
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D2.3.1
Monitoring add-ons and visualization (Initial Report)

Date of document: T24

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: FRH

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Monitoring add-ons and visualization (Initial Report)

This document summarises deliverable D2.3.1 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

In this document, we provide the definition of a layered declarative model to capture user-level SLAs,
low-level metrics and billable events. Furthermore, we explain how the work at Task T2.3 relates to T2.2
and uses the outcomes from other tasks in WP2.

List of Authors
Behrooz Nobakht (FRH)

2

http://www.envisage-project.eu

Contents

1 Introduction 4
1.1 Overview . 4
1.2 Experience and Feedback . 5
1.3 Publications . 5
1.4 Related Work . 5

2 SDL Fredhopper Cloud Services 7

3 Generic Model for SLA Metrics 8
3.1 Deployment Architecture . 8
3.2 Definitions and Assumptions . 9
3.3 Service Availability α(s, τ, tc) . 10
3.4 Budget Compliance β(s, τ) . 11
3.5 Formal Model Characteristics . 12

4 Future Work and Roadmap 14

5 Summary 16

Bibliography 16

Glossary 19

Publications 20
5.1 Formal verification of service level agreements through distributed monitoring 20

3

Chapter 1

Introduction

1.1 Overview
Monitoring is part of the mission critical infrastructure for virtualized service providers. The assurance of
the negotiated SLAs with each of the service consumers relies integrally on the monitoring infrastructure.
When the service is actually delivered it relies on two types of infrastructures that are intrinsically subject
to failures: the deployment infrastructure (e.g., servers, storage, network) and the delivery infrastructure
(e.g., internet connectivity, load balancers, authentication servers). With such particularity, in the context
of virtualized systems, these infrastructures are prone to faults and errors that definitely affect QoS and
can ultimately lead to a violation of the agreed SLAs. In order to detect situations where failures in these
infrastructures can influence and compromise QoS, they must be continuously monitored.

In D2.3.1, we provide the first part of Task 2.3: define a layered declarative generic model using the
language developed in WP1 in order to capture various monitoring concepts from QoS and SLAs to lower-
level metrics, metric policies, and listenable and billable events. We explain how user-level SLA’s can be
defined using the generic model and how the model relates to the work of T2.2. Figure 1.1 depicts how T2.2
and T2.3 are related:

Figure 1.1: T2.2 and T2.3 Collaboration and Relation

T2.2 delivers the fundamental definitions and formal basis to be able to reason about resources in the
context of SLA and Contracts. T2.3 builds on top of such foundation to define service metric function fs
that is the bridge between T2.2 and T2.3. T2.3 then delivers a monitoring framework that aims to verify
dynamic properties of an SLA during the runtime of a system.

In the next section, we briefly discuss the relation of T2.3 and other tasks in Envisage. In D2.3.1, we
first provide a short introduction for FRH cloud services in Chapter 2. We introduce the monitoring model
and its semantics in Chapter 3 and its publication in Chapter 5. We sketch an initial roadmap of the next

4

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

year in T2.3 in Chapter 4. We conclude the report in Chapter 5.

1.2 Experience and Feedback
T2.2 – Service Contracts and SLA As discussed in Section 1.1, T2.3 and T2.2 work closely towards
the objectives of WP2. In the next phase of T2.3, we intend to use the formal and abstract modelling
provided by T2.2 to be able to translate the SLA and Service Contracts to tangible definitions of service
metric functions fs defined in this report. Thus, it facilitates to provide a complete cycle of modelling,
model checking and verification starting from formal service contracts down to a monitoring framework that
optimizes an actual deployment environment.

T4.3 – SDL Fredhopper Case Study FRH uses the outcome of T2.3 in several ways. FRH defines the
service metrics for the case study of Fredhopper Cloud Services using the abstractions provided from T2.3.
FRH deploys and operates a monitoring infrastrcuture (c.f. Chapter 2) complying with the formal semantics
of the monitoring framework formalizes in T2.3. Actual implementations of the framework will be delivered
in the final outcome of this task.

T3.4 – Hybrid Analysis As part of the implementation of the monitoring framework, T2.3 will produce
ABS source for the modelling and implementation of the monitoring framework. The ABS source code and
the model will be an input for T3.4 to verified by the techniques developed in Envisage project.

T3.1 – Code Generation The ABS source code implemented T2.3 will be an example input for T3.1 to
generate a monitoring framework in a target language such as Java or Haskell.

1.3 Publications
In the context of T2.3, the following reserarch work are published:

• Formal Verification of Service Level Agreements Through Distributed Monitoring, B. Nobakht, S. de
Gouw, F. S. de Boer, ESOCC 2015, Citation [16]

1.4 Related Work
Vast research work present different aspects of runtime monitoring. We focus on those that present a line
of research for distributed deployment of services.

MONINA [10] is a DSL with a monitoring architecture which supports certain mathematical optimization
techniques. A prototype implementation is available. Accurately capturing the behavior of an in-production
legacy system coded in a conventional language seems challenging: it requires developing MONINA com-
ponents, which generate events at a specified fixed rate, there are no control structures (if-else, loops), the
data types that can be used in events are pre-defined, and there are no OO-features. We use ABS [11], an
executable modeling language that supports all of these features and offers a wide range of tool-supported
analyses [3, 18]. The mapping from ABS to timed automata [1] allows to exploit the state-of-the-art tools
for timed automata, in particular for reasoning about real-time properties (and, as we show, SLAs using
schedulability analysis [7]). MONINA offers two pre-defined parameters that can be used in monitoring to
adapt the system: cost and capacity. Our service metric function generalizes this to arbitrary user-defined
parameters, including cost and capacity.

Hogben and Pannetrat examine in [9] the challenges of defining and measuring availability to support
real-world service comparison and dispute resolution through SLAs. They show how two examples of real-
world SLAs would lead one service provider to report 0% availability while another would report 100%
for the same system state history but using a different period of time. The transparency that the authors

5

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

attempt to reach is addressed in our work by the concept of monitoring window and expectation tolerance
in Section ??. Additionally, the authors take a continuous time approach contrasted with ours that uses
discrete time advancements. Similarly, they model the property of availability using a two-state model.

The following research works provide a language or a framework that allows to formalize service level
agreements (SLA). However, they do not study how such SLAs can be used to monitor the service and
evolve it as necessary. WSLA [14] introduces a framework to define and break down customer agreements
into a technical description of SLAs and terms to be monitored. In [15], a method is proposed to translate
the specification of SLA into a technical domain directed in SLA@SOI EU project. In the same project,
[6] defines terms such as availability, accessibility and throughput as notions of SLA, however, the formal
semantics and properties of the notions are not investigated. In [4], authors describe how they introduce a
function how to decompose SLA terms into measurable factors and how to profile them. Timed automata
is used in [17] to detect violations of SLA and formalize them.

Johnsen [13] introduce “deployment components” using Real-Time ABS [2]. A deployment component
enables an application to acquire and release resources on-demand based on a QoS specification of the
application. A deployment component is a high level abstraction of a resource that promotes an application
to a resource-aware level of programming. Our work is distinguished by the fact that we separate the
monitors from the application (service) themselves. We argue that we aim to design the monitoring model
to be as non-intrusive as possible to the service runtime. Thus, we do not deploy the monitors inside the
service runtime.

In Quanticol EU project1, authors in [5] and [8] use statistical approaches to observe and guarantee service
level agreements for public transportation. We also present that service characteristics can be composed
together. This means that evolving a system based on SLAs turns into a multi-object optimization problem.
In addition, in COMPASS EU project2, CML [19] defines a formal language to model systems of systems
and the contracts between them. CML studies certain properties of the model and their applications. CML
is used in the context of a Robotics technology to model and ensure how emergency sensors should react
and behave according to the SLAs defined for them. Our approach is similar to provide a generic model for
service characteristics definition, however, we utilize timed and task automata.

1Quanticol EU project with no. 600708: http://quanticol.eu/
2COMPASS EU project with no. 287829: http://www.compass-research.eu/

6

http://quanticol.eu/
http://www.compass-research.eu/

Chapter 2

SDL Fredhopper Cloud Services

SDL Fredhopper develops the Fredhopper Cloud Services to offer search and targeting facilities on a large
product database to e-Commerce companies as services (SaaS) over the cloud computing infrastructure
(IaaS). Fredhopper Cloud Services provides several SaaS offerings on the cloud. These services are exposed
at endpoints. In practice these endpoints typically are implemented to accept connections over HTTP. For
example, one of the services offered by these endpoints is the Fredhopper Query API, which allows users to
query over their product catalog via full text search1 and faceted navigation2.

A customer of SDL Fredhopper using Query API owns a single HTTP endpoint to use for search and
other operations. However, internally, a number of resources (virtual machines) are used to deliver Query
API for the customer. The resources used for a customer are managed by a load balancer. In this model
of deployment, each resource is launched to serve one instance of Query API; i.e. resources are not shared
among customers.

When a customer signs a contract with SDL Fredhopper, there is a clause in the contract that describes
the minimal QoS levels of the Query API. For example, we have a notion of query per second (QPS) that
defines the number of completed queries per second for a customer. An agreement is a bound on the
expected QPS and forms the basis of many decisions (technical or legal) thereafter. The agreement is used
by the operations team to set up an environment for the customer which includes the necessary resources
described above. The agreement is additionally used by the support team to manage communications with
the customer during the lifetime of the service for the customer.

Maintaining the services for more than 250 customers on more than 1000 servers is not an easy operation
task. Thus, to ensure the agreements in a customer’s contract:

• The operation team maintains a monitoring platform to get notifications on the current metrics.

• The operation team performs manual intervention to ensure that sufficient resources are available for
a customer (launching or terminating).

• The monitoring platform depends on human reaction.

• The cost that is spent for a customer on the basis of safety can be optimized.

In this case study to use T2.3, we use the notion of QPS as an example in the concepts that are presented
in this research. We use the example here to demonstrate how the model that is proposed in this research
can address the issues above and alleviate the manual work with automation. The manual life cycle depends
on the domain-specific and contextual knowledge of the operations team for every customer service that is
maintained in the deployment environment. This is labor-intensive as the operations team stands by 24×7.
In such a manual approach, the business is forced to over-spend to ensure service level agreements for
customers. In this report, we deliver an automated method for distributed monitoring to alleviate business
pain-points and improve operations of the service in live environments.

1http://en.wikipedia.org/wiki/Full_text_search
2http://en.wikipedia.org/wiki/Faceted_navigation

7

http://en.wikipedia.org/wiki/Full_text_search
http://en.wikipedia.org/wiki/Faceted_navigation

Chapter 3

Generic Model for SLA Metrics

In this chapter, we provide the formal definitions of SLA metrics and an example of how FRH case study
uses the model to apply SLA verifications in the production environment. For the details of proofs and
formal verification of the model, refer to the paper 5.1 in Appendix Publications 5.

3.1 Deployment Architecture
Figure 3.1 provides a high-level deployment architecture.

Figure 3.1: High-level Deployment Architecture: The diagram presents a logical presentation of the deploy-
ment environment. In the bottom, the deployment environment uses an external IaaS provider to provision
physical resources. Every customer cm might be potentially allocated to multiple resources ri for their ser-
vices. The services are delivered to customers through a layer of load balancers. The monitoring platform
is an orthogonal layer in the environment that performs monitoring on the resources and services.

In the deployment environment (e.g., “the cloud”), every server (e.g. rn) from the IaaS provider is used
for a single service instance of a customer (e.g. cm) such as the Query Service API for a customer of SDL
Fredhopper. Typically, multiple servers are allocated to a single customer. The number of servers allocated
for a customer is not visible to the customer. The customer uses a single endpoint - in the load balancer
layer - to access all their services.

The ultimate goal is to maintain the environment in such a way that customers and their end users
experience the delivered services up to their expectations while minimizing the cost of the system. The first
objective can be addressed by adding resources; however, this conflicts with the second goal since it increases
the cost of the environment for the customer. In this section, we formalize the above intuitive notions as
service availability and service budget compliance.

We explain a distributed monitoring platform that aims to optimize these service characteristics in a
deployment environment. The monitoring platform works in two cyclic phases: observation and reaction.

8

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

The observation phase takes measurements on services in the deployment environment. Subsequently, the
corresponding levels of the service characteristics are calculated. In the reaction phase, if needed, a platform
API is utilized to make the necessary changes to the deployment environment (e.g. adjust the number of
allocated resources) to optimize the service characteristics.

The monitoring platform builds on top of a real-time extension of the actor-based language ABS. To
ensure non-intrusiveness of the monitor with the running service, each monitor is an active object (actor)
running on a separate resource from that which runs the service itself, and the components of the monitoring
platform communicate through asynchronous messages with deadlines [12]. In addition, we use timed and
task automata to prove certain properties of the monitoring model.

3.2 Definitions and Assumptions

In this section, we introduce the necessary notions, definitions and assumptions for the monitoring model.

Time T In our framework time T is a universally shared clock based on the NTP 1 that is used by all
elements of the system in the same way. T is discrete. We fix that the unit of time is milliseconds. This level
of granularity of time unit means that between two consecutive milliseconds, the system is not observable.
For example, we use the UTC time standard for all services, monitors and platform API. We refer to the
current time by tc.

Resource r We denote by r a resource which provides computational power and storage and by s a general
abstraction of a service in the deployment environment. A service exposes an API that is accessible through
a delivery layer, such as HTTP. In our example, a service is the Query API that is accessible through a
single HTTP endpoint.

Monitoring Platform P In our framework, monitoring platform P is responsible for (de-)allocation of
resources for computation or storage. We abstract from a specific implementation of the monitoring platform
P through an API in Listing 3.1.

Listing 3.1: Monitoring Platform API
interface Platform {

void allocate (Service s);
void deallocate (Service s);
Number getState (Service s);
boolean verifyα(Service s);
boolean verifyβ(Service s);

}

There is only one instance of P available. P internally uses an external infrastructure provisioning API
to provide resources (e.g. AWS EC2). The platform provides a method getState(Service s) which returns the
number of resources allocated to the given service s at time tc.

Basic measurement µ(s, r, t) is a function that produces a real number of a single monitoring check on
a resource r allocated to service s at some time t. For example, for SDL Fredhopper cloud services, a basic
measurement is the number of completed queries at the current time.

1https://tools.ietf.org/html/rfc1305

9

https://tools.ietf.org/html/rfc1305

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

Service Metric fs is a function that aggregates a sequence of basic non-negative measurements to a single
non-negative real value: fs : ⋃nRn → R. For example, for SDL Fredhopper cloud services, the service metric
function fs calculates the average number of queries per second (QPS) given a list of basic measurements.

Monitoring Window is a duration of time τ throughout which basic measurements for a service are
taken.

Monitoring Measurement is a function that aggregates the basic measurements for a service over its
resources in the last monitoring window. The last monitoring window is defined as [tc − τ, tc]. To produce
the monitoring measurement, fs is applied. Formally:

µ(s, r, τ) = fs
(〈µi(s, r, t)〉∞i=0

)
where t ∈ [tc − τ, tc]

in which µi(s, r, t) is the i-th basic measurement of services s on resource r at time t where t ∈ [tc − τ, tc].

Unlimited Capacity We assume that the external infrastructure provider is capable to provision an
unlimited number of resources. In reality, every service provider such as SDL Fredhopper has a separate
contract with an IaaS provider such as AWS. In these contracts, there cannot be a guarantee for unlimited
capacity. We simplify this limitation by assuming that the platform API (IaaS layer abstraction) is capable
to provision as many resources as requested.

Single Resource Type To simplify reasoning, we assume that all resources are of the same type; i.e. they
have the same computing power, memory, and IO capacity. For example, if we are using AWS, we could
choose the instance type m1.large for all the services. If a business delivers different types of services, it cannot
avoid the fact that different services may require different capabilities from their underlying resources; i.e.
one service might require high I/O throughput for its process whereas another might demand high parallelism
support from the hardware. Such capability profiles are provisioned through different types of resources from
a IaaS provider. For example, AWS offers2 families of EC2 instance types each of which expose different
sets of capabilities in terms of computation power, I/O, and network. We simplify our analysis by assuming
that there is a single resource type that is able to provide the necessary capabilities for all services.

Resource Initialization Time ti We assume that every resource r that is initialized is ready for use in
at most ti amount of time. The time ti is bounded by a finite constant value. Initialization time can vary
between different resource types. The initialization time is also part of the contract with the IaaS provider.
Based on the resource type, when a resource is launched and initialized, it might take a different amount
of time to be in a state that is operational and ready to be used. We simplify the property of initialization
time of a resource to be a fixed constant for the single resource type.

3.3 Service Availability α(s, τ, tc)
In this section, we first define a few auxiliary definitions and then we define the notion of “service availability”.

Service Capacity κσ(s, τ) = ∑
r∈σ(s) µ(s, r, τ) denotes the capability of service s that is the aggregated

monitoring measurements of its resources over the monitoring window τ and σ(s) is the number of allocated
resources to service s.

Agreement Expectation E(s, τ, tc) is the minimum number of requests that a customer expects to
complete in a monitoring window τ . The agreement expectation depends on the current time tc because the
expectation may change over time. For example, SDL Fredhopper customers expect a different QPS during
Christmas.

2http://aws.amazon.com/ec2/instance-types/

10

http://aws.amazon.com/ec2/instance-types/

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

We define the availability of a service α(s, τ, tc) in every monitoring window τ as:

α(s, τ, tc) = κσ(s, τ)
E(s, τ, tc)

Capacity Tolerance εα(s, τ)) ∈ [0, 1] defines how much κσ(s, τ) can deviate from E(s, τ, tc) in every time
span of duration τ .

Service Guarantee Time tG is the duration within which a customer expects service availability reaches
an acceptable value after a violation. Typically, tG is an input parameter from the customer’s contract.

Example Intuitively, α(s, τ, tc) presents the actual capability of a service s over a time period τ compared
to the expectation on the service E(s, τ). For values α(s, τ, tc) � 1 − εα(s, τ)), the resource for service s
are at “under-capacity” while for values α(s, τ, tc) � 1 + εα(s, τ)), there is “over-capacity”. The goal is to
optimize α(s, τ, tc) towards a value of 1.

For example, we expect a query service to be able to complete 10 queries per second. We define the
monitoring window τ = 5 minutes; thus, E(s, τ, tc) = 10 × 60 × 5 = 3000. Suppose we allocate only one
resource to the service, measure the service during a single monitoring window τ and find µ(s, r, τ) = 2900.
Then α(s, τ, tc) = 2900

3000 = 0.966. If we have εα(s, τ)) = 0.03, this means that service s is under-capacity
because α(s, τ, tc) < 1− εα.

3.4 Budget Compliance β(s, τ)

In this section, we first provide a few auxiliary definitions and then present a formal definition for “service
budget compliance”.

Resource Cost AC(r, τ) ∈ R is the cost of resource r in a monitoring window τ which is determined by a
fixed resource cost per time unit.

Service Cost ACσ(s, τ) ∈ R+ is the cost of a service s in a monitoring window τ and defined as ACσ(s, τ) =∑
r∈σ(s)AC(r, τ).

Service Budget B(s, τ) specifies an upper bound of the expected cost of a service in the time span τ .
Intuitively B(s, τ) is the allowed budget that can be spent for service s over the time span τ . The service
budget is typically chosen to be fixed over any time span τ .

We define service budget compliance β(s, τ) that, intuitively, represents how a service complies with
its allocated budget:

β(s, τ) = ACσ(s, τ)
B(s, τ)

Budget Tolerance εβ(s, τ) ∈ [0, 1] specifies how much the service cost AC(s, τ) can deviate from B(s, τ)
in every time span of duration τ .

Service Guarantee Time tG is similar to that defined for service availability.

11

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

Example Assume every resource on the environment costs 1 (e.g. AC) per hour. Suppose we set a budget
of 1.5 per hour for every service, allocate one resource to the service and define a monitoring window of τ = 5
minutes. Every hour has 12 monitoring windows. This means that each resource costs AC(r, τ) = 1

12 ≈ 0.08
per monitoring window. Since there is only one resource, the service cost is AC(s, τ) = ∑

r∈σ(s)AC(s, τ) ≈ 0.08
per monitoring window. On the other hand, if we calculate the budget for one monitoring window, we have
B(s, τ) = 1.5

12 = 0.125 per monitoring window. This yields budget compliance as β(s, τ) = 0.08
0.125 = 0.64.

3.5 Formal Model Characteristics
The formal definitions of service availability and budget compliance provide a rigorous basis for automatic
deployment of resource-aware services with an appropriate quality of service, taking costs into account.
This in particular includes automated scaling up or down of the service with the help of monitoring checks
that are installed for the service. The fundamental challenge in ensuring service availability and budget
compliance is that they have conflicting objectives.

Intuitively, if more resources are used to ensure the availability of a service; then α(s, τ, tc) increases.
However, at the same time, the service costs more; i.e. budget compliance β(s, τ) decreases.

In the paper Section 5 at Publications 5, we design a series of timed and task automata to optimize
service availability and budget compliance:

1. For each characteristic, there is a timed automata that observes the system and aggregates measure-
ments; i.e. Mαs and Mβs .

2. In addition, there is a task automata that reacts to the observations by verifying the expectations and
measurements; i.e. Mα

V and Mβ
V .

3. Mα
V uses MP (i.e. the monitoring platform) to add resources to a service s to optimize α(s, τ, tc). Mβ

V
uses MP to remove resources from a service s to optimize β(s, τ). We refer to this as MP .

4. We model the environment E by a separate ME which, for example, provides the semantics for non-
deterministic failures.

5. We model the system as the composition of the above automata as:

Sα = Mα ‖ME ‖MP and Sβ = Mβ ‖ME ‖MP

We formalize the behavior of Sα and Sβ in the following theorems. Intuitively speaking, we want to
ensure that if the SLA of a service is violated, MP is able to recover the SLA in at most tG. If MP fails,
there is a deadline missed in one period of tG. The second situation, provides a feedback loop to the system
to be able to improve the monitoring window τ such that after a few cycles MP is able to provide a better
guarantee for tG.

For Sα:

Theorem 1. If the SLA for service s on α(s, τ, tc) is violated, either:

• Sα re-establishes the condition α(s, τ, tc) ≥ 1 − εα(s, τ) (thereby satisfying the SLA) within tG time,
or,

• there exists at least one task verifyα in Mα
V with a missed deadline.

and for Sβ:

Theorem 2. If the SLA for service s on β(s, τ) is violated, either:

• Sβ re-establishes the condition β(s, τ) ≥ 1− εβ(s, τ) (thereby satisfying the SLA) within tG time, or,

12

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

• there exists at least one task verifyβ in Mβ
V with a missed deadline.

In practice, the guarantee of Sα and Sβ in isolation to eventually evolve the system to satisfy the SLA
is not enough. In reality, a service provider tries ensure both simultaneously to reduce their cost of service
delivery while ensuring the delivered service is of the expectations agreed upon with the customer. However,
these goals conflict. When α(s, τ, tc) increases because of adding a new resource, it means that service s
costs more, hence β(s, τ) decreases. The same applies in the other direction: increasing β(s, τ) negatively
affects α(s, τ, tc).

To capture the combined behavior of service availability and budget compliance, we compose them. We
define service sustainability γ(s, τ) as the composition of α(s, τ, tc) and β(s, τ). We present the composition
by system automata Sγ as:

Sγ = Sα ‖ Sβ
We model the behavior of Sγ in the following theorem:

Theorem 3. If Sγ is schedulable given input parameters (τ, ti, tG), then the SLA for both service charac-
teristics α(s, τ, tc) and β(s, τ) is satisfied within tG time after a violation.

For further details, refer to the publication of this report at Chapter 5. In this chapter, we provided the
fundamental definitions for how service-level agreements can be formalized using mathematical functions
and then how the notion of timed automata can be used to build timed monitors to observe the system and
apply improvements on it.

13

Chapter 4

Future Work and Roadmap

In the continuation of T2.3, in relation with all case study tasks in WP4 and D5.3 in WP5, we aim to deliver
an end-to-end monitoring framework passing through the following layers and structure in terms of work
flow and software development life cycle:

Business The negotiations of a service, system, product eventually leads to a set of service-level agreements
and contracts. The service-level agreements must be specified in simple text format or ABS models.

Analysis and Design Different activities contribute to the analysis and design of the service across layers
of development and operations. One of the outputs must be an extended service-level agreement
specification that provides additional and concrete information about the deployment of the service.
The specification is one of the inputs to the monitoring system.

Development The development of the service potentially uses the SLA specification as an input to be able
to take considerations internally during service runtime. Though, development is not likely to modify
SLA specification during development.

Quality Assurance The testing and quality assurance phase of the service utilizes the SLA specification
to ensure that the service runtime can adhere to customer expectations in a test environment. Testing
and quality assurance can potentially provide substantial feedback to improve the SLA specification
before releasing to the deployment environment.

Deployment The SLA specification is an input to the monitoring system. The monitoring framework
generates the necessary code for the ABS models that actually perform the monitoring on the service
based on the specifications that come from the previous layers.

In the following, we briefly discuss how each layer of the software development lifecycle contributes to
the same SLA specification and extends it for the next layer until it reaches deployment environment.

Business SLA An example SLA contract and specification at business level in the phases of contract
negotiations with the customer:

{
"customer": "c1",
"services": ["query", "recommendation"],
"properties": {

"catalog-items": "50M",
"environments": "live,test"

},
"sla": {

"availability": 1.0,

14

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

"availability-tolerance": 0.05,
"budget-compliance": 1.0,
"budget-compliance-tolerance": 0.20

}
}

Analysis and Design SLA The same SLA from the business level passes through the analysis and
design phase. This results to an extended and expanded specification for the SLA that contains the necessary
information about initial deployment of the service. An example SLA of such activity is presented as follows:

{
"customer": "c1",
"services": ["query", "recommendation"],
"resources": {

// Recommended instance types to choose
"profiles": {

"query": ["m3.large", "m3.xlarge", "m3.2xlarge"],
"recommendation": ["m3.medium"]

},
// Recommended ‘minimum’ instances for this customer
"instances": {

"query": 3,
"recommendation": 1

}
},
"sla": {

"availability": 1.0,
"availability-tolerance": 0.05,
"budget-compliance": 1.0,
"budget-compliance-tolerance": 0.10

}
}

15

Chapter 5

Summary

In D2.3.1, we provided an extensive formal model based on ABS modelling language and time/task automata
for a monitoring framework to ensure service level agreements. We explained the model and its semantics
and how it can be formally verified. We provided feedback and relation to other tasks and deliverables in
Envisage; namely, T2.2, T4.3, T3.4, and T3.1. The next phase of this task will complete the implementation
and actual deployment of an example monitoring framework for FRH.

16

Bibliography

[1] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science, 126(2):183–
235, 1994.

[2] Joakim Bjørk, Frank S de Boer, Einar Broch Johnsen, Rudolf Schlatte, and S Lizeth Tapia Tarifa. User-
defined schedulers for real-time concurrent objects. Innovations in Systems and Software Engineering,
9(1):29–43, 2013.

[3] Richard Bubel, Antonio Flores-Montoya, and Reiner Hähnle. Analysis of executable software models.
In SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures, pages 1–25, 2014.

[4] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic, and Akhil Sahai. SLA decomposition: Translating
service level objectives to system level thresholds. In Autonomic Computing, 2007. ICAC’07. Fourth
International Conference on, pages 3–3. IEEE, 2007.

[5] Andrew Coles, Amanda Jane Coles, Allan Clark, and Stephen Gilmore. Cost-sensitive concurrent
planning under duration uncertainty for service-level agreements. In ICAPS, 2011.

[6] Marco Comuzzi, Constantinos Kotsokalis, George Spanoudakis, and Ramin Yahyapour. Establishing
and monitoring SLAs in complex service based systems. In Web Services, 2009. ICWS 2009. IEEE
International Conference on, pages 783–790. IEEE, 2009.

[7] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedulability, decidability
and undecidability. Information and Computation, 205(8):1149–1172, 2007.

[8] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer, Mirco Tribastone, and Dániel Varró. Non-
functional properties in the model-driven development of service-oriented systems. Software & Systems
Modeling, 10(3):287–311, 2011.

[9] Giles Hogben and Alain Pannetrat. Mutant Apples: A Critical Examination of Cloud SLA Availability
Definitions. In Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 1, pages 379–386. IEEE, 2013.

[10] Inzinger, Christian and Hummer, Waldemar and Satzger, Benjamin and Leitner, Philipp and Dustdar,
Shahram. Generic event-based monitoring and adaptation methodology for heterogeneous distributed
systems. Software – Practice and Experience, 2014.

[11] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components and Objects, pages
142–164. Springer, 2012.

[12] Einar Broch Johnsen, Rudolf Schlatte, and S.L̃izeth Tapia Tarifa. Modeling resource-aware virtualized
applications for the cloud in Real-Time ABS. In Toshiaki Aoki and Kenji Tagushi, editors, Proc. 14th
International Conference on Formal Engineering Methods (ICFEM’12), volume 7635 of Lecture Notes
in Computer Science, pages 71–86. Springer-Verlag, November 2012.

17

Envisage Deliverable D2.3.1 Monitoring add-ons and visualization (Initial Report)

[13] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa. Modeling resource-aware vir-
tualized applications for the cloud in Real-Time ABS. In Formal Methods and Software Engineering,
pages 71–86. Springer, 2012.

[14] Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management, 11(1):57–81, 2003.

[15] Khaled Mahbub, George Spanoudakis, and Theocharis Tsigkritis. Translation of SLAs into monitoring
specifications. In Service Level Agreements for Cloud Computing, pages 79–101. Springer, 2011.

[16] Behrooz Nobakht, Stijn de Gouw, and Frank S. de Boer. Formal verification of service level agreements
through distributed monitoring. In Schahram Dustdar, Frank Leymann Schahram, and Massimo Villari,
editors, Service Oriented and Cloud Computing – 4th European Conference, ESOCC 2015, Taormina,
Italy, September 15-17, 2015, Lecture Notes in Computer Science, pages 125–140. Springer-Verlag,
2015.

[17] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient online monitoring of web-service
SLAs. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering, pages 170–180. ACM, 2008.

[18] Peter Y. H. Wong, Richard Bubel, Frank S. de Boer, Miguel Gómez-Zamalloa, Stijn de Gouw, Reiner
Hähnle, Karl Meinke, and Muddassar Azam Sindhu. Testing abstract behavioral specifications. STTT,
17(1):107–119, 2015.

[19] Jim Woodcock, Ana Cavalcanti, John Fitzgerald, Simon Foster, and Peter Gorm Larsen. Contracts
in CML. In Leveraging Applications of Formal Methods, Verification and Validation. Specialized Tech-
niques and Applications, pages 54–73. Springer, 2014.

18

Glossary

endpoint Used interchangeably with URL that refers to an HTTP address that a user can reach for a
certain operation. 6

resource Anything that can provide computation power or storage facility. 6

19

Publications

5.1 Formal verification of service level agreements through distributed
monitoring

20

Formal verification of service level agreements
through distributed monitoring?

Behrooz Nobakht1,2, Stijn de Gouw2,3, and Frank S. de Boer1,3

1 Leiden Advanced Institute of Computer Science
Leiden University

bnobakht@liacs.nl
2 SDL Fredhopper

{bnobakht,sgouw}@sdl.com
3 Centrum Wiskunde en Informatica

{frb,cdegouw}@cwi.nl

Abstract. In this paper, we introduce a formal model of the availabil-
ity, budget compliance and sustainability of distributed services, where
service sustainability is a new concept which arises as the composition
of service availability and budget compliance. The model formalizes a
distributed platform for monitoring the above service characteristics in
terms of a parallel composition of task automata, where dynamically gen-
erated tasks model asynchronous events with deadlines. The main result
of this paper is a formal model to optimize and reason about service
characteristics through monitoring. In particular, we use schedulability
analysis of the underlying timed automata to optimize and guarantee
service sustainability.

Keywords: runtime monitoring, service availability, budget compliance, service
sustainability, distributed architecture, cloud computing, service level agreement

1 Introduction

Cloud computing provides the elastic technologies for virtualization. Through
virtualization, software itself can be offered as a service (Software as a Service,
SaaS). One of the aims of SaaS is to allow service providers to offer reliable
software services while scaling up and down allocated resources based on their
availability, budget, service throughput and the Service Level Agreements (SLA).
Thus, it becomes essential that virtualization technologies facilitate elasticity in
a way that enables business owners to rapidly evolve their systems to meet their
customer requirements and expectations.

The fundamental technical challenge to a SaaS offering is maintaining the
quality of service (QoS) promised by its SLA. In SaaS, providers must ensure a
? This paper is funded by the EU project FP7-610582 ENVISAGE: Engineering Vir-
tualized Services, http://www.envisage-project.eu.

2 B. Nobakht, S. de Gouw, F. S. de Boer

consistent QoS in a dynamic virtualized environment with variable usage pat-
terns. Specifically, virtualized environments such as the cloud provide elasticity
in resource allocation, but they often do not offer an SLA that can guarantee
constant resource availability. As a result, SaaS providers are required to react
to resource availability at runtime. Furthermore, by offering a 24/7 software ser-
vice, SaaS providers must be able to react to certain service usage patterns, such
as an increase in throughput to ensure the SLA is maintained.

Runtime monitoring [20,4] is a dynamic analysis approach based on extract-
ing relevant information about the execution. Runtime monitoring may be em-
ployed to collect statistics about the service usage over time, and to detect and
react to service behavior. This latter ability is fundamental in the SaaS approach
to guarantee the SLA of a service and is the focus of this paper.

The monitoring model that is presented in this paper is designed to observe
in real-time certain service characteristics and react to them to ensure the evolu-
tion of the system towards its SLA. Asynchronous communication is an essential
feature of a monitoring model in a distributed context. Asynchronous communi-
cation accomplishes non-intrusive observations of the service runtime. Further,
the monitoring model is expected to operate according to certain real-time con-
straints specified by the SLA of the service. Satisfying the real-time constraints
is the main challenge in a distributed monitoring model.

In this paper, we formalize service availability and budget compliance in a
distributed deployment environment. This formalization is based on high-level
task automata models [1,9,13]. The automata capture the real-time evolution of
the resources provided by a distributed deployment platform and the above two
main service characteristics. These task automata represent the real-time gener-
ation of the asynchronous events extended with deadlines [3,22] by the monitor-
ing platform for managing resources (i.e. allocation or deallocation). The main
result of this paper is a formal model to optimize and reason about the above
service characteristics through monitoring. In particular, the schedulability of the
underlying timed automata implies service availability and budget compliance.
Furthermore, we introduce a composition of service availability and budget com-
pliance which captures service sustainability. We show that service sustainability
presents a multi-objective optimization problem.

2 Related Work

Vast research work present different aspects of runtime monitoring. We focus on
those that present a line of research for distributed deployment of services.

MONINA [12] is a DSL with a monitoring architecture which supports certain
mathematical optimization techniques. A prototype implementation is available.
Accurately capturing the behavior of an in-production legacy system coded in a
conventional language seems challenging: it requires developing MONINA com-
ponents, which generate events at a specified fixed rate, there are no control
structures (if-else, loops), the data types that can be used in events are pre-
defined, and there are no OO-features. We use ABS [15], an executable mod-

Formal verification of SLA via distributed monitoring 3

eling language that supports all of these features and offers a wide range of
tool-supported analyses [5,25]. The mapping from ABS to timed automata [1]
allows to exploit the state-of-the-art tools for timed automata, in particular for
reasoning about real-time properties (and, as we show, SLAs using schedulabil-
ity analysis [9]). MONINA offers two pre-defined parameters that can be used in
monitoring to adapt the system: cost and capacity. Our service metric function
generalizes this to arbitrary user-defined parameters, including cost and capacity.

Hogben and Pannetrat examine in [11] the challenges of defining and measur-
ing availability to support real-world service comparison and dispute resolution
through SLAs. They show how two examples of real-world SLAs would lead one
service provider to report 0% availability while another would report 100% for
the same system state history but using a different period of time. The trans-
parency that the authors attempt to reach is addressed in our work by the
concept of monitoring window and expectation tolerance in Section 4. Addition-
ally, the authors take a continuous time approach contrasted with ours that uses
discrete time advancements. Similarly, they model the property of availability
using a two-state model.

The following research works provide a language or a framework that al-
lows to formalize service level agreements (SLA). However, they do not study
how such SLAs can be used to monitor the service and evolve it as necessary.
WSLA [18] introduces a framework to define and break down customer agree-
ments into a technical description of SLAs and terms to be monitored. In [21],
a method is proposed to translate the specification of SLA into a technical do-
main directed in SLA@SOI EU project. In the same project, [8] defines terms
such as availability, accessibility and throughput as notions of SLA, however,
the formal semantics and properties of the notions are not investigated. In [6],
authors describe how they introduce a function how to decompose SLA terms
into measurable factors and how to profile them. Timed automata is used in [24]
to detect violations of SLA and formalize them.

Johnsen [16] introduce “deployment components” using Real-Time ABS [3].
A deployment component enables an application to acquire and release resources
on-demand based on a QoS specification of the application. A deployment com-
ponent is a high level abstraction of a resource that promotes an application to a
resource-aware level of programming. Our work is distinguished by the fact that
we separate the monitors from the application (service) themselves. We argue
that we aim to design the monitoring model to be as non-intrusive as possible
to the service runtime. Thus, we do not deploy the monitors inside the service
runtime.

In Quanticol EU project4, authors in [7] and [10] use statistical approaches to
observe and guarantee service level agreements for public transportation. We also
present that service characteristics can be composed together. This means that
evolving a system based on SLAs turns into a multi-object optimization problem.
In addition, in COMPASS EU project5, CML [26] defines a formal language to

4 Quanticol EU project with no. 600708: http://quanticol.eu/
5 COMPASS EU project with no. 287829: http://www.compass-research.eu/

4 B. Nobakht, S. de Gouw, F. S. de Boer

model systems of systems and the contracts between them. CML studies certain
properties of the model and their applications. CML is used in the context of a
Robotics technology to model and ensure how emergency sensors should react
and behave according to the SLAs defined for them. Our approach is similar to
provide a generic model for service characteristics definition, however, we utilize
timed and task automata.

3 SDL Fredhopper Cloud Services

In this section, we introduce a running example in the context of SDL Fred-
hopper. We use the example in different parts of the paper and also in the
experiments.

SDL Fredhopper develops the Fredhopper Cloud Services to offer search and
targeting facilities on a large product database to e-Commerce companies as ser-
vices (SaaS) over the cloud computing infrastructure (IaaS). Fredhopper Cloud
Services provides several SaaS offerings on the cloud. These services are exposed
at endpoints. In practice these endpoints typically are implemented to accept
connections over HTTP. For example, one of the services offered by these end-
points is the Fredhopper Query API, which allows users to query over their
product catalog via full text search6 and faceted navigation7.

A customer of SDL Fredhopper using Query API owns a single HTTP end-
point to use for search and other operations. However, internally, a number of
resources (virtual machines) are used to deliver Query API for the customer. The
resources used for a customer are managed by a load balancer. In this model of
deployment, each resource is launched to serve one instance of Query API; i.e.
resources are not shared among customers.

When a customer signs a contract with SDL Fredhopper, there is a clause
in the contract that describes the minimal QoS levels of the Query API. For
example, we have a notion of query per second (QPS) that defines the number
of completed queries per second for a customer. An agreement is a bound on the
expected QPS and forms the basis of many decisions (technical or legal) there-
after. The agreement is used by the operations team to set up an environment
for the customer which includes the necessary resources described above. The
agreement is additionally used by the support team to manage communications
with the customer during the lifetime of the service for the customer.

Maintaining the services for more than 250 customers on more than 1000
servers is not an easy operation task 8. Thus, to ensure the agreements in a
customer’s contract:

– The operation team maintains a monitoring platform to get notifications on
the current metrics.

6 http://en.wikipedia.org/wiki/Full_text_search
7 http://en.wikipedia.org/wiki/Faceted_navigation
8 Figures are indication of complexity and scale. Detailed confidential information may
be shared upon official request.

Formal verification of SLA via distributed monitoring 5

– The operation team performs manual intervention to ensure that sufficient
resources are available for a customer (launching or terminating).

– The monitoring platform depends on human reaction.
– The cost that is spent for a customer on the basis of safety can be optimized.

In this paper, we use the notion of QPS as an example in the concepts
that are presented in this research. We use the example here to demonstrate
how the model that is proposed in this research can address the issues above
and alleviate the manual work with automation. The manual life cycle depends
on the domain-specific and contextual knowledge of the operations team for
every customer service that is maintained in the deployment environment. This
is labor-intensive as the operations team stands by 24 × 7. In such a manual
approach, the business is forced to over-spend to ensure service level agreements
for customers.

4 Distributed Monitoring Model

We introduce a distributed monitoring platform and its components and discuss
some underlying assumptions and definitions. Further, we define the notion of
service availability and service budget compliance. In the deployment environ-
ment (e.g., “the cloud”), every server from the IaaS provider is used for a single
service of a customer, such as the Query Service API for a customer of SDL
Fredhopper (c.f. Section 3). Typically, multiple servers are allocated to a single
customer. The number of servers allocated for a customer is not visible to the
customer. The customer uses a single endpoint - in the load balancer layer - to
access all their services.

The ultimate goal is to maintain the environment in such a way that cus-
tomers and their end users experience the delivered services up to their ex-
pectations while minimizing the cost of the system. The first objective can be
addressed by adding resources; however, this conflicts with the second goal since
it increases the cost of the environment for the customer. In this section, we
formalize the above intuitive notions as service availability and service budget
compliance.

We then develop a distributed monitoring platform that aims to optimize
these service characteristics in a deployment environment. The monitoring plat-
form works in two cyclic phases: observation and reaction. The observation phase
takes measurements on services in the deployment environment. Subsequently,
the corresponding levels of the service characteristics are calculated. In the reac-
tion phase, if needed, a platform API is utilized to make the necessary changes
to the deployment environment (e.g. adjust the number of allocated resources)
to optimize the service characteristics. The monitoring platform builds on top
of a real-time extension of the actor-based language ABS [15]. To ensure non-
intrusiveness of the monitor with the running service, each monitor is an active
object (actor) running on a separate resource from that which runs the service
itself, and the components of the monitoring platform communicate through
asynchronous messages with deadlines [16].

6 B. Nobakht, S. de Gouw, F. S. de Boer

Below, we discuss assumptions and basic oncepts that will be used in the
analysis of the formal properties of the monitoring platform and corresponding
theorems. We assume that the external infrastructure provider has an unlimited
number of resources. Further, we assume that all resources are of the same type;
i.e. they have the same computing power, memory, and IO capacity. Finally, we
assume that every resource is initialized within at most ti amount of time.

In our framework time T is a universally shared clock based on the NTP 9

that is used by all elements of the system in the same way. T is discrete. We fix
that the unit of time is milliseconds. This level of granularity of time unit means
that between two consecutive milliseconds, the system is not observable. For
example, we use the UTC time standard for all services, monitors and platform
API. We refer to the current time by tc.

We denote by r a resource which provides computational power and storage
and by s a general abstraction of a service in the deployment environment. A
service exposes an API that is accessible through a delivery layer, such as HTTP.
In our example, a service is the Query API (c.f. Section 3) that is accessible
through a single HTTP endpoint.

In our framework, monitoring platform P is responsible for (de-)allocation of
resources for computation or storage. We abstract from a specific implementation
of the monitoring platform P through an API in Listing 1.

Listing 1: Platform API
1 interface Platform {
2 void allocate(Service s);
3 void deallocate(Service s);
4 Number getState(Service s);
5 boolean verifyα(Service s);
6 boolean verifyβ(Service s);
7 }

There is only one instance of P avail-
able. In this paper, P internally uses
an external infrastructure provision-
ing API to provide resources (e.g.
AWS EC2). The term “platform” is
interchangeably used for monitoring
in this paper. The platform provides a
method getState(Service s) which re-
turns the number of resources allocated to the given service s at time tc.

We use monitoring to observe the external behavior of a service. We formalize
the external behavior of a service with its service-level agreement (SLA). An
SLA is a contract between the customer (service consumer) and the service
provider which defines (among other things) the minimal quality of the offered
service, and the compensation if this minimal level is not reached. To formally
analyze an SLA, we introduce the notion of a service metric function. We make
basic measurements of the service externally in a given monitoring window (a
duration). The service metric function aggregates the basic measurements into a
single number that indicates the quality of a certain service characteristic (higher
numbers are better).

Basic measurement µ(s, r, t) is a function that produces a real number of a
single monitoring check on a resource r allocated to service s at some time t. For
example, for SDL Fredhopper cloud services, a basic measurement is the number
of completed queries at the current time.

9 https://tools.ietf.org/html/rfc1305

Formal verification of SLA via distributed monitoring 7

Service Metric fs is a function that aggregates a sequence of basic non-
negative measurements to a single non-negative real value: fs :

⋃
nRn → R.

For example, for SDL Fredhopper cloud services, the service metric function fs
calculates the average number of queries per second (QPS) given a list of basic
measurements.

Monitoring Window is a duration of time τ throughout which basic measure-
ments for a service are taken.

Monitoring Measurement is a function that aggregates the basic measure-
ments for a service over its resources in the last monitoring window. The last
monitoring window is defined as [tc− τ, tc]. To produce the monitoring measure-
ment, fs is applied. Formally:

µ(s, r, τ) = fs
(
〈µi(s, r, t)〉∞i=0

)
where t ∈ [tc − τ, tc]

in which µi(s, r, t) is the i-th basic measurement of services s on resource r at
time t where t ∈ [tc − τ, tc].
Definition 1 (Service Availability α(s, τ, tc)). First, we need a few auxiliary
definitions before we can define service availability.

Service Capacity κσ(s, τ) =
∑
r∈σ(s) µ(s, r, τ) denotes the capability of ser-

vice s that is the aggregated monitoring measurements of its resources over the
monitoring window τ and σ(s) is the number of allocated resources to service s.

Agreement Expectation E(s, τ, tc) is the minimum number of requests that a
customer expects to complete in a monitoring window τ . The agreement expec-
tation depends on the current time tc because the expectation may change over
time. For example, SDL Fredhopper customers expect a different QPS during
Christmas.

We define the availability of a service α(s, τ, tc) in every monitoring window
τ as:

α(s, τ, tc) = κσ(s, τ)
E(s, τ, tc)

Capacity Tolerance εα(s, τ)) ∈ [0, 1] defines how much κσ(s, τ) can deviate
from E(s, τ, tc) in every time span of duration τ .

Service Guarantee Time tG is the duration within which a customer expects
service availability reaches an acceptable value after a violation. Typically, tG is
an input parameter from the customer’s contract.

Example 1. Intuitively, α(s, τ, tc) presents the actual capability of a service
s over a time period τ compared to the expectation on the service E(s, τ). For
values α(s, τ, tc)� 1−εα(s, τ)), the resource for service s are at “under-capacity”
while for values α(s, τ, tc) � 1 + εα(s, τ)), there is “over-capacity”. The goal is
optimize α(s, τ, tc) towards a value of 1.

For example, we expect a query service to be able to complete 10 queries
per second. We define the monitoring window τ = 5 minutes; thus, E(s, τ, tc) =
10×60×5 = 3000. Suppose we allocate only one resource to the service, measure
the service during a single monitoring window τ and find µ(s, r, τ) = 2900. Then
α(s, τ, tc) = 2900

3000 = 0.966. If we have εα(s, τ)) = 0.03, this means that service s
is under-capacity because α(s, τ, tc) < 1− εα.

8 B. Nobakht, S. de Gouw, F. S. de Boer

Definition 2 (Budget Compliance β(s, τ)). We first provide a few auxiliary
definitions.

Resource Cost AC(r, τ) ∈ R+ is the cost of resource r in a monitoring window
τ which is determined by a fixed resource cost per time unit.

Service Cost ACσ(s, τ) ∈ R+ is the cost of a service s in a monitoring window
τ and defined as ACσ(s, τ) =

∑
r∈σ(s)AC(r, τ).

Service Budget B(s, τ) specifies an upper bound of the expected cost of a
service in the time span τ . Intuitively B(s, τ) is the allowed budget that can be
spent for service s over the time span τ . The service budget is typically chosen
to be fixed over any time span τ .

We are now ready to define service budget compliance β(s, τ) that, intuitively,
represents how a service complies with its allocated budget:

β(s, τ) = ACσ(s, τ)
B(s, τ)

Budget Tolerance εβ(s, τ) ∈ [0, 1] specifies how much the service cost AC(s, τ)
can deviate from B(s, τ) in every time span of duration τ .

Service Guarantee Time tG is similar to that defined for service availability.

Example 2. Assume every resource on the environment costs 1 (e.g. AC) per
hour. Suppose we set a budget of 1.5 per hour for every service, allocate one
resource to the service and define a monitoring window of τ = 5 minutes. Every
hour has 12 monitoring windows. This means that each resource costs AC(r, τ) =
1

12 ≈ 0.08 per monitoring window. Since there is only one resource, the service
cost is AC(s, τ) =

∑
r∈σ(s)AC(s, τ) ≈ 0.08 per monitoring window. On the other

hand, if we calculate the budget for one monitoring window, we have B(s, τ) =
1.5
12 = 0.125 per monitoring window. This yields budget compliance as β(s, τ) =
0.08

0.125 = 0.64.

The formal definitions of service availability and budget compliance provide
a rigorous basis for automatic deployment of resource-aware services with an ap-
propriate quality of service, taking costs into account. This in particular includes
automated scaling up or down of the service with the help of monitoring checks
that are installed for the service. The fundamental challenge in ensuring service
availability and budget compliance is that they have conflicting objectives:

α(s, τ, tc) ↑ ⇐⇒ β(s, τ) ↓

Intuitively, if more resources are used to ensure the availability of a service;
then α(s, τ, tc) increases. However, at the same time, the service costs more; i.e.
budget compliance β(s, τ) decreases.

5 Service Characteristics Verification

In this section, we use timed automata and task automata to model the behavior
of a monitoring platform P , the deployment environment E, and the monitoring

Formal verification of SLA via distributed monitoring 9

components for service availability α(s, τ, tc) and budget compliance β(s, τ). [13]
defines a task automata as an extension of timed automata in which each task
is a piece of executable program with (b, w, d): best/worst time and deadline of
the task. A task automata uses a scheduler for the tasks to schedule each task
with a location on a queue.

Modeling the elements of the monitoring platform is necessary to be able to
study certain properties of the system. The most important goal of a monitoring
platform is to enable the autonomous operation of a set of services according
to their SLA. Thus, it is essential how to analyze that the monitoring platform
can provide certain guarantees about the service and its SLA. In addition, it
is important be able to verify the monitoring platform through model check-
ing and schedulability analysis. Using timed automata and task automata fa-
cilitates model checking and verification through formal method tools such as
UPPAAL [2] supporting advanced methods such as state-space reduction [19].

We use task automata as defined in [9,14,13]. Task automata are an extension
of timed automata [1]. In addition, we design the automata for the monitoring
platform using the real-time extension of task automata presented in [13] p. 92 in
which the author presents a mapping from Real-Time ABS [16] to the equivalent
task automata.

A task type is a piece of executable program/code represented by a tuple
(b, w, d), where b and w respectively are the best-case and worst-case execution
times and d is the deadline. In a task automata, there are two types of transitions:
delay and discrete. A delay transition models the execution of a running task
by idling for other tasks. A discrete transition corresponds to the arrival of a
new task. When a new task is triggered, it is placed into a certain position in
the queue based on a scheduling policy [23,22]. Examples of a scheduling policy
are FIFO or EDF (earliest deadline first). The scheduling policy is modeled as
a timed automaton Sch. Every task has its own stop watch. The scheduler also
maintains a separate stop watch for each task to determine if a task misses its
deadline. All stop watches work at the same clock speed specified by T .

We design separate automata for each service s characteristic: service avail-
ability α(s, τ, tc) by an automataMαs and service budget compliance β(s, τ), by
an automata Mβs . Each automaton is responsible for one goal: to optimize the
service characteristic. Mαs aims to improve α(s, τ, tc) whereas Mβs aims to im-
prove β(s, τ).Mαs uses allocate to launch a new resource in the environment and
improve the service s. In contrast, Mβs uses deallocate to terminate a resource
to decrease the cost of the service.

We use task automata to design Mαs . Periodically, Mαs checks whether the
service availability is within the thresholds, taking tolerance into account (Def-
inition 1). If the condition fails, Mαs generates a task for monitoring platform
P to allocate a new resource to service s with a deadline of τ . We define the
period to be τ . We use the semantics of a task automata in [13] p. 92 in the
transitions of the task automata. Figure Fig. 1a and Fig. 1b present Mαs and Mβs .
BothMαs andMβs share state with the monitoring platform P . The state keeps
the current number of resources for a service s that is denoted by σ(s). All timed

10 B. Nobakht, S. de Gouw, F. S. de Boer

automata and task automata in the monitoring platform have shared access to
σ(s). In the automata, we use a conditional statement to check the service char-
acteristics α(s, τ, tc) or β(s, τ). If the condition fails, Mαs requests P to allocate

a new resource to s and Mβs requests P to deallocate a resource. In addition,
Mαs triggers a new task verifyα with deadline tG. Intuitively, this means the
service characteristic α(s, τ, tc) is verified to be within the expected thresholds
after at most tG time.

start
duration(τ, τ)

if
(
(1− εα(s, τ, tc)) > α(s, τ, tc)

)

{ P ! allocate(s, τ) ; P ! verifyα(s, tG) }

Fig. 1a: Mαs task automata for α(s, τ, tc)

start
duration(τ, τ)

if
(
(1− εβ(s, τ)) > β(s, τ)

)

{ P ! deallocate(s, τ) ; P ! verifyβ(s, tG) }

Fig. 1b: Mβs task automata for β(s, τ)

We use a separate task automaton for each service characteristic to verify
the SLA of the service after tG time. Respectively, Mα

V and Mβ
V execute tasks

verifyα and verifyβ (Figures Fig. 2a and Fig. 2b). Mα
V uses await to ensure the

condition of the SLA. In addition, the task is controlled by the scheduler using a
deadline that is specified as tG in the generated task verifyα(s, tG) in Mαs . If tG
passes before the guard statement in await statement holds, it leads to a missed
deadline.

start
await α(s, τ, tc) ≥ 1− εα(s, τ, tc)

Fig. 2a: Mα
V to execute verifyα

start
await β(s, τ) ≥ 1− εβ(s, τ)

Fig. 2b: Mβ

V
to execute verifyβ

Both Mαs and Mβs are specific to one particular service s. A generalized
automaton for all services is obtained as their parallel composition:Mα = (‖s
Mαs) and Mβ = (‖s Mβs). The tasks generated by Mα and Mβ (triggered
by the calls to allocate and deallocate) are executed by the task automata for
platform MP .

We model monitoring platform P by a task automataMP . The task types are
{A(allocate), D(deallocate)}. For task type A in MP , we use (b, w, d) = (ti, τ, τ);
i.e. the best-case execution time of a task is the resource initialization time, the
worst-case is the length of the monitoring window, and the deadline is the length
of the monitoring window. For task type D inMP , we use (b, w, d) = (0, τ, τ). We
do not fix the scheduling policy Sch. The error state qerr in MP is defined when
either a deadline is missed or when the platform fails to provision a resource.
Thus the monitoring platform P contains the following ingredients:

MP = 〈MA ‖MD ‖Mα
V ‖Mβ

V ,Sch, τ〉
We define MAs as the timed automata to execute the tasks of type allocate in
MP . We use the model semantics presented in [13] p. 92 to design MAs . The
resulting automata is presented in Figure 3.

start
duration(ti, τ) σ(s)← σ(s) + 1

Fig. 3: MAs : Timed Automaton to execute task type allocate in MP

Then, we defineMA inMP as:MA = ‖s MAs ; i.e. the composition of all timed
automata to execute a task allocate for some service s. Similarly, we design MDs

Formal verification of SLA via distributed monitoring 11

to execute task type deallocate in Figure 4. Therefore, we also have MD in MP

as: MD = ‖s MDs .

start
duration(ti, τ) σ(s)← σ(s)− 1

Fig. 4: MDs : Timed Automaton to execute task type deallocate in MP

For a particular service s, its automaton Mαs regularly measures the service
characteristics and calculates α(s, τ, tc). When s is under-capacity,Mαs requests
to allocate a new resource for s through monitoring platform P . This generates a
new task in MP that is executed by MAs . When the task completes, the state of
the service σ(s) is updated; strictly increased. Thus, in isolation, the combination
of Mαs and MAs increase the value of service availability α(s, τ, tc) for service s
over time. Similarly, in isolation, the combination of Mβs and MDs increase the
value of service budget compliance β(s, τ) for service s over time. Because in the
latter, deallocate is used to decrease the cost of the service and as such increases
β(s, τ).

In reality, resources might fail in the environment. The failure of a resource
is not and cannot be controlled by the monitoring platform P . However, the
failure of a resource affects the state of a service and its characteristics. Thus,
we model the environment, including failures, as an additional timed automata,
ME . In ME , in every monitoring window, there is a probability that some re-
sources fail. For example, we present a particular instance of ME in Figure 5.
In this environment, in every monitoring, an unspecified constant (c) number of
resources fail.

start
duration(0, τ) σ(s)← σ(s)− c

Fig. 5: An example behavior for ME

We define system automata [13] (p. 33, Definition 3.2.7) for each service
characteristic; Sα for α(s, τ, tc) and Sβ for β(s, τ):

Sα = Mα ‖ME ‖MP and Sβ = Mβ ‖ME ‖MP

With the above automata that we designed for α(s, τ, tc) and β(s, τ), we are
now ready to present the main results.
Theorem 1. If the SLA for service s on α(s, τ, tc) is violated, either:
– Sα re-establishes the condition α(s, τ, tc) ≥ 1 − εα(s, τ) (thereby satisfying

the SLA) within tG time, or,
– there exists at least one task verifyα in Mα

V with a missed deadline.
Proof. At any given time in T :
– If α(s, τ, tc) ≥ 1−εα(s, τ), then the SLA for service availability α is satisfied.
– If the above condition does not hold, on every monitoring window τ , Mα

generates a new task allocate in MA. In addition, a new task verifyα is
generated with a deadline tG. After a duration of tG, the await statement
allows Mα

V to complete the task verifyα only if the condition α(s, τ, tc) ≥
1− εα(s, τ) holds. If this is not the case, since tG has passed, the scheduler
generates a missed deadline (moving to its error state).

12 B. Nobakht, S. de Gouw, F. S. de Boer

Theorem 2. If the SLA for service s on β(s, τ) is violated, either:

– Sβ re-establishes the condition β(s, τ) ≥ 1− εβ(s, τ) (thereby satisfying the
SLA) within tG time, or,

– there exists at least one task verifyβ in Mβ
V with a missed deadline.

Proof. Similar to the proof of Theorem 1.

In practice, the guarantee of Sα and Sβ in isolation to eventually evolve the
system to satisfy the SLA is not enough. In reality, a service provider tries ensure
both simultaneously to reduce their cost of service delivery while ensuring the
delivered service is of the expectations agreed upon with the customer. However,
these goals conflict. When α(s, τ, tc) increases because of adding a new resource,
it means that service s costs more, hence β(s, τ) decreases. The same applies in
the other direction: increasing β(s, τ) negatively affects α(s, τ, tc).

To capture the combined behavior of service availability and budget compli-
ance, we compose them. We define service sustainability γ(s, τ) as the composi-
tion of α(s, τ, tc) and β(s, τ). We present the composition by system automata
Sγ as:

Sγ = Sα ‖ Sβ

Authors in [9] define that a task automata is schedulable if there exists no task
on the queue that misses its deadline. The next theorem presents the relationship
between schedulability analysis of service sustainability and satisfying its SLA.

Theorem 3. If Sγ is schedulable given input parameters (τ, ti, tG), then the
SLA for both service characteristics α(s, τ, tc) and β(s, τ) is satisfied within tG
time after a violation.

Proof. When a violation of the SLA occurs in Sγ , either Sα or Sβ (or both) start
to evolve the service based on Theorems 1 and 2. Therefore, there exists at least
one task of verifyα or verifyβ with a deadline tG. Hence, if Sγ is schedulable,
then neither verifyα nor verifyβ miss their deadline. Thus, both Sα and Sβ are
schedulable. This means that both verifyα and verifyβ complete successfully.
Therefore, the SLA of the service is guaranteed within tG after a violation in
Sγ .

Using the algorithm presented in Chapter 6 [13], we translate the above
task automata into traditional timed automata. This allows to leverage well-
established model checking techniques such as UPPAAL [2] to determine the
schedulability of Sγ . Moreover, the results of the schedulability analysis serves
as a method to optimize the input parameters of the monitoring model including
τ and tG.

Formal verification of SLA via distributed monitoring 13

6 Evaluation of the monitoring model

In this section, we evaluate the implementation of the monitoring model.
We set up an environment to evaluate how the monitoring evolves a service

according to its SLA. In the environment, a single instance of monitoring plat-
form is present to provide new resources as necessary. Every resource hosts only
one service. We define two customers in the environment. For both customers, we
deploy the same service, Fredhopper Query API. For every resource that hosts a
service, we set up a monitor that measures QPS and reports it to the platform.
Both customers run with the same SLA: the QPS expectation is E(s, τ, tc) = 10
and εα(s, τ, tc) = 0.1. We launch every customer service with only one resource.
Monitors observe the customer service and calculate the service availability of
every customer service α(s, τ, tc).

We run the environment setup for different monitoring windows τ ∈ {1, 5, 10}
(seconds). We fix the initialization time of a resource to ti = 2.5 seconds. We set
tG = 300 seconds; i.e. we verify the service after this time and evaluate if the
service is guaranteed based on its SLA.

Figure 6 plots the service availability α(s, τ, tc) over time with the different
monitoring windows. The following summarizes the behavior:

– As the monitoring window τ increases, the system converges with a slower
pace towards the expected α(s, τ, tc).

– When the monitoring window is chosen such that τ < ti, the evolution of
the system becomes non-deterministic.

– The setting τ < ti causes a missed deadline in verifyα because after a dura-
tion of tG the service availability has not yet reached the expected value.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

α

Time (seconds after system start)

τ=1s - α(c1)

τ=1s - α(c2)

τ=5s - α(c1)

τ=5s - α(c2)

τ=10s - α(c1)

τ=10s - α(c2)

Fig. 6: Evolving α(s, τ, tc) with different τ

Every monitoring mea-
surement is performed in a
monitoring window τ . Moni-
toring measurements are ag-
gregated and calculated in ev-
ery window and form the ba-
sis of reactions necessary to
evolve the service to meet
their SLA. Thus, selection
of an appropriate monitoring
window length τ is crucial, as
we also discussed how schedu-
lability analysis can be used
to optimize it. The authors in
[11] present that for the same setup and deployment of services, measurements
using different monitoring windows yield to very different understanding of ser-
vice properties such as service availability. Therefore, it is essential to choose
the value of τ such that monitoring measurements do not lead to unrealistic
understanding and inappropriate reactions.

14 B. Nobakht, S. de Gouw, F. S. de Boer

If τ < ti, Theorem 1 does not hold because every task allocate in MA misses
its deadline. Thus, it is essential that τ ≥ ti. Analogously, choosing monitoring
window as τ � 2× ti also has a counter-productive effect on the service deploy-
ments. In a real setting, different services may use different types of resources.
In such a setting, the monitoring window should be chosen as the largest ti of
any resource type that is available in the platform: τ ≥ max(ti) ∀r ∈ P .

7 Future work

We continue to generalize the notion of the distributed service characteristics and
investigate how the composition of an arbitrary number of such properties can
be formalized and reasoned about. In the context of the ENVISAGE project, in-
dustry partners define their service characteristics in this framework and monitor
the service evolution. Moreover, the work will be extended to generate parts of
the monitoring platform based on an input of different SLA formalizations such
as SLA? [17]. Currently, we are integrating our automated monitoring infras-
tructure into the in-production SDL Fredhopper cloud services (cf. Section 3).

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

2. G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In Formal
methods for the design of real-time systems, pages 200–236. Springer, 2004.

3. J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering, 9(1):29–43, 2013.

4. K. Bratanis, D. Dranidis, and A. J. H. Simons. Towards Run-Time Monitoring
of Web Services Conformance to Business-Level Agreements. volume 6303, pages
203–206. Springer, 2010.

5. R. Bubel, A. Flores-Montoya, and R. Hähnle. Analysis of executable software
models. In SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures,
pages 1–25, 2014.

6. Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai. SLA decomposition: Translat-
ing service level objectives to system level thresholds. In Autonomic Computing,
2007. ICAC’07. Fourth International Conference on, pages 3–3. IEEE, 2007.

7. A. Coles, A. J. Coles, A. Clark, and S. Gilmore. Cost-sensitive concurrent planning
under duration uncertainty for service-level agreements. In ICAPS, 2011.

8. M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establishing and
monitoring SLAs in complex service based systems. In Web Services, 2009. ICWS
2009. IEEE International Conference on, pages 783–790. IEEE, 2009.

9. E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Information and Computation, 205(8):1149–1172,
2007.

10. S. Gilmore, L. Gönczy, N. Koch, P. Mayer, M. Tribastone, and D. Varró. Non-
functional properties in the model-driven development of service-oriented systems.
Software & Systems Modeling, 10(3):287–311, 2011.

Formal verification of SLA via distributed monitoring 15

11. G. Hogben and A. Pannetrat. Mutant Apples: A Critical Examination of Cloud
SLA Availability Definitions. In Cloud Computing Technology and Science (Cloud-
Com), 2013 IEEE 5th International Conference on, volume 1, pages 379–386.
IEEE, 2013.

12. Inzinger, Christian and Hummer, Waldemar and Satzger, Benjamin and Leitner,
Philipp and Dustdar, Shahram. Generic event-based monitoring and adaptation
methodology for heterogeneous distributed systems. Software – Practice and Ex-
perience, 2014.

13. M. M. Jaghoori. Time at your service: schedulability analysis of real-time and
distributed services. PhD thesis, Leiden University, 2010.

14. M. M. Jaghoori. Composing real-time concurrent objects refinement, compatibil-
ity and schedulability. In Fundamentals of Software Engineering, pages 96–111.
Springer Berlin Heidelberg, 2012.

15. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, pages 142–164. Springer, 2012.

16. E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. Modeling resource-aware virtualized
applications for the cloud in Real-Time ABS. In Formal Methods and Software
Engineering, pages 71–86. Springer, 2012.

17. K. T. Kearney, F. Torelli, and C. Kotsokalis. SLA?: An abstract syntax for Service
Level Agreements. In Grid Computing (GRID), 2010 11th IEEE/ACM Interna-
tional Conference on, pages 217–224. IEEE, 2010.

18. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management,
11(1):57–81, 2003.

19. K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: compact data structure and state-space reduction. In Real-Time
Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 14–24. IEEE, 1997.

20. X. Logean, F. Dietrich, H. Karamyan, and S. Koppenhöfer. Run-time monitoring
of distributed applications. In Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Middleware ’98,
pages 459–474, 1998.

21. K. Mahbub, G. Spanoudakis, and T. Tsigkritis. Translation of SLAs into mon-
itoring specifications. In Service Level Agreements for Cloud Computing, pages
79–101. Springer, 2011.

22. B. Nobakht, F. S. de Boer, and M. M. Jaghoori. The future of a missed deadline.
In Coordination Models and Languages, pages 181–195. Springer, 2013.

23. B. Nobakht, F. S. de Boer, M. M. Jaghoori, and R. Schlatte. Programming and
deployment of active objects with application-level scheduling. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1883–
1888. ACM, 2012.

24. F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-
service SLAs. In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, pages 170–180. ACM, 2008.

25. P. Y. H. Wong, R. Bubel, F. S. de Boer, M. Gómez-Zamalloa, S. de Gouw,
R. Hähnle, K. Meinke, and M. A. Sindhu. Testing abstract behavioral specifi-
cations. STTT, 17(1):107–119, 2015.

26. J. Woodcock, A. Cavalcanti, J. Fitzgerald, S. Foster, and P. G. Larsen. Contracts in
CML. In Leveraging Applications of Formal Methods, Verification and Validation.
Specialized Techniques and Applications, pages 54–73. Springer, 2014.

	1 Introduction
	1.1 Overview
	1.2 Experience and Feedback
	1.3 Publications
	1.4 Related Work

	2 SDL Fredhopper Cloud Services
	3 Generic Model for SLA Metrics
	3.1 Deployment Architecture
	3.2 Definitions and Assumptions
	3.3 Service Availability (s,,tc)
	3.4 Budget Compliance (s,)
	3.5 Formal Model Characteristics

	4 Future Work and Roadmap
	5 Summary
	Bibliography
	Glossary
	Publications
	5.1 Formal verification of service level agreements through distributed monitoring

