
���

Deliverable D4.4.2 
Resource Aware Modelling the ENG Case Study

Date of document: T22

���

Final version

Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Start date of the project: 1st October 2013

Duration: 36 months

Organisation name of lead contractor for this deliverable: ENG

STREP Project supported by the 7th Framework Programme of the EC

Dissemination Level

PU Public ✓

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

 !i

Executive Summary:
Resource Aware Modelling the ENG Case Study

This document summarises deliverable D4.4.2 of project FP7-610582 (Envisage), a Collaborative
Project supported by the 7th Framework Programme of the EC within the Information &
Communication Technologies scheme. Full information on this project is available online at http://
www.envisage-project.eu.

This deliverable reports on the detailed modelling of the different deployment scenarios of the ENG
case study in the abstract behavioural specification language.

List of Authors
Keven T. Kearney (ENG)

 !ii

Contents

1. Introduction 1
2. Utility Function 2
3. Distributed Genetic Algorithm 5
4. ABS Model 7

4.1. Datatype Model 7
4.2. Class Model 8
4.3. Experience With ABS 12

5. Summary 13
A. Formal Definitions 14

A.1. Virtual Machines 14
A.1.1. VM Life-Cycle 14
A.1.2. VM Types 15
A.1.3. SLAs governing VMs 15

A.2. Requests 17
A.2.1. Request Life-Cycle 17
A.2.2. Request Types 20
A.2.3. SLAs Governing Requests 20

A.3. Utility (Profit) 21
A.3.1. Total Utility 21
A.3.2. Utility of Individual Requests 22
A.3.3. Expected Utility 23

A.4. The Assignment Task 24
A.5. The Default VM for a Request 25

B. Key Differences w.r.t. D4.4.1 27

 !iii

D4.4.2

1. Introduction

This deliverable details resource and deployment scenario modelling for the ENG case study, and is
a refinement of the initial case study model given in D.4.4.1 . The case study concerns “ETICS”, an 1

online code build and test service for software developers. For the present deliverable, the architecture
of ETICS has been simplified to just two components (indicated in Figure 1-a):

• Resource Pool: a dynamic collection of virtual computing machines (VMs), sourced on-demand
from 3rd-party cloud providers;

• Resource Pool Manager (RPM), responsible for deciding, on the basis of a utility function:
‣ which VMs to deploy in the Resource Pool (the RPM can add/remove VMs as needed);
‣ whether to accept or reject end-user (build/test) requests, and if accepted, which of the pooled

VMs should process those requests, and in what order.
Each VM has a dedicated input queue/buffer for receiving requests. The RPM ‘assigns’ a request to a

VM just by adding that request to the VM’s input queue. The VM processes queued requests one at a
time in FIFO order.

!
Figure 1-a: Simplified ETICS Architecture

Although simple in outline, the complexity of the request assignment task facing the RPM grows
exponentially with the number of requests and VMs. For a single request, p, with one pooled VM, m,
for example, the RPM has only 3 options: reject p, assign p to m, or launch, and assign p to, a new VM.
For 2 requests and 2 pooled VMs, however, the number of options rises dramatically to 20 (the options
are enumerated in Box 1-a).

Box 1-a: Assignment options for 2 requests, p1 & p2, and 2 pooled VMs, m1 & m2:

R
es

ou
rc

e
Po

ol

Resource
Pool

Manager
(RPM)

end-user
requests

VM1

VM2

VMn

…

manage VMs

queue

manage distributed RPM processes

?

✗
reject

• reject both requests, which we can denote: ⟨p1➝×, p2➝×⟩

• reject one of the requests and assign the other to an existing VM, with 4 options: ⟨p1➝m1, p2➝×⟩,
⟨p1➝m2, p2➝×⟩, ⟨p1➝×, p2➝m1⟩ or ⟨p1➝×, p2➝m2⟩

• reject one of the requests and assign the other to a new VM, m3: ⟨p1➝m3, p2➝×⟩ or ⟨p1➝×, p2➝m3⟩

• assign each request to a different pooled VM: ⟨p1➝m1, p2➝m2⟩ or ⟨p1➝m2, p2➝m1⟩

• assign one request to an existing VM and the other to a new VM: ⟨p1➝m1, p2➝m3⟩, ⟨p1➝m2,
p2➝m3⟩, ⟨p1➝m3, p2➝m1⟩ or ⟨p1➝m3, p2➝m2⟩

• assign both requests to new, but different VMs: ⟨p1➝m3, p2➝m4⟩

• assign both requests to a single existing VM (the order that requests are queued is significant,
hence there are 4 options): ⟨p1, p2➝m1⟩, ⟨p1, p2➝m2⟩, ⟨p2, p1➝m1⟩ or ⟨p2, p1➝m2⟩

• assign both requests to a new VM (again, order matters): ⟨p1, p2➝m3⟩ | ⟨p2, p1➝m3⟩

 For reference, the key changes w.r.t. D4.4.1 are outlined in Appendix B.1

 !1

D4.4.2

In all cases, the best option is determined by a utility function, which is calculated according to both
the state of requests & VMs (e.g. queuing-time, busy vs idle) and their governing QoS constraints (as
defined by SLAs). For requests, the key QoS constraint is completion-time (how long it takes, from the
end-user’s point-of-view, to execute the request), with the ETICS service provider penalised for ‘late’
requests. Regardless of how many requests it has received or how many VMs are available, therefore,
the RPM must always make its decisions quickly. To achieve this, we employ a distributed mechanism
for determining the best assignment option, with the computational load shared evenly between the
RPM and the pooled VMs. In particular, we have chosen to use a distributed genetic algorithm (DGA).

The sections below describe the utility function (§2), the DGA (§3), the revised ABS model for ETICS
(§4), and a summary of the status of the case study w.r.t. project objectives (§5). A formal specification
of the assignment task and utility function is provided in Appendix A. The complete listing of the ABS
code is provided in the zipped file, ENG_case_study_442, accompanying this deliverable.

In light of the formal specification, the overall business goal of the ENG Case Study can be defined in
precise terms as the determination of suitable values for a handful of constants employed in the utility
function . This objective will be properly addressed in Deliverable D4.4.3 (due M34), but the basic 2

approach is to tune the values of these constants by simulation of the ETICS service under diverse
(stochastic) usage patterns. The simulator forms part of the ABS model described in §4.

With respect to the ABS analytic tools, the case study has two key objectives:
1) To ensure (if possible) that the DGA is deadlock free. In parallel with the development of the ABS

model, we have also built a working prototype in Swift, with a graphical front-end showing an
animated display of the resource pool and request assignments. On most runs, however, this
prototype eventually stalls, with the animation frozen and CPU usage dropping to zero. Formal
analysis of the ABS model could help show whether this is due to the DGA or other factors (e.g.
some quirk of the Swift/Cocoa graphics system).

2) To ensure that the DGA scales. Thus far the distributed algorithm has only been tested in simulation
on a serial machine, and with only small numbers (up to 1000) of requests and VMs. Testing on a
larger scale on a single machine is impractical (the CPU & memory requirements are too high).
The intention, therefore, is to use formal ABS analytic methods (if possible) to ensure scalable
performance under high/extreme loads.

Once again, these objectives will be addressed in Deliverable D4.4.3. For this deliverable, the goal is
just to describe the operation of the simulator/RPM and in particular the utility function and DGA.

2. Utility Function

At any point in time, the RPM will have a set of requests that it needs to deal with, and a set of VMs
to which these requests may be assigned for processing. In all but the most trivial cases, as described
above (cf. Box 1-a), there will be many possible assignment options. The utility function essentially
calculates the expected financial profit (or loss) for a given option, and the RPM then selects the option
with the largest profit. The formal definition of the utility function is given in Appendix A.3, here we
provide a simplified overview. The basic formula for calculating profit is:

profit = income - penalties - machine costs
where:

• income = the price paid by the ETICS end-user for completed requests;
• penalties = refunds paid by the ETICS provider for SLA violations;
• machine costs = the price paid by the ETICS provider for using VMs.

 Specifically: the ‘action-time’, δAT (Appendix A.2.1) - which is essentially a limit on the time taken for the RPM to decide 2

what to do with requests - and the global constants χρ, κCT, χCT and χFR described in Appendix A.2.3.

 !2

D4.4.2

The income, penalties & machine cost values are derived from SLAs, which for present purposes we
treat in a simplified abstract fashion, capturing only the essential details. There are two kinds of SLA
(the formal definitions are given in Appendices A.1.3 & A.2.3):

• Consumer Facing SLAs: governing the use of the ETICS service, specifying:
‣ a service level: either bronze (cheap with low QoS), silver or gold (expensive, high QoS);
‣ request income: how much the end-user pays (in €) for each request accepted by the service ~

dependent on the service level, request priority , and request size (where ‘size’ is an abstract 3

measure of the computational complexity of the request); 4

‣ maximum completion-time: the maximum time, from the receipt of a request, that the provider
has to satisfy that request without incurring penalties ~ once again dependent on service level,
request size & request priority.

‣ completion-time penalty: the penalty (€) for requests that fail to complete within the maximum
completion-time ~ defined in proportion to the time in excess of the maximum;

‣ maximum failure rate: a limit on the number of requests (from a given user) that the provider
can reject without incurring penalties ~ dependent just on service level;

‣ failure-rate penalty: the penalty (€) for each rejected request in excess of the maximum failure
rate ~ dependent again just on service level.

• Cloud-Provider Facing SLAs: governing the ETICS provider’s use of third party VMs, specifying:
‣ cost-per-hour: how much a VM costs ~ defined in proportion to the VM’s capabilities (e.g. faster

machines with more memory & disk space cost more);
‣ deploy-time: the time, from launching (or requesting) a VM, until that VM is available for use ~

dependent again on the machine’s capabilities (e.g. higher spec’ VMs take longer to deploy).
The capabilities of a VM are captured by a single value which is the just sum of the its disk capacity

and processing power, which latter is a function of the VM’s CPU speed, number of computing cores,
and memory (see Appendix A.1.2). A VM’s capabilities determine which requests it can process, and 5

how quickly it can process them:
• a VM can only process a request if it has sufficient disk capacity, where the minimum capacity is

defined as a function of the request’s size.
• the time taken for a VM to process a request is proportional to the size of the request (big requests

take longer) over the VM’s processing power (fast machines process requests more quickly).
To illustrate the application of these SLAs, consider a simple case in which the RPM has received just

one request, p, from an end-user, u, and has just one pooled VM, m (with sufficient disk capacity to
process p). The RPM has 3 options:

i) Reject p: if the maximum failure w.r.t. end-user, u, has been reached , then rejecting p will incur a 6

failure-rate penalty (the value of which depends on the service level of the governing SLA);
ii) Assign p to m: end-user, u, must pay for the request (according to the size of the request and the

service-level of the governing SLA), but this income is offset by two factors:
‣ The processing time for the request may exceed the maximum completion-time, and so incur a

completion-time penalty. This is determined by the size of p and the processing power of m (as
stated above), but also by the state of m. In particular, m cannot begin processing p until:
- it has completed its deployment phase (m may have only recently been launched);
- it has finished processing any and all requests, p1, p2, p3, …, assigned to it prior to p (recall

that each VM has a FIFO queue of assigned requests), where the time required to complete
p1, p2, p3, … again depends on their sizes and the capabilities of m.

 We distinguish low priority ‘scheduled’ requests (e.g. nightly builds) from high priority ‘ad-hoc’ requests.3

 We assume that the ‘size’ of a request is readily ascertainable.4

 The formal definitions allow for ≃ 300 different VM configurations, and are chosen such that VM cost-per-hour and deploy-5

time are comparable to those of Amazon EC2 (https://aws.amazon.com/ec2), see Tables A.1.3-b..d for comparisons.
 The failure count (for each user) is reset after every 50 requests received from that user, i.e. the failure ‘rate’ is in fact a ratio. 6

 !3

https://aws.amazon.com/ec2

D4.4.2

‣ Since VMs are paid for by the hour, assigning p to m will incur a machine cost whenever the
processing of p requires that an additional hour of VM time be purchased.

iii) Assign p to a new VM: as for ii, but with only the deploy-time of the VM to account for (since its
queue will be empty).

There is one additional factor that affects the completion-time of requests, and that is the time that it
takes for the RPM to decide what to do with the request. We refer to this as the ‘action time’. By way of
summary, Figure 2-a shows the main points along the time-line of an accepted request.

!
Figure 2-a: Time-line for an assigned request

The utility function essentially takes all of the preceding factors into account to calculate an estimate
of the profit/loss to be expected from either rejecting request or assigning it to given VM. The next
section (§3) explains how the utility function is applied in the general case (with multiple requests and
multiple pooled VMs).

To close this section, it should be apparent that there is a basic trade-off in the assignment of requests
to VMs. Powerful VMs process requests more quickly, which leads to shorter completion-times, hence
higher income and fewer completion-time penalties, and so more profit. But powerful VMs also cost
more, which cuts into this profit. Ignoring other factors (namely action & queuing times), this trade-off
means that for every request there should be an optimal VM configuration for processing that request
(i.e. there is a peak, as indicated in Figure 2-b, in the plot of profit against processing power).

!
Figure 2-b: Optimal VM for a Given Request

Indicative plot showing how (for a given request) the income (i), completion-time penalty (p), VM cost (c)
& profit (i - p - c), vary with the processing power of the VM

Under the particular formalisation of the utility function given in Appendix A, it turns out that the
characteristics of this optimal VM depend only on the size of the request. The other factors (action-
time, queueing-time, etc.) evaporate. Specifically (as detailed in Appendix 5.1), the optimal VM has the
following properties:

For any request that it receives, the RPM may choose to launch, and assign that request to, a new
VM. The best choice for this new VM is the optimal VM as just defined, which we will henceforth refer
to as the ‘default’ VM. The fact that this default VM is dependent only on the size of requests greatly
simplifies the task of the RPM (since the default only needs to be calculated once for each request
upon its receipt). Almost everything else that RPM does is then covered by the distributed genetic
algorithm (DGA), which is described in the next section.

request
received

action time queueing time processing time

decide what to do
with the request

wait for the assigned VM
to become available

wait for the assigned VM
to process the request

request
complete

VM processing power

− €

+ €
i = income

p = completion-time penalty c = VM cost

profit = i − p − c
optimum

disk capacity = 2⎡log2(request size)⎤

processing power = √(8.25 × request size)

 !4

D4.4.2

3. Distributed Genetic Algorithm

Genetic algorithms (GAs) are a class of heuristic inspired by natural selection processes and often
applied for solving optimisation problems. They require:

• a means to encode solutions as modifiable ‘gene’ structures;
• a ‘fitness’ function for ranking (assigning a qualitative score to) solutions;

They operate, briefly, as follows:
i) an initial set of random solutions (genes) is generated;
ii) the fitness function is applied to each member of the set;
iii) solutions with highest fitness are used to generate a new set of solutions by the application of

‘mutation’ and ‘crossover’ operators (described shortly);
iv) steps ii & iii are applied iteratively to the new set of solutions, for as long as required.

A distributed GA processes multiple sets of solutions concurrently, with an occasional exchange of the
fittest solutions between sets. For this case study, the fitness function is the utility function described
in the previous section, and the GA is distributed over the RPM and every pooled VM. The remainder
of this section briefly describes the genetic encoding of solutions, and mutation & crossover operators.

To begin, at any point in time, the RPM will have a set, P, of requests that need to be dealt with, and
a set M, of pooled VMs. For each request in P there is also a corresponding default VM (introduced in
the previous section), such that we also have a set D of default (not yet launched) VMs. A ‘solution’ to
the assignment task then consists of a partial mapping from a (random) ordering over P onto the set
M ∪ D of both pooled and default VMs. To illustrate:

• Suppose P (the set of requests) = { p1, p2, p3, p4 }, with a corresponding set, D = { d1, d2, d3, d4 }, of
default VMs (i.e. the default VM for p1 is d1, the default VM for p2 is d2, etc.);

• Suppose M (the set of pooled VMs) = { m1, m2 }
• We impose a random order on P, say P’ = ⟨ p2, p4, p1, p3 ⟩, and define a partial function from P’

onto M ∪ D, producing, for example, ⟨ p2➝m1, p4➝m1, p1➝×, p3➝d1 ⟩ (compare to Box 1-a) ~ where:
‣ p2➝m1, p4➝m1 denotes that p2 & p4 are assigned in that order to the same pooled VM m1;
‣ pi➝× denotes that pi is not mapped to any VM, i.e. it is rejected;
‣ p3➝d1 denotes that p3 is assigned to the default VM, d1, which will have to be acquired and

launched before it can process p3 (note that this mapping is perfectly valid even though d1 is
not the default VM for p3).

Figure 3-a provides a visual representation of the mapping ⟨ p2➝m1, p4➝m1, p1➝×, p3➝d1 ⟩. Each such
mapping encodes a complete solution to the assignment task (for some P & M). The utility function is
applied to individual solutions, and gives the profit that can be expected from applying that solution.

!
Figure 3-a: ‘Genetic’ Representation of an Assignment Solution

Given this ‘genetic’ representation of the solution space, the mutation operator is trivial: an element
of P’ (the ordered set of requests) is chosen at random, and its mapping onto M ∪ D is randomly
modified. Given the solution ⟨ p2➝m1, p4➝m1, p1➝×, p3➝d1 ⟩, for example, we might arbitrarily choose
to mutate p1➝× into p1➝m2, producing the new solution ⟨ p2➝m1, p4➝m1, p1➝m2, p3➝d1 ⟩.

The crossover operator is only slightly more complex. The goal of crossover is to combine 2 solutions
to produce another which (in some useful sense) combines the characteristics of both originals. Given

p2 p4 p1 p3

m1 m2 d1 d2 d3 d4{ { }

⟩

}

⟨P’ =

M = = D

 !5

D4.4.2

two mappings, say α = ⟨ p2➝m1, p4➝m1, p1➝×, p3➝d1 ⟩ and β = ⟨ p1➝m1, p3➝×, p4➝d2, p2➝d3 ⟩, crossover
proceeds in three steps (illustrated in Figure 3-b):

i) Select a random element in α, and remove all the subsequent elements ~ e.g. choosing the 2nd
element (p4➝m1), gives the subset α’ = ⟨ p2➝m1, p4➝m1 ⟩;

ii) For each element, pi➝?, in α’, remove from β the element that has the same request, pi ~ e.g. for
α’ = ⟨ p2➝m1, p4➝m1 ⟩, remove the elements p2➝d3 & p4➝d2 from β, to give β’ = ⟨ p1➝m1, p3➝× ⟩;

iii) Concatenate α’ with β’ to get the resulting ‘spliced’ solution ~ e.g. from above, appending β’
onto α’ results in ⟨ p2➝m1, p4➝m1, p1➝m1, p3➝× ⟩

!
Figure 3-b: Example application of the crossover operator

The following pseudo-code briefly summarises the distributed GA. If P is a set of requests, V = M ∪ D
is the combined set of pooled & default VMs, and solvers is the set of distributed GA processes (one
for the RPM, and one for each pooled VM), then each ‘solver’ (more or less) executes the following :7

solutions = [] // clear any previous results
self.bestSolution = NULL
for i in 0..n{ // where n is dependent on machine processing power
 solutions += aRandomlyGeneratedSolution(P, V) // initial random solutions
}
while !stopped{ // stopped is set by the RPM (explained in the next section)
 ordered_solutions = orderByDecreasingUtility(solutions)
 b = ordered_solutions[0] // b is the best solution
 if b.utility > self.bestSolution.utility{
 self.bestSolution = b // keep track of the best solution found so far
 }
 solutions = [] // clear the existing solutions, and generate new ones ..
 for i in 0..n{
 j = random(0..n/20) // random index to the best 5% of solutions
 s = ordered_solutions[j]
 action = none | mutate | crossover | exchange // a random choice
 switch action{
 case mutate: s = mutate(s, V)
 case crossover:
 t = ordered_solutions[random(0..n/20)] // select another top solution
 s = crossover(s, t, V)
 case exchange:
 x = solvers[random(0..solvers.count)] // choose a random solver
 s = x.bestSolution // request the best solution found by that solver
 }
 solutions += s
 }
}

The next section outlines the complete ABS model for the ETICS service, and in particular how the
concurrent GA processes are managed (e.g. triggered & stopped) and how solutions are applied.

p2 p4 p1 p3

m1 d1

α

β p1 p3 p4 p2

m1 d3d2

p2 p4

m1

α’

β’ p1 p3

m1

p2 p4

m1

α’ + β’

p1 p3

 All the code presented in this deliverable is pseudo code.7

 !6

D4.4.2

4. ABS Model

The following subsections give a high-level outline of the ABS model. As a design principle we have
chosen to model only the active components of the system (namely the simulator, RPM and pooled
VMs) as interfaces/classes, and to restrict the information exchanged between these components to
ABS datatype items (the aim being to avoid exchanging class instances between distributed processing
elements). Section §4.1 describes the datatype model, Section §4.2 the interface/class model, and finally
Section §4.3 provides some notes on our experience of using ABS as feedback to the technical WPs.

4.1. Datatype Model

The datatype model is conceived in two parts, capturing: i) information about requests, SLAs and
VMs, and ii) the input & output parameters of the DGA. These are respectively summarised (in the
form of UML class diagrams) in Figures 4.1-a & 4.1-b, with brief explanations below each figure.

!
Figure 4.1-a: Requests, SLAs & VM-Related Datatypes

Time, Rat (= rational number), Bool & Int are all part of the core ABS language.

The Request, SLA & VM~ datatypes capture most of the information required by the utility function.
Their basic properties (e.g. request size & priority, VM power & disk capacity, …) have already been
outlined in Section §2. A few additional notes are in order:

• The SLA datatype is for consumer-facing SLAs only, and all QoS properties, for both consumer- &
cloud-provider-facing SLAs, are captured by global ABS functions, such as:
def Duration vmDeployTime(VMData d) = ..
def Duration vmUnitCost(VMData d) = ..
def Duration requestMaxCT(Request r) = ..
etc.

These functions in turn depend on a handful of global constants (one for each of the constants
defined in Appendix A), such as:

def Rat global_du = 60 // Unit Time Period constant, δμ, for VMs (see Table A.1.3-a)
def Rat global_kCT = 1 // Max. Completion-Time constant, κCT (see Table A.2.3-a)
etc.

• Request, VMData & SLA datatypes all carry unique integer identifiers (VMId & RequestId are
type-aliases for Int), which serve just to simplify the modelling of DGA parameters (below);

• End-users are minimally modelled just by integer identifiers, i.e. the Request.user property, the
values of which are limited by SLA.userCount.

• The VMData datatype captures the information about VMs that is published by cloud providers
(i.e. describing the essential VM capabilities). VMInfo, instead, captures details of deployed VM
instances (e.g. the time they were launched) that are required by the utility function and DGA;

• The numeric values associated with the Priority & ServiceLevel enumeration types are as
defined in Appendices A.2.2 & A.2.3 (resp.).

VMData
id : VMId
cpu : Int
cores : Int
memory : Int
power : Rat
disk : Int

Request
id : RequestId
size : Rat
user : Int
receiveTime : Time

<enum>
Priority

AdHoc = 1
Scheduled = 0.5

priority 1

SLA
id : Int
userCount : Int

<enum>
ServiceLevel

Bronze = 0.5
Silver = 0.75

Gold = 1

sla

1

serviceLevel 1

defaultVM
1

VMInfo
data

1
actionTime : Time
startTime : Time
launchTime : Time
score : Rat
firstUse : Bool

 !7

D4.4.2

!

Figure 4.1-b: Input/Output Parameters for the DGA

The input/output parameters of the DGA are captured by the datatypes shown in Figure 4.1-b:
• The Problem datatype models the input to the DGA and consists of a list of current requests (the

set P as defined in §3) and VMInfo items (corresponding to the set M ∪ D of pooled/default VMs
as defined in §3).
‣ The Task datatype pairs each request with the set of VMs that can process that request (recall

from §3 that requests can only be processed by VMs with sufficient disk capacity).
• The Solution datatype captures the output of the DGA, and represents a possible solution to the

assignment task, with the following properties:
‣ assigned is a set of assignments of the (reversed) form m ← p1, p2, .., where p1, p2, .. is an

ordered sequence of requests and m is either a pooled VM or the default VM for p;
‣ rejected is list of rejected requests, those not assigned to any VM;
‣ utility is the value calculated by the utility function for the solution;
‣ map is an implementation specific detail facilitating the mutation & crossover operators;
‣ problem is a back reference to the Problem instance that spawned the Solution;

• The use of Maps (key/value dictionaries), as opposed to flats Lists, in the Problem & Solution
datatypes serves just to simplify the implementation.

4.2. Class Model

Figure 4.2-a shows a UML class diagram for the active components of the ABS model ~ primarily the
RPM, pooled VMs and encompassing simulator. These components are explained in the subsections
below (next page).

!

Figure 4.2-a: ETICS (Simulator) Components

Unit (= null/void), Duration, DeploymentComponent & CloudProvider are all part of the core ABS language.
DCDescriptor is a type-alias for Map<Resourcetype, Rat>, used in ABS to describe DeploymentComponent capabilities.

Task
request : Request
vms : List<VMInfo>

Problem
tasks : Map<RequestId,Task>
vms : Map<VMId,VMInfo>

Solution
problem

1
assigned : Map<VMId,(VMInfo,List<Request>)>
rejected : List<Request>
utility : Rat
map : List<Pair<RequestId, Int>>

Solver
- startSolving(Problem p, Pool pool) : Unit
- stopSolving() : Solution
- bestSolution() : Solution

VM

- launch() : Unit
- assign(Request r) : Unit
- notify(Request r, Progress p) : Unit
- info(Time actionTime) : VMInfo

data : VMData
launchTime : Time
startTime : Time
executionTime : Duration
hasPendingRequests : Bool
currentRequest : Request
hasCompletedRequests : Bool
queue : List<Request>

<enum>
Progress

Starting
Processing
Stopping
Stopped

RequestProcessor
- process(Request r) : Unit

processor

1

<singleton>
Simulator

- start() : Unit

<singleton>
RPM

- receive(Request r) : Unit
- activate() : Unit
- createAndLaunchNewVM(VMData d) : VM
- resourceMap(VMData d) : Map<Resourcetype, Rat>
- killVMIfPossible(VM vm) : Unit

solver

1

<singleton>
Tally

rpm

1

pool

0+

pendingRequests : List<Request>
cloudProvider : CloudProvider

vm
1

DeploymentComponent
1

1

Pool

1

dc

 !8

D4.4.2

Simulator

The entry point to the model is the Simulator class , with a single method start(), which simply 8

posts a fixed number of random requests at random times to the RPM. In pseudo code:

start(){
 RPM rpm = new RPM()
 Int count = 0
 while (count++ < 500){ // 500 is the (arbitrary) number of requests to generate
 Request r = // create a random request
 sleepUntil(r.receiveTime) // do nothing until it’s time to send the request
 rpm.receive(r) // send the request to the RPM
 }
}

The RPM adds all the requests it receives to its internal pendingRequests queue, from where they
are passed in batches, at regular intervals, to the DGA - as will be described in more detail shortly.

Solver

The DGA is realised as a collection of instances of the Solver class, which exposes 3 methods:
• startSolving(Problem p, Pool pool): this method implements the basic GA mechanism

detailed earlier in §3;
‣ In principle, the Problem argument, p, should carry all the information necessary for the

DGA. We require, however, that arbitrary Solver instances exchange solutions, and the most
simple way to achieve this is just to give each Solver object direct access to the others. Hence
the 2nd argument, pool, which carries the pooled VM objects (each of which is a Solver object).
Note, however, that this approach runs contrary to our stated design principles (see §4 intro.),
and so remains unsatisfactory .9

• stopSolving(): invoked by the RPM to stop the DGA (cf. the role of the stopped flag in the code
excerpt in §3). For convenience, this method also returns the best solution (next bullet);

• bestSolution(): returns the best solution found (since the last invocation of startSolving).
This method is invoked by other Solver objects in order to share solutions.

VM & Processor

The VM class, as just noted, extends the Solver class, such that each VM object forms part of the DGA.
As outlined in §1, each VM object also maintains its own queue of Request instances, where Requests
are assigned to a VM (by the RPM) via its assign(Request r) method. The VM instance sends these
queued Requests one at a time, in FIFO order to the process(Request r) method of an attached,
but asynchronous Processor object, which simulates request processing, and notifies the VM of its
progress, as follows:

process(Request r){
 Duration dXT = .. // the request execution time (defined in Appendix A.2.2)

 vm!notify(r, Starting) // “x!foo()” is ABS syntax for an asynchronous invocation
 sleepForTime(dXT / 2) // setup phase

 vm!notify(r, Processing)
 sleepForTime(dXT) // request execution phase

 vm!notify(r, Stopping)
 sleepForTime(dXT / 2) // cleanup phase

 vm!notify(r, Stopped)
}

 All the UML classes in Figure 4.2-a are modelled as ABS interfaces, with unique class implementations.8

 A more realistic approach would be to implement a remote peer-to-peer message exchange protocol, and inform each 9

Solver object of just the addresses (e.g. URLs) of its peers.

 !9

D4.4.2

Each VM object is intended to represent a VM purchased from cloud provider. In ABS, however, VMs
are represented by DeploymentComponent objects, obtained opaquely from CloudProvider objects.
This opaqueness prohibits us from defining the VM class as DeploymentComponent extension, so we
must instead conceive the VM object as a kind of utility process running on a DeploymentComponent.
This relationship is established by the RPM when the VM object is created (explained below). The VM’s
launch method performs additional necessary setup (e.g. ensuring that the Processor runs in the
same DeploymentComponent instance), and must be invoked immediately after the VM is created . 10

The remaining VM methods primarily support the utility function and are not covered here.

RPM

The RPM manages the pool of VM/DeploymentComponent instances, and controls the overall activity
of the DGA: creating new Problem instances, distributing these to the pooled VM (Solver) processes,
collecting the results, and implementing the best Solution. It does this in a continuous loop, effected
by recursive invocation of its activate() method ~ roughly (ignoring many fine details) as follows:

activate(){
 // stop the (previous run of the) DGA & get the best solution ..
 // note: “await x!foo()” is ABS syntax for a blocking asynchronous invocation
 Solution best = await this.solver!stopSolving() // the RPM’s solver
 for vm in pool{
 Solution s = await vm!bestSolution() // the distributed solvers
 if s.utility > best.utility{ best = s }
 }
 // implement the best solution ..
 // 1. assign requests to VMs (creating the VMs as necessary) ..
 for (vm_info, requests) in best.assigned.values{
 VM vm = // the pooled vm identified by vm_info
 if vm == NULL{ // vm_info identifies a default (not yet launched) VM
 vm = createAndLaunchNewVM(vm_info) // described below
 }
 for r in requests{
 vm.assign(r) // see the VM section above
 }
 }
 // 2. reject rejected requests ..
 for request in best.rejected{
 // reject the request (delegated to the Tally class, below)
 }
 // if there are pending requests, create a new problem ..
 if !pendingRequests.isEmpty{
 List<Task> tasks = // create a ‘task’ for each pending request
 Map<VMId, VMInfo> vmis = // combined list of pooled & default VMs
 Problem problem = Problem(tasks, vmis)
 // start the DGA ..
 this.solver!startSolving(problem, pool) // the RPM’s solver
 for vm in pool{
 vm!startSolving(problem, pool) // the distributed solvers
 }
 }
 // wait for a fixed ‘action-time’ (AT), and repeat ..
 sleepForDuration(global_AT)
 await this!activate()

}

Note that this loop repeats with a regular period given by the action-time constant global_AT, which
has significance for the utility function (refer back to §2, e.g. Figure 2-a).

 This additional setup involves asynchronous calls and timed delays, which cannot be used in an object’s initialiser.10

 !10

D4.4.2

The createAndLaunchNewVM method, as its name implies, creates & launches a new VM instance:

VM createAndLaunchNewVM(VMData data){
 // create a DeploymentComponent (DC)
 // for simplicity we can assume a single cloud provider
 Map<Resourcetype, Rat> rs = this.resourceMap(data)  

 DeploymentComponent dc = this.cloudProvider.launchInstance(rs)
 // create a new VM instance on the DeploymentComponent ..
 [DC: dc] VM vm = new VM(data) // as per the ABS syntax
 vm!launch() // see the VM section above
 this.pool += vm // add the VM to the pool
 this!killVMIfPossible(vm) // explained below
 return vm
}

As well as deciding when to create new VM instances, the RPM also decides when to kill them. This is
achieved by the killVMIfPossible method invoked in the previous code snippet. Recall from §2 that
VMs are paid for by the hour. Trivially, therefore, the killVMIfPossible just checks in every hour to
see whether the VM is being used, and if not kills it:

Unit killVMIfPossible(VM vm){
 sleepForDuration(global_du) // global_du = 60 minutes
 // is the VM in use ?
 Request currentRequest = await vm!currentRequest()
 Bool hasPendingRequests = await vm!hasPendingRequests()
 if (currentRequest == NULL && !hasPendingRequests){
 // kill the VM ..
 this.pool -= vm // remove the VM from the pool
 DeploymentComponent dc = await vm!dc
 dc.release() // we no longer need the DC
 this.cloudProvider.killInstance(dc)
 }else{
 this!killVMIfPossible(vm) // check again in 1 hour
 }
}

These two methods, createAndLaunchNewVM & killVMIfPossible, driven respectively by the
DGA and a periodic timer, encapsulate the RPM’s dynamic & elastic management of the VM pool.

Tally

The final class shown in Figure 4.2-a is the (singleton) Tally class, whose function is to keep track of
the overall progress of the simulation and to maintain a cumulative tally of actual (as opposed to
expected) profit. To this end the Tally class exposes methods (not shown in Figure 4.2-a) to receive
various progress notifications from the other components - such as:

Unit simulationStarted()
Unit rpmReceivedRequest(Request r)
Unit vmEnqueuedRequest(VM_info vmi, Request r)
Unit vmExecutingRequest(VM_info vmi, Request r)
and so on for all significant simulation events ..

The calculation of actual profit mirrors that for expected profit, but operates post-fact on observed,
rather than predicted values (e.g. using data automatically collated by the CloudProvider instance
on VM usage). As part of this function, the Tally class also maintains a historical record of requests
(& their outcomes) for individual end-users, which record provides the information necessary for
computing failure-rates and failure-rate penalties.

This concludes the outline of the ABS model for the ETICS simulation. A complete listing of the ABS
code, as noted earlier, is provided in the zipped file accompanying this deliverable.

 !11

D4.4.2

4.3. Experience With ABS

In D4.4.1 (§3.6) we listed some of the difficulties we encountered in developing the initial ABS model
for the ENG Case Study. Most of the issues still hold , the most significant being: 11

• A lack of comprehensive and up-to-date documentation. There is now an official URL for ABS
documentation (docs.abs-models.org) which has proven useful, but remains incomplete and
in parts incorrect. Of particular relevance to this deliverable, for example: the CloudProvider
class is undocumented, and the description of the DeploymentComponent class is incorrect.

• The requirement to use different syntactic forms for blocking method calls dependent on whether
sender & receiver are located in the same or different COGs (see D4.4.1, §3.6 for an explanation).
We view this as a major potential source of run-time errors.

In light of continued experience with ABS, we also add the following issues:
• No floating point numbers. Only integer (Int) are rational (Rat) numbers are available, where a

rational is expressed as ratio of integers. So, for example, 0.025 must be written as 25/1000.
• The restriction to while statements for iteration, combined with the functional nature of the basic

collection types (List, Set, Map) leads to verbose code - e.g. to iterate through a List in ABS:
List<X> i = list;
while (i != Nil){
 X x = head(list);
 // do something with x
 i = tail(list);
}

Compare this to the Java (enhanced for loop) syntax:
for (X x : list){
 // do something with x
}

• Limited expressivity of ABS function declarations. As a specific case in point, the present ABS
model makes use of the quicksort algorithm (e.g. for sorting lists of GA solutions by utility, $3). 12

In Haskell this algorithm has a fairly concise definition :13

qsort [] = []
qsort (head:tail) = (qsort lesser) ++ [head] ++ (qsort greater)
 where
 lesser = filter (< head) tail
 greater = filter (>= head) tail

We were unable, however, to translate this definition into ABS functions, and so resorted to a
longer imperative implementation (using class methods). Moreover, our model applies quicksort
over two lists of different types and with different comparison operators, but we could find no
succinct modular way to realise this, preferring in the end to code the complete algorithm twice.

On the whole, although ABS is not particularly difficult to use (once you have grasped the basic
principles), we feel that it never-the-less misses some ‘basic’ features (e.g. floating-point numbers, for
loops, list/map subscripts) and has limited support for modularity (as in the quicksort case above, or
the fact that there is no class inheritance, and hence no calls to super methods). In general, while we
understand the need to constrain the language (to support formal analysis), these constraints result in
code that is overly verbose. The point here is not that conciseness per se is good, or that verbosity per se
is bad. Rather it is just that an ABS model of a system can easily end up with significantly more lines of
code than are required (in Java 8 or Swift, say) to implement that system .14

 The issues reported in D4.4.1 that have been addressed are: i) it is no longer necessary to assign the results of method calls 11

to variables, and ii) nested method calls are now also permitted.
 E.g. see https://en.wikipedia.org/wiki/Quicksort 12

 Even more concisely (but harder to read): qsort (h:t) = qsort [x | x<-t, x<h] ++ [p] ++ qsort [x | x<-t, x>=h]13

 This is, for example, why we chose not to use ABS-style pseudo code for the examples in previous sections.14

 !12

http://docs.abs-models.org
https://en.wikipedia.org/wiki/Quicksort

D4.4.2

5. Summary

This deliverable refines and expands the specification of the ENG Case Study originally presented in
D.4.4.1, focusing in particular on resource and deployment scenario modelling. Resources are virtual
machines (VMs) purchased on a pay-per-use basis from third-party cloud providers. A detailed set of
modelling requirements for VMs has been formulated (Appendix A), covering their life-cycle, defining
characteristics and QoS constraints (as derived from cloud-provider SLAs). The functional (non QoS)
aspects of these requirements have already been incorporated into the ABS resource model (WP1).
VMs are deployed (i.e. purchased, configured & subsequently destroyed) dynamically, in a scalable
and elastic fashion, in response to the quantity and type of end-user service requests. In the business
context of the case study, deployment decisions are based entirely on operational criteria - specifically:
a utility/profit function which takes into account the income received from end-users, the cost of VMs,
and SLA-specified penalties for violation of QoS constraints. These operational aspects have also been
formally specified (Appendix A), and all the formal specifications have been successfully implemented
in ABS, with the decision process realised by a distributed genetic algorithmic (DGA).

The relation of the ENG Case Study to the project objectives has already been described in D4.4.1.
This deliverable primarily addresses objective O2 (“Behavioural Specification Language for Virtualised
Resources”) - and in particular provides input to and incorporates results from T1.1 (modelling support
for scalable infrastructure - esp. dynamic creation & management of VMs), T1.2 (modelling of
resources) and T1.3 (deployment modelling). The formal SLA specifications given in this deliverable
(together with their application in the decision making process) are also relevant to objective O3
(“Design-by-Contract Methodology for Service Contracts”), and in particular provide input to T2.2 (w.r.t.
the specification of, and conformance criteria for, QoS). We have also noted (§4.3) specific issues, based
on our experience of coding in ABS, with the language per se.

For the remainder of the project, the ENG Case Study will focus on:
• Objective O4 (“Model Conformance Demonstrator”): automatic generation of executable Java code 15

and conformance checking of this code against the formal semantics of the ABS source. In D4.4.1
we also stated an intention to employ the Envisage tools for automatic test-case generation (TCG).
It turns out, however, that the TCG tools cannot be used on code that contains rational number
(Rat) types, and so we are unable to employ TCG.

• Objective O5 (“Model Analysis Demonstrator”): verification of the ABS model w.r.t. non-functional
requirements, with the general aim to ensure the scalability and cost-effectiveness of the final
implemented system. The most immediate concerns, as already noted in §1, are:
‣ To ensure (if possible) that the DGA is deadlock free;
‣ To ensure that the DGA scales;
‣ W.r.t. business objectives, to identify appropriate/optimal values for the key system parameters .16

The results of this ongoing work will be presented in D4.4.3.

 At the time of writing, the Java code generation tool does not yet fully support ABS resource models.15

 Namely: the ‘action-time’, δAT (Appendix A.2.1), and the global constants χρ, κCT, χCT and χFR (described in Appendix A.2.3).16

 !13

Appendices

A. Formal Definitions

This appendix presents formal definitions for the following (detailed in §A.1 to §A.5 resp.):
• Virtual Machines (VMs)
• Requests
• Utility (Profit/Loss)
• The Assignment Task
• The Default VM for a Request

Table A-a lists various abbreviations, symbols & functions used in this appendix:
Table A-a: Abbreviations, Symbols & Functions

Abbreviations

Symbols (for variable types)

Functions

A.1. Virtual Machines
This section presents formal definitions of the following:
• VM Life-Cycle (§A.1.1)
• VM Types (§A.1.2)
• SLAs Governing VMs (§A.1.3)

A.1.1. VM Life-Cycle
The life-cycle of a VM is captured by the state diagram in Figure A.1.1-a, with key triggers, times and

durations listed in Table A.1.1-a below:

!
Figure A.1.1-a: Life-Cycle of VM

States (ovals) display both state names & (if applicable) variables, δ, giving the duration of the state.

Table A.1.1-a: VM Life-Cycle Triggers, Times & Durations

RPM : Resource Pool Manager EE : Execution Engine

τ : a point in time δ : a duration ε : an error or variance
κ : a constant λ : a count or ratio €, χ : monetary values
μ : a virtual machine ρ : a process

⎮S⎮ : number of elements in set S ⎡x⎤ : ceiling of x

Busy δPT(p,m)

AvailablePending δDT(m)
launch(m) kill(m)

execute(p)

[τLAUNCH(m)] [τKILL(m)]

State Transition Trigger (m is a VM, p is a process running on m) Occurs at

○ → Pending launch(m) : Creates a new VM, m. τLAUNCH(m)

Pending → Available τLAUNCH(m) + δDT(m) :
Pending lasts until m is deployed &
ready to be used: ending after a
deploy-time delay, δDT(m).

τPOOL(m)

Available → Busy execute(p,m) : Executes process p on m. t

Busy → Available t + δPT(p,m) :
Busy lasts while m executes process
p: ending after (a machine & process
dependent) processing-time δPT(p,m).

~

Available → ● kill(m) : Destroys m. τKILL(m)

 !14

Appendices

A.1.2. VM Types
A VM type is completely defined by the properties listed in Table A.1.2-a. Any given VM type may

have multiple instances . 17

Table A.1.2-a: Properties of VMs

Number of distinct μPOW values = 3 × 4 × 4 = 48; Number of distinct μSPEC values = 48 × 6 = 288

• The constant 0.6 in the μPOW term is chosen such that μPOW is comparable to the ‘ECU’ (EC2
Compute Unit) measure employed by Amazon EC2 .18

Loosely speaking, a VM with n times the processing power of another will execute a given task n
times as fast ~ i.e. for any process, p, executing on machines m1, m2:

The μSPEC term determines the pricing for VMs as described in the next two sections.

A.1.3. SLAs governing VMs
The SLA terms governing VMs are encoded by the properties listed in Table A.1.3-a.

Table A.1.3-a: SLA Terms for VMs

• The constant 0.00266 in the χμ term is chosen such that pricing is comparable to the general
purpose, on-demand machines offered by Amazon EC2: Tables A.1.3-b and A.1.3-c (next page)
respectively show an actual Amazon pricing sample18 and comparable χμ values.

• The constant 0.2 in the δDT (deploy-time) term is chosen to give values of δDT of up to 10 minutes , 19

as illustrated in Table A.1.3-d (next page).
‣ In D4.4.1 a maximum deploy-time guarantee was also included in provider-facing SLAs. This

has been removed as an unnecessary complication.

Property Definition (m is a VM) Units Permitted Values

Basic Properties

CPU Clock Speed μCLK(m) GHz 1.0, 1.25, 1.5

CPU Cores μCORES(m) ~ 1, 2, 4, 8

Memory Capacity μMEM(m) GB 1, 2, 4, 8

Hard Disk Capacity μDISK(m) GB 1, 2, 4, 8, 16, 32

Derived Properties

Processing Power μPOW(m) = μCLK(m)·μCORES(m) + 0.6·μMEM(m) ~ 1.6 to 16.8
Machine “Spec.” μSPEC(m) = μPOW(m) + μDISK(m) ~ 2.6 to 48.8

μPOW(m1)·δPT(p,m1) ≈ μPOW(m2)·δPT(p,m2) (#1)

Property Symbol/Definition (m is a VM) Units

Global Constants

Unit Time Period δμ = 60 mins

Derived Properties

Cost per Unit Time Period χμ(m) = 0.00266·μSPEC(m) €

Deploy-Time δDT(m) = 0.2·μSPEC(m) mins

 For simulation purposes, each VM instance is distinguished by a unique identifier. 17

 See https://aws.amazon.com/ec218

 Based loosely on: http://www.philchen.com/2009/04/21/how-long-does-it-take-to-launch-an-amazon-ec2-instance 19

 !15

https://aws.amazon.com/ec2
http://www.philchen.com/2009/04/21/how-long-does-it-take-to-launch-an-amazon-ec2-instance

Appendices

Table A.1.3-b: Sample Price List for Amazon EC2 General Purpose, On-Demand Instances

ECU = elastic compute unit; EBS = elastic block storage; bold values correspond to entries in Table 1.1.3-c (below)

Table A.1.3-c: Price List Based on the Definitions Given in A.1.2 & A.1.3

* calculated at $1 = 0.88 €; † values are “elastic” in EC2; ‡ approximates EC2; ! only 4 GB in EC2

Table A.1.3-d: Calculated Deploy-Times for a Sample of VM Types

* and † respectively correspond to the lowest & highest possible machine specs.

VM Pricing & Billing

Virtual machines are billed throughout the entire period they exist (i.e. τLAUNCH to τKILL), according to the
formulas shown in Table A.1.3-e. The minimum cost for a VM is χμ (the case that t − τLAUNCH < δμ).

Table A.1.3-e: VM Costs

VM Type vCPU ECU Memory (GiB) Storage (GB) $ per hour

t2.micro 1 variable 1 EBS 0.013

t2.small 1 variable 2 EBS 0.026

t2.medium 2 variable 4 EBS 0.052

m3.medium 1 3.0 3.75 1×4 SSD 0.070

m3.large 2 6.5 7.5 1×32 SSD 0.140

m3.xlarge 4 13.0 15 2×40 SSD 0.280

m3.2xlarge 8 26.0 30 2×80 SSD 0.560

μCLK·μCORES μMEM μPOW μDISK μSPEC χμ $ equiv.*

1 1 1.6† 2.7† 4.30 0.011 0.013

1 2 2.2† 6.4† 8.60 0.023 0.026

2 4 4.4† 12.9† 17.30 0.046 0.052

1 3.75 3.25‡ 20! 23.25 0.062 0.070

2 7.5 6.5 40‡ 46.50 0.124 0.140

4 15 13.0 80 93.00 0.247 0.280

8 30 26.0 160 186.00 0.495 0.560

μCLK μCORES μMEM μPOW μDISK μSPEC δDT

1.00 1 1 1.6 1 2.6 0.52 *

1.00 2 1 2.6 2 4.6 0.92

1.25 2 2 3.7 4 7.7 1.54

1.25 4 2 6.2 8 14.2 2.84

1.25 8 4 12.4 16 28.4 5.68

1.50 2 4 5.4 32 37.4 7.48

1.50 4 8 10.8 32 42.8 8.56

1.50 8 8 16.8 32 48.8 9.76 †

Property Definition (m is a VM) Units

VM Cost to Time t (> τLAUNCH) t€μ(m,t) = χμ(m)·⎡(t − τLAUNCH(m))/δμ ⎤ €

Total VM Cost €μ(m) = t€μ(m,τKILL(m)) €

 !16

Appendices

A.2. Requests
This section presents formal definitions for the following:

• Request Life-Cycle (§A.2.1)
• Request Types (§A.2.2)
• SLAs Governing Requests (§A.2.3)

A.2.1. Request Life-Cycle
The life-cycle of a request is given by the state diagram in Figure A.2.1-a, described in Table A.2.1-a

(the durations, δAT, δTO, δQT, δPRE, δXT and δPOST, are explained in more detail in later sections).

!
Figure A.2.1-a: Life-Cycle of a Request

States (ovals) display both state names & (if applicable) variables, δ, giving the duration of the state.

Table A.2.1-a: Request Life-Cycle Triggers, Times & Durations

Pending δAT(p)
reject(p)

Assigned
Queued δQT(p,m)

received(p)

assign(p,m)

Processing
SettingUp
δPRE(p,m)

Executing
δXT(p,m)

CleaningUp
δPOST(p,m)

[τACT(p)]

[τRCV(p)]

τACT(m) + δTO(m)

[τSTART(p,m)] [τEND(p,m)]

δPT(p,m) = δPRE(p,m) + δXT(p,m) + δPOST(p,m)

State Transition Trigger (p is a request, m is a VM) Occurs at

○ → Pending received(p) : the RPM receives a new request, p. τRCV(p)

Pending → ● reject(p) :
Pending lasts for the duration δAT(p) [action-
time], ending when the RPM decides to
either:
‣ reject p (ending its life-cycle);
‣ or assign p to machine m for processing:

- p is added to m’s request queue;
- p transitions to Assigned.Queued.

τACT(p)

Pending → Queued assign(p,m) :

Queued → SettingUp

τACT(m) + δQT(p,m) :

Queued lasts for the duration δQT(p,m)
[queuing-time], ending when either:
‣ m becomes Available to process p

- p transitions to Processing.SettingUp;
- m transitions to Busy;

‣ or the queuing-time, exceeds a maximum
time-out limit, δTO, i.e. δQT(p,m) > δTO(p,m):
- p is rejected, ending its life-cycle;

τSTART(p,m)

Queued → ● ~

SettingUp → Executing τSTART(p,m) + δPRE(p,m) :
SettingUp ends automatically after a set-up
(pre-processing) delay, δPRE(p,m) t

Executing → CleaningUp t + δXT(p,m) :
Executing ends automatically after an
execution-time delay, δXT(p,m)
‣marks the time-of-completion, τCT, of p;

τCT(p)

CleaningUp → ● τCT(p,m) + δPOST(p,m) :
CleaningUp ends automatically after a
clean-up (post-processing) delay, δPOST(p,m)
‣ m then transitions back to Available;

τEND(p)

 !17

Appendices

The following sub-sections specify the completion-time, δCT, & queuing-time, δQT, of requests, and give a
formal definition of request failure-rate, λFR.

Request Completion-Time

A request is considered complete (or satisfied) only if it is has finished executing, such that: we define
the ‘completion-time’, δCT, of a request to be the duration from its initial receipt (at τRCV) to the end of its
execution (at τCT, ignoring the clean-up time, δPOST) :20

• For simplicity, we will define both δPRE & δPOST as a fixed ratios of δXT :21

.. such that the completion-time formula reduces to:

In contrast note that the total processing-time, δPT (see Table A.1.1-a), for a request is just the sum of the
set-up, execution & clean-up delays (the duration from τSTART to τEND):

Figure A.2.1-b summarises the time-line (time points & durations) for completed requests:

!
Figure A.2.1-b: Timeline for a Completed Request

Request Queuing-Time

As stated in Table A.2.1-a, when a request, p, is assigned to a VM, m, it is immediately added to m’s
request queue (i.e. transition: Pending→Queued). This queue may already contain other ‘prior’ requests
~ those previously assigned to m but not yet executed ~ each of which has FIFO precedence over p:

Assuming for the moment that a request, p, does not get timed-out, then if p is assigned to VM m, the
duration δQT depends on i) the set Q(p,m) of prior requests assigned to m and ii) the state of m:

• First, all the requests in Q(p,m) must be processed before p is processed:
‣ If p’ is the prior request (if any) immediately preceding p. Then the time that p waits on the

queue is at least the time that p’ waits plus the processing-time for p’:
- δQT(p,m) ≥ δQT(p’,m) + 2δXT(p’,m);

• Second, in order for m to process p, it must be in the Available state, hence:
‣ Let σ(m) = the time until machine m next becomes Available:

- If m is already Available then σ(m) = 0;
- If m is Busy processing some other request q, and λ(q) is the degree, from 0 (at τSTART) to 1 (at
τEND), to which q has been processed, then σ(m) = (1 − λ(q))·2·δXT(q,m);

- If m is Pending, and if λ(m) is the progress, from 0 (at τLAUNCH) to 1 (at τPOOL), in deploying m,
then σ(m) = (1 − λ(m))·δDT(m).

δCT(p,m) = δAT(p) + δQT(p,m) + δPRE(p,m) + δXT(p,m)

δPRE(p,m) = δPOST(p,m) = 0.5·δXT(p,m)

δCT(p,m) = δAT(p) + δQT(p,m) + 1.5·δXT(p,m) (#2)

δPT(p,m) = δPRE(p,m) + δXT(p,m) + δPOST(p,m) = 2·δXT(p,m) (#3)

δPRE (set-up-time)
+ δXT (execution-time)

τSTARTτACTτRCV τCT τEND

time

δCT (completion-time)
δPT (processing-time)

δAT (action-time) δQT (queuing-time) δPOST (clean-up-time)

Let Q(p,m) = the set of all requests on m’s request queue that arrived before p, i.e.
∀ r ∈ Q(p,m) : τACT(r) < τACT(p)

(#4)

 i.e. this is ‘completion-time’ from the point-of-view of the end-user (ignoring any network latency).20

 The constant 0.5 is arbitrary.21

 !18

Appendices

- Otherwise, m has not yet been created, and we don’t know when it will be (or indeed if it
will ever be) created, so: σ(m) = ∞.

So assuming no time-outs, then δQT(p,m) is the sum δQT(p’,m) + 2·δXT(p’,m) + σ(m), which reduces to just
σ(m) in the case that Q(p) = ∅ (there is no prior p’). Taking the time-out into consideration, where a
time-out occurs just if δTO < δQT, gives the following definition for δQT:

where:

where:

The decision graph in Figure A.2.1-c provides another view of the various conditionals in #5.

!
Figure A.2.1-c: Decision Graph for Assigned (Queued) Requests

Request Failure-Rate

A request, p, fails if it is rejected, either (cf. Figure/Table A.2.1-a):
• explicitly by the RPM invoking reject(p) [at time τACT];
• or, when the queuing-time, δQT(p,m), for p exceeds the time-out, δTO(p,m).

The failure-rate for requests, w.r.t. a particular end-user, is defined as follows:
• First, we assume that the set of all requests received from a given user is totally ordered w.r.t. τRCV

(i.e. no two requests are received at the same time from the same user), such that we can talk of
consecutive fixed-length sequences of requests received from a given user:

‣ i.e. if the user, u, sends a sequence of requests p1, p2, p3, p4, …, then:

• Each sequence Q(u)i
N can contain 0+ failed requests:

• The failure-rate, λFR(u)i
N, for the ith set of n requests is just the number of failed requests in Q(u)i

N:

δQT(p,m) =
min(δQT(p’,m) + 2·δXT(p’,m) + σ(m) , δTO(p,m)) if Q(p) ≠ ∅ : (#5)

min(σ(m) , δTO(p,m)) otherwise

σ(m) =
0 if m is Available
(1 − λ(q))·2·δXT(q,m) if m is Busy processing q
(1 − λ(m))·δDT(m) if m is Pending
∞ otherwise

λ(q) = the degree (0..1) to which process q is complete.
λ(m) =the degree (0..1) to which deployment of VM m is complete.

Does m exist?

p timed-out?
Is m Available?

execute(p,m)

no

no

reject(p)

Request p assigned to VM m

no

(m is either Pending or Busy)

Is there a prior request p’
awaiting execution on m?

no

process(p,m)

process(p’,m)

Let Q(u)i
N = the ith sequence of N requests (i, N > 0) received from user u

Q(u)i
N = { p(i-1)N+1, p(i-1)N+2, …, pNi }

For any set, S, of requests: let ⊥(S) = the subset of S that fail.

λFR(u)i
N = ⎮⊥(Q(u)i

N)⎮ = the failure-rate for the ith sequence of N requests. (#6)

 !19

Appendices

A.2.2. Request Types
A Request type is completely defined by the properties listed in Table A.2.2-a. A given Request type

may have multiple instances.

Table A.2.2-a: Properties of Requests

For simplicity, we can treat ρSIZE(p) as the quantity (in GB) of data over which p operates. This data
must be both copied to the VM on which p executes prior to execution, and deleted from the VM
following execution. Accordingly, ρSIZE(p) determines the following:
• A minimum disk capacity, μDISK, for the VM required to execute the request:

.. and since μDISK ∈ { 1, 2, 4, 8, 16, 32 } (§A.1.2), we also constrain ρSIZE to the interval [1,32].
• And for a given machine, m:

‣ The set-up time, δPRE(p,m) (for copying data), and clean-up time, δPOST(p,m) (for deleting data);
‣ The execution-time, δXT(p,m) , which we will define as:22

.. where εXT is a randomly generated value in the real interval [0 , 0.1·ρSIZE(p)] ~ giving a range
of values from ≈0.05 mins (ρSIZE = 1, μPOW = 16.8) to ≈22.0 mins (ρSIZE = 32, μPOW = 1.6);
‣ From #3 this gives a range of processing-times, δPT, from ≈0.1 to ≈44.0 mins.

A.2.3. SLAs Governing Requests
The SLA terms governing requests are encoded by the basic and derived terms respectively listed in

Tables A.2.3-a and A.2.3-b (next page).

Table A.2.3-a: Basic SLA Terms for Requests

*Service Levels: bronze = 0.5, silver = 0.75, gold = 1.0

• For convenience, we introduce a term Φ to denote the product of κSL & ρPRI:

Property Symbol (p is a request) Permitted Values

Request Priority ρPRI(p) 0.5 (scheduled), 1.0 (ad-hoc)

Request Size ρSIZE(p)
a measure of the computational
complexity of the request 1.0 to 32.0

Invoking End User ρUSER(p)
identifies the end-user who
posted the request ~

A request p requires a VM, m, with μDISK(m) ≥ ρSIZE(p) (#7)

δXT(p,m) =
ρSIZE(p) ± εXT(p) (#8)

μPOW(m)

Property Definition (m is a VM) Units Permitted Values

Global Constants

Cost per Unit ρSIZE χρ = to be determined by simulation € > 0

Max. Completion-Time Constant κCT = “ ~ > 0

Unit Cost for Completion-Time Penalties χCT = “ € > 0

Unit Cost for Failure-Rate Penalties χFR = “ € > 0

Basic Properties

Service Level κSL(u) = bronze, silver or gold* € 0.5, 0.75, 1.0

Let Φ(p) = κSL(ρUSER(p))·ρPRI(p) (#9)

 Assuming that more data means more computations to perform.22

 !20

Appendices

Table A.2.3-b: Derived SLA Terms for Requests

Recall from #6 that λFR(u)i
N is the failure-rate for the ith sequence of n requests

Request Pricing & Billing

End-users only pay for completed requests, the price, €ρC, for each of which is the income, €ρ, less the
completion-time penalty (if any), €CT:

Note that €ρC may be negative, in which case the user gets a refund. The user is also refunded when
the number of rejected requests exceeds the maximum. For a rejected request p ∈ Q(u)i

N, with u = ρUSER(p):
• Let Q(p)N = the sub-sequence of Q(u)i

N up to, but not including, p (where i is fixed by p & N).
‣ e.g. if Q(u)i

N = { p1, p2, p3, p4, … } then Q(p4)N = { p1, p2, p3 }.
• Then, the contribution, €FR(p)N, made by p to the failure-rate penalty €FR(u)i

N is:

A.3. Utility (Profit)
This section presents formal definitions of the following utility-related functions:

• Total Utility, Uω (§A.3.1)
• Utility of Individual Requests, Uρ (§A.3.2)
• Expected Utility: 〈Uρ〉 (§A.3.3)

A.3.1. Total Utility
The total actual profit/loss incurred over some period of time, ω, is calculated as follows:

• Let Pω = the set of all requests received by the RPM during ω;
• Let Mω = the set of all VMs available during ω;
• Then the profit/loss, Uω, is defined as:

.. where: ρCOST = the total, ∑∀ p ∈ Pω€ρC(p), net income (#10) from completed requests;
ρREFUNDS = the total, ∑∀ p ∈ Pω€FR(p)N, of failure-rate penalties (#11) for rejected requests;
μCOST = the total, ∑∀ m ∈ Mω€μ(m), cost (Table A.1.3-e) for VMs.

Property Definition (p is a request, m is a VM, u is an end-user) Units

Request Income €ρ(p) = χρ·ρSIZE(p)·Φ(p) €

Maximum Completion-Time mδCT(p) =
κCT·ρSIZE(p)

mins
Φ(p)

Penalty for Violations of
Maximum Completion-Time

€CT(p,m) = χCT·∆CT(p,m)·Φ(p) €

where: ∆CT(p,m) =
δCT(p,m) − mδCT(p) if δCT(p,m) > mδCT(p)

0 otherwise

Maximum Failure-Rate mλFR(u) = ⎡2/κSL(u)⎤ ~

Penalty for Violations of
Maximum Failure-Rate

€FR(u)i
N = χFR·∆FR(u)i

N·κSL(u)2 €

where: ∆FR(u)i
N =

λFR(u)i
N − mλFR(u) if λFR(u)i

N > mλFR(u)

0 otherwise

€ρC(p) = €ρ(p) − €CT(p,m) (#10)

€FR(p)N =
χFR·κSL(u)2 if p is rejected ∧ ⎮⊥(Q(p)N)⎮ ≥ mλFR(u) (#11)

 0 otherwise
.. where u = ρUSER(p)

Uω = ρCOST − ρREFUNDS − μCOST (#12)

 !21

Appendices

A.3.2. Utility of Individual Requests
The profit/loss, Uρ, derived from a particular request p is defined as follows:

.. where:
- €ρC(p) and €FR(p)N are as defined in #10 & #11 (resp.);
- ρ€μ(p,m) is the processing cost for executing p on m, defined as follows (see Table A.1.3-e):

If we assume (for the moment) that the processing cost ρ€μ(p,m) is some positive constant less than
€ρ(p) + €FR(p)N

 (explained later), then a plot of profit/loss, Uρ(p,m), against completion-time, δCT(p,m),
has the general characteristics shown in Figure A.3.2-a - namely:

• For a completed request: Uρ(p,m) stays constant at €ρ(p) − ρ€μ(p,m) until the maximum completion-
time, mδCT(p), after which it declines steadily as the completion-time penalty, €CT, accumulates;

• For a rejected request: Uρ(p) remains constant at −€FR(p)N.

!
Figure A.3.2-a: Plot of Profit vs Completion-Time

solid line = Uρ for a completed request; dotted line = Uρ for a rejected request

By inspection of Figure A.3.2-a, we can distinguish the following 3 key values for δCT(p,m) (giving rise
to the intervals listed in Table A.3.2-a):

• mδCT(p), the maximum completion-time (up to which Uρ(p,m) is maximal);
• 0δCT(p,m), the ‘zero’ point at which Uρ(p,m) = 0;
• !δCT(p,m), the ‘cut-off’ point at which Uρ(p,m) = Uρ(p).

Table A.3.2-a: Significant Completion-Time Intervals

for executing p on machine m : Uρ(p,m) = €ρC(p) − ρ€μ(p,m) (#13)
for rejecting p : Uρ(p) = −€FR(p)N

ρ€μ(p,m) = t€μ(m,τEND(p,m)) − x (#14)

where:

x =
t€μ(m,τSTART(p,m)) if p is not the 1st request processed by m
0 otherwise

U
ρ

0

mδCT(p)

!δCT(p,m)
0δCT(p,m)

−€FR(p)N

€ρ(p) −
ρ€%(p,m)

δCT Description

[0, mδCT(p)] maximum possible profit

(mδCT(p), 0δCT(p,m)) positive but less than maximum profit.

[0δCT(p,m), !δCT(p,m)) Zero profit (breaking even) or loss, but not as bad as rejecting the request.

[!δCT(p,m), ∞]
Completing the request results in greater loss than rejecting it:
- for δCT = !δCT we assume rejecting the request is best, since completing it

merely consumes VM processing time to no financial benefit.

 !22

Appendices

The cut-off point, !δCT(p,m), is given by the following formula:

The ‘zero’ point, 0δCT(p,m), is then found by substituting €FR(p)N = 0 into #15:

Finally, recall that the graph in Figure A.3.2-a assumed i) a constant ρ€μ(p,m) with ii) a positive value
less than or equal to the maximum profit €ρ(p) + €FR(p)N. Relaxing these assumptions:

• By definition, ρ€μ(p,m) is not constant, but instead increases step-wise with δCT(p,m) (see #14 & t€μ
in Table A.1.3-e), with corresponding discontinuities in Uρ(p,m) (as indicated in Figure A.3.2-b),
and thus a decrease in the durations 0δCT and !δCT. Equations #15 and #16, however, remain valid.

!
Figure A.3.2-b: Plot of Profit vs Completion-Time

solid line = Uρ for a completed request; dotted line = Uρ for a rejected request

• The second assumption, ρ€μ(p,m) ≤ €ρ(p) + €FR(p)N, is only broken when ρ€μ(p,m) > €ρ(p) + €FR(p)N, or
by rearrangement, €ρ(p) − ρ€μ(p,m) < −€FR(p)N, which means that Uρ(p,m) < Uρ(p) for all values of
δCT(p,m) - in which case it is always best to reject the request.

A.3.3. Expected Utility
The definition of profit/loss given above, Uρ (#13), is an after-the-fact the definition, in that it can only

be calculated after a request has been either rejected or fully processed. The RPM, however, has to
decide what to do with requests in advance (as they arrive), and must therefore base its decision on the
expected rather than actual profit. The expected profit, 〈Uρ〉, has essentially the same definition as actual
profit, Uρ, but with all actual valued terms, t, replaced by corresponding expectation terms, 〈t〉. It turns
out that the only effective difference is the execution-time, δXT (#8), for whose expectation value we shall
assume the worse case (with εXT = 0.1·ρSIZE(p)), hence:

Note that the time-out delay, δTO (see §A.2.1), is per force an ‘expected’ value. We define δTO such that
the request completion-time, δCT (#2), should never exceed the cut-off, !δCT (#15), as follows:

• In other words: before the time-out it is more profitable to complete the request, while after the
time-out it is more profitable to reject the request. Timed-out request should therefore be rejected.

!δCT(p,m) = mδCT(p) + [€ρ(p) − ρ€μ(p,m) + €FR(p)N]/Φ(p)·χCT (#15)

Derivation: by definition δCT = !δCT is the point at which Uρ(p) = Uρ(p,m), so from #13:

−€FR(p)N = €ρC(p) − ρ€μ(p,m)
substitute €ρC = €ρ(p) − €CT(p,m) − ρ€μ(p,m) see #10

re-arrange €CT(p,m) = €ρ(p) − ρ€μ(p,m) + €FR(p)N
substitute €CT χCT·(!δCT(p,m) − mδCT(p))·Φ(p) = see Table A.2.3-b

divide by χCT·Φ(p) !δCT(p,m) − mδCT(p) = [€ρ(p) − ρ€μ(p,m) + €FR(p)N]/Φ(p)·χCT

0δCT(p,m) = mδCT(p) + [€ρ(p) − ρ€μ(p,m)] / Φ(p)·χCT (#16)

U
ρ

δCT

0

mδCT(p)
!δCT(p,m)

0δCT(p,m)

−€FR(p)N

€ρ(p) −
ρ€%(p,m) ‘steps’ due to

variation in
ρ€%

〈δXT(p,m)〉 = 1.1·ρSIZE(p)/μPOW(m) (#17)

δTO(p,m) = 〈!δCT(p,m)〉 − 〈δAT(p)〉 − 1.5·〈δXT(p,m)〉 (#18)

 !23

Appendices

A.4. The Assignment Task
The basic task of the RPM is to decide, on the basis of expected utility, 〈Uρ〉 (§A.3.3), which sequences

of requests to assign to which VMs. This section formally defines this assignment task. To begin:
• Let P = a set of requests;
• Let M = a set of VMs;

Next, recall from #7 that requests can onlybe assigned to VMs with sufficient disk capacity. We define
the predicate, C(p,m), to be true iff request p can be assigned to machine m:

Then, for a given request, p:

And:
• Let °2P = the largest set of ordered sub-sets of P such that: ∀ S ∈ °2P : ∀ p,q ∈ S : Cμ(p) ∩ Cμ(q) ≠ ∅,

i.e. the set of all possible sequences of requests, ‹p1, p2, p3, …›, such that for every sequence there is
at least one machine to which all its elements can be assigned.

We now define an ‘assignment’ as a mapping from machines to sequences of requests:

Now from #13 (§A.3.2):
• Uρ(p,m) is the profit/loss for executing request p on machine m, hence:

‣ ∑∀p ∈ α(m)Uρ(p,m) is the profit/loss for executing a sequence of requests, α(m) = ‹p1, p2, p3, …›, on a
given machine m ; and23

‣ ∑∀m ∈ M (∑∀p ∈ α(m)Uρ(p,m)) is the profit/loss for executing all the sequences defined by α.
• Uρ(p) is the loss from rejecting request p:

‣ if F = ∪∀m ∈ M α(m) is the set of all requests assigned by α, then the difference P\F is the set of
requests that are rejected by α, and ∑∀p ∈ P\SUρ(p) is the total loss due to rejected requests.24

The total profit/loss, U(α), for a given assignment α is then defined as follows:

Finally, if A is the set of all possible assignments for a given P & M, then the assignment task can be
formally defined as determining the assignment, α ∈ A, with maximal U(α).

The problem is compounded, however, by the fact that:
• P changes as new requests are received from users, and as existing requests are assigned to VMs;
• M changes as the RPM adds/removes VMs to/from the Resource Pool.

To cope with this changeability, we adopt the strategy outlined in §4.2 (‘RPM’) of the main document:
solving the assignment problem for small fixed sets of request and VMs at regular intervals ~ whose
period then determines the action-time, δAT.

C(p,m) ⇔ μDISK(m) ≥ ρSIZE(p) (#19)

Let Cμ(p) = { m : C(p,m), ∀ m ∈ M }
= the set of VMs to which request p can be assigned

(#20)

If Cμ(p) ≠ ∅ then p is “assignable”, otherwise p must be rejected.

Let α:M→°2P = an “assignment”
= a total function sending a VM to a sequence of requests such that:

(#21)

∀ m,n ∈ M : (m ≠ n ⇒ α(m) ∩ α(n) = ∅)
∧

∀ m ∈ M : (∀ p ∈ α(m) : m ∈ Cμ(p))

No two sequences contain the same request, &
Every request in a sequence can be assigned to
the machine mapped to that sequence.

Let U(α) = ∑∀m ∈ M (∑∀p ∈ α(m)Uρ(p,m)) + ∑∀p ∈ P\F Uρ(p)

= the expected profit for an assignment α, where: F = ∪∀m ∈ M α(m)

(#22)

 Note that each request in α(m) is part of the prior queue, Q(p) (#4), for the subsequent request, i.e. Q(pi+1) = Q(pi) ∪ { pi }.23

 Note that, Uρ(p), and hence also any summation, ∑, over Uρ(p) values, is by definition a negative value (≤ 0).24

 !24

Appendices

A.5. The Default VM for a Request
As described in §2 of the main document, it is possible, given a request, to determine an optimal VM

configuration for processing that request. This section details how we arrive at this optimal VM.
Consider the case that a request, p, is received for which no suitable VM currently exists (i.e. Cμ(p) =

∅; see §A.4), such that a new VM, m, must be launched in order to process p. We can maximise the
profit 〈Uρ(p,m)〉 for satisfying p by minimising its completion-time, δCT(p,m), where:

〈δCT(p,m)〉 = 〈δAT(p)〉 + 〈δQT(p,m)〉 + 1.5·〈δXT(p,m)〉

Since m does not yet exist, the queuing-time, 〈δQT(p,m)〉, is just the deploy-time, 〈δDT(m)〉 (#5), which
from Table A.1.3-a is equal to 0.2·μSPEC(m). We will also assume a worse case execution-time, 〈δXT(p,m)〉
= 1.1·ρSIZE(p)/μPOW(m) (from #17), hence:

〈δCT(p,m)〉 = 〈δAT(p)〉 + 0.2·μSPEC(m) + 1.65·ρSIZE(p)/μPOW(m)
= 〈δAT(p)〉 + 0.2·(μPOW(m) + μDISK(m)) + 1.65·ρSIZE(p)/μPOW(m) (Table A.1.2-a)

= 0.2·μPOW(m) + 1.65·ρSIZE(p)/μPOW(m) + 〈δAT(p)〉 + 0.2·μDISK(m)

Now ρSIZE(p) is given, and μDISK(m) ≥ ρSIZE(p) (#7). Since we are looking to maximise profit, we also want
to ensure that μDISK(m) − ρSIZE(p) is minimised , the upshot of which is that μDISK(m) is determined just by 25

ρSIZE(p) ~ specifically, given the permitted values of ρSIZE(p) & μDISK(m) (Tables A.2.2-a & A.1.2-a resp.):

We will also assume that the action time, 〈δAT(p)〉, is either a constant or a function over ρSIZE(p), which
means that we can only attempt to minimise 〈δCT(p,m)〉 by changing μPOW(m). Taking the differential of
〈δCT(p,m)〉 with respect to μPOW(m) ..

d〈δCT(p,m)〉/dμPOW(m) = 0.2 − 1.65·ρSIZE(p)/μPOW(m)2

.. the minima occur when:

Equation #23 thus gives the unique value of μPOW(m), call it °μPOW(m), for which 〈δCT(p,m)〉 is minimal. 26

From Table A.1.2-a, however, μPOW(m) is constrained to take only certain values , so: 27

• Let −μPOW(m) = the largest permitted value of μPOW(m) ≤ °μPOW(m), if any, else −μPOW(m) = 1.6;
• Let +μPOW(m) = the smallest permitted value of μPOW(m) > °μPOW(m), if any, else +μPOW(m) = 16.8;
• We then choose either −μPOW(m) or +μPOW(m) based on which gives the greatest utility according to

the following formula (derived in Box A.5-a next page):

In sum, for a request, p, for which no suitable machines currently exist (Cμ(p) = ∅), equations #22 and
#23 give a unique VM specification, μSPEC(m) = μPOW(m) + μDISK(m), for which the expected completion-
time, 〈δCT(p,m)〉 is minimised. We refer to this as the ‘default’ VM for a request. Generalising, even
when suitable machines are available to process a request, there is no guarantee that any of them will
give higher utility than the default. Hence, in all cases it is worthwhile to assess the utility of assigning
the request to its default VM.

μDISK(m) = 2⎡log2(ρSIZE(p))⎤ (#22)

0.2 − 1.65·ρSIZE(p)/μPOW(m)2 = 0

rearranging: μPOW(m)2 = 1.65·ρSIZE(p)/0.2
μPOW(m) = √(8.25·ρSIZE(p)) (#23)

〈Uρ(p,m)〉 = Φ(p)·(χρ·ρSIZE(p) − χCT·〈∆CT(p,m)〉) − χμ(m)·⎡α/δμ⎤ (#24)

where: α = 0.2·(μPOW(m) + μDISK(m)) + 2.2·ρSIZE(p)/μPOW(m)

 Since ρSIZE(p) is fixed, increasing μDISK(m) − ρSIZE(p) just means increasing μDISK(m), hence also μSPEC(m) and so i) the cost ρ€μ(p,m), 25

of using m to process p, and ii) the deploy-time δDT(m), and hence also the completion-time, δCT(p,m).
 We can ignore −ve roots, since by definition μPOW(m) > 0.26

 More precisely: μPOW(m) = μCLK(m)·μCORES(m) + 0.6·μMEM(m) where μCLK(m), μCORES(m) and μMEM(m) have constrained values.27

 !25

Appendices

Box A.5-a: Expected Profit w.r.t. the Default VM

From #13, the expected profit is: 〈Uρ(p,m)〉 = €ρC(p) − 〈ρ€μ(p,m)〉:

From #10 and Table A.2.3-b: €ρC(p) = €ρ(p) − 〈€CT(p,m)〉
= χρ·ρSIZE(p)·Φ(p) − χCT·〈∆CT(p,m)〉·Φ(p)
= Φ(p)·(χρ·ρSIZE(p) − χCT·〈∆CT(p,m)〉)
where: 〈∆CT(p,m)〉 = 〈δCT(p,m)〉 − mδCT(p), if 〈δCT(p,m)〉 > mδCT(p), else 0
and: mδCT(p) = κCT·ρSIZE(p)/Φ(p)

From #14: 〈ρ€μ(p,m)〉 = t€μ(m,〈τEND(p,m)〉)
= χμ(m)·⎡α/δμ⎤, where: α = 〈τEND(p,m)〉 − 〈τLAUNCH(m)〉

= δDT(m) + 〈δPT(p,m)〉
= 0.2·μSPEC(m) + 2·〈δXT(p,m)〉

(taking the worse case δXT) = 0.2·μSPEC(m) + 2.2·ρSIZE(p)/μPOW(m)
= 0.2·(μPOW(m) + μDISK(m)) + 2.2·ρSIZE(p)/μPOW(m)

Hence, the expected profit:
〈Uρ(p,m)〉 = Φ(p)·(χρ·ρSIZE(p) − χCT·〈∆CT(p,m)〉) − χμ(m)·⎡α/δμ⎤

 !26

Appendices

B. Key Differences w.r.t. D4.4.1

This appendix briefly outlines the key differences between the model presented in this deliverable
and the original version presented in D4.4.1. In terms of code structure, the changes are considerable.
The ABS implementation described in D4.4.1 (§2.4), for example, includes 24 distinct interfaces/classes
(not counting interface implementations), while the present model comprises just 6. The underlying
reasons for these structural changes are as follows:

• Simplification of the architecture:
‣ The architecture of the ETICS service as originally presented consisted of 3 main components:

the RPM, the Resource Pool (the set of deployed VMs), and an intermediary Execution Engine,
whose task was to distribute requests (received from the RPM), one at a time, to their assigned
VMs (as those VMs became available). With the introduction of the distributed GA (see §3),
however, and in particular the decision to execute GA processes on pooled VMs, we decided
that the Execution Engine per se was an unnecessary complication . 28

‣ The original model also included a ResourceFactory interface, which has since been superseded
by the built-in ABS CloudProvider & DeploymentComponent APIs.

• Move towards functional (as opposed to OO) modelling:
‣ As noted in $4, for the present deliverable we have tried to restrict the use of OO constructs for

modelling only the active components of the system, with the information exchanged between
them captured, instead, by ABS datatypes. Accordingly, many of the interfaces/classes defined
in D4.4.1 have been replaced by functional counterparts. In particular:
- ResourceInfo/ResourceConfig interfaces have been replaced by VMData/VMInfo datatypes ;29

- The Request & SLA interfaces have been replaced by corresponding Request & SLA datatypes;
• Simplified User Model:

‣ The original ABS model incorporated a more complex model of end users. Specifically, each
user belonged to a ‘team’, operating within a particular international time-zone, with request
frequencies (probabilistically) determined by typical ‘working hours’ (e.g. 9-5, Mon-Fri). In the
present deliverable we decided that this level of detail was an unnecessary complication, and
opted instead for a minimal stochastic model (generating requests with random parameters at
random times). Arbitrarily more complex/realistic scenarios can be added later if needed.

With fewer building blocks, we can also simplify the overall interface/class hierarchy (in particular
by collapsing the original high-level Mutable, Monitored & Queriable Resource Pool distinctions), and
eliminate some of the observer interactions (i.e. RequestListener & ResourceListener interfaces). Progress
and state monitoring in the original model was distributed and piecemeal, but is now (as noted in $4)
centralised in a singleton Tally object.

Finally, in D4.4.1 (§3.5) we noted an intention to investigate diverse RPM implementations (namely:
’Baseline’, ‘Drive-Based’ & ‘Envisage’ approaches), collectively packaged under a configurable feature
model. Following feedback from other partners, we opted instead just for the distributed GA approach
described in this deliverable.

 But note that the original model remains the more generic, since it makes no assumptions about how the RPM’s distributed 28

decision mechanism is implemented.
 The name change from ‘Resource’ to ‘VM’ is due to the adoption in ABS of the term ‘resource’ to signify CPU-speed, 29

memory, disk space, band-width, and the like. We decided, however, that it was best to stick with the terms ‘Resource Pool’
and ‘Resource Pool Manager’ (RPM) for the ETICS components.

 !27

