even in some
cases less memory than the other 3 backends: new-,0ld- Java and Erlang.

13

https://github.com/abstools/abs-bench

Chapter 4

Resource Preservation

In this section we focus on a strong feature of our translation: the Haskell-translated program preserves the
resource consumption of the original ABS program. In order to formalize this result we consider only the
concurrent-object subset of the ABS language, since the functional part of ABS has a one-to-one straight-
forward correspondence to Haskell. Concretely, we consider the following simplified syntax:

Su= x:=FE| f:=x!m(z) | await f | skip | return z | S1;5
E:= x|r|new| f.get | m(2)

D:= m(y)— S

P:= D:S

Variables are fields (z) or futures (f), and the values are objects. A program is a sequence of method
declarations followed by a main block. A statement is an assignment, an asynchronous call on an object
(x!'m(Zz)), an await on a future, skip, returning a value or the composition of two statements. Assignments
can store the value of a field (x), a constant reference (r), a new object (new) or the result of synchronous
calls (m(z)) or asynchronous calls linked to a future (f.get). Both synchronous and asynchronous calls
accept parameters (Z) that are considered as constant references.

The results are stated based on a simplified compilation from ABS to Haskell that can be found in
https://github.com/bezirg/abs2haskell-pure/tree/ast. This compilation follows the same ideas as
the full-blown Haskell backend presented in Chapter [3| but focused on the reduced language—see details in
the attached article [4]. The compilation translates each ABS method into a Haskell method, and run-time
configurations are represented as pairs (h,) where h is a heap containing all the information of objects (both
variables and process queues) and [is a list of active object identifiers. The main piece of this compilation
is the eval Haskell function, that given a run-time configuration (h,l) and an object identifier o performs
one step of evaluation. Function eval computes (h',1") where h’ is the modified heap and " is the new list of
active objects. Using the eval function we can start from an initial run-time configuration (h1,!;) and chain
n — 1 steps of evaluation, creating an evaluation trace Tg = (hy, 1) =2 (hg,lz) =2 ... =7} (hn,ly). The
decorations in the — arrow indicate the object o; and the statement s; executed by eval.

The first step to relate the ABS semantics and the eval function is to define a translation from Haskell
run-time configurations (h,l) to ABS configurations A. We will consider the ABS semantics presented
in [I], written A; ~» A9, and the translation ((h,l)}) = A defined in the attached paper [4]. It is also
important the notion of cost model (reported in Deliverable D3.3.2) to parameterize the type of resource we
want to bound. Cost models are functions from ABS statements to real numbers, i.e., M : S — R that
define different resource consumption measures. For instance, if the resource to measure is the number of
executed steps, M : S — 1 such that each instruction has cost one. However, if one wants to measure
memory consumption, we have that M(new) = obj size, where obj size refers to the size of an object
reference, and M(instr) = 0 for all remaining instructions. The resource preservation is based on the
following notion of cost: given a concrete cost model M, an object reference o and a program execution
T = A1 ¢ Ay @ ... ¢ Ay, the cost of the trace C(T', 0, M) is defined as follows (see also Deliverable

14

https://github.com/bezirg/abs2haskell-pure/tree/ast

Envisage Deliverable D3.1 Code Generation

LINEAR (LOW PARALLELISM) LINEAR (HIGH PARALLELISM)

104 104
T T T T] 40 T T T T
—m— steps
—— UB -140
—o— time
4+ 130 4+
g "z
n w0
o N2 Ny
3 120 o § Y
0 g n - 20 g
2+ i 2+ -
110 110
0L, ! ! ! \ L 40 0L, \ \ \ \ L 40
0 20 40 60 80 100 0 20 40 60 80 100
size size
10% LINEARITHMIC
QUADRATIC
I I T T T .10
150 \ \ T T
6 [1 | 1 800
140
— 0.8 - 1600
4 130 E B
2 =z 06| E
7 g 8 1400 o
120 2 ° 0.4 - R=
2 : >
110 0.2} 200
0r 10 0 10
| | | | | | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
size size
Figure 4.1: Execution steps vs. time (Intel® Core™ i7-4790 at 3.60GHz, 16 GB).
D3.3.2)

C(T,o,M)= > M(t)
t€T|{O}

Notice that, from all the steps in the trace 7T, it takes into account only those performed in object o, so the
cost notion is object-sensitive.

In order to prove the preservation of the resource consumption in the compiled program, we prove that
for any sequence of eval steps Tg there is also an equivalent execution trace 7 in the ABS semantics with

the same cost, i.e., C(Tg,0, M) =C(T,0, M).

Theorem 4.0.1 (Consumption Preservation) Let Tp = (h1,11) =3} (h1,l2) =77 ... —"7Y (hn, 1y) and
evaluation trace. Then there is a trace T = ((h1,01)) ~* {(hn,ln)) such that C(Tg,0, M) =C(T,0, M).

As a side effect of the previous theorem, we know that the upper bounds that are inferred from the ABS
programs using the resource analyzer SACO are valid upper bounds for the Haskell translated code. Let
UBain()|o be the upper bound obtained for a program starting from the main block, restricted to the object
o—see details in [I]. Then we can state the following resource preservation result:

15

Envisage Deliverable D3.1 Code Generation

Corollary 4.0.2 (Bound preservation) Let Tg be an evaluation trace starting from the main block. Then

C(TE, 0, M) < UBmam()|o

Besides proving that the execution of compiled Haskell programs has the same resource consumption as the
original ABS traces (i.e., they execute the same statements in the same order and in the same objects), it
is important that the compilation does not introduce an overhead during execution so that run-times are
proportional to the steps executed. In order to evaluate this hypothesis, we have created some programs
(see [4]) with different asymptotic costs and measured the number of statements executed (steps) and their
run-time. These benchmark programs create a number n of objects (size) and invoke some tasks in each
one: one task for the linear programs, log n tasks for the linearithmic program and n tasks for the quadratic
program. The difference between the two linear programs is that the low parallelism version awaits for
the result of the task before creating the next object, whereas the high parallelism version does not await.
Fig. shows the results of the tests as graphs, where the left vertical axis is used for the number of steps
and the right vertical axis for the run-time in milliseconds. The graphs show that both the steps and time
plots have the same growth rate in all the programs thus confirming the proportionality, i.e., the execution of
one statement requires a constant amount of time. We have added to the graphs the resource bounds (UB)
obtained by the SACO tool (see Deliverable D3.3.2) in the original ABS programs using the cost model that
measures the number of statements executed. As can be appreciated, the bounds are higher than the actual
number of steps but they are very precise for all the programs, with only a small difference in the number
of steps. This small imprecision in the upper bounds is caused by the constructors methods: the subset of
the ABS language presented in this chapter does not include constructors, but full ABS (and the SACO
tool as well) considers that every object has a constructor. Therefore, the SACO tool will count a constant
number of extra steps whenever a new object is created, corresponding to the invocation and execution of
the implicit constructor. Thus, our experiments show that the upper bounds obtained by SACO are accurate
approximations of the actual steps performed and have a direct correlation to the actual execution time using
the Haskell backend.

16

Bibliography

[1]

2]

3]

4]

[5]

(6]

17l

8]

9]

Elvira Albert, Puri Arenas, Jestus Correas, Samir Genaim, Miguel Gémez-Zamalloa, Germéan Puebla,
and Guillermo Roméan-Diez. Object-Sensitive Cost Analysis for Concurrent Objects. Software Testing,
Verification and Reliability, 25(3):218-271, 2015.

Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel Gomez-Zamalloa, Enrique
Martin-Martin, German Puebla, and Guillermo Roméan-Diez. SACO: Static Analyzer for Concurrent
Objects. In 20th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 8413 of Lecture Notes in Computer Science, pages 562-567. Springer-Verlag,
2014.

Elvira Albert, Puri Arenas, Miguel Gémez-Zamalloa, and Jose Miguel Rojas. Test Case Generation by
Symbolic Execution: Basic Concepts, a CLP-Based Instance, and Actor-Based Concurrency. In Marco
Bernardo, Ferruccio Damiani, Reiner Héhnle, Einar Broch Johnsen, and Ina Schaefer, editors, Formal
Methods for Ezecutable Software Models, volume 8483 of Lecture Notes in Computer Science, pages 263—
309. Springer-Verlag, June 2014.

Elvira Albert, Nikolaos Bezirgiannis, Frank de Boer, and Enrique Martin-Martin. A Formal, Resource
Consumption-Preserving Translation of Actors to Haskell. Submitted to FLOPS 2016.

Elvira Albert, Jestus Correas, Germéan Puebla, and Guillermo Romén-Diez. A Multi-Domain Incremental
Analysis Engine and its Application to Incremental Resource Analysis. Theoretical Computer Science,
585:91-114, 2015.

Nikolaos Bezirgiannis and Frank S. de Boer. ABS: a high-level modeling language for Cloud-Aware
Programming. In Proc. SOFSEM ’16. Springer, 2016. To appear.

Crystal Chang Din, Richard Bubel, and Reiner Hihnle. KeY-ABS: A deductive verification tool for
the concurrent modelling language ABS. In Amy P. Felty and Aart Middeldorp, editors, Proceedings of
the 25th International conference on Automated Deduction, volume 9195 of Lecture Notes in Computer
Science, pages 517-526. Springer-Verlag, 2015.

Einar Broch Johnsen, Reiner Hahnle, Jan Schéfer, Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer, and Marcello M.
Bonsangue, editors, Proc. 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), volume 6957 of Lecture Notes in Computer Science, pages 142-164. Springer-Verlag, 2011.

Behrooz Nobakht and Frank S. de Boer. Programming with actors in Java 8. In Tiziana Margaria and
Bernhard Steffen, editors, 6th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation (ISOLA’14), volume 8803 of Lecture Notes in Computer Science. Springer-
Verlag, 2014.

17

Glossary

ForkJoinPool A Thread pool that employs work-stealing:all threads in the pool attempt to find and
execute tasks submitted to the pool and/or created by other active tasks (eventually blocking waiting for
work if none exist)

Concurrent Object Group An abstraction in ABS that groups together several active objects that are
all scheduled to execute on a single thread.

18

Appendix A

Papers

A.1 Programming with Actors in Java 8

19

Programming with actors in Java 8*

Behrooz Nobakht'2 and Frank S. de Boer®

! Leiden Advanced Institute of Computer Science
Leiden University
bnobakht@liacs.nl
2 SDL Fredhopper
bnobakht@sdl. com
3 Centrum Wiskunde en Informatica

frb@cwi.nl

Abstract. There exist numerous languages and frameworks that support
an implementation of a variety of actor-based programming models in
Java using concurrency utilities and threads. Java 8 is released with fun-
damental new features: lambda expressions and further dynamic invo-
cation support. We show in this paper that such features in Java 8 allow
for a high-level actor-based methodology for programming distributed
systems which supports the programming to interfaces discipline. The
embedding of our actor-based Java API is shallow in the sense that it ab-
stracts from the actual thread-based deployment models. We further dis-
cuss different concurrent execution and thread-based deployment models
and an extension of the API for its actual parallel and distributed imple-
mentation. We present briefly the results of a set of experiments which
provide evidence of the potential impact of lambda expressions in Java 8
regarding the adoption of the actor concurrency model in large-scale dis-
tributed applications.

Keywords: Actor model, Concurrency, Asynchronous Message, Java, Lambda
Expression

1 Introduction

Java is beyond doubt one of the mainstream object oriented programming lan-
guages that supports a programming to interfaces discipline [9,35]. Through the
years, Java has evolved from a mere programming language to a huge plat-
form to drive and envision standards for mission-critical business applications.
Moreover, the Java language itself has evolved in these years to support its
community with new language features and standards. One of the noticeable
domains of focus in the past decade has been distribution and concurrency
in research and application. This has led to valuable research results and nu-
merous libraries and frameworks with an attempt to provide distribution and

* This paper is funded by the EU project FP7-610582 ENVISAGE: Engineering Virtual-
ized Services, http://www.envisage-project.eu.

2 B. Nobakht, and F. S. de Boer

concurrency at the level of Java language. However, it is widely recognized
that the thread-based model of concurrency in Java that is a well-known ap-
proach is not appropriate for realizing distributed systems because of its inher-
ent synchronous communication model. On the other hand, the event-driven
actor model of concurrency introduced by Hewitt [17] is a powerful concept
for modeling distributed and concurrent systems [2,1]. Different extensions of
actors are proposed in several domains and are claimed to be the most suit-
able model of computation for many applications [18]. Examples of these do-
mains include designing embedded systems [25,24], wireless sensor networks
[6], multi-core programming [22] and delivering cloud services through SaaS
or Paa$S [5]. This model of concurrent computation forms the basis of the pro-
gramming languages Erlang [3] and Scala [16] that have recently gained in pop-
ularity, in part due to their support for scalable concurrency. Moreover, based
on the Java language itself, there are numerous libraries that provide an imple-
mentation of an actor-based programming model.

The main problem addressed in this paper is that in general existing actor-
based programming techniques are based on an explicit encoding of mecha-
nisms at the application level for message passing and handling, and as such
overwrite the general object-oriented approach of method look-ups that forms
the basis of programming to interfaces and the design-by-contract discipline [26].
The entanglement of event-driven (or asynchronous messaging) and object-
oriented method look-up makes actor-based programs developed using such
techniques extremely difficult to reason about and formalize. This clearly ham-
pers the promotion of actor-based programming in mainstream industry that
heavily practices object-oriented software engineering.

The main result of this paper is a Java 8 API for programming distributed
systems using asynchronous message passing and a corresponding actor pro-
gramming methodology which abstracts invocation from execution (e.g. thread-
based deployment) and fully supports programming to interfaces discipline.
We discuss the API architecture, its properties, and different concurrent execu-
tion models for the actual implementation.

Our main approach consists of the explicit description of an actor in terms
of its interface, the use of the recently introduced lambda expressions in Java 8
in the implementation of asynchronous message passing, and the formalization
of a corresponding high-level actor programming methodology in terms of an
executable modeling language which lends itself to formal analysis, ABS [20].

The paper continues as follows: in Section 2, we briefly discuss a set of re-
lated works on actors and concurrent models especially on JVM platform. Sec-
tion 3 presents an example that we use throughout the paper, we start to model
the example using a library. Section 4 briefly introduces a concurrent model-
ing language and implements the example. Section 5 briefly discusses Java 8
features that this works uses for implementation. Section 6 presents how an ac-
tor model maps into programming in Java 8. Section 7 discusses in detail the
implementation architecture of the actor API Section 8 discusses how a num-
ber of benchmarks were performed for the implementation of the API and how

Programming with actors in Java 8 3

they compare with current related works. Section 9 concludes the paper and
discusses the future work.

2 Related Work

There are numerous works of research and development in the domain of actor
modeling and implementation in different languages. We discuss a subset of
the related work in the level of modeling and implementation with more focus
on Java and JVM-based efforts in this section.

Erlang [3] is a programming language used to build massively scalable soft
real-time systems with requirements on high availability. Some of its uses are
in telecoms, banking, e-commerce, computer telephony and instant messag-
ing. Erlang’s runtime system has built-in support for concurrency, distribu-
tion and fault tolerance. While threads require external library support in most
languages, Erlang provides language-level features for creating and managing
processes with the aim of simplifying concurrent programming. Though all
concurrency is explicit in Erlang, processes communicate using message pass-
ing instead of shared variables, which removes the need for locks. Elixir [33]
is a functional meta-programming aware language built on top of the Erlang
VM. It is a dynamic language with flexible syntax with macros support that
leverages Erlang’s abilities to build concurrent, distributed, fault-tolerant ap-
plications with hot code upgrades.

Scala is a hybrid object-oriented and functional programming language in-
spired by Java. The most important concept introduced in [16] is that Scala ac-
tors unify thread-based and event-based programming model to fill the gap for
concurrency programming. Through the event-based model, Scala also pro-
vides the notion of continuations. Scala provides quite the same features of
scheduling of tasks as in concurrent Java; i.e., it does not provide a direct and
customizable platform to manage and schedule priorities on messages sent to
other actors. Akka [15] is a toolkit and runtime for building highly concurrent,
distributed, and fault tolerant event-driven applications on the JVM based on
actor model.

Kilim [31] is a message-passing framework for Java that provides ultra-
lightweight threads and facilities for fast, safe, zero-copy messaging between
these threads. It consists of a bytecode postprocessor (a “weaver”), a run time
library with buffered mailboxes (multi-producer, single consumer queues) and
a user-level scheduler and a type system that puts certain constraints on pointer
aliasing within messages to ensure interference-freedom between threads. The
SALSA [34,22] programming language (Simple Actor Language System and
Architecture) is an active object-oriented programming language that uses con-
currency primitives beyond asynchronous message passing, including token-
passing, join, and first-class continuations.

RxJava [7] by Netflix is an implementation of reactive extensions [27] from
Microsoft. Reactive extensions try to provide a solution for composing asyn-
chronous and event-based software using observable pattern and scheduling.

4 B. Nobakht, and F. S. de Boer

An interesting direction of this library is that it uses reactive programming to
avoid a phenomenon known as “callback hell”; a situation that is a natural
consequence of composing Future abstractions in Java specifically when they
wait for one another. However, RxJava advocates the use of asynchronous func-
tions that are triggered in response to the other functions. In the same direction,
LMAX Disruptor [4,8] is a highly concurrent event processing framework that
takes the approach of event-driven programming towards provision of con-
currency and asynchronous event handling. The system is built on the [VM
platform and centers on a Business Logic Processor that can handle 6 million
events per second on a single thread. The Business Logic Processor runs entirely
in-memory using event sourcing. The Business Logic Processor is surrounded
by Disruptors - a concurrency component that implements a network of queues
that operate without needing locks.

3 State of the Art: An example

In the following, we illustrate the state of the art in actor programming by
means of a simple example using the Akka [32] library which features asyn-
chronous messaging and which is used to program actors in both Scala and
Java. We want to model in Akka an “asynchronous ping-pong match” between
two actors represented by the two interfaces 1ping and IPong which are depicted
in Listings 1 and 2. An asynchronous call by the actor implementing the 1pong
interface of the ping method of the actor implementing the 1ping interface should
generate an asynchronous call of the pong method of the callee, and vice versa.
We intentionally design ping and pong methods to take arguments in order to
demonstrate how method arguments may affect the use of an actor model in an
object-oriented style.

Listing 1: Ping as an interface Listing 2: Pong as an interface

1 public interface IPing { 1 public interface IPong {
2 void ping(String msg); 2 void pong(String msg);
3} 3}

To model an actor in Akka by a class, say Ping, with interface 1Ping, this class
is required both to extend a given pre-defined class untypedActor and implement the
interface Iping, as depicted in Listings 3 and 4. The class untypedActor provides
two Akka framework methods tell and onReceive which are used to enqueue
and dequeue asynchronous messages. An asynchronous call to, for example,
the method ping then can be modeled by passing a user-defined encoding of this
call, in this case by prefixing the string argument with the string “pinged”, to a
(synchronous) call of the telt method which results in enqueuing the message.
In case this message is dequeued the implementation of the onReceive method
as provided by the ping class then calls the ping method.

Programming with actors in Java 8 5

Listing 3: Ping actor in Akka Listing 4: Pong class in Akka

public class Ping(ActorRef pong) public class Pong
extends UntypedActor extends UntypedActor
implements IPing { implements IPong {

1

2

3

4

5 public void ping(String msg) { public void pong(String msg) {
6

7 "pinged," + msg);

8

9

1
2
3
4
5
pong.tell("ponged," + msg) 6 sender().tell(
7
8
9
0

public void onReceive(Object m)

{ 1 public void onReceive(Object m)
10 if (!(m instanceof String)) { {
11 // Message not understood. 11 if (!(m instanceof String)) {
12 } else 12 // Message not understood.
13 if (((String) m).startsWith(" 13 } else

pinged") { 14 if (m.startsWith("ponged") {

14 // Explicit cast needed. 15 // Explicit cast needed.
15 ping((String) m); 16 ping((String) m);
16 } 17 }
17 } 18
18 } 19 }

Access to the sender of the message in Akka is provided by sender(). In the
main method as described in Listing 5 we show how the initialize and start the
ping/pong match. Note that a reference to the “pong” actor is passed to the
“ping” actor.

Further, both the onReceive meth-
ods are invoked by Akka ActorSystenm
itself. In general, Akka actors are of
type ActorRef which is an abstraction 1 ActorSystem s = ActorSystem.create
prOVided by Akka to allow actors 2 ActorRef pong = s.actorOf(Props.
send asynchronous messages to one . , orf\;‘?‘a?iggolg class)): (Props.
another. An immediate consequence of create(Ping.class, pong));
the above use of inheritance is that the =~ 4 Pin9-tell(""); // To get a Future
class Ping is now exposing a public be-
havior that is not specified by its interface. Furthermore, a “ping” object refers
to a “pong” object by the type ActorRef . This means that the interface Ipong is
not directly visible to the “ping” actor. Additionally, the implementation de-
tails of receiving a message should be “hand coded” by the programmer into
the special method onReceive to define the responses to the received messages.
In our case, this implementation consists of a decoding of the message (using
type-checking) in order to look up the method that subsequently should be in-
voked. This fundamentally interferes with the general object-oriented mecha-
nism for method look-up which forms the basis of the programming to inter-
faces discipline. In the next section, we continue the same example and dis-
cuss an actor API for directly calling asynchronously methods using the gen-
eral object-oriented mechanism for method look-up. Akka has recently released

6 B. Nobakht, and F. S. de Boer

a new version that supports Java 8 features *. However, the new features can
be categorized as syntax sugar on how incoming messages are filtered through
object/class matchers to find the proper type.

4 Actor Programming in Java

We first describe informally the actor programming model assumed in this
paper. This model is based on the Abstract Behavioral Specification language
(ABS) introduced in [20]. ABS uses asynchronous method calls, futures, inter-
faces for encapsulation, and cooperative scheduling of method invocations in-
side concurrent (active) objects. This feature combination results in a concurrent
object-oriented model which is inherently compositional. More specifically, ac-
tors in ABS have an identity and behave as active objects with encapsulated
data and methods which represent their state and behavior, respectively. Ac-
tors are the units of concurrency: conceptually an actor has a dedicated proces-
sor. Actors can only send asynchronous messages and have queues for receiv-
ing messages. An actor progresses by taking a message out of its queue and
processing it by executing its corresponding method. A method is a piece of se-
quential code that may send messages.
Asynchronous method calls use fu-

tures as dynamically generated ref-
erences to return values. The execu-

tion of a method can be (temporar-) ’;Eﬁépg“g en ABSPONG:

ily) suspended by release statements 3 ping = new ABSPing(pong);

which give rise to a form of coopera- 4 Ping ! ping("");

tive scheduling of method invocations
inside concurrent (active) objects. Release statements can be conditional (e.g.,
checking a future for the return value). Listings 7, 8 and 6 present an imple-
mentation of ping-pong example in ABS. By means of the statement on line 6
of Listing 7 a “ping” object directly calls asynchronously the pong method of its
“pong” object, and vice versa. Such a call is stored in the message queue and the
called method is executed when the message is dequeued. Note that variables
in ABS are declared by interfaces. In ABS, unit is similar to void in Java.

4 Documentation available at http://doc.akka.io/docs/akka/2.3.2/java/
lambda-index-actors.html

Programming with actors in Java 8 7

Listing 7: Ping in ABS Listing 8: Pong in ABS

1 interface ABSIPing { 1 interface ABSIPong {
2 Unit ping(String msg); 2 Unit pong(String msg);
3} 3}
4 class ABSPing(ABSIPong pong) 4 class ABSPong implements ABSIPong
implements ABSIPing { {
5 Unit ping(String msg) { 5 Unit pong(String msg) {
6 pong ! pong("ponged," + msg); 6 sender ! ping("pinged," + msg
7})i
8 } 7 }
8 }

5 Java 8 Features

In the next section, we describe how ABS actors are implemented in Java 8
as APL In this section we provide an overview of the features in Java 8 that
facilitate an efficient, expressive, and precise implementation of an actor model
in ABS.

Java Defender Methods Java defender methods (JSR 335 [13]) use the new
keyword defautt. Defender methods are declared for interfaces in Java. In con-
trast to the other methods of an interface, a default method is not an abstract
method but must have an implementation. From the perspective of a client of
the interface, defender methods are no different from ordinary interface meth-
ods. From the perspective of a hierarchy descendant, an implementing class
can optionally override a default method and change the behavior. It is left as a
decision to any class implementing the interface whether or not to override the
default implementation. For instance, in Java 8 java.util.Comparator provides a
default method reversed() that creates a reversed-order comparator of the orig-
inal one. Such default method eliminates the need for any implementing class
to provide such behavior by inheritance.

Java Functional Interfaces Functional interfaces and lambda expressions
(JSR 335 [13]) are fundamental changes in Java 8. A @FunctionalInterface is an
annotation that can be used for interfaces in Java. Conceptually, any class or
interface is a functional interface if it consists of exactly one abstract method.
A lambda expression in Java 8, is a runtime translation [11] of any type that is
replaceable by a functional interface. Many of Java’s classic interfaces are func-
tional interfaces from the perspective of Java 8 and can be turned into lambda
expressions; e.g. java.lang.Runnable Or java.util.Comparator. For instance,

(sl, s2) — return sl.compareTo(s2);

is alambda expression that can be statically cast to an instance of a Comparator<String>;
because it can be replaced with a functional interface that has a method with
two strings and returning one integer. Lambda expressions in Java 8 do not have
an intrinsic type. Their type is bound to the context that they are used in but

8 B. Nobakht, and F. S. de Boer

their type is always a functional interface. For instance, the above definition of
a lambda expression can be used as:

Comparator<String> cmpl = (sl, s2) — return sl.compareTo(s2);

in one context while in the other:

Function<String> cmp2 = (sl, s2) — return sl.compareTo(s2);

given that Function<T> is defined as:

interface Function<T> { int apply(T t1, T t2); 1}

In the above examples, the same lambda expression is statically cast to a dif-
ferent matching functional interface based on the context. This is a fundamen-
tal new feature in Java 8 that facilitates application of functional programming
paradigm in an object-oriented language.

This work of research extensively uses this feature of Java 8. Java 8 marks
many of its own APIs as functional interfaces most important of which in this
context are java.lang.Runnable and java.util.concurrent.Callable. This means that
a lambda expression can replace an instance of Runnable or Callable at runtime
by JVM. We will discuss later how we utilize this feature to allow us model an
asynchronous message into an instance of a Runnable or Callable as a form of a
lambda expression. A lambda expression equivalent of a Runnable or a Callable
can be treated as a queued message of an actor and executed.

Java Dynamic Invocation Dynamic invocation and execution with method
handles (JSR 292 [29]) enables JVM to support efficient and flexible execution
of method invocations in the absence of static type information. JSR 292 in-
troduces a new byte code instruction invokedynamic for JVM that is available
as an API through java.lang.invoke.MethodHandles. This API allows translation of
lambda expression in Java 8 at runtime to be executed by JVM. In Java 8, use of
lambda expression are favored over anonymous inner classes mainly because
of their performance issues [12]. The abstractions introduced in JSR 292 per-
form better that Java Reflection API using the new byte code instruction. Thus,
lambda expressions are compiled and translated into method handle invoca-
tions rather reflective code or anonymous inner classes. This feature of Java 8
is indirectly use in ABS API through the extensive use of lambda expressions.
Moreover, in terms of performance, it has been revealed that invoke dynamic is
much better than using anonymous inner classes [12].

6 Modeling actors in Java 8

In this section, we discuss how we model ABS actors using Java 8 features. In
this mapping, we demonstrate how new features of Java 8 are used.

Programming with actors in Java 8 9

The Actor Interface We introduce an interface to model actors using Java 8 fea-
tures discussed in Section 5. Implementing an interface in Java means that the
object exposes public APIs specified by the interface that is considered the be-
havior of the object. Interface implementation is opposed to inheritance exten-
sion in which the object is possibly forced to expose behavior that may not be
part of its intended interface. Using an interface for an actor allows an object to
preserve its own interfaces, and second, it allows for multiple interfaces to be
implemented and composed.

A Java API for the implementation of ABS models should have the follow-
ing main three features. First, an object should be able to send asynchronously
an arbitrary message in terms of a method invocation to a receiver actor object.
Second, sending a message can optionally generate a so-called future which is
used to refer to the return value. Third, an object during the processing of a mes-
sage should be able to access the “sender” of a message such that it can reply to
the message by another message. All the above must co-exist with the funda-
mental requirement that for an object to act like an actor (in an object-oriented
context) should not require a modification of its intended interface.

The Actor interface (Listings 9 and 10) provides a set of default methods,
namely the run and send methods, which the implementing classes do not need
to re-implement. This interface further encapsulates a queue of messages that
supports concurrent features of Java API °. We distinguish two types of mes-
sages: messages that are not expected to generate any result and messages that
are expected to generate a result captured by a future value; i.e. an instance of
Future in Java 8. The first kind of messages are modeled as instances of Runnable
and the second kind are modeled instances of callable. The default run method
then takes a message from the queue, checks its type and executes the mes-
sage correspondingly. On the other hand, the default (overloaded) send method
stores the sent message and creates a future which is returned to the caller, in
case of an instance of callable.

5 Such API includes usage of different interfaces and classes in java.util.concurrent
package [23]. The concurrent Java API supports blocking and synchronization fea-
tures in a high-level that is abstracted from the user.

10 B. Nobakht, and F. S. de Boer

Listing 9: Actor interface (1) Listing 10: Actor interface (2)
1 public interface Actor { 1

2 public void run() { 2 public void send(Runnable m) {
3 Object m = queue.take(); 3 queue.offer(m);

4 4

5 if (m instanceof Runnable) { 5

6 ((Runnable) m).run(); 6 public <T> Future<T>

7 } else 7 send(Callable<T> m) {
8 8 Future<T> f =

9 if (m instanceof Callable) { 9 new FutureTask(m);
10 ((Callable) m).call(); 10 queue.offer(f);

11 } 11 return f;

12 } 12

13 13 }

14 // continue to the right

Modeling Asynchronous Messages We model an asynchronous call
Future<v>T =¢ey ! m(ey,...,en)

to a method in ABS by the Java 8 code snippet of Listing 11. The final local
variables uy, ..., un (of the caller) are used to store the values of the Java 8 ex-
pressions ey, ..., en corresponding to the actual parameters ey, ..., en. The types
Ti,1=1,...,n, are the corresponding Java 8 types of e;, i =1,...,n.

Listing 11: Async messages with futures Listing 12: Async messages w/o futures

1 final T; u; = ey; 1 final T; u; = e;

2 ... 2 ...

3 final T, u, = e,; 3 final T,, u, = e,;

4 Future<V> v = gjp.send(4 ep.send(

5 () — { return m(uy,...,u,); } 5 {0 = mlu,...,un); }
6); 6);

’

The lambda expression which encloses the above method invocation is an
instance of the functional interface; e.g. callable. Note that the generated object
which represents the lambda expression will contain the local context of the
caller of the method “m” (including the local variables storing the values of the
expressions ey, . .., en), which will be restored upon execution of the lambda ex-
pression. Listing 12 models an asynchronous call to a method without a return
value.

As an example, Listings 13 and 14 present the running ping/pong example,

using the above API. The main program to use ping and pong implementation
is presented in Listing 15.

Programming with actors in Java 8 11

Listing 13: Ping as an Actor Listing 14: Pong as an Actor

1 public class Ping(IPong pong) 1 public class Pong implements IPong
implements IPing, Actor { , Actor {
2 public void ping(String msg) { 2 public void pong(String msg) {
3 pong.send(() — { pong.("ponged 3 sender().send(() — { ping.("
"+ msg) }); pinged," + msg) });
4 1 4 }
5} 5}

As demonstrated in the above examples, the “ping” and “pong” objects pre-
serve their own interfaces contrary to the example depicted in Section 3 in which
the objects extend a specific “universal actor abstraction” to inherit methods and
behaviors to become an actor. Further, messages are processed generically by the
run method described in Listing 9. Although, in the first place, sending an asyn-
chronous may look like to be able to change the recipient actor’s state, this is
not correct. The variables that can be used in a lambda expression are effectively
final. In other words, in the context of a lambda expression, the recipient actor
only provides a snapshot view of its state that cannot be changed. This prevents
abuse of lambda expressions to change the receiver’s state.

Modeling Cooperative Scheduling The ABS statement await g, where g is a boolean
guard, allows an active object to preempt the current method and schedule an-
other one. We model cooperative scheduling by means of a call to the await
method in Listing 16. Note that the preempted process is thus passed as an ad-
ditional parameter and as such queued in case the guard is false, otherwise it
is executed. Moreover, the generation of the continuation of the process is an
optimization task for the code generation process to prevent code duplication.

Listing 15: main in ABS API Listing 16: Java 8 await implementation

1 IPong pong = new Pong(); 1 void await(final Boolean guard,
2 IPing ping = new Ping(pong); 2 final Runnable cont) {
3 ping.send() 3 if (!guard) {
4 () ->ping.ping("") 4 this.send(() —
50 5 { this.await(guard, cont) })
6 } else { cont.run() }
7

}

7 Implementation Architecture

Figure 1 presents the general layered architecture of the actor API in Java 8. It
consists of three layers: the routing layer which forms the foundation for the
support of distribution and location transparency [22] of actors, the queuing
layer which allows for different implementations of the message queues, and

12 B. Nobakht, and F. S. de Boer

finally, the processing layer which implements the actual execution of the mes-
sages. Each layer allows for further customization by means of plugins. The
implementation is available at https://github.com/Crisp0SS/abs-api.

- 7 Y4 N ~
Router Local | Remote
N\ AN
/ N N N

Queue Scheduler Dedicated Shared | Plugins

N AN /
ve

Executor| JVM
Process | Service | Method | Thread
ForkJoin | Handle
NG \ AN AN AN ,/’

/ N

Fig. 1: Architecture of Actor API in Java 8

We discuss the architecture from bottom layer to top. The implementation
of actor API preserves a faithful mapping of message processing in ABS mod-
eling language. An actor is an active object in the sense that it controls how
the next message is executed and may release any resources to allow for co-
operative scheduling. Thus, the implementation is required to optimally utilize
JVM threads. Clearly, allocating a dedicated thread to each message or actor
is not scalable. Therefore, actors need to share threads for message execution
and yet be in full control of resources when required. The implementation fun-
damentally separates invocation from execution. An asynchronous message is a
reference to a method invocation until it starts its execution. This allows to min-
imize the allocation of threads to the messages and facilitates sharing threads
for executing messages. Java concurrent API [23] provides different ways to
deploy this separation of invocation from execution. We take advantage of Java
Method Handles [29] to encapsulate invocations. Further we utilize different
forms of ExecutorService and ForkJoinPool to deploy concurrent invocations of
messages in different actors.

In the next layer, the actor API allows for different implementations of a
queue for an actor. A dedicated queue for each actor simplifies the process
of queuing messages for execution but consumes more resources. However,
a shared queue for a set of actors allows for memory and storage optimiza-
tion. This latter approach of deployment, first, provides a way to utilize the
computing power of multi-core; for instance, it allows to use work-stealing
to maximize the usage of thread pools. Second, it enables application-level
scheduling of messages. The different implementations cater for a variety of

Programming with actors in Java 8 13

plugins, like one that releases computation as long as there is no item in the
queue and becomes active as soon as an item is placed into the queue; e.g.
java.util.concurrent.BlockingQueue. Further, different plugins can be injected to
allow for scheduling of messages extended with deadlines and priorities [28].

We discuss next the distribution of actors in this architecture. In the archi-
tecture presented in Figure 1, each layer can be distributed independently of
another layer in a transparent way. Not only the routing layer can provide dis-
tribution, the queue layer of the architecture may also be remote to take advan-
tage of cluster storage for actor messages. A remote routing layer can provide
access to actors transparently through standard naming or addresses. We ex-
ploit the main properties of actor model [1,2] to distribute actors based on our
implementation. From a distributed perspective, the following are the main re-
quirements for distributing actors:

Reference Location Transparency Actors communicate to one another using
references. In an actor model, there is no in-memory object reference; how-
ever, every actor reference denotes a location by means of which the actor is
accessible. The reference location may be local to the calling actor or remote.
The reference location is physically transparent for the calling actor.

Communication Transparency A message m from actor A to actor B may pos-
sibly lead to transferring m over a network such that B can process the mes-
sage. Thus, an actor model that supports distribution must provide a layer
of remote communication among its actors that is transparent, i.e., when
actor A sends message m, the message is transparently transferred over
the network to reach actor B. For instance, actors existing in an HTTP con-
tainer that transparently allows such communication. Further, the API im-
plementation is required to provide a mechanism for serialization of mes-
sages. By default, every object in JVM cannot be assumed to be an instance
of java.io.Serializable. However, the API may enforce that any remote ac-
tor should have the required actor classes in its JVM during runtime which
allows the use of the JVM’s general object serialization © to send messages
to remote actors and receive their responses. Additionally, we model asyn-
chronous messages with lambda expressions for which Java 8 supports se-
rialization by specification 7.

Actor Provisioning During a life time of an actor, it may need to create new
actors. Creating actors in a local memory setting is straightforward. How-
ever, the local setting does have a capacity of number of actors it can hold.
When an actor creates a new one, the new actor may actually be initialized
in a remote resource. When the resource is not available, it should be first
provisioned. However, this resource provisioning should be transparent to
the actor and only the eventual result (the newly created actor) is visible.

®Java Object Serialization Specification: http://docs.oracle.com/javase/8/
docs/platform/serialization/spec/serialTOC.html

7 Serialized Lambdas: http://docs.oracle.com/javase/8/docs/api/java/
lang/invoke/SerializedLambda.html

14 B. Nobakht, and F. S. de Boer

We extend the ABS API to ABS Remote API® that provides the above proper-
ties for actors in a seamless way. A complete example of using the remote API
has been developed’. Expanding our ping-pong example in this paper, List-
ing 17 and 18 present how a remote server of actors is created for the ping and
pong actors. In the following listings, java.util.Properties is used provide input
parameters of the actor server; namely, the address and the port that the actor
server responds to.

Listing 17: Remote ping actor main Listing 18: Remote pong actor main

1 Properties p = new Properties(); 1 Properties p = new Properties();
2 p.put("host", "localhost"); 2 p.put("host", "localhost");

3 p.put("port", "7777"); 3 p.put("port", "8888");

4 ActorServer s = new ActorServer(p) 4 ActorServer s = new ActorServer(p)

IPong pong = 5 Pong pong = new Pong();

s.newRemote("abs://pong@http://
localhost:8888",

7 IPong.class);

8 Ping ping = new Ping(pong);

9 ping.send(

0) () -> ping.ping("")

1);

[ex ;]

In Listing 17, a remote reference to a pong actor is created that exposes the
Tpong interface. This interface is proxied '° by the implementation to handle the
remote communication with the actual pong actor in the other actor server. This
mechanism hides the communication details from the ping actor and as such
allows the ping actor to use the same API to send a message to the pong actor
(without even knowing that the pong actor is actually remote). When an actor
is initialized in a distributed setting it transparently identifies its actor server
and registers with it. The above two listings are aligned with the similar main
program presented in Listing 15 that presents the same in a local setting. The
above two listings run in separate JVM instances and therefore do not share
any objects. In each JVM instance, it is required that both interfaces 1ping and
IPong are visible to the classpath; however, the ping actor server only needs to
see Ping class in its classpath and similarly the pong actor server only needs to
see Pong class in its classpath.

8 The implementation is available at https://github.com/Crisp0SS/
abs-api-remote.

9 An example of ABS Remote API is available at https://github.com/Crisp0SS/
abs-api-remote-sample.

Java Proxy: http://docs.oracle.com/javase/8/docs/api/java/lang/
reflect/Proxy.html

Programming with actors in Java 8 15

Comparison of Message Roundtrip Execution Time

200
180
160
140

120
DABS API

100 7 Akka

80

Time (micro-seconds)

60
40

20
%
0 Czza [z -%
mean min p(0.0000) p(50.0000) p(90.0000) P(95.0000) p(99.0000) p(99.9000) P(99.9900) p(99.9990)

Sampling Time Percentile Measurement

Fig. 2: Benchmark results of comparing sampling time of message round trips in
ABS API and Akka. An example reading of above results is that the time shows
for p(90.0000) reads as “message round trips were completed under 10us for
90% of the sent messages”. The first two columns show the “minimum” and
“mean” message round trip times in both implementations.

8 Experiments

In this section, we explain how a series of benchmarks were directed to evaluate
the performance and functionality of actor API in Java 8. For this benchmark,
we use a simple Java application that uses the “Ping-Pong” actor example dis-
cussed previously. An application consists of one instance of Ping actor and one
instance of Pong actor. The application sends a ping message to the ping actor and
waits for the result. The ping message depends on a pong message to the pong
actor. When the result from the pong actor is ready, the ping actor completes
the message; this completes a round trip of a message in the application. To be
able to make comparison of how actor API in Java 8 performs, the example is
also implemented using Akka [32] library. The same set of benchmarks are per-
formed in isolation for both of the applications. To perform the benchmarks, we
use JMH [30] that is a Java microbenchmarking harness developed by Open]DK
community and used to perform benchmarks for the Java language itself.

The benchmark is performed on the round trip of a message in the appli-
cation. The benchmark starts with a warm-up phase followed by the running
phase. The benchmark composes of a number of iterations in each phase and
specific time period for each iteration specified for each phase. Every iteration
of the benchmark triggers a new message in the application and waits for the
result. The measurement used is sampling time of the round trip of a message.
A specific number of samples are collected. Based on the samples in different
phases, different percentile measurements are summarized. An example per-

16 B. Nobakht, and F. S. de Boer

centile measurement p(99.9900) = 10 ps is read as 99.9900% of messages in
the benchmark took 10 micro-seconds to complete.

Each benchmark starts with 500 iterations of warm-up with each iteration
for 1 micro-second. Each benchmark runs for 5000 iterations with each iteration
for 50 micro-seconds. In each iteration, a maximum number of 50K samples are
collected. Each benchmark is executed in an isolated JVM environment with
Java 8 version b127. Each benchmark is executed on a hardware with 8 cores of
CPU and a maximum memory of 8GB for JVM.

The results are presented in Figure 2. The performance difference observed
in the measurements can be explained as follows. An actor in Akka is expected
to expose a certain behavior as discussed in Section 3 (i.e. onReceive). This means
that every message leads to an eventual invocation of this method inside actor.
However, in case of an actor in Java 8, there is a need to make a look-up for
the actual method to be executed with expected arguments. This means that
for every method, although in the presence of caching, there is a need to find
the proper method that is expected to be invoked. A constant overhead for the
method look-up in order to adhere to the object-oriented principles is naturally
to be expected. Thus, this is the minimal performance cost that the actor APl in
Java 8 pays to support programming to interfaces.

9 Conclusion

In this paper, we discussed an implementation of the actor-based ABS modeling
language in Java 8 which supports the basic object-oriented mechanisms and
principles of method look-up and programming to interfaces. In the full version
of this paper we have developed an operational semantics of Java 8 features
including lambda expressions and have proved formally the correctness of the
embedding in terms of a bisimulation relation.

The underlying modeling language has an executable semantics and sup-
ports a variety of formal analysis techniques, including deadlock and schedu-
lability analysis [10,19]. Further it supports a formal behavioral specification of
interfaces [14], to be used as contracts.

We intend to expand this work in different ways. We aim to automatically
generate ABS models from Java code which follows the ABS design method-
ology. Model extraction allows industry level applications be abstracted into
models and analyzed for different goals such as deadlock analysis and concur-
rency optimization. This approach of model extraction we believe will greatly
enhance industrial uptake of formal methods. We aim to further extend the
implementation of API to support different features especially regarding dis-
tribution of actors especially in the queue layer, and scheduling of messages
using application-level policies or real-time properties of a concurrent system.
Furthermore, the current implementation of ABS API in a distributed setting
allows for instantiation of remote actors. We intend to use the implementation
to model ABS deployment components [21] and simulate a distributed envi-
ronment.

Programming with actors in Java 8 17

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

G. Agha, I. Mason, S. Smith, and C. Talcott. A Foundation for Actor Computation.
Journal of Functional Programming, 7:1-72,1997.

Gul Agha. The Structure and Semantics of Actor Languages. In Proc. the REX Work-
shop, pages 1-59, 1990.

. Joe Armstrong. Erlang. Communications of ACM, 53(9):68-75, 2010.
. Michael Baker and Martin Thompson. LMAX Disruptor. LMAX Exchange. http:

//github.com/LMAX-Exchange/disruptor.

. Po-Hao Chang and Gul Agha. Towards Context-Aware Web Applications. In

7th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS), pages 239-252, 2007.

. Elaine Cheong, Edward A. Lee, and Yang Zhao. Viptos: a graphical development

and simulation environment for tinyOS-based wireless sensor networks. In Proc.
Embedded net. sensor sys., SenSys 2005, pages 302-302, 2005.

. Ben Christensen. RxJava: Reactive Functional Progamming in Java. Netflix. http:

//github.com/Netflix/RxJava/wiki.

. Martin Fowler. LMAX Architecture. Martin Fowler. http://martinfowler.com/

articles/lmax.html.

. Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John. Design

Patterns: Abstraction and Reuse of Object-Oriented Design. In ECOOP "93 — Object-
Oriented Programming, volume 707 of Lecture Notes in Computer Science, pages 406—
431. Springer Berlin Heidelberg, 1993.

Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt, and Peter Y. H.
Wong. Deadlock analysis of concurrent objects: Theory and practice. In IFM, pages
394-411, 2013.

Brian Goetz. Lambda Expression Translation in Java 8. Oracle. http://cr.openjdk.
java.net/~briangoetz/lambda/lambda-translation.html.

Brian Goetz. Lambda: A Peek Under The Hood. Oracle, 2012. JAX London.

Brian Goetz. JSR 335, Lambda Expressions for the Java Programming Language. Oracle,
March 2013. http://jcp.org/en/jsr/detail?id=335.

Reiner Héhnle, Michiel Helvensteijn, Einar Broch Johnsen, Michael Lienhardt, Da-
vide Sangiorgi, Ina Schaefer, and Peter Y. H. Wong. Hats abstract behavioral speci-
fication: The architectural view. In FMCO, pages 109-132, 2011.

Philipp Haller. On the integration of the actor model in mainstream technologies: the
Scala perspective. In Proceedings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized control abstractions, pages 1-6.
ACM, 2012.

Philipp Haller and Martin Odersky. Scala Actors: Unifying thread-based and event-
based programming. Theoretical Computer Science, 410(2-3):202-220, 2009.

Carl Hewitt. Procedural Embedding of knowledge in Planner. In Proc. the 2nd Inter-
national Joint Conference on Artificial Intelligence, pages 167-184, 1971.

Carl Hewitt. What Is Commitment? Physical, Organizational, and Social (Revised).
In Proc. Coordination, Organizations, Institutions, and Norms in Agent Systems II, LNCS
Series, pages 293-307. Springer, 2007.

Mohammad Mahdi Jaghoori, Frank S. de Boer, Tom Chothia, and Marjan Sirjani.
Schedulability of asynchronous real-time concurrent objects. J. Log. Algebr. Program.,
78(5):402—416, 2009.

Einar Broch Johnsen, Reiner Hihnle, Jan Schifer, Rudolf Schlatte, and Martin Stef-
fen. ABS: A core language for abstract behavioral specification. In Formal Methods
for Components and Objects, pages 142-164. Springer, 2012.

18

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.
31.
32.

33.
34.

35.

B. Nobakht, and F. S. de Boer

Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa. Modeling
resource-aware virtualized applications for the cloud in Real-Time ABS. In Formal
Methods and Software Engineering, pages 71-86. Springer, 2012.

Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor frameworks for the JVM plat-
form: a comparative analysis. In Proc. Principles and Practice of Prog. in Java (PPP]'09),
pages 11-20. ACM, 2009.

Doug Lea. JSR 166: Concurrency Utilities. Sun Microsystems, Inc. http://jcp.
org/en/jsr/detail?id=166.

Edward A. Lee, Xiaojun Liu, and Stephen Neuendorffer. Classes and inheritance in
actor-oriented design. ACM Transactions in Embedded Computing Systems, 8(4), 2009.
Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-Oriented De-
sign of Embedded Hardware and Software Systems. Journal of Circuits, Systems, and
Computers, 12(3):231-260, 2003.

Meyer, B. Applying “design by contract”. Computer, 25(10):40-51, Oct 1992.
Microsoft. Reactive Extensions. Microsoft. https://rx.codeplex.com/.
Behrooz Nobakht, Frank S. de Boer, Mohammad Mahdi Jaghoori, and Rudolf
Schlatte. Programming and deployment of active objects with application-level
scheduling. In Proceedings of the 27th Annual ACM Symposium on Applied Comput-
ing, SAC "12, pages 1883-1888. ACM, 2012.

John Rose. JSR 292: Supporting Dynamically Typed Languages on the Java Platform.
Oracle. http://jcp.org/en/jsr/detail?id=292.

Aleksey Shipilev. JMH: Java Microbenchmark Harness. Oracle. http://openjdk.
java.net/projects/code-tools/jmh/.

Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for Java. In
ECOOP 2008-Object-Oriented Programming, pages 104-128. Springer, 2008.
Typesafe. Akka. Typesafe. http://akka.1io/.

Jose Valim. Elixir. Elixir. http://elixir-lang.org/.

Carlos A Varela, Gul Agha, Wei-Jen Wang, Travis Desell, Kaoutar El Maghraoui,
Jason LaPorte, and Abe Stephens. The SALSA Programming Language 1.1.2 Release
Tutorial. Dept. of Computer Science, RPI, Tech. Rep, pages 07-12, 2007.

Wirfs-Brock, Rebecca J. and Johnson, Ralph E. Surveying Current Research in
Object-oriented Design. Commun. ACM, 33(9):104-124, 1990.

Envisage Deliverable D3.1 Code Generation

A.2 ABS: a high-level modeling language for Cloud-Aware Programming

38

ABS: a high-level modeling language for
Cloud-Aware Programming *

Nikolaos Bezirgiannis, Frank de Boer

Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
{n.bezirgiannis, f.s.de.boer}@cwi.nl

Abstract. Cloud technology has become an invaluable tool to the IT
business, because of its attractive economic model. Yet, from the pro-
grammers’ perspective, the development of cloud applications remains
a major challenge. In this paper we introduce a programming language
that allows Cloud applications to monitor and control their own de-
ployment. Our language originates from the Abstract Behavioral Speci-
fication (ABS) language: a high-level object-oriented language for mod-
eling concurrent systems. We extend the ABS language with Deploy-
ment Components which abstract over Virtual Machines of the Cloud
and which enable any ABS application to distribute itself among mul-
tiple Cloud-machines. ABS models are executed by transforming them
to distributed-object Haskell code. As a result, we obtain a Cloud-aware
programming language which supports a full development cycle including
modeling, resource analysis and code generation.

1 Introduction

The IT industry, always looking for cutting operational costs, has been increas-
ingly relying on virtualized resources offered by the “Cloud”. Besides being more
economically attractive, the Cloud can allow certain software to benefit in secu-
rity and execution speed. For these reasons, software applications are steadily
being migrated to run on virtualized hardware, essentially turning cloud com-
puting into a hot topic among the software community.

Recent research has led to numerous methodologies, tools, and technologies
being proposed to help the migration and execution of software in the cloud,
ranging from (static) configuration management tools to (live) orchestration
middleware, and from simple resource monitoring services to the dynamic (elas-
tic) provisioning of resources. Unfortunately, the (so-called) DevOps engineers
are now burdened with developing and maintaining an extra logic for such cloud
tools, besides the usual application logic. These cloud tools may be best described
as semi-automatic and it is often the case that an engineer has to manually in-
tervene to apply the desired configuration&deployment of a cloud application.

These cloud applications are migrated unchanged: monolithic boxes of code
which are transferred from a non-cloud setting to the new cloud environment by

* Partly funded by the EU project FP7-610582 ENVISAGE. This work was carried out
on the Dutch national e-infrastructure with the support of SURF Foundation.

the DevOps engineers. Such separation of the application from its execution is
traditionally believed to be an advantage, long before Cloud came to existence.
However, one would expect that with the introduction of the virtualized (dy-
namic) hardware of the Cloud, and since software logic is inherently dynamic,
an application could “become aware” and leverage its own execution for manag-
ing its cloud resources & deployment in an optimal way, and without the constant
administering of an engineer.

In this paper, we aim to address the challenges of engineering cloud appli-
cations by introducing a “cloud-aware” programming language that provides
certain high-level abstractions for unifying the application logic together with
its deployment logic in a single integrated environment, while in the same-time,
hiding any lower-level hardware and cloud-provider considerations. The language
is intended for DevOps engineers and (potentially) computational scientists who
are responsible for both the development and execution of software residing in
the Cloud but would rather focus more on the application’s logic than manage
continuously its deployment. Applications written in the proposed language are
christened “cloud-aware” in the sense that they can actively monitor and control
their own deployment.

The proposed language is based on the A Bstract Specification language (ABS),
a formally-specified, object-oriented modeling language that has been used for
both analyzing [1], verifying ([8]), and simulating [5] software programs, as well
as running them in production through the various backends developed (cur-
rently targeting Java, Erlang, and Haskell). We extend ABS with Deployment
Components that serve as a suitable abstraction over Cloud Virtual Machines
and which allow the application to distribute itself among multiple (provider-
agnostic) computing systems. The ABS developer writes code that can dynami-
cally create, monitor and shutdown such Deployment Components (Virtual Ma-
chines) and most importantly bring up new objects inside them. To this end, an
ABS cloud-application forms a cloud-aware distributed-object system, which con-
sists of a number of inter-VM objects that communicate asynchronously, while
recording any failures that may happen in the cloud.

An implementation of this extension must be efficient and safe so that it can
be put in production code. For this, the Haskell backend of ABS is chosen for
translating ABS code to Haskell intermediate code, which is again typechecked
and transformed to an executable by an external Haskell compiler. We augment
this backend with support for Cloud-Haskell, a framework for type-safe, fault-
tolerant distributed programming in the Haskell ecosystem. The implementation,
although in its infancy, is already being tested in a real cloud environment,
exhibiting promising results which are also presented.

2 ABS Language and its Cloud Extension

The ABS (for ” ABstract Specification language”)[5] is a statically-typed, ex-
ecutable modeling language with formal operational semantics. The language
consists of a purely-functional programming core and an imperative, object-

oriented layer. The syntax and behaviour resembles that of Java with two clear
differences: side-effectful code cannot be mixed with pure expressions, and class
inheritance is abolished in favour of code reuse via delta models[3]. ABS adds,
next to the Java-like (passive) objects, builtin support for active (concurrent)
objects coupled with cooperative scheduling.

The functional core provides a declarative way to describe computation
which abstracts from possible imperative implementations of data structures.
The primitive types (Int and Rational) can be extended with (possibly recur-
sive) algebraic data types (ADTs) (e.g. data Bool = True | False) that can
exhibit parametric polymorphism (List<A>) and Hindley-Milner type inference.
Pure expressions are formed by successive A\-let abstractions and applications
over values of the defined datatypes (let x = 3 in x>2 || True). Function
definitions associate a name to a pure expression which is evaluated in the scope
where the the expression’s free variables are bound to the function’s arguments.
The functional core supports pattern matching with a case-expression which
matches a given expression against a list of branches.

The imperative layer specifies the interlaced control flow of the concurrent
objects in terms of communication, synchronization, and internal computation.
This layer extends the functional core (datatype and function definitions) with
interface definitions, class definitions, and a main block. Interfaces declare a set
of method names to their type-signatures. An interface extends other inter-
faces, in this case inheriting the methods of of its super-interfaces. A class defi-
nition declares its (private-only) attributes and a set of interfaces it implements.
Method implementation bodies are comprised of statements of standard sequen-
tial composition s; s, assignment x = rhs, conditionals, while-loops, and return.
Statements can mutate private attributes of the current class, locally-defined
variables, and the method’s formal parameters. The read-only variable this eval-
uates to the object in which computation occurs. A program’s main block is a
special method body with no this associated object. Classes are not types and
used only to create object instances that instead are typed-by-interface. Note
that interfaces support subtype polymorphism while ensuring strong encapsula-
tion of implementation details.

Methods calls are either synchronous (v = obj.method(args) ;) where the
statement is blocked until the method has finished with result v, or asynchronous
(f = obj'method(args) ;) where the statement returns immediately with a fu-
ture f (with type Fut<A>), without waiting for the method’s completion. Each
asynchronous method call creates a new process which will eventually store the
result of the method call into the future reference. The caller can use this future
reference to retrieve the result by calling the blocking statement v = f.get;.
Objects may form a so-called Concurrent Object Group (COG), where objects
(and their processes) share the same thread of control: at each point in time,
only one process of the COG is executing. This process may decide to willfully
pass control to another same-group process, by waiting until a future is ready
(await £7;) or a boolean expression is met (await exp;). ABS does not specify

any concrete policy for this cooperative scheduling of processes; it is left to the
particular implementation (backend) to decide.

2.1 Extending to the Cloud

We extend the ABS language with syntactic and library support for Deployment
Components. A Deployment Component (DC), first described in [7], is “an ab-
straction from the number and speed of the physical processors available to the
underlying ABS program by a notion of concurrent resource”. Simply put, a DC
corresponds to a single (properly-quantified) Virtual Machine which executes
ABS code. We restrict the definition of DC to correspond only to a Platform
Virtual Machine (VM) residing inside the boundaries of a Cloud infrastructure.
Multiple inter-communicating VMs effectively form an ABS cloud application.

To be able to programmatically (at will) create and delete VMs in any lan-
guage, would require modeling them as first-class citizens of that language. As
such, we introduce DCs as first-class citizens to the already-existing language of
ABS in the least-intrusive way: by modeling them as objects. All created DC
objects are typed by the interface DC. Minimal implementation for the methods
of the DC interface are shutdown for shutting down and releasing the cloud re-
sources of a virtual machine, and load for probing its average system load, i.e. a
metric for how busy the underlying computing-power stays in a period of time.
We use the Unix-style convention of returning 3 average values of 1, 5 and 15
minutes. The DC interface resides in the augmented standard library:

module StandardLibrary.CloudAPI;
interface DC {
Unit shutdown() ;
Triple<Rat ,Rat ,Rat> load();
}

By having a common DC interface the different cloud backends can agree on
a basic service, while still being able to provide additional functionality through
sub-interfaces and distinct DC-interfaced classes. Each DC-interfaced class im-
plements the connection to a distinct cloud provider (e.g. Amazon, Openstack).
A code skeleton of such a class follows, where the DC (VM) is parameterized by
the number of CPU cores and main RAM memory:

module StandardLibrary.SomeProvider;

data CpuSpec = Micro | Small | Large;
data MemSpec GB(Int) | MB(Int);

class SomeProvider (CpuSpec c,MemSpec m) implements DC {
Unit shutdown() { /*omittedx*/ }
Triple<Rat ,Rat,Rat> load() { /*omittedx*/ }

}

The implementor can expose other properties to DCs, such as, network, num-
ber of 10 operations, VM region location. A concrete implementation, which is

omitted for brevity, usually involves some high-level ABS logic coupled with
low-level code written in a foreign language (in our case Haskell). The average
ABS user will not have to provide such connections to the cloud, since we (the
implementors) intend to provide class implementations for most major cloud
providers/technologies, in an accompanying ABS library. With this approach,
we lift the low-level API of the cloud provider (usually XML-RPC) to a typed
high-level API (e.g. CpuSpec and MemSpec datatypes).

Moving on, we create an object of the SomeProvider class by passing the num-
ber of cores and memory measured in GBs as class’ formal parameters. The call
to “new SomeProvider” contacts the specific cloud provider in the background
for bringing up a new VM instance. The provider responds with a unique identi-
fier (commonly the public IP address of the created VM) which is stored in the
DC object. Finally, the machine is released by calling shutdown (), making the
DC object point to null.

DC dcl = new SomeProvider (Large, GB(8));

_ future_11 = dcl ! load();// underscore infers the type
_ 11 = future_1l1.get;

dc1l ! shutdown();

The creation of a DC object reference is usually fast, since it involves a single
network communication between the current ABS node and the cloud provider.
Still, the underlying VM requires considerably more time to boot up and be
responsive, depending on factors such as provider’s availability, congestion and
hardware. To address this, we allow the creation of new dc objects to continue,
but we require the program to potentially block when executing the first opera-
tion of the newly-created DC, as shown in the example:

DC mail_server = new Amazon(..);
DC web_server = new Azure(..);
DC db_server = new Rackspace(..);

mail_server!load(); // will block if DC is not up yet

Similar to this identifier, a method context contains the thisDC read-only
variable (with type DC) that points to the VM host of the current executing ob-
ject. A running ABS node can thus control itself (or any other nodes), by getting
its system load or shutting down its own machine. However, after its creation,
a running ABS node will remain idle until some objects are created/assigned to
it. The spawns keyword is added to create objects that “live” and execute in a
remote DC:

Interfl ol = dcl spawns Clsl(args..);
ol ! methodl(args..);
this.method2(ol);

The spawns behaves similar to the new keyword: it creates a new object (in-
side a new COG), initializes it, and optionally calls its run method. Indeed, the
expression new Clsl(params) is equivalent to thisDC spawns Clsl(params).
The keyword spawns returns a remote object reference, (also called a proxy ob-
ject; ol in the above example) that can be called asynchronously for its methods

and passed around as a parameter. Every remote object reference is a single “ad-
dress” uniquely identified across the whole network of nodes. Calls to spawns will
also (besides shutdown, load) block a until the VM is up and running. From a
theoretical standpoint, a remotely-spawned object must point to the same code
(attributes and methods) as in a local object; a remark that is reinforced in the
Subsection 3.1.

Whereas the development of ABS code is by-definition provider-dependent
— the user has to explicitly specify the class of the cloud provider —, the com-
munication and interaction between the spawned remote objects is (in principle)
provider-agnostic. To this extent, an ABS user could write an ABS cloud appli-
cation that spans over multiple cloud providers and, most importantly, different
cloud technologies.

Cloud Fuilures In cloud computing, and in any distributed system in general,
failures are more frequent, mostly because of unreliable networks. Based on
this fact, we further extend ABS with proper support for extensible, asyn-
chronous exceptions. At the language level, exceptions are pure expressions
modeled as single-constructor values of the ADT Exception. To define new
exceptions the user writes a declaration similar to an ADT declaration, e.g.
exception MyException(Int, List<String>);. Our cloud extension prede-
fines certain common “local” exceptions (e.g. NullPointerException, Division-
ByZeroException) and cloud-related exceptions (e.g. NetworkErrorException,
DCAllocationException, DecodingException).

Exception values are either implicitly raised by a primitive operation (e.g.
DivisionByZeroException) or explicitly signaled using the throw keyword. To
recover from exceptions the user writes a try/catch/finally block as in Java,
the only difference being that the user can pattern-match on each catch-clause
for the exception-constructor arguments. Normally, if an exception reaches the
outermost caller without being handled, its process will stop. We introduce a
special built-in keyword named die that changes this behaviour and causes an
object to be nullified and all of its processes to stop. With this in hand, a
distributed application can easily model objects that can be remotely killed:

interface Killable { Unit kill(); }

class K implements Killable { Unit kill() { die; } }
Killable obj = dcl spawns K();

obj ! kill();

Exceptions originating from asynchronous method calls are recorded in the
future values and propagated to their callers. When a user calls “future.get;”,
an exception matching the exception of the callee-process will be raised. If on
the other hand, the user does not call “future.get;”, the exception will not be
raised to the caller node. This design choice was a pragmatic one, to allow for
fire-and-forget method calls versus method calls requiring confirmation. In our
extension, we name this behaviour “lazy remote exceptions”, analogous to lazy
evaluation strategy.

3 Implementation

For the implementation, we rely on our abs2haskell backend/transcompiler.
Haskell is a statically-typed, purely-functional language and, as such, it becomes
straightforward to translate the ABS’ functional core to Haskell. In the impera-
tive layer, we model interfaces as Haskell’s typeclasses, objects as references to
mutable data (IORef in the Haskell world), and futures as synchronizing vari-
ables (MVar in Haskell). Nominal subtyping is achieved through an upcasting
typeclass. An alternative would be to encode OO using extensible records [6],
although this method widens the spectrum to structural subtyping.

At runtime, each COG becomes a Haskell lightweight thread (with SMP
parallelism). The COG-thread holds a process-enabled queue, a process-disabled
table, and a local mailboz. Upon an asynchronous method call, a new process is
created and put in the end of the process-enabled queue; note that processes are
not threads, they are coroutines (first-class continuations) and thus can be stored
as data. The COG resumes the next process from the queue until it reaches an
await (on a future or a condition), where the process is suspended and moved to
the process-disabled table. Later, another process informs the COG (by writing
to its mailbox) that the await-condition is met; the COG will move back the
process to the enabled queue. This strategy avoids busy-wait polling the await
conditions of processes.

Moving on to distributed programming, we extend our backend with layered
support for Cloud-Haskell[4], a framework for Haskell that replicates Erlang’s
concurrency & distribution model (message passing) but in a type-safe manner.
We reuse the network transports and serialization protocols defined in Cloud
Haskell for the ABS transmitted data between Virtual Machines. Each COG-
thread is accompanied with a separate Cloud-Haskell thread (also lightweight)
that listens for messages in public mailbox and forwards them to the local mail-
box of its associate COG-thread. This approach was chosen to firstly, avoid need-
less network-serialization between local communication and secondly, treat our
distributed extension as optional to our (previously SMP-only) haskell backend.

Serialization ABS data have to be serialized to a standard format before trans-
mitting them between DCs. The serialization of values of primitives and al-
gebraic datatypes are automatically done by Haskell. We serialize object/fu-
ture references to proxy references by serializing their Cloud-Haskell thread 1D
(network-unique) together with a COG-unique ID, and leaving out their actual
attributes/future results. Each asynchronous method call is serialized to a static
closure, i.e. a static code-pointer to the method (known at compile-time and
platform-independent) and a serialized environment of its free variables (method
arguments and local variables). No kind of code (source-, byte- or machine-code)
corresponding to the method body is transferred. All described-above serializa-
tions are type-safe and version-safe, in the sense that we include next to the
payload of an ABS datum, its serialized type signature and the library-versions
of any types involved; thus, we avoid decoding bugs because of type and library-
version mismatches.

Garbage Collection In a local-only setting, all ABS-based values, i.e. ADTs,
futures, objects are automatically garbage-collected by the underlying Haskell
GC. However, in our distributed setting some object/future references may have
to be transmitted outside as proxy references, which results to the local ABS
system garbage-collecting “too-early”. An obvious solution would be to abolish
automatic GC altogether, but that would hinder the development of software ap-
plications, especially those supposed to be long-running (as is the norm in cloud
applications). On the other hand, introducing distributed garbage collection to
ABS would allow both local and remote objects to be automatically GC’ed.
The downside is that the user can no longer reason about the GC-incurred per-
formance penalty which may be considerable. We chose a middleground where
objects are by default GC-enabled and only become disabled when they are
remotely communicated over (to another DC). The implementation has been
straight-forward: a process appends the local object reference(s) that are trans-
mitted remotely to a locally-held list of GC-disabled objects. This global list is
held during the lifetime of the node, effectively surpassing the Haskell’s garbage
collector underneath. Our design choice was based on best practice; we believe
that a distributed cloud ABS application of many DCs would contain a combi-
nation of a lot of local ephemeral objects, yet a few long-lived remote objects.

DCs, being special objects, are treated differently: when falling out of context
they are automatically GC’ed. That does not mean that the attached VM is
shut down. The user that wants to shutdown a DC but holds no reference to
it anymore, has to contact a remote object residing there to return a reference
to the DC (with thisDC), or to shut it down on user’s behalf. If the executing
program holds (now and in the future) no reference to a DC and its objects, we
consider its VM unreachable and fallen out of scope of the ABS application.

Futures are garbage-collected in a publish-subscribe pattern: the caller of an
asynchronous method is a subscriber, while the callee is the publisher. When
the callee has finished computing the future, it “pushes” the resulted value to its
caller (the direct subscriber) and may now locally garbage-collect that value. A
subscriber that “passes over” a remote future reference to other nodes becomes
an intermediate broker with the responsibility to later also “push” that future
value to all others before it is allowed to locally garbage-collect it. This forwarding
strategy avoids unnecessary tracking and network communication between the
initial node and all (directly and indirectly) subscribed nodes.

Cloud Architecture When creating a new DC, a cloud provider is on the back-
ground contacted (usually via an XML-RPC API) and asked to bring up a new
VM with the given characteristics. After the machine has booted, the caller repli-
cates itself (the current ABS application) by transmitting its machine code to
the newly-created machine. In case the cloud provider offers heterogeneous plat-
forms (different OS or CPU architecture), we instead transmit the ABS source
code and compile it in-place with our compiler toolset (that prior reside in the
VM’s image). The new machine runs the transmitted ABS application and sends
an acknowledgment signal to its creator, which can now start computations to
the new DC by spawning new objects in it.

When it comes to network communication between machines, Cloud-Haskell
does not enforce any particular network transport; even different transports can
be composed together. Some existing implementations are TCP, AMQP, CCI,
in-memory, etc. In ABS, the particular transport used depends on the implemen-
tation of the DC-interfaced class: we currently have DC-class implementations
for OpenNebula (TCP), Azure (TCP) and Local (in-memory).

4 Experimental Results

We tested two instances of a real-world load-balancer: one with a static deploy-
ment of workers, and an adaptive (dynamic) load-balancer with worker VMs
created on-demand based on how “well” the workers can keep up with incoming
requests. Clients were submitting job requests (of approximately of equal size)
to the balancer in a steady rate; workers were distinct Cloud VMs that were
continuously computing the results for their incoming job requests.

The static load-balancer case is a fairly straight-forward cloud ABS appli-
cation, consisting of 3 classes of LoadBalancer, Worker, and Client, exchanging
asynchronous method calls of job requests/results. The LoadBalancer runs the
main block and initially creates N number of Worker DCs (VMs) before starting
accepting requests and forwarding to workers in round-robin. We ran this static
deployment against varying size (N=1..16) of worker VMs. The results of the
runs are shown in Figure 1(a) stripped from the initial boot time of VMs. What
we can draw from these results is that the completed jobs (per minute) nearly
doubles when we double the number of worker VMs until we reach 5 workers.
After that, we still increase the completed jobs but with a slower pace. This
observation can be attributed to the fact that a point is reached where there is
not a significant benefit from adding more worker VMs; the rate of job requests
is always steady, thus worker VMs are “slacking”.

We modified the static load-balancer to an adaptive version, that takes full
advantage of the expressivivity of the cloud extension. The LoadBalancer creates
now only 1 initial VM. We accommodate the LoadBalancer with a HeartBeater
object which periodically retrieves the load of each worker in the VM “farm”. The
HeartBeater computes the average load of all VMs and if this average exceeds
80%, it creates a new DC (VM), adds it to the current farm, and remotely spawns
a Worker in the new DC. We illustrate a particular run of this configuration in
Figure 1(b) (NB: VM boot times are not subtracted from the result). Each
asterisk * in (b) is a point where the HeartBeater decides to create a new DC.
This run stabilizes on 6 workers, which is a good approximation of maximum
speed (according to Figure 1(a)), and possibly a good choice if we took into
account any VM costs. As an extra, the HeartBeater could potentially shutdown
machines if their load remained small (under a threshold) for a certain time.

The tests were conducted on the SURF cloud-provider with OpenNebula
TaaS, modern 8-cores, each with 8GB RAM and 20Gbps Ethernet. Interesting to

mention is that each worker can benefit from ABS multicore (SMP) parallelism.
A snippet of the HeartBeater follows with the full ABS code at our repository!:

class HeartBeater (List<Worker> farm, Balancer b) {
Unit beat () {

Rat avg = this.computelLoads (farm) ;

if (avg > 80/100) {
DC dc = new NebulaDC(8,8192); // 8-core, 8GB RAM
Worker w = dc spawns Worker ();
farm = Cons(w,farm);

b ! updateFarm(farm); } } }

T

g% £

g g

~ ~

2 2 20

2 20 i

3 3

ks 5

2. 2,

g g2 10

g 10 8
| | | | | | |
0 5 10 15 0 20 40

worker virtual machines timeminutes

Fig. 1: (a) Static deployment of VMs (b) Adaptive Deployment over time

5 Related work

With the introduction of the Cloud, a plethora of cloud technologies & tools have
appeared in the software community. We distinguish two categories of technolo-
gies related to our work: distributed-prog. languages and cloud middleware.

Distributed languages Erlang is one of the first distributed-oriented languages
that next to the canonical message-passing communication, offers distinct fea-
tures, such as hot-code loading and serialization of arbitrary closures. This comes
with a cost in safety since the serialized Erlang data are untyped and usually
unversioned. Erlang’s builtin processes are lightweight threads whereas ABS
processes are coroutines (even more lightweight). The Akka framework brings
(typed) actors to the Scala language. Although Akka provides a rich library and
toolkit, it currently lacks a cloud-aware API. At runtime Akka is constrained by
a threadpool (since JVM threads are expensive) and actors are not able to use

! Upstream abs2haskell repository at http://github.com/bezirg/abs2haskell

cooperative scheduling and instead resort to a form of message routing. The Java
RMI (Remote Method Invocation) is a library bundled in the Java platform for
communication between remote objects. The product pioneered in areas such
as bytecode downloading and distributed-GC. The method invocation is strictly
synchronous (the caller has to wait for the remote method to finish) and thread-
unsafe. JADE[2] is an active distributed multiagent system also built in Java,
agents are more expressive than actors at the expense of program complexity
and, possibly, performance.

Cloud middleware Ubuntu JuJu is a tool primarily for scaling and orchestrating
a system’s deployment on the cloud. Juju also comes with a GUI for modeling
and visualizing a cloud deployment and saving it to a “recipe” for later reuse.
It is usually accompanied by a configuration-management tool (such as Puppet)
for the provisioning of cloud machines. CoreOS is a container-based OS that
provides service and configuration discovery. It can be thought as a low-level
infrastructure, primarily targeted to system administrators, for managing system
services across a cluster of cloud machines, The Aeolus research project has
built various tools that can derive an optimized deployment from the constraint-
based model of a desired deployment, and automatically deploy that derivation.
Finally, general SaaS supported by cloud providers eases the migration of existing
software to the cloud and its automatic scaling of deployment. Albeit dynamic, a
SaaS deployment can only vary on the CPU consumption, whereas our proposal
would allow a much more expressive deployment that can depend on arbitrary
application logic.

6 Conclusion and Future Work

We presented an extension to the ABS language that permits the management of
an application’s own cloud-deployment inside the language itself. We discussed
the realization of such extension (by a Haskell transcompiler) and the execution
of an ABS cloud application (based on Cloud-Haskell). Results showed that
ABS can benefit from the extra performance that the Cloud offers. Moreover, the
extension gives to ABS the expression power it needs to fuse the application logic
with the application’s own (dynamic) deployment logic. A positive side-effect of
the proposed extension is that, ABS being primarily a modeling language, could
now be used to model also an application’s deployment. Indeed, such cloud-aware
software models could be simulated against different and dynamically-varying
cloud deployment scenarios.

For future work we are considering additions both at the language and run-
time level. At the language level, it would be beneficial to include, besides the
system load, other metrics such as memory, disk usage, object count, process
count, exceptions raised. In this way, an ABS application would enhance its
monitor and cloud-control logic. In a different direction, we plan to work on
adding a basic service discovery mechanism to the standard library of ABS.
This can be simply realized by extending the DC interface with two extra meth-
ods: an acquire(Interface obj) method that returns a reference to a remote

object implementing the provided Interface; an expose(Interface obj) that
subscribes the passed object together with its current interface-view to the ser-
vice registry of the DC.

At the system level, we are first interested in expanding our library support
for other common cloud providers (such as Amazon EC2, OpenStack). Besides
the current open (peer-to-peer) topology of DCs we want to add support for
other cloud topologies, such as provider-specific, slave-master, or supervision
topologies — a crude solution to topologies would be to introduce to the DC
interface a method List<DC> neighbours() that lists all ABS nodes residing
in the same private cloud network. A second consideration is to extend our vir-
tualization technology support. With the introduction of micro-kernels (see the
Xen hypervisor and unikernels), the cloud user no longer needs an OS under-
neath the application/service. By packaging the application into the kernel itself,
the startup time of the VM is greatly improved, as is its management & distri-
bution. The Haskell Lightweight Virtual Machine (HaLVM) is a promising such
technology that allows the user to: “run Haskell programs without a host operat-
ing system”. Likewise, containers (e.g. Docker), with its OS-level virtualization,
would allow us to offer a more fine-grained control of deployment.

We believe that the cloud extension of ABS leads to new opportunities for
furthering the application of formal methods to cloud computing, for example:
specifying, verifying, and monitoring Service Level Agreements (SLA) of software
systems — with that being the overall goal of ENVISAGE, our current research
project. Indeed, we like to envisage software that is aware of its deployment and
thus can control it, while its users merely monitor its behaviour via SLAs signed
between the interested parties.

References

1. Albert, E., Arenas, P., Genaim, S., Gémez-Zamalloa, M., Puebla, G.: Costabs: a
cost and termination analyzer for abs. In: PEPM. pp. 151-154 (2012)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Jade—a fipa-compliant agent framework. In:
Proceedings of PAAM. vol. 99, p. 33. London (1999)

3. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. ACM Sigplan
Notices 46(2), 13—22 (2011)

4. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards haskell in the cloud. In: ACM
SIGPLAN Notices. vol. 46. ACM (2011)

5. Johnsen, E.B., Hahnle, R., Schéafer, J., Schlatte, R., Steffen, M.: Abs: A core lan-
guage for abstract behavioral specification. In: FMCO. pp. 142-164 (2010)

6. Kiselyov, O., Lmmel, R., Schupke, K.: Strongly typed heterogeneous collections. In:
Proceedings of the 2004 ACM SIGPLAN workshop on Haskell. pp. 96-107 (2004)

7. Schéfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing active objects to concurrent
components. In: ECOOP 2010-Object-Oriented Programming. Springer (2010)

8. Wong, P.Y.H., Albert, E., Muschevici, R., Proenca, J., Schéifer, J., Schlatte, R.:
The abs tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567-588 (2012)

Envisage Deliverable D3.1 Code Generation

A.3 A Formal, Resource Consumption-Preserving Translation of Actors
to Haskell

51

A Formal, Resource Consumption-Preserving,
and Efficient Translation of Actors to Haskell*

Elvira Albert!, Nikolaos Bezirgiannis?, Frank de Boer?, and
Enrique Martin-Martin®

1 Universidad Complutense de Madrid, Spain
elvira@sip.ucm.es, emartinm@ucm.es
2 Centrum Wiskunde & Informatica (CWT), Amsterdam, Netherlands
{n.bezirgiannis, f.s.de.boer}@cwi.nl

Abstract. In this paper we present and discuss a formal translation of
a concurrent actor-based language which supports cooperative scheduling
into the functional language Haskell. The translation is proven correct
with respect to a formal semantics of the actor-based language and a
high-level operational semantics of a subset of the Haskell language that
is used as the target language. The main correctness theorem is expressed
in terms of a simulation relation between the operational semantics of
actor-based programs and their translation. We further prove the preser-
vation of the resource-consumption through the translation by establish-
ing the equivalence between the cost of executions in the original and in
the Haskell-translated program.

1 Introduction

Abstract Behavioural Specification Language (ABS) [9] is a formally-defined,
actor-based, executable modeling language which supports various analysis and
verification tools [15]. Actor programs consist of computing entities called ac-
tors, each with its own local state and thread of control, that communicate by
exchanging messages asynchronously. In ABS, the notion of actor corresponds
to that of concurrent object, where objects are the concurrency units, i.e., each
object conceptually has a dedicated processor. Communication is based on asyn-
chronous method calls with standard objects as targets such that method calls
trigger potentially concurrent processes. Concurrent objects execute activities
(processes) from their process queue. ABS supports cooperative scheduling, which
means that inside the object’s monitor an active process can decide to explicitly
suspend its execution so as to allow another process from the queue to execute.
This way, the interleaving of processes inside a concurrent object is textually
controlled by the programmer. However, flexible and state-dependent interleav-
ing is still supported; in particular, a process may suspend its execution waiting
for a reply to a method call. We use future variables [8,5] to check if the execution
of an asynchronous task has finished.

* Partly funded by the EU project FP7-610582 ENVISAGE, by the Spanish MINECO
project TIN2012-38137, and by the CM project S2013/ICE-3006.

The overall contribution of this paper is a formal, resource-consumption pre-
serving, and efficient transformation of the core subset of the ABS language into
Haskell. The transformation consists in compiling ABS methods into Haskell
functions with continuations (similar transformations have been performed in
the actor-based Erlang language wrt. rewriting systems [13,14] and rewriting
logic [12], and in the translation of ABS to Prolog [3] and an ABS subset to
Scala [10]). However, what it is unique in our transformation and constitutes
our main contribution is:

— Soundness. We provide a formal statement of the soundness of this transla-
tion of ABS into Haskell which is expressed in terms of a simulation relation
between the operational ABS semantics and the semantics of the generated
Haskell code. The soundness claim ensures that every Haskell derivation has
an equivalent one in the ABS code. However, since for efficiency reasons, the
translation fixes a selection order between the objects and the tasks within
each object, we do not have a completeness result.

— Resource-preservation. We prove formally that the transformation preserves
the resource consumption, i.e., given a cost model that assigns a cost to
each instruction of the source language, we prove that the cost of executing
the Haskell-translated program is the same as executing the original ABS
program since both execute the same instructions. Having this result allows
us to ensure that upper bounds on the resource consumption obtained by
the analysis of the original ABS program are preserved during compilation
and are thus valid bounds for the Haskell-translated program as well.

— Efficiency. We experimentally assess the efficiency of our transformation us-
ing the canonical, full ABS-to-Haskell compiler, and an extract of it where
we base our formalizations on. Using the two systems, we carry out two
types of experiments. (1) First, we illustrate that the compilation does not
introduce an overhead during execution: run-times are proportional to the
number of steps executed. For this, we use the extracted compiler and several
micro-benchmarks that feature different complexity bounds and we compute
the number of executed steps, the execution time and the upper bounds on
the number of executed steps given by static analysis. In all cases, our ex-
periments confirm the proportionality of steps and time, and also that the
upper bounds obtained for the ABS program are an accurate estimate of the
actual consumption. (2) We compare the efficiency of our full-blown ABS-to-
Haskell compiler w.r.t. previous compilers from ABS to different languages
(namely Erlang, Java and Maude) and prove experimentally that our com-
piler outperforms the previous ones both in time and memory consumption.

2 Source language

Our language derives from ABS [9], a statically-typed, actor-based language
with a purely-functional core (ADTs, functions, parametric polymorphism) and
an object-based imperative layer: objects with private-only attributes, and in-
terfaces that serve as types to the objects. ABS extends the OO paradigm with

main() ->

1
S = z:=E | f:=x!m(g) 2 X = New;
| await f | skip | returnz sy = new;
| S1;52 | if B {S} else {S} s+ f1 =x ! taskl(); 1w taskl() -> ...
| while B {S} s f2 =y ! task2(); u task2() -> ...
E:= z|r|new| f.get | m(y) s await f1; 1 task3(rl) -> ...
D:= m(F)— S v rl = f2.get;
P:= D : main()— S s 12 = task3(rl);
9 return r2;

Fig. 1: (a) syntax of source language (b) a running ABS example

support for asynchronous method calls; each call results to a new future (place-
holder for the method’s result) returned to the caller-object, and a new process
(stored in the callee-object’s process queue) which runs the method’s activation.
The active process inside an object (only one at any given time) may decide to
explicitly suspend its execution so as to allow another process from the same
queue to execute.

In this paper, we deal with a subset of ABS concerning the concurrent inter-
action of processes both inside and between objects; in a nutshell, the language
is stripped of its functional core and all types/interfaces. The choice was made
to focus strictly on the more challenging part of proving correctness of the co-
operative concurrency. However, the full-blown compiler that we will use in the
experiments deals with the whole ABS language. The formal syntax of the state-
ments S of the subset is shown in Fig. 1(a). Values in our subset are object and
future references (disjoint); values can be stored in method’s formal parameters
or attributes. We syntactically distinguish between method parameters r and at-
tributes. The attributes are further distinguished for the values they hold: object
attributes holding object references (denoted by x,y, z .. .), and future attributes
holding future references (denoted by f). An assignment f := z!lm(y) stores to
the future attribute f a new future reference returned by asynchronously call-
ing the method m on the object attribute x passing as arguments the values
of object attributes . An assignment x := FE stores to an object attribute the
result of executing the right-hand side E. A right-hand side can be the value
of a method parameter r or an attribute x, a reference to a new object new,
the result of a synchronous same-object method call m(g), or the result of an
asynchronous method call f.get stored in the future attribute f. A call to f.get
will block the object and all its processes until the result of the asynchronous
call is ready. The statement await f may be used (usually before calling f.get)
to instead release the current process until the result of f has been computed,
allowing another same-object process to execute. Sequential composition of two
statements S; and Sy is denoted by Si;S>2. The Boolean condition B in the
if and while statement is a Boolean combination of reference equality between
values of attributes. The statement return z returns the value of the attribute
z both in synchronous and asynchronous method calls. A method declaration D
maps a method’s name and formal parameters to a statement S (method body).
We consider that every method has one return and it is the final statement.

R = h[(n)(z) — h(n)(y)]
(n:(x:=y;S,0)-Q,hy = (n:(S,1)-Q,h")
' = h[(n)(x) — 7]
(n:(x:=r;S,1)-Q,hy = (n:(S,1)-Q,h")

h(count) =m k' = h[(n)(x) = m, (m) — ¢, count — m + 1]

(AssiGN 1)

(AssiaN I1)

(NEW) 7
(n: (x:=new; S,1)- Q,h) = (n:(S,1)-Q,h")
(GET) h(h(n)(f)) # L B = h[(n)(z) — h(h(n)(f)/)]
(n: (x:=f.get;S,1)-Q,h) = (n:(S,1)-Q,h")
h(h(n)(f)) # L
(Awarr 1) (n: (await £;5,0) - Q,h) — (n: (S,1)-Q,h)
h(h(n)(f)) = L
(Awarr IT) (n: (await £;5,1)-Q,h) = (n: Q- (await f£;S5,1),h)
h(n)(x) =d h(count) =1 7= h(n)(z)
(Asyne) R =h[(n)(f) =1, (1) — L, count — 1+ 1]
(n: (£:=x1m(2); S,0) - Q,h) 287 (n: (S,1)- Q, 1)
(SYv0) (M(@) v Sm) € D fresh 7 =[h(n)(z)] S = (Sm7)
n: (x:mm(2):8,0)-Q, k) — (n: (5:5,0) - Q, h)
. W = (1) = b))
(n: (return®x; S,1) - Q,h) — (n: Q, k')
Rerone) W = hi(n)(=) > h(n)(z)]

(n: (return® x;5,1) - Q,h) = (n: (S,1)-Q,h’)
Fig. 2: Operational semantics: Local rules

Finally, a program P is a set of method declarations D and a special method
main that has no formal parameters and acts as the program’s entry point.

The program of Fig. 1(b) exemplifies the creation of object x (line L2) and
y (L3), and the asynchronous method calls of taskl in x (L4) and task2 in y
(L5). In L6 the await statement will wait for the termination of task1, releasing
the processor so that any other process in the same object of main can execute.
On the other hand, the get statement in L7 will wait for the result of task2 by
blocking the object (i.e. main) and all of its processes until the result is ready.
Finally, L8 contains a synchronous-method self call to task3.

2.1 Operational semantics

In order to describe the operational semantics of the language defined above
we first introduce the following concepts and assumptions. We use the set Nat
of natural numbers to encode object and future references, used to identify dy-
namically generated objects and futures. We denote by X = IVar — Nat the
set of assignments of references, presented by natural numbers, to the instance
variables (of an object), with typical element o and empty element €. A closure

consists of a statement S obtained by replacing its free local variables by ac-
tual references (note that local variables are introduced as method parameters
and can only appear in E) and a future reference, represented by a number, for
storing the return value. By S7, where 7 € LVar — Nat, we denote the instan-
tiation obtained from S by replacing each local variable z in S by 7(x). Finally,
we represent the global heap h by a triple (n, h1,hs) consisting of a natural
number n and partial functions (with finite disjoint domains) h; : Nat — X and
hg : Nat — Nat, where Nat; = Nat U {L} (L is used to denote “undefined”).
The number n is used to generate references to new objects and futures. The
function h; specifies for each existing object, i.e., a number n such hi(n) is de-
fined, its local state. The function hy specifies for each existing future reference,
i.e., a number n such hs(n) is defined, its return value (absence of which is in-
dicated by L). In the sequel we will simply denote the first component of i by
h(count), and write h(n)(z), instead of hy(n)(x), and h(n), instead of ha(n). We
will use the notation h[count — n] to generate a heap equal to h but with the
counter set to n. A similar notation h[n — L] will be used for future variables,
h[(n)(z) — v] for storing the value v in the variable x in object n and h[n +— ¢
for initializing the mapping of an object.

An object’s local configuration denoted by the (object) reference n consists
of a pair (n : @, h) where @ is a list of closures and h is the global heap. We use -
to concatenate lists, i.e., (5,1) - @Q represents a list where (5,1) is the head and Q
is the tail. A global configuration—denoted with the letters A and B—is a pair
(C, h) containing a set of lists of closures C' = {Q} and a global heap h. Fig. 2
contains the relation that describes the local behavior of an object (omitting
the standard rules for sequential composition, choice and iteration statements).
Note that the first closure of the list @ is the active process of the object, so the
the different rules process the first statement of this closure. When the active
process finishes or releases the object in an await statement, the next process in
the list will become active, following a FIFO policy. The rules (AssiaN I) and
(AssiGN IT) modify the heap storing the new value of variable z of object n. The
(NEW) rule stores a new object reference in variable x, increments the counter
of objects references and inserts an empty mapping e for the variables of the new
object m. Rule (GET) can only be applied if the future is available, i.e., if its
value is not L. In that case, the value of the future is stored in the variable zx.
Both rules (AwAIT I) and (AwAIT IT) deal with await statements. If the future
f is available, it continues with the same process. Otherwise it moves the current
process to the end of the queue, enforcing a FIFO policy. Note that the await
statement is not consumed, as it must be checked when the process becomes
active again. When invoking the method m asynchronously in rule (AsyYNC) the
destination object d and the values of the parameters 7 are computed. Then
a new future reference [initialized to L is stored in the variable f, and the
counter is incremented. The information about the new process that must be
created is included as the decoration d.m(l,7) of the step. Synchronous calls—
rule (SYNC)—extend the active task with the statements of the method body,
where the parameters have been replaced by their value using the substitution

n:Q,h) = (n:Q' k)
(n:Q)UC,hy = {((n:Q)UC,HK)

(INTERNAL)

(n:Qum) " @y
m(w) = Sm €D T=[w~7 S =(SmT)
(n:Qu)U(d: Qa)UC,h) = ((n:Q)U(d: Qa-(S,1) UC, K

Fig. 3: Operational semantics: Global rules

(MESSAGE)

7. In order to return the value of the method and store it in the variable z,
the return statement of the body is marked with the destination variable x,
called write-back variable. This marking is formalized in the ** function, defined
as follows (recall that return is the last statement of any method):

—~x
51;52 iszSl;Sg,
S* =< return® z if S = return z,
S i.o.c.

Rule (RETURNy) finishes an asynchronous method invocation (in this case the
return keyword is marked with *, see rule (MESSAGE) in Fig. 3), so it removes
the current process and stores the final value in the future /. On the other hand,
rule (RETURNg) finishes a synchronous method invocation (marked with the
write-back variable), so it behaves like a z:=x statement.

Based on the previous rules, Fig. 3 shows the relation describing the global
behavior of configurations. The (INTERNAL) rule applies any of the rules in
Fig. 2, except (ASYNC), in any of the objects. The (MESSAGE) rule applies the

—

rule (ASYNC) in any of the objects. It creates a new closure (S,,7 ,I) for the
new process invoking the method m, and inserts it at the back of the list of
the destination object d. Note the use of ~* to mark that the return statement
corresponds to an asynchronous invocation. Note that in both (INTERNAL) and
(MESSAGE) rules the selection of the object to execute is non-deterministic. In
parts of the proof we decorate both local and global steps with object reference n
and statement S executed, i.e., (n: Q,h) =% (n: Q’, 1) and (C,h) =% (C', I').
We remark that the operational semantics shown in Fig. 2 and 3 is equiv-
alent to the ABS semantics presented in [9], considering that every object is a
concurrent object group. The main difference is the representation of configura-
tions: in [9] configurations are sets of futures and objects that contain their local
stores, whereas in our semantics all the local stores and futures are merged in a
global heap. Finally, our operational semantics considers a FIFO policy in the
processes of an object, whereas [9] left the scheduling policy unspecified.

3 Target language

Our subset of ABS is compiled to Haskell, with the compiler itself written in
Haskell. The Haskell language (statically-typed, purely-functional) enabled us
to embed (implement) our language in such a way that the end programs have

data Stm = Skip Stm data Rhs = New

| Assign Attr Rhs Stm | Get Attr
| Await Attr Stm | Async Attr Method [Attr]
| If BExp (Stm—Stm) (Stm—Stm) Stm | Sync Method [Attr]
| While BExp (Stm—Stm) Stm | A Attr
| Return Attr (Maybe Ref) Stm | R Ref
data BExp = BExp :|| BExp | BExp :&& BExp | Not BExp | Attr :== Attr

where type Ref=Int; type Attr=Int
type Method=[Ref] —+Ref—Maybe Ref—Stm—Stm

Fig. 4: The syntax and types of the target language

reasonable execution speed. Moreover, thanks to our soundness result (see Sec. 4)
we can transfer the results of ABS analysis tools to the Haskell translated code.
The abstract syntax of this embedded language is shown in Fig. 4. The val-
ues of our language are object and future references (named Ref), represented
by integer indices to the program’s global heap array. Similarly, an object at-
tribute Attr is an integer index to an internal-to-the-object attribute array,
hence shallow-embedded (compared to embedding the actual name of the at-
tribute). In contrast, all statements are deep-embedded as a recursive datatype
Stm: the recursive position at the end of each statement holds the current con-
tinuation after the execution of that statement. The body of While and the two
branch bodies of If are given in the higher-order abstract syntax Stm — Stm;
this function is in continuation-passing style (CPS) for “tying” the body’s last
statement to the continuation following after that control structure. A Method
definition is a CPS function which takes as input a list [Ref] of the method’s
arguments (passed by reference), the callee object named this, a writeback ref-
erence (Maybe Ref), a continuation Stm and returns the method’s body as a Stm.
Upon executing Return and in case of synchronous call, the callee method writes
the return value to the writeback reference and the execution jumps back to the
caller by invoking the method’s continuation; in case of asynchronous call the
writeback is empty, the return value is stored to the caller’s future (destiny) and
the method’s continuation is invoked resulting to the exit of the ABS process.

The right-hand side (Rhs in Fig. 4) of an assignment statement directly re-
flects that of the source language, with the exception of the A and R constructors
to disambiguate respectively between attributes that must be dereferenced from
the object’s attribute array, or values bound to formal parameters and thus
treated as is. Boolean expressions are only appearing as arguments to If and
While and are inductively constructed through the datatype BExp, which repre-
sents reference equality between the attributes’ values.

The compilation of statements is shown in Fig. 5. The translation *[S]x wb
takes two arguments: the continuation k and the writeback reference wb. Each
statement is translated into its Haskell counterpart, followed by the continuation
k. The multiple rules for the return statement are due to the different uses
of the translation: when compiling methods the return statement will appear
unmarked, so we include the writeback passed as an argument; otherwise it

*[x:=y]k,wo = Assign x (Attr y) k °[skip]k,ws = Skip k

*[x:=r]k,ws = Assign z (Param 1) k *[await f]k,we = Await f k
°[x:=new]x,wp = Assign = New k *[return x]x,wb = Return = wb k
*[x:=f.get]k,wo = Assign = (Get f) k *[return® x]i,wb = Return x Nothing k
*[x:=y'm(2)]k,w = Assign = (Async y m z) k °[return® x]i,.» = Return z (Just z) k
*[x:=m(2)]k,w» = Assign = (Sync m 2) k *[S1; S2llk,ws = *[S1]k wo with &' = *[S2]k,wb

*[if B {S1} else {So}kws = If Z[B] (\K' — “[S1]w ws) (\K' = *[S2]kr.wp) k
*[while B {S}]kws = While Z[B] (\k' = *[S]x’.wb) k

M[m] =m1this wbk = *[Sm]xwm
where m(w) — Spm € D and 1 is the Haskell list that contains
the same elements as the sequence w

Fig.5: Compilation of programs

main [] this wb k =
Assign x New $
Assign y New $
Assign f1 (Async x taskl []) $
Assign £f2 (Async y task2 []) $
Await f1 $
Assign r1 (Get £2) $
Assign r2 (Sync task3 [r1]) $
Return r2 wb k

10 taskl [] this wb k
11 task2 [] this wb k
12 task3 [r3] this wb k = ...

12 —— Position in the attribute array

s [x,y,£f1,£2,r1,r2] = [0..]

16 —— method definitions have type Method
17 main,taskl,task2,task3 :: Method

Fig. 6: Compiled running example

is used to translate runtime configurations, so return statements will appear
marked and we generate the writeback related to the mark. When omitted, we
assume the default values ¥ = undefined and wb = Nothing for the *[S]x,wb
translation. [B] represents the translation of a boolean expression B. A method
definition translates to a Haskell function that includes the compiled body.

Runtime. The program heap is implemented as the triple: array of objects,
array of futures and a Int counter. Every cell in the objects array designates
a single object holding a pair of its attribute array (implemented in Haskell
as I0Vector (IOVector Ref, Seq Proc)) and process queue (double-ended).
A cell in the futures array denotes a future which is either unresolved with a
number of listener-objects awaiting for it to be completed, or resolved with a
final value, hence the type I0Vector (Either [Ref] Ref). An ever-increasing
counter is used to pick new references; when it reaches the arrays’ current size
both of the arrays double in size (i.e. dynamic arrays). The size of all attribute
arrays, however, is fixed and predetermined at compile-time; we assume a prior
static analysis that maps attribute names to indexes for the attribute array.
The function eval accepts a this object reference and the current heap
and executes a single statement of the head process in the process queue, re-
turning a new heap and those objects that have become active after the exe-
cution (eval this heap :: IO (Heap, [Ref]). An await executed statement
will put its continuation (current process) in the tail of the process queue, ef-

fectively enabling cooperative multitasking, whereas all others will keep it as
the head. A Return executed statement originating from an asynchronous call is
responsible for re-activating the objects that are blocked on its resolved future.
A global scheduler (sched function) keeps a queue of active objects; it calls eval
on the head object, puts the newly activated objects in the tail of the queue,
and loops until no objects are left in the object queue, and then it exits (the
ABS program is finished or deadlocked). At any point in time, the pair of the
scheduler’s object queue with the heap comprise the program’s state.

The described language is mostly a deep embedding in Haskell: a continua-
tion is the closed datatype Stmt whose abstract syntax is interpreted by the eval
function. A pure continuation approach would be open to any IO statements as
the continuation while probably yielding better performance. However, this deep
embedding allows us to have multiple interpretations of the syntax: debug the
syntax tree and have an equivalence result. Since we are focusing on concurrency,
we deliberately avoid dealing with typing our target language; indeed, a GADT
Stm syntax would guard our embedding from type mismatches between object
and future references. An important thing to mention is that the eval function
operates in “lockstep”, i.e. one statement at a time. Modifying the function to
execute from release point to release point (await, get and return from asyn-
chronous calls) would benefit in performance but would affect the completeness
w.r.t. the ABS semantics: some interleavings would be excluded. Finally, in this
setting (and in our extract of the implementation) the global scheduler is se-
quentially simulated by a N:1 threading model of concurrency. Haskell’'s GHC
runtime supports an M:N threading model allowing SMP parallelism, a feature
exploited in the full ABS-to-Haskell compiler that we will use in the experiments.

4 Correctness

To prove that the translation is correct and resource preserving, we use an inter-
mediate semantics »— closer to the Haskell programs. This semantics, depicted
in Fig. 7, considers configurations (h, [0,,]) where all the information of the ob-
jects is stored in a unified heap—concretely h(0,)(Q) returns the process queue
of object 0,. The semantics in Fig. 7 presents two main differences w.r.t. that in
Fig. 2 and 3 of Sec. 2. First, the list [0,,] is used to apply a round-robin policy:
the first unblocked object® o, in [6,,] is selected using nextObject(h, [0]), the
first statement of the active process of o,, is executed and then the list is updated
to continue with the object 0,,1. The other difference is that process queues do
not contain sequences of statements but continuations, as explained in the pre-
vious section. To generate these continuation rules (AsyNc) and (SYNC) invoke
the translation of the methods m with the adequate parameters. Nevertheless,
the rules of the — semantics correspond with the semantic rules in Sec. 2.
Given a list [0,,;] we use the notation [0;5| for the sublist [0, 0i14, . . ., 0],
and the operator (:) for list concatenation. In the rules (AsyNC) and (RETURNY),

3 Object whose active process is not waiting for a future variable in a get statement.

nextObject(h, [0m]) = 0n h(0,)(Q) = (Assign z (Attr y) k',1) - q
h' = h[(on)(x) = h(on)(y), (0n)(Q) + (K',1) - q]

(AssicN 1) (h, [om]) — (W, [ons1om] : [0150))

nextObject(h, [om]) = on h(0,)(Q) = (Assign x (Param 7) k',1) - ¢
h" = hl(0n)(x) = 7, (02)(Q) = (K',1) - q]

(b, [om]) = (W', [ongi5m] : [0150])
nextObject(h, [om]) = on h(0n)(Q) = (Assign x New k',1) - ¢
h(count) = onew B = hl[(0n)(x) = Onew, count — Opew + 1,

(0new)(Q) = € (0n)(Q) = (K',1) - g]
(h, [om]) = (W, [ong7=7m] : [0150])
nextObject(h, [om]) = on h(0n)(Q) = (Assign x (Get f) k1) - ¢
h(h(on)(f)) =Right v h' = h[(on)(z) = v, (0n)(Q) = (K1) -]
(h, [om]) — (W', [onsi=m] : [0150])
nextObject(h, [om]) = on h(0,)(Q) = (Await f k',1)-q
h(h(on)(f)) =Right v h'=h[(0x)(Q) = (K1) - q]

(AssigN II)

(NEW)

(GET)

(Awart I) — o
(hv [Om]) — (h 5 [0n+1—>m} : [01—>n])
nextObject(h, [om]) = on h(0,)(Q) = (Await f k',1) - q
(Awarr 1)) =Lefte A =hl(0n)(Q) g (k1)

(h, [@]) — (h,’ [On+1ﬁm} : [m})
nextObject(h, [om]) = on h(0n)(Q) = (Assign x (Async y m z) k',1) - q
h(count) =1 h(on)(y) =0y h(0y)(Q) =gy (m(w)+—S) €D
k" =m h(0,)(2) on Nothing undefined newQudd ([0m], On,0y) = 8
R = hl(on)(x) — U, count — I + 1,1' — Left [],
(02)(Q) = (K1) - ¢, (0y)(Q) > gy - (K", 1')]
(h, [om]) — (B, 5)
nextObject(h, [0m]) = on h(0,)(Q) = (Assign = (Sync m 2) k',1) - q
(m(w)—S)eD k" =mh(on)(2) on (Just) K K’ = h[(on)(Q) — (K",1) - ¢]

(Async)

e (i,) — (O, o]+ o)
nextObject(h, [0m]) = on h(0,)(Q) = (Return z Nothing _,1)-q
(RETURN 4) newQuei([Om], 0n,q) =s K’ = h[l — Right h(on)(2), (0n)(Q) — 4]
(h, [om]) — (', 5)
nextObject(h, [om]) = 0n h(0n)(Q) = (Return z (Just x) k',1) - q
(RETURNg) W = hl(0n)(@) = h(on)(2), (0n)(Q) v (K',1) -]

(R, [om]) — (W, [ong15m) : [0150))

Fig. 7: Intermediate semantics.

where the object list can increase or decrease one object, we use the following
auxiliary functions. newQqqq([0m], o, 0y) inserts the object o, into [o5,] if it is
new (i.e., it does not appear in [0,,]), and newQge;([0m], On, gn) removes the ob-
ject o, from [0,,] if its process queue g, is empty. In both cases they advance
the list of objects to 0y,41.

o ol e o
renQuaiomh on o) = { o T e o

‘KC,n)] = (K, act), where el =
act = [on | (0n,Qn) € C,Qn # ¢ s - Q]
C={(ni,Q1),...,(nm,Qm)} and
K = h[(n:)(Q) = 7[Q:]]

CIsLY -lel

Fig. 8: Translation from source to target configurations.

newQdel([Om), Ons qn) =

[On+1~>m] : [Olﬁnfl] if gn = €
[Ontiom) @ [015n] ifgn # €

In order to reason about the different semantics, we define the translation
from runtime configurations (C, h) of Sec. 2 to concrete Haskell data structures
used in the intermediate — semantics and in the compiled Haskell programs (see
Fig. 8). The set of closure lists C' is translated into a list of object references, and
the process queues inside C' are included into the heap related to the special term
Q. Although we use the same notation h, we consider that the heap is trans-
lated into the corresponding Haskell tuple (object_vector, future_vector, counter)
explained in Sec. 3. As usual with heaps, we use the notation h[(0,)(Q) — ¢] to
update the process queue of the object o, to ¢. Finally, natural numbers become
integers, global variables become Strings and Nat, values in the futures become
FEither values. To denote the inverse translation from data structures to runtime
configurations we use ¢[(h’, act)]~! = (C, h)—the same for queues [-]~! and
statements *[-]~!. Note that the translation ¢[-]. is not deterministic because it
generates a list of object references from a set of closures C, so the order of the
objects in the list is not defined. On the other hand, the translation of the heap
in ¢[-] and the inverse translation ¢[-]~! are deterministic.

Based on the previous definitions we can state the soundness of the traces,
i.e., every trace of eval steps is a valid trace w.r.t. —. Note that for the sake of
conciseness we unify the statements S and their representation as Haskell terms
res, since there is a straightforward translation between them. We consider the
auxiliary function updL([0om], 0n,1) = [Ont1om] : [015n—1] : | to update the list
of object references.

Theorem 1 (Trace soundness). Let (hi,s1) be an initial state and consider a
sequence of n—1 consecutive eval steps defined as: a) o; = nextObject(h;, s;), b)
(resi, 1, hiy1) = eval o; ki, ¢) sit1 = updL(s;, 03, 1;). Then “[(h1,s1)] ™t =%,
C[[(hlv 32)]]21 _>(r)352 tee _>;)‘gé‘_n1—1 C[[(hnv 571)]]71'

Note that it is not possible to obtain a similar result about trace completeness
since the —-semantics in Fig. 3 selects the next object to execute nondeterminis-
tic (random scheduler), whereas the intermediate —-semantics in Fig. 7 follows a
concrete round-robin scheduling policy. As a final remark notice that the interme-
diate semantics — can be seen as a specification of the eval function. Therefore
it can be used to guide the correctness proof of eval using proof assistance tools
like Isabelle [11] or to generate tests automatically using QuickCheck [6].

4.1 Preservation of Resource Consumption

A strong feature of our translation is that the Haskell-translated program pre-
serves the resource consumption of the original ABS program. As in [1] we use the
notion of cost model to parametrize the type of resource we want to bound. Cost
models are functions from ABS statements to real numbers, i.e., M : S — R that
define different resource consumption measures. For instance, if the resource to
measure is the number of executed steps, M : S — 1 such that each instruction
has cost one. However, if one wants to measure memory consumption, we have
that M(new) = obj_size, where obj_size refers to the size of an object refer-
ence, and M (instr) = 0 for all remaining instructions. The resource preservation
is based on the notion of trace cost, i.e., the sum of the cost of the statements
executed. Given a concrete cost model M, an object reference o and a program
execution 7 = A; =g Ay =& ... —>OS’;: Ay, the cost of the trace C(T,0, M)
is defined as
C(T,o,M)= > M(S)

S€T|{o}

Notice that, from all the steps in the trace T, it takes into account only those
performed in object o (denoted as 7 {,}), so the cost notion is object-sensitive.
Since the trace soundness states that the eval function performs the same steps
as some trace 7, the cost preservation is a straightforward corollary:

Corollary 1 (Consumption Preservation). Let (h1,s1) be an initial state
and consider a sequence Tg of n — 1 consecutive eval steps defined as: a) 0; =
nextObject(hy, s;), b) (res;, 1l;, hit1) = eval o; hi, ¢) siy1 = updL(s;, 04,1;).
Then T = [(h1,51)]7' =, [(ha,s2)]ot =2, ... —=vest) [(hn,s2)] 71

Tes| Tesy

such that C(Tg,0, M) =C(T,0,M).

As a side effect of the previous result, we know that the upper bounds that
are inferred from the ABS programs (using resource analyzers like [1]) are valid
upper bounds for the Haskell translated code. We denote by UBiain()|o the
upper bound obtained for the analysis of a main method for the computation
performed on object o.

Theorem 2 (Bound preservation). Let P be a program, Tg a sequence of
eval steps from an initial state (h1,s1) and UBpain()|o the upper bound obtained
for the program P starting from the main block, restricted to the object o. Then

C(TE7 o, M) S UBmain()|o

5 Experimental Evaluation

In the previous section we proved that the execution of compiled Haskell pro-
grams has the same resource consumption as the original ABS traces, i.e., they
execute the same statements in the same order and in the same objects. How-
ever, it is important that the compilation does not introduce an overhead during
execution so that run-times are proportional to the steps executed. In order to

LINEAR (LOW PARALLELISM) LINEAR (HIGH PARALLELISM)

-10* -10*
T T T T T J 40 T T T T T
—m— steps —m— steps
—— UB —— UB 40
—e— time —e— time

steps
time (ms)

U | | | | Lo U | | | | 40
0 20 40 60 80 100 0 20 40 60 80 100
size size
10t LINEARITHMIC 10° QUADRATIC
T T T T T T T T
- 50 -
. 5 L 800
40
081 - 600
2 ! 10 & 2 oo g
2 o 2 1400 o
% g @ g
—420 = 04 E
2l
- 200
110 0.2
of Il Il Il Il Il Il 10 o Il Il Il Il Il Il 1°
0 20 40 60 80 100 0 20 40 60 80 100
size size

Fig. 9: Execution steps vs. time (Intel® Core™ i7-4790 at 3.60GHz, 16 GB).

evaluate this hypothesis, we have elaborated programs* with different asymp-
totic costs and measured the number of statements executed (steps) and their
run-time. These experimental programs create a number n of objects (size) and
invoke some tasks in each one: 1 task for the linear programs, log n tasks for
the linearithmic program and n tasks for the quadratic program. The difference
between the two linear programs is that the low parallelism version awaits for
the result of the task before creating the next object, whereas the high paral-
lelism version does not await. Fig. 9 shows the results of the tests as graphs,
where the left vertical axis is used for the number of steps and the right vertical
axis for the run-time in milliseconds. The graphs show that both the steps and
time plots have the same growth rate in all the programs thus confirming the
proportionality, i.e., the execution of one statement requires a constant amount
of time. We have added to the graphs the resource bounds (UB) obtained by
the SACO tool [2] from the analysis of the original ABS programs using the cost
model that measures the number of statements executed. As can be appreciated,
the bounds are higher than the actual number of steps but they are very pre-
cise for all the programs, except a small difference in the number of steps. This

4 The ABS-subset experimental programs and measurements together with the proved
Haskell embedding reside at https://github.com/abstools/abs-haskell-formal

Haskell Java Erlang Maude
ABS Program |[time mem| time mem| time mem| time mem
= |BinarySearchTree| 0.01 3716 0.3 73860| 1.28 22824 0.5 47896
% NaiveFib 0.11 3924(18.38 476076| 1.63 24796| 198.62 38724
= |Sequences 0.02 13308| 8.76 787988| 44.01 34036(2553.54 47948
& [SumlList 0.01 12312 1.06 190528 1.29 40716| 1703.1 50832
AwaitOnFut 0.05 6444| 7.58 491952] 1.91 26184| 328.65 41908
2 |Bang 0.25 32956| 5.91 734536(422.23 261776| 396.49 40820
5 BenchLists 5.97 18008|88.35 800404| 58.67 371596| 814.19 46984
= |StressTest 0.04 6156| 2.45 773312 8.30 75216{1213.04 45752
= SyncAsync 0.05 7312(24.14 1824676| 13.97 377516| 252.49 40144
ThreadRingCOG |0.20 9036| 37.9 1187388|284.71 166128| 588.14 39324

Fig. 10: Benchmarks measuring time(s) and max memory(KB) for ABS backends
targeting GHC?7.10.1, OpenJDK1.8, Erlang18, Maude2.6 on Intel® i7-3537U, 8 GB

small imprecision in the upper bounds is caused by the constructors methods:
the subset of the ABS language presented in this paper does not include con-
structors, but full ABS (and the SACO tool as well) considers that every object
has a constructor. Therefore, the SACO tool will count a constant number of
extra steps whenever a new object is created, corresponding to the invocation
and execution of the implicit constructor.

The expectation from the Haskell backend presented in this paper was that
its performance would surpass that of the other current ABS backends. For
this, we compared the full-blown Haskell backend (completely covering the ABS
language and using the “real” GHC multicore scheduler) against the Java, Er-
lang and Maude backends of ABS using a series of sequential and parallel
ABS programs touching all features of the ABS language (can be found at
https://github.com/abstools/abs-bench). The benchmark results shown in
Fig. 10 indicate that the Haskell backend is indeed the fastest both in terms of
elapsed time and memory residency. The Java backend is on average 166x slower
while requiring 87x more memory than Haskell: the Java backend pays the price
of Java’s heavyweight threads coupled with spin-waiting when monitoring active
objects for their await conditions. The Erlang backend takes 611x more time and
13x more memory, because the backend chose for a slower, process-oriented ap-
proach where each ABS process is implemented as a separate lightweight thread:
the ABS processes of an active object are placed in a token ring—the process
holding the token can execute unless it is blocked in which case the token is
passed over causing needless spinning in certain cases. The Maude backend con-
sumes comparable memory to Haskell but is extremely slow since the Maude
interpreter is more suited for prototyping and model checking ABS semantics.

6 Conclusion

We have presented a concurrent object-oriented language (a subset of ABS) and
its compilation to Haskell using continuations. The compilation is formalised in

order to show that the program behaviour and the resource consumption are
preserved by the translation. We achieved this through a straightforward (one-
to-one) mapping of source to target configurations, and statements to Haskell
expressions. We show that this compilation does not introduce any overhead
during execution, so that run-times are proportional to the number of steps
executed, and that it outperforms previous compilers of ABS when considering
the full set of the language. The translation is presented only for the core subset
of the ABS language; it lacks features such as Algebraic Datatypes, “true” non-
determinism, and multicore. Normally, to implement true non-determinism and
multicore one needs system-level threads. This is indeed the case with our full-
blown ABS-to-Haskell compiler (https://github.com/bezirg/abs2haskell).

In the future we plan to extend the correctness proof to the full-blown com-
piler, not only in terms of the omitted functional part of ABS, but regarding the
behaviour of the non-deteterministic, multicore scheduler: this could be achieved
by using either a high-level description of an “ideal” Haskell threaded scheduler
or an abstraction of the actual lower-level GHC runtime scheduler. We never-
theless speculate that the resource-consumption outcomes will remain the same
modulo the Garbage Collection. In a different direction, we would be interested
to relate our resource preservation to the cloud extension for ABS [4]—a Cloud-
Haskell [7] based extension to turn ABS to a distributed object system—and
more specifically how the resource analysis results translate to network trans-
port costs after any optimizations or network protocol limitations.

References

1. Albert, E., Arenas, P., Correas, J., Genaim, S., Gémez-Zamalloa, M., Puebla, G.,
Romaéan-Diez, G.: Object-Sensitive Cost Analysis for Concurrent Objects. Softw.
Test. Verif. Reliab. 25(3), 218-271 (2015)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gémez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Roman-Diez, G.: SACO: Static Analyzer for Con-
current Objects. In: Proc. TACAS '14, pp. 562-567. LNCS 8413, Springer (2014)

3. Albert, E., Arenas, P., Gémez-Zamalloa, M.: Symbolic Execution of Concurrent
Objects in CLP. In: Practical Aspects of Declarative Languages (PADL’12). pp.
123-137. LNCS 7149, Springer (2012)

4. Bezirgiannis, N., de Boer, F.S.: ABS: a high-level modeling language for Cloud-
Aware Programming. In: Proc. SOFSEM ’16. Springer (2016), to appear

5. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In:
Proc. ESOP ’07, pp. 316-330. LNCS 4421, Springer (2007)

6. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: Proc. ICFP ’00. pp. 268-279. ACM (2000)

7. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards Haskell in the Cloud. In: ACM
SIGPLAN Notices. vol. 46. ACM (2011)

8. Flanagan, C., Felleisen, M.: The Semantics of Future and its Use in Program
Optimization. In: Proc. POPL ’95. pp. 209-220. ACM (1995)

9. Johnsen, E.B., Hahnle, R., Schifer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: FMCO. pp. 142-164. LNCS
6957, Springer (2010)

10.

11.

12.

13.

14.

15.

Nakata, K., Saar, A.: Compiling Cooperative Task Management to Continuations.
In: Proc. FSEN ’ 13, pp. 95-110. LNCS 8161, Springer (2013)

Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer-Verlag (2002)

Noll, T.: A Rewriting Logic Implementation of Erlang. ENTCS 44(2), 206224
(2001)

Palacios, A., Vidal, G.: Towards Modelling Actor-Based Concurrency in Term
Rewriting. In: Proc. WPTE ’15. OASICS, vol. 46, pp. 19-29. Dagstuhl Pub. (2015)
Vidal, G.: Towards Erlang Verification by Term Rewriting. In: Proc. LOPSTR
’13. pp. 109-126. LNCS 8901, Springer (2013)

Wong, P.Y., Albert, E., Muschevici, R., Proena, J., Schfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567-588 (2012)

Note for the reviewers: The following appendiz contains the complete proofs
of the theoretical results. It is not part of the paper. In case the paper is ac-
cepted, it will be made available as a technical report.

A Proofs and auxiliary results

A.1 Auxiliary results

In this section we will state and prove the completeness and soundness of —
w.r.t. —. The completeness states that any —-step can be performed in a trans-
lated Haskell term using ~— with the same object and statement. The soundness
states that any »—-step is a valid —-step from the translated configuration.

Lemma 1 (Completeness of —). If A =3 B then there are two Haskell
tuples t4 = °[A] and tg = °[B] such that ty — tp.

Proof. By case distinction on the rule used to perform the step.
— (Internal)+(Assign I).

= h(on)(x) = h(on)(y)]
<071:(X:=Y;SZ)'Q h> <On:(svl)'Q7h/>

(AssiGN T)

(INTERNAL)

A= ((0p 1 (x:=y;5,1) - Q)UC by =3 ((on 1 (S,1)-Q)UC,H) =B
One possible translation of °[A] would be t4 = (hc, [0m]), where o, is
the first object in 0, that is not blocked and h. is the heap h extended
with the process queues h. = h[(0,,)(Q) — 9[Q..]]. Note that h.(0,)(Q) =
(x:=y;5,1)- Q] = (Assign z (Attr y) °[S].0) - ?[Q]. Then from t4 we can
perform a —-step to tg:

nextObject(he, [0m]) = on
he(0,)(Q) = (Assign = (Attr y) *[ST.1) - 7[Q]
c[()(x)Hh(On)(y) (0n)(Q) = (51, 1) - [Q1]

A= (h [Om} y (hc, 0n+1—>mJ : [01—>n]) =tB

(AssIGN 1) he

Note that °[B] = tp since it contains the set of objects with references o,,,
which can be translated as the list [0p,115m) : 0150

— (Internal)+(Assign II) and (Internal)+(New). Similar to the previous
case.

— (Internal)+(Get).

h(h(on)(f)) # L B = hl(on)(x) = h(h(on)(f))]
(o, : (x:=f.get; S,1) - Q,h) = (o, : (S, l)-Q)
A= (o1 (x:=f.get;5,1) - Q)UC, h) —=37s per
(on: (S,0)-Q)UC,W)=B

(GET)

(INTERNAL)

One possible translation of °[A] would be t4 = (he, [0m]), where o, is
the first object in 0, that is not blocked and h. is the heap h extended

with the process queues h. = h[(01,)(Q) — 9[Qn]]. Note that h.(0,)(Q) =
1(x:=f.get; S,1) - Q] = (Assign z (Get f) *[S],1) - 9[Q]. Then from t4 we
can perform a ~—-step to tp:

nextObject(he, [0m]) = on
he(02)(Q) = (Assign z (Get f) °[S],1) - 7[Q]
he(he(on)(f)) = Just v
he = he[(0n)(2) = v, (00)(Q) = C[5], D) - “[Q]]
ta = (he, [0m]) —3iet ger (MG [Oni15m] : [0150]) =t
and °[B] = tp.
— (Internal)4(Await I) and (Internal)+(Await II). Similar to the previ-
ous case, with the main difference that (AWAIT I) inserts the current process

in the first position of the queue, as usual, and (AwAIT II) at the end.
— (Message)+(Async).

(GET)

(o @ (f:=x!m(2);5,1) - Qn, h) Od'm—(l;’f) (on : (S,1) - Qn, 1)
(@) — Sy € D =@ 7 S = (Sr)
A= ((on: (f:=x!m(2);5,1) - Qn) U (04 : Qa) UC, h) =g .5
(0n : (S,0) - Qn)U(0g:Qq- (S, I)YUC, W) =B

(Mx-zss,:u;b)

where

hion)(x) =d h(count) =1 7= h(on)(2)
R =hl(on)(f) = U, (") — L, count — I' +1]

(On + (£:=x1m(2); 8,1) - Q1) " 257 (0, + (8,0) - Qu,)
One possible translation of “[A] ista = (he, [0m]), Where o, is the first object
in 0, that is not blocked and h,. is the heap h extended with the process
queues h. = h[(0m)(Q) — 1[Q:]]. Note that:
e he(0n)(Q) = (Assign = (Async & m 2) *[S],0) - 1[Q,]
® he(04)(Q) = *[Qal
Then from ¢[A] we can perform a »—-step to ¢p:
nextObject(he, [0m]) = on, h(count) =1’
he(0,)(Q) = (Assign f (Async z m Z) °[S],1) - 1[Qx]
he(on)(@) =d he(d)(Q) = [Qal (m(@) = Sm) € D
k =m he(on)(Z) 0o, Nothing undefined
newQaad([0m), on,d) = s
Rl = hel(on)(f) = U count — U+ 1, (') — L,
(0n)(Q) = (IS].D) - [@n]; (d)(Q) = “[Qa] - (k,1')]
ta = (hw [@]) H(f):;x!m(é) (h‘/c’ S) =tp
where ¢[B]] = tp. Note that by the definition of ™[-] and *[]
k =m h.(0,)(Z) o, Nothing undefined) = *[S] = *[S"Jundetined,Nothing

50 1[Qa- (5", 1)] = [Qa] - C[S'], V') = *[Qa] - (,1"). On the other hand, by
construction s is a list of those object references whose queues (Q) are not
empty.

(aon0)

(Asyne)

— (Internal)4(Sync).

(m(w) — Sp) € D fresh 1=[ww— h(n)(z)] S = (S/m\T)w
(on : (x:=m(2);S,1) - Q,h) — (o, : (S';5,1)-Q,h)
A= {((op: (x:=m(2);8,1) - Q)UC,h) =77 5
((on : (8';8,1)-Q)UC,hy=B

(SYNC)

(INTERNAL)

One possible translation of °[A] is t4 = (hc, [0m]), where o, is the first ob-

ject in 0, that is not blocked and h.. is the heap h extended with the process

queues h. = h[(0m)(Q) — 1[Qmn]]- Note that h.(0,)(Q) = (Assign x (Sync m z) *[S] 1)-
7[Q]- Then from t4 we can perform a ~—-step to tp:

nextObject(h, [om]) = on
he(0n)(Q) = (Assign & (Sync m 2) *[S]1) - °[Q]
k =m(h(0,)(2), 0n, Just z,°[S])
h" = h{(on)(Q) = (K, 1) : *[Q]

a = (b [om]) — (W, [on15m] : [0150]) = 18

(Sync)

where ¢[B] = tp. Note that by definition of ™[] and the translation *[-]
k =m(he(on)(2), 0n, Just 2, °[S]) = *[SmT J¢o[s1)

so k= S[[ST”;'JC; S].
— (Internal)+(Returny,).
K = hl(1) > h(0n)(@)
(e (0 : (return x;5,1) - Q,h) — (on : Q,h))
((on = (8";8,1)-Q)UC,h) =B
One possible translation of “[A] is t4 = (he, [0m)), where o, is the first ob-
ject in o, that is not blocked and h. is the heap h extended with the process

queues h. = h[(0m)(Q) — 1[Q:n]]- Note that h.(0,)(Q) = (Return x Nothing *[S],)
7[Q]. Then from t4 we can perform a ~—-step to tp:

(INTERNAL)

nextObject(he, [0m]) = on,
he(0n,)(Q) = (Return Nothing *[S],1) - 91[Q]
nerdel([@]a On,, q[[Qﬂ) =S
he = hell = h(on)(x), (0n)(Q) — *[Q]
ta = (he, [om]) — (RL,s) =tp

(RETURNA)

where ¢[B] = tp. Note that s will not contain o, if ¢[Q] is empty.
— (Internal)4(Returng). Similar to the previous case.

Lemma 2 (Soundness of —). If t4 —% tp then “[ta] ™' =% “[tg] .

o o A W N e

Proof. By case distinction on the rule applied to perform the step. The reasoning
is very similar to the proof of Theorem 1 so we only include the case of (ASSING
I); the other rules follow the same ideas.

— (Assign I).

nextObject(he, [0m]) = 0n he(0,)(Q) = (Assign x (Attr y) k',1) : ¢

(AssieN 1)

he. = he[(on)(x)Hh(on)(y) (00)(Q) = (K1) : g]
]

ta = (hca [7) —y () l0n+1—>m] : [Ol—Wl]) =tip

The inverse translation of ¢4 is defined as

A= [ta]™ = ((0n : (x:=y;S,1)-Q)UC, h.)

where *[K']7t = S, 9[¢q]7' = @, hc is the inverse translation of h and C
is the inverse translation of the rest of object queues. Then from A we can
perform the following derivation:

h" = h{(on)(x) — h(on)(y)]
(on : (x:=y;5,1) - Q,hy = {0, : (S,1) - Q, 1)
A= ((0p: (x:=y;5,1) - Q)UC, by =3 ((on 1 (S,1)-Q)UC,K) =B

(AssieN T)

(INTERNAL)

It is clear that [tp]~! = B as the set of object referencies in B is {o,,} and
k! is the same as h. with the following changes: a) h..(0,)(Q) = 9[h.(0,)(Q)]* =
(5,1) - Q and b) hy(0n)(x) = he(0n)(y)-

O

Similar results can be stated about the compiled Haskell programs w.r.t. —.
The completeness states that any ~—-step is performed by the eval function in
the compiled program, and the soundness states that the result of eval is a valid
—-step when applied to the next unblocked object returned by the nextObject
function.

Lemma 3 (Completeness of the compilation). If (h,[0,]) —2%, (R, [0k])
then eval o, h = (res,l,h’) such that [0g] = updL([0m], on,!)-

Proof. The eval function is defined in file Fval.hs in the repository https://
github.com/abstools/abs-haskell-formal/blob/master/src/Eval.hs. The
first lines of the eval function extracts the information (attrs,pqueue) of ob-
ject this from the heap, selects the first process from pqueue and selects its first
continuation c. Note that the datatype Data.Sequence is imported with name
S, and that we assume that this = o,, i.e., the object at position n in [0,,].

eval this h = do
(attrs ,pqueue) <— objects h ‘V.read' this
case S.viewl pqueue of
S.EmptyL —> error ”(...)”
(Proc (destiny, c)) S.:< restProcs —> let res = ¢
in case res of

Then we proceed by case distinction on the rule used to perform the ~—-step.

— (Assign I).
nextObject(h, [0m]) = o, h(0n)(Q) = (k,1) : q
k = Assign x (Attr y) K’
on 1= Plon)(@) = h(on)(y), (0n)(Q) = (K1) = q]
SO D o) W e o)

If k¥ = Assign = (Attr y) k' then res will be Assign lhs (Attr a) k’
where lhs and a are the position in the vector attrs of the variables x
and y respectively, therefore the case ref of expression will execute the
following branch:

7 Assign |hs (Attr a) k' —> do

¢ (attrs ‘V.write' lhs) =<< (attrs ‘V.read' a)
s updateObj $ Left k’

o return (res,

11 [thiS],

12 h)

The heap is updated to store the value of y in x using the vector operators
V.read and V.write, and the process is updated to have the continuation k’
in the front—see definition of the update0Obj function. Finally it returns the
instruction res, the unitary list [this] and the new heap h—note that it has
been updated, so h = h'. Clearly [0n115m] : [015n) = [Ontiom) : [015n-1) : |
since | = [o,].

— (Assign ITI). Similar to the previous case, but using directly the value r
inside the instruction res to update 1hs.

— (New).

nextObject(h, [om]) = on h(on)(Q) = (k,1) : ¢
k = Assign x New k' h(count) = onew
b= h[(On)(Jj) > Onews COUNE — Opeyw + 1,
(Onew)(Q) = €, (0n)(Q) = (K',1) : g
(h: [Tm]) - (hly [On+1—>m] : [01—>n])
If k = Assign x New k' then res will be Assign lhs New k’ where 1hs is the
position in the vector attrs of the variable x. The case ref of expression
will follow the branch:

(NEW)

15 Assign |hs New k' —> do

1 (attrs ‘V.write® lhs) $ newRef h

15 updateObj $ Left k'

1 initAttrVec <— V.replicate 10 (—1)

v (objects h ‘V.write' newRef h) (initAttrVec, S.empty)
12 h' <— incCounterMaybeGrow

1s return (res,

20 [thiS],

21 h')

This code updates the heap by storing a fresh reference (the function newRef
extracts it from the heap) in the variable x (line 14), and, as in the assignment
case, it updates the process queue pushing the next continuation k’ in the
front using function updateObj (line 15). In lines 16-17 the code creates an
initial mapping initAttrVec for the new object and inserts in the heap with
an empty process queue S.empty. Finally it increments the reference counter
using the function incCounterMaybeGrow® and returns (res, [this],h’).

It is clear that A’ = h’ and [0n115m] ¢ [O1on) = [Ontiom] : [O1on-1) : |
since [= [o,].
— (Get).

nextObject(h, [o,m]) = on h(on)(Q) = (k,1) : q
k = Assign x (Get f) k' h(h(o,)(f)) =Right v
h" = hl(on)(x) = v, (0)(Q) = (K1) : q]

(h, [om]) = (W, [ongi=m] : [0150))

If k = Assign = (Get y) k' then res will be Assign lhs (Get a) k’ where
lhs and a are the position in the vector attrs of the variables x and y re-
spectively. In this case the case ref of expression will execute the following
branch:

2> Assign |hs (Get a) k' —> do

23 f <— attrs ‘V.read' a

2 fval <— (futures h) ‘V.read' f
»s case fval of

26 —— unresolved future

27 Left blockedCallers —> do

28 ()

(GET)

29 —— already—resolved future
30 Right v —> do

a1 (attrs ‘V.write* lhs) v
32 updateObj $ Left k’

33 return (res,

34 [this],

35 h)

The code fetchs the value fval of the future stored in the reference that
appears in the variable y (lines 23-24). Since the future is resolved to a
value due to the premises of the (GET) rule—fval = Right v—the value is
stored in the variable x and the process queue is updated by pushing the next
continuation k’ in the front using function updateObj (lines 31-32). Finally,
it returns (res, [this],h). As in the previous cases it is straighforward to
prove that the new heap h—which has been updated in place—is equal to
B and [0n1iom) ¢ [01on] = [Ontism) ¢ [015n-1) : | since | = [o,]. The
code ommited in line 28 handles when the future is not resolved, i.e., when
fval = Left blockedCallers, situation that cannot happen considering
the premises of the (GET) rule.

5 Since the implementation uses growable arrays to store the mapping from objects to
their attributes, this function also checks if the array is complete and must grow.

— (Await I).

nextObjECt(hv [@]) = On h(on)() = ()
k = Await f k' (()()):Rghtv
h' = hl(on)(Q) = (K1) :]

(Awarrt I)

(b, [om]) — (W, [m} s [o15a))

Then res is Await attr k’, where attr is the position in the vector attrs
of the future variable f. The eval function will enter into the following
branch:

36 Await attr k' —> do
ar fut <— V.read (futures h) =<< (attrs ‘V.read' attr)
sz case fut of

39 —— unresolved future

40 Left - —> do

at updateObj $ Right c
oS return (res,

43 [this],

44 h)

a5 —— already—resolved future
46 Rig‘ht _—>do

a7 updateObj $ Left k’
a8 return (res,

9 [this],

50 h)

The variable fut contains the value stored in the future variable, which must
be Right _ because the rule (AwWAIT I) has been applied. The branch in
lines 4650 updates the heap h by storing the continuation k’ in the front of
the process queue and return (res, [this],h). The updated heap h is equal
to b/, and clearly [0nt15m) ¢ [015n) = [Ontiom) : [01on—1] : On.

— (Await IT). Similar to the (AwWAIT IT) case, but fut must be Left _ because
the future is undefined. Then the branch in lines40-44 updates the heap h
by storing the original continuation c in the back of the process queue—see
function updateObj the the parameter is Right c.

— (Async).

nextObject(h, [0m]) = on h(0,)(Q) = (k,1) : ¢ h(count) =1’
k = Assign x (Async y m z) k' h(on)(y) = oy h(oy)(Q) = ¢y
(m(w) = S)e D k" =mn(h(o,)(Z), 0n, Nothing, A) — undefined)
neradd([ﬂ]a On Oy) =S
W = hl(on)(z) = ', count — ' + 1,1' — Left [],
(00)(Q) = (K1) : q,(04)(Q) = qy : (K", 1')]

AsyNc
e (i, fow]) — ()
Then res will have the value Assign 1hs (Async obj m params) k’, where:

e 1hs and obj are the positions of z and y in the vector attrs
e m is the Haskell function that is the translation of method m

e params is a list of variables (the arguments of the method invocation)
e k’ is the continuation
The execution of eval will follow this branch:

s: Assign Ihs (Async obj m params) k' —> do

s> calleeObj <— attrs ‘V.read' obj —— read the callee object

s2 (calleeAttrs , calleeProcQueue) <— (objects h ‘V.read' calleeObj)

sa derefed_params <— mapM (attrs ‘V.read') params —— read the passed attrs
ss let newCont = m

56 derefed_params

57 calleeObj

58 Nothing —— no writeback

59 (error 7 ...7)

s (attrs ‘V.write' Ihs) (newRef h)

s updateObj (Left k')

e let newProc = Proc (newRef h, newCont)

e (objects h ‘V.write' calleeObj) (calleeAttrs , calleeProcQueue S.|> newProc)

s (futures h ‘V.write' newRef h) (Left []) —— create a new unresolved future

s h' <— incCounterMaybeGrow

e return (res,

o7 this :[calleeObj | S.null calleeProcQueue],

68 h ')
The first 3 lines obtain the mapping and process queue of object obj and
create a list of reference values from the list of variables (derefed_params).
Lines 55-59 invokes m to obtain the continuation newCont related to the
asynchronous call. Line 60 stores the new reference newRef h in the variable
lhs, and line 61 updates the heap by inserting the continuation k’ in the
front of the process queue of the current object. The next two lines creates
and inserts in the back of the process queue of object obj a new process with
continuation newCont and destiny the new reference newRef h. Line 64 cre-
ates a new undefined future variable, i.e., with value Left [], and line 65
increments the reference counter of the heap—recall that as mappings are
implemented as growable arrays the function incCounterMaybeGrow can in-
crement their size. Finally, a tuple with the instruction res, a list of objects
and the new heap h’ is returned.
It is easy to see that h’ is equal to h’ since they have received the same up-
dates. If oy € [0,,] then s = [0p515m] : [01=n]. In this case calleeProcQueue
must not be empty, so the list of objects returned will be [this] and
$ = [Ontiom| : [015n—1] : on—recall that this=o0,. On the other hand
if oy ¢ [Om) then s = [0p515m] : [015n] @ 0y, SO calleeProcQueue must
be empty and the list of objects returned will be [this,obj]. Therefore
$ = [Ons15m] : [015n=1] : [0, 0y]—recall that o, =obj.

— (Sync).
neItObjeCt(h7 [@]) = On h(On)(Q) = (kvl) o q
k = Assign z (Syncm 2) ¥ (m(w)+— S) € D
K" = n(h(on)(Z), on, Jlll/St x, k')
o = hl(on)(Q) = (1) 4

(h7 [W]) — (hla [0n+1ﬁm] : [014)77,])

69

70

71

79

In this case res will be Assign 1lhs (Sync m params) k’ and the execution
of eval will follow the branch:

Assign lhs (Sync m params) k' —> do
derefed_params <— mapM (attrs ‘V.read') params —— read the passed attrs
updateObj $ Left (m
derefed_params

this
(Just lhs)
K)
return (res,
[this],
h)

The resoning is similar to the (ASYNC) case, but the new continuation related
to the invocation is inserted in the front of the process queue of the current
object—function updateObj in line 71.

(Returny).
nextObject(h, [0m]) = on h(0n)(Q) = (k1) : q
k = Return z Nothing = newQue([0Om], 0n,q) = s
(RETURN A) h' = h[l — Right h(0,)(2), (0n)(Q) = q]

(h, [om]) — (',)

In this case res = Return attr wb k’, where attr is the position of the
variable z in the mapping, wb is the write-back variable (or Nothing in
asynchronous calls) and k’ is the continuation to execute in the current
process after returning. The execution of eval will follow the branch:

Return attr wb k' —> case wb of
—— sync call
Just lhs —> do
(attrs ‘V.write’ lhs) =<< (attrs 'V.read' attr)
updateObj $ Left k’
return (res,
[this],
h
)
—— async call
Nothing —> do
fut <— futures h ‘V.read' destiny
case fut of
Right - —> error ”...”
Left blockedCallers —> do
(futures h ‘V.write' destiny) =<< lift M Right (attrs ‘V.read' attr)
(objects h 'V.write' this) (attrs, restProcs)
return (res,
[this | not $ S.null restProcs] ++ blockedCallers,
h)

Since the rule (RETURN,4) has been applied, then wb = Nothing and the
inner branch in lines 89-98 is executed. Following defensive programming
techniques, the code first checks that the future variable where the value is
stored does not contain any previous value, i.e, it stores Left e, and throws
an error otherwise. However, it is guaranteed that in any sequence of —-steps
the future variable will be unresolved when executing a return step: only
one return will be executed in a process and future variables are not reused.
Therefore the branch in lines 93-98 will be executed. First, the value of z
(position attr) is stored in the future variable in position destiny—recall
that destiny is the position of the future variable { from the (RETURN4)
rule, see line 5. Then in line 95 it removes the current process from the process
queue in the this object, and in lines 96-98 it return the result tuple. Note
that blockedCallers is an empty list: it is created empty when creating an
asynchronous call—see the case for the (AsyYNC) rule—and it is not modified
in other instruction. However the code includes blockedCallers because
it has been prepared to incorporate some optimizations in the future for
handling efficiently those objects blocked waiting for future variables in a
get instruction. It is straightforward to check that the updated heap h is
the same as the new heap h’ from the (RETURN 4) rule, as both have received
the same updates. By definition of newQge if ¢, = € then s = [0,5715m) :
[015n—1]- In this case s = [0p515m) : [015n-1) : [| because restProcs will
be null. On the other hand, if ¢, # € then s = [0,5715m] : [015n) and clearly
$ = [Ont1om) : [015n—1] : [on] because restProcs will not be null.

— (Returng).

nextObject(h, [0m]) = on h(on)(Q) = (k,1) : q
k = Return z (Just x) &/
h" = h{(on)(x) = h(on)(2), (0n)(Q) = (K1) : q]

(hv [m]) — (hlv [On+1—>m] : [01—)71])

(RETURNg)

Similar to the previous case but executing the branch in lines 81-87: the
returned value is stored in the 1hs variable (line 82), and the current process
continues with the new continuation k’ (line 83), which is inserted in the
front of the process queue. a

Lemma 4 (Soundness of the compilation). If eval o, h = (res,l,h’)
and nextObject(h, [0,]) = o, then (h, [0m]) =2, (W, updL([0m], 0n,1)).

res

Proof. By case distinction on the portion of the code of eval that computes the
result of the step. The resoning is very similar to the proof of Lemma 3.

A.2 Proof of Theorem 1 (Trace soundness)

Proof. By induction on the number of eval steps using Lemmas 4 and 2. O

A.3 Auxiliary definitions and results for bound preservation

In order to prove the preservation of the bounds obtained in [1] we need to
prove that for any trace — there is and equivalent trace using the semantics
~> considered in [1]. These two semantics have some syntactic differences but
they have the same behavior, so the correspondence is straightforward. In this
case the correspondence is not one-to-one because the semantics ~ has a rule
to nondeterministically select the next process to execute in an object when it
is idle—mamely rule (11)—whereas our semantics selects automatically the next
process in the queue when a process finishes or becomes blocked. Performing
one —-step can require two ~-steps, but in that case the first one executes the
same statement S as — and the second one does not execute any instruction
(its decoration is €). Therefore the statements executed will be the same in both
semantic calculus.

The language presented in Section 2 and its semantics in Fig. 2 and 3 are a
simplified version of those in [1]. The main differences are:

— the representation of the states
— the syntax of method invocations (both synchronous and asynchronous),
— the consideration of local variables and class declarations

In [1] states St are sets of futures and objects, which contain their queues of
pending tasks. Formally an object is represented as ob(o, C, h, (tv,b), Q), where
o0 is the object identifier, C is the class, h is the object heap, tv is the table of local
variables, b is the sequence of instructions to execute, and Q the set of pending
tasks. Futures are represented as fut(fn,v), where f is the future identifier and
v its value, possibly L. The operational semantics in [1] rewrites states St ~» St’.

We will consider a slight variation of the operational semantics in [1] where
fields can be directly assigned by new and get instructions or arbitrary expres-
sion in the right-handd side, and future variables can be fields instead of local
variables. This modification does not affect the upper bounds and the results
obtained in [1]. To simplify the results, we will assume that the decorations of
the ~»-steps use the syntax presented in Section 2.

In order to prove Theorem 2 we will define a translation from configurations
as defined in Section 2.1 to states in the semantics in [1]. The translation will
use the following functions, considering a configuration (C, h):

— objs(C): returns the set of object identifiers in the set C.

— futs(h): returns the set of future variables in the heap h.

We define two translations for runtime configurations: ||-|| from runtinme
configurations (C, h) to states St, and (-) from runtime configurations (h, s) to
states St.

Definition 1 (Translation of states).

{C, h)[| = {ob(n, -, h(n),a,t)|(n: Q) € C,(a,t) = @} U
{ob(o, _,€,€,0)|o € Dom(h) \ objs(C)} U
{fut(fn,v)|fn € futs(h),h(fn) = v}

lellg = (e, 0)
10550) - (S1:00) -+ (Snsln)llg = ({[ret =1, [[S]ls),

{{[ret = LLIS1lLs), . ([ret v L), 1Sulls)}

lells = €
|2:=y; S||s = @:=y; [| S]]
lz:=r; S||s = z:=r; ||S||s
|z:=new; S||s = z:=new, ||S]s
|z:=f.get; S||s = z:=f. get; || S]s

|l f:=z!p(z);S|ls = call(m,p(z,z,));||S]s
| f:=p(2);S||s = call(b,p(this,z,));|S|s
lauait £; S|l = await 1 1S],
|return z; S||s = return z;||S]|s

Definition 2 (Global translation). ((h,s)) = ||°[(h,s)] ||

Finally we define the notion of relevant trace of ~ steps, i.e., those that
execute an statement.

Definition 3 (Relevant trace). Given a trace To = Sty ~¢ Sty ~@F ... ~g")

St,, we define the relevant trace of Tc as those steps that execute an statement:

TBZ(TC) = {Stl Mgi Sti+1|5ti Mgi Sti+1 €Te, S; 7é E}
Based on the equivalence between — and ~ and Theorem 1 we can prove
a resource preservation result wrt. ~: for any sequence Tg of eval steps there
is a corresponding trace T¢ using the ~ semantics from [1] with the same cost.
We will use the translation function {-) to convert from runtime configurations
(h, s) to the states in ~.

Lemma 5 (Consumption Preservation wrt. ~). Let (h1,s1) be an ini-
tial state and consider a sequence Tg of n — 1 consecutive eval steps defined
as: a) o; = nextObject(h;,s;), b) (res;, l;, hit1) = eval o; hi, ¢) Siy1 =
updL(s;, 0;,1;). Then there is a trace To = ((h1,51)) ~* ((hn,sn)) such that
C(Tg,0,M) =C(Tc,0,M).

Proof. By Theorem 1 we have that there is a trace (recall that S; = res;)
T =[(h1,s)] 7" =& Uh2,)] 7! =G .. =& Ly s)] 7
Since both traces execute the same statements in the same objects, then

C(Ma o, TE) = C(Ma 0, T)

By Lemma 7 (see below) then there is a trace T = ||[(h1, s1)] 72| ~* |[(hn, 52)] 72|
such that

rel(Te) = [°[(ha, sOI M~ 1°1(h2, s2)1 M~ - oG 1Dy s)]

n

As before, T and rel(T¢) execute the same statements in the same objects, so
C(M,0,T)=C(M,o,rel(Tc))

By Lemma 8 (see below) the cost of a cost of 7¢ is the same as the cost of its
relevant trace rel(7;), so finally

C(M,0,Tg) =C(M,o0,T¢)

Lemma 6. If (C,h) =} (C', ') then:

— HC R~y 1KC7 1)) or,
— W)~y S~ I(C 1)

Proof. By case distinction on the derivation applied to perform the —-step.

— (Internal)+(Assign I).

W = h[(n)(x) = h(n)(y)]
(n:(x:=y;8,0)-Q,h) = (n:(S,1)-Q,h)
A=((n:(x:=y;8,1)-QQUC, h) =7, ((n:(S,1)-QUC, 1) =B

(AssiGN 1)

(INTERNAL)

The translation of Sj is
| A[l = {ob(n, -, h(n), ([ret = 1], x:=y; ||S||s), Qer) | R}

where R is the rest of objects and future variables not involved in the step
and @y, the translation of Q. From ||A]| it is possible to perform a ~»-step
using rule (2) in [1], reaching || B||:

v = h(n)(y)
{ob(n, -, h(n), ([ret = 1], x:=y; [[S]ls), Qur) IR} ~1y
{Ob<n7 - h(n)[m = 1)], <[ret — ”: ||S‘|S>7Qtr)|R} = HBH

— (Internal)+(Assign II). Similar to the (INTERNAL)+(ASSIGN I) case.
— (Internal)4(New).

h(count) =m
B = h[(n)(z) — m, (m) — €, count — m + 1]
(n:(x:=new;S,1)-Q,h) — (n:(S,1)-Q,h)

(NEW)

(INTERNAL)

A={(n:(x:=new;S,1)-Q)UC,h) =2 ((n:(S,)-QUC,K)=B

i=new

The translation of S7 is
[All = {ob(n, -, h(n), ([ret — I],x:=new; ||S||;), Q)| R}

From ||S1]| it is possible to perform a ~»-step using rule (3) in [1], reaching
1Bl

m =newRef() newHeap(_,e¢)

3
O ot (), (frot — I, x:=ew: [S]12): Qor) R} ~2.moee

{ob(n, -, h(n)[z — m], ([ret = 1], [|S]ls), Qur), {ob(m, -, €, €, D)|[R} = || S2]|

Note that m is a new object reference as it has been generated using the
counter, and the heap of the new object generated by newHeap is € because
we do not consider class declarations. No object with identifier m appears
in C of B, but it is generated by the translation because m is in the domain
of h (second set of |-])

(Internal)+4(Get).

h(h(n)(f)) # L h" = h{(n)(x) = h(h(n)(f))]

(n:(x:=f.get;S,0)-Q,h) — (n: (S,)~Q,h’>
A={(n:(x:=f.get;5,1)-Q)UC,h) —
((n:(S,)-Q)UC,K)=DB

The translation of A is:

[A]l = {ob(n, -, h(n), ([ret — 1], x:=f . get; [|S||,), Qrr), fut (fn, v)| R}

(GET)

(INTERNAL)

x =f.get

From || A|| it is possible to perform a ~+-step using rule (8) in [1]:

W) () =fn v#L

8
O b, h(n), (et v 1], x:=£ gt S|, Qo) fut o,)[R} ~oos. o
{Ob(ni - h(n)[x = U]? <[ret = l]v HSHS>7 Qtr)ant(fn7 U)|R} = HBH

Note that by the definition of the translation ||-|| we have that h(h(n)(f)) = v
(Internal)4(Await I).

h(h(n)(f)) # L
(n: (await £;5,1)-Q,h) = (n: (S,1)-Q,h)

AE<((awalthl) Q)U0h> awaltf
((n:(5,0)-QuUC,h) =

The translation of A is
[|All = {ob(n, -, h(n), ([ret = I],await £;[|S][s), Q¢r), fut(fn, v)|R}

(Awarr T)

(INTERNAL)

From ||AJ| it is possible to perform a ~»-step using rule (9) in [1]:

h(h(n)(f)) # L
{ob(n, ., h(n), ([ret > I],await £;[|S]|s), Qur), fut(fn, v)|R} ~ s ¢
{ob(n, -, h(n), ([ret = 1], [[Sls), Qer), fut(fn, v)|R} = || B

Note that by the definition of the translation [|-|| we have that h(n)(f) = fn

9)

— (Internal)+(Await II). This case is similar to the previous one but possi-
bly involving 2 ~»-steps: one that evaluates the await f that cannot continue
and releases the object, and one that schedules the next task in the object.

h(h(n)(f)) = L
(n: (await £;5,1)-Q,h) = (n: Q- ((await f£;5,1)),h)
A={((n: (await £;5,0)-Q)UC,h) =% i ¢
((n:Q- ((await £;5,1)))UC,h) =B

(Awarr 11)

(INTERNAL)

Consider that ||@ - ((await £;5,1))|l, = (a,t), where a is the translation of
the first task in the queue and ¢ the translation of the rest of the queue. The
translation of A is:

[A[l = {ob(n, -, h(n), ([ret — 1], await £;[Sls), Qer), fut(fn, v)| R}
From ||A|| we can perform a ~»-step using rule (10) in [1]:

h(h(n)(f)) =L
{ob(n, -, h(n), ([ret — [], await £;[|S|s), Qur), fut(fn, v)|R} ~ Ty ¢
{ob(n, _,h(n),e, {[ret — l],await £;||S|s) U Qsr), fut(fn, v)|R} = A’

(10)

Similar to the previous case, we know that h(n)(f) = fn. Then from the
state A’ we can apply rule (11) to schedule the first task a in the queue:

a € ([ret — [],await £;||S]s) U Qur

11
(1D {ob(n,_, h(n), ¢, ([ret — I],await £;||S|s) U Qs), fut(fn, v)|R} ~7
{ob(n, -, h(n),a,t), fut(fn,v)|R} = || B]
Therefore we have the two-step ~»-derivation [|A| ~%.:. ¢ A ~7 || B]].
— (Internal)4(Sync).

—T

(m(@) — Sp) € D fresh 7= [h(n)(z)] S = (Sm7)
(n: (x:=m(2);5,0) - Q,h) — (n: (S8,0)-Q, h)

(Sync)

(INTERNAL)

S1=((n:(x:=m(2);5,1)-Q)UC,h) =7 ((n:(8;8,1)-Q)UC,h) =85

:=m(Z)

The translation of Sy is
|51l = {ob(n, -, h(n), ([ret — 1], call(b,m(this,z,));||S||s), Qu)| R}

where R is the rest of objects and future variables not involved in the step
and @y, the translation of Q. From ||S;|| it is possible to perform a ~s-step
using rule (4) in [1], reaching ||S2||:

(m(w) = Sm) € [Dl§yne fresh 7= [w— h(n)(2)]

sync
{ob(n, _, h(n), ([ret —], call(b,m(this,Zz,));||Ss), Q)| R} ~5s

(n)
{ob(n, -, h(n), ([ret = 1], S [|S]]s), Qur) IR} = |[S2|

(4)

[D||5yne is the translation of all the methods in the program D where meth-
ods are treated synchronously, i.e., they store a final value in the field x.
We consider a simplification of the operational semantics in [1] where syn-
chronous methods return exactly one value, thus the last instruction of a

synchronous method stores the final value in the corresponding field. In this

—T
case it is easy to check that [[(S;,7) || = SimT.
— (Message)—+(Async). Similar to the previous case.
— (Internal)+4(Return,).

b = h[(l) = h(n)(z)]
(n: (return x;5,1)-Q,h) = (n:Q,h)

(RETURN4)

(INTERNAL)

A={(n: (return x;5,1)- Q) UC,h) =l x (n: QYUC,) =B
The translation of A is
| All = {ob(n, -, h(n), ([ret =], return x;[|S|s), Qs), fut(l, L)| R}

where R is the rest of objects and future variables not involved in the step
and Q¢ the translation of Q). From || A|| it is possible to perform a ~+-step
using rule (7) in [1]:

o v = h(n)(z)

[A]l = {ob(n, -, h(n), ([ret = I}, return x;[|S|ls), Qur), fut(l, L) R}~ crumm

{ob(n, -, h(n), €, Qs), fut(l,v)|R} = A’

If Q4 = ¢, i.e., if the process queue of object n is empty then we are done
because A" = || B||. Otherwise we need to apply a step with rule (11) to select
the next proces in the queue, performing a step A’ ~" || B|| similar to the
case (AWAIT IT)
— (Internal)+(Returng). Similar to the previous case (RETURN,4), but ap-
plying rule (6) instead of (7) in the ~»-step.
O

Lemma 7. If T = A —>0511 Ay —>f;32 —>g’;:]1 A,, then there is a trace To =
[Ar]| ~* | Apl| such that rel(Te) = [|Ar]| ~8, [[A2]| ~&, - ~g " [[An].

n—1

Proof. Strightforward by induction on the number of steps in the trace 7, and
applying Lemma 6.]

Lemma 8. For any trace To wrt. ~, cost model M and object reference o then

C(Te,0, M) =C(rel(T¢), 0, M).

Proof. By definition of the cost of trace (Definition 3 in [1]), since only the steps
decorated with a statement (i.e., different from €) contribute to the cost. O

A.4 Proof of Theorem 2 (Bound Preservation)

Proof. Straighforward by Lemma 5 and Theorem 3 from [1].

Envisage Deliverable D3.1 Code Generation

A.4 Benchmarking the ABS backends

A.4.1 Setup

Hardware: Intel i7-3537U (2 cores, 4 hyperthreads), 8GB RAM, Linux-64bit

The Glorious Glasgow Haskell Compilation System, version 7.10.1

ABS Tool Suite v1.2.3.201509291051-c6£3df1

OpenJDK Runtime Environment (build 1.8.0_60-b24) OpenJDK 64-Bit Server VM (build 25.60-b23, mixed mode)
Erlang/0TP 18 [erts-7.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-poll:false]
Maude 2.6 built: Dec 9 2010 18:28:39

A.4.2 Results

Program Time(s) | Cpu Utiliz.(%) | Memory(KB) | +haskell-time | +haskell-mem
BinarySearchTree 0.01 75 3584 1.00x 1.00x
FieldFutures 0.39 99 93200 1.00x 1.00x
NaiveFib 0.11 97 3900 1.00x 1.00x
Rosetree 0.01 0 3428 1.00x 1.00x
SumList 0.01 86 12020 1.00x 1.00x
ThreadRingLocal 0.06 96 4236 1.00x 1.00x
AwaitOnField 0.09 105 6348 1.00x 1.00x
Haskell AwaitOnFut 0.05 104 6132 1.00x 1.00x
Bang 0.22 136 10220 1.00x 1.00x
BenchLists 5.84 138 15320 1.00x 1.00x
BenchMaps 0.05 124 10408 1.00x 1.00x
Big 0.03 136 12964 1.00x 1.00x
Sequences 0.02 162 13376 1.00x 1.00x
SerialMsg 0.04 153 6256 1.00x 1.00x
StressTest 0.04 128 9952 1.00x 1.00x
SyncAsync 0.05 141 9360 1.00x 1.00x
ThreadRingCOG 0.2 136 9980 1.00x 1.00x
Program Time(s) | Cpu Utiliz.(%) | Memory(KB) | +haskell-time | +haskell-mem
BinarySearchTree err err err err err
FieldFutures timeout timeout timeout timeout timeout
NaiveFib 4.43 167 137756 40.27x 35.32x
Rosetree err err err err err
SumlList err err err err err
ThreadRingLocal 0.2 186 42856 3.33x 10.12x
AwaitOnField 2.39 241 146276 26.56x 23.04x
NewJava AwaitOnFut 2.3 300 143580 46.00x 23.41x
Bang 0.8 289 151696 3.64x 14.84x
BenchLists 4.23 114.00 810860 0.72x 52.93x
BenchMaps 0.22 207 49100 4.40x 4.72x
Big 0.2 173 43016 6.67x 3.32x
Sequences 0.31 240 69420 15.50x 5.19x
SerialMsg 0.2 189 45320 5.00x 7.24x
StressTest 0.57 306 104144 14.25x 10.46x
SyncAsync 0.2 166 44584 4.00x 4.76x
ThreadRingCOG 0.2 173 42752 1.00x 4.28x

84

Envisage Deliverable D3.1

Code Generation

OldJava

Erlang

Maude

Program Time(s) | Cpu Utiliz.(%) | Memory(KB) | +haskell-time | +haskell-mem
BinarySearchTree 0.31 198 73340 31.00x 20.46x
FieldFutures out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem
NaiveFib 16.56 123 658188 150.55x 168.77x
Rosetree 0.14 149 54564 14.00x 15.92x
SumlList 1.11 300 192328 111.00x 16.00x
ThreadRingLocal 7.35 223 830612 122.50x 196.08x
AwaitOnField 7.1 136 487328 78.89x 76.77x
AwaitOnFut 7.82 141 354432 156.40x 57.80x
Bang 5.96 235 755740 27.09x 73.95%
BenchLists 86.78 389 792784 14.86x 51.75x
BenchMaps 96.66 391 796512 1933.20x 76.53x
Big 6.95 175 1172832 231.67x 90.47x
Sequences 8.74 182 788196 437.00x 58.93x
SerialMsg 3.01 263 803224 75.25x 128.39x
StressTest 2.53 205 797100 63.25x 80.09x
SyncAsync 23 144 1183192 460.00x 126.41x
ThreadRingCOG 38.07 186 1099024 190.35x 110.12x
Program Time(s) | Cpu Utiliz.(%) | Memory(KB) | +haskell-time | +haskell-mem
BinarySearchTree 1.28 22 22824 128.00x 6.37x
FieldFutures timeout timeout timeout timeout timeout
NaiveFib 1.63 39 24796 14.82x 6.36x
Rosetree 1.24 19 22688 124.00x 6.62x
SumlList 1.29 23 40716 129.00x 3.39x
ThreadRingLocal | timeout timeout timeout timeout timeout
AwaitOnField 1.65 78 30492 18.33x 4.80x
AwaitOnFut 1.91 76 26184 38.20x 4.27x
Bang 422.23 133 261776 1919.23x 25.61x
BenchLists 58.67 330 371596 10.05x 24.26x
BenchMaps 56.97 336 428192 1139.40x 41.14x
Big 21.51 230 654056 717.00x 50.45x
Sequences 44.01 207 34036 2200.50x 2.54x
SerialMsg timeout timeout timeout timeout timeout
StressTest 8.3 252 75216 207.50x 7.56x
SyncAsync 13.97 287 377516 279.40x 40.33x
ThreadRingCOG 284.71 311 166128 1423.55x 16.65x
Program Time(s) | Cpu Utiliz.(%) | Memory(KB) | +haskell-time | +haskell-mem
BinarySearchTree 0.5 99 47896 50.00x 13.36x
FieldFutures timeout timeout timeout timeout timeout
NaiveF'ib 198.62 100 38724 1805.64x 9.93x
Rosetree 0.29 98 39444 29.00x 11.51x
SumlList timeout timeout timeout timeout timeout
ThreadRingLocal | timeout timeout timeout timeout timeout
AwaitOnField 320.21 100 41672 3557.89x 6.56x
AwaitOnFut 328.65 100 41908 6573.00x 6.83x
Bang timeout timeout timeout timeout timeout
BenchLists timeout timeout timeout timeout timeout
BenchMaps timeout timeout timeout timeout timeout
Big timeout timeout timeout timeout timeout
Sequences timeout timeout timeout timeout timeout
SerialMsg timeout timeout timeout timeout timeout
StressTest timeout timeout timeout timeout timeout
SyncAsync timeout timeout timeout timeout timeout
ThreadRingCOG | timeout timeout timeout timeout timeout

85

	1 Technical Summary
	2 Java Backend
	2.1 Motivation and Challenges
	2.1.1 ABS Functional Layer
	2.1.2 Cooperative Scheduling

	2.2 Architectural Overview
	2.3 Benchmarks

	3 Haskell Backend
	3.1 Translating to Haskell
	3.2 Parallel Runtime
	3.3 Cloud Runtime
	3.4 Benchmarks

	4 Resource Preservation
	Bibliography
	Glossary
	A Papers
	A.1 Programming with Actors in Java 8
	A.2 ABS: a high-level modeling language for Cloud-Aware Programming
	A.3 A Formal, Resource Consumption-Preserving Translation of Actors to Haskell
	A.4 Benchmarking the ABS backends
	A.4.1 Setup
	A.4.2 Results

