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Executive Summary:
Resource-aware Modeling the FRH Case Study

This document summarises deliverable D4.3.2 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable reports on the modeling of the resource-aware version of the FRH case study and deploy-
ment scenarios in the abstract behavioral specification language, using the Envisage modeling techniques.
Based on the application of these techniques, we provide detailed feedback to T1.2, T1.3, T1.4, T2.2, T2.3.
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Chapter 1

Introduction

FRH develops the Fredhopper Cloud Services to offer search and targeting facilities on a large product
database to e-Commerce companies as services (SaaS) over the cloud computing infrastructure (IaaS). In
Task 4.3 we conduct a case study on the Fredhopper Cloud Services, in which we aim to investigate the
correspondence between user-level SLAs and lower level performance metrics. In particular, to fulfill user-
level SLAs, our service deployment may offer SLA-aware services, evolve service implementation and configure
cloud resource usage autonomously.

In the previous deliverable D4.3.1, we provided an initial model in the Abstract Behavioural Specification
language (ABS) [1, 5] of the structural and functional aspects of the Fredhopper Cloud Services. This model
forms the starting point for the resource modeling, formal specification and monitor generation. Structurally
at the block level (i.e. the kinds of services running in the FRH cloud) which is described in Section 2.1, the
model remains the same. Inside the blocks, the various services are extended with resource-awareness and
deployment concerns; this is detailed in Sections 2.2 and 2.3.

Support for deployment of services that allow autonomous management of cloud resource usage - based on
formalizations of SLA’s - requires a resource-aware model of the Fredhopper Cloud Services. This deliverable
D4.3.2 presents in Chapter 2 how the techniques developed in WP1 and WP2 were applied to obtain a
resource-aware model. We show how resources are integrated through virtual machines and cost annotations
- based on measurements from real-world log files - that specify resource consumption. Furthermore, we
present the detailed modeling of deployment scenarios in a declarative manner. Based on these applications,
in Chapter 3 we give detailed feedback to various ongoing technical tasks, pointing out desired extensions
and refinements. In particular, we provide input for the final phase of T1.2, T1.3, T1.4, T2.2 and T2.3.
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Chapter 2

Fredhopper Cloud Services

Support for deployment of services that allow autonomous management of cloud resource usage - based
on formalizations of SLA’s - requires a resource-aware model of the Fredhopper Cloud Services. In this
chapter, we apply the Envisage framework to obtain such a model. In particular, we present the modeling of
deployment scenarios, and show how resources are integrated through virtual machines and cost annotations
that specify resource consumption. The initial ABS model of the Fredhopper Cloud Services, which was
presented in the previous deliverable D4.3.1, forms the starting point.

2.1 Building Blocks

Figure 2.1 shows a block diagram of the Fredhopper Cloud Services, where the arrows indicate service
consumption and service provision.

Service EndpointService Endpoint

Infrastructure

Platform Service

Service 
Instance

Load Balancing Service

Monitoring/
Alerting
Service

Service Endpoint

Service 
Instance

Service 
Instance

Service 
Instance

Deployment Service

Service APIs

Fredhopper 
Cloud 
Service

Cloud 
Provider

Consumes Provides

CustomersCustomers

Figure 2.1: Block diagram of the Fredhopper Cloud Services

2.1.1 Service Endpoints

Fredhopper Cloud Services provides several SaaS offerings on the cloud. These services are exposed via
endpoints. In practice these endpoints typically are implemented to be RESTful and accept communications
over HTTP. For example, one of the services offered by these endpoints is the Fredhopper query service,

5



Envisage Deliverable D4.3.2 Resource-aware Modeling the FRH Case Study

which allows users to query over their product catalogue via full text search1 and faceted navigation2.
Service endpoints are exposed via the Load Balancing Service that distributes requests over multiple service
instances.

2.1.2 Service Instances

The advantages of offering software as a service on the cloud over on-premise deployment include the following:

• to increase fault tolerance;

• to handle dynamic throughputs;

• to provide seamless service update;

• to increase service testability; and

• to improve the management of infrastructure.

To fully utilize the cloud computing paradigm, software must be designed to be horizontally scalable3. Typi-
cally, software services are deployed as service instances. Each instance offers the same service and is exposed
via the Load Balancing Service, which in turn offers a service endpoint (Figure 2.1). Requests through the
endpoint are then distributed over the instances. In the event of increasing/decreasing throughput, more/less
instances may be deployed and be exposed through the same endpoint. Moreover, at any time, if an instance
stops accepting requests, a new instance may be deployed in place.

2.1.3 Load Balancing Service

The Load Balancing Service is responsible for distributing requests from service endpoints to their cor-
responding instances. Currently at FRH, this service is implemented by HAProxy (www.haproxy.org), a
TCP/HTTP load balancer.

2.1.4 Platform Service

The Platform Service provides an interface to the Cloud Engineers [4, Table 3.1] to deploy and manage
service instances and to expose them through service endpoints. The Platform Service takes a service
specification, which includes a resource configuration for the service [4, Section 3.1], and creates and deploys
the specified service. A service specification from a customer determines which type of service is being
offered, the number of service instances to be deployed initially and the amount of virtualized resources to
be consumed by instance.

2.1.5 Deployment Service

The Deployment Service provides an API to the Platform Service to deploy service instances onto specified
virtualized resources provided by the Infrastructure Service. The API also offers operations to control the
lifecycle of the deployed service instances. The Deployment Service allows the Fredhopper Cloud Services to
be independent of the specific infrastructure that underlies the service instances.

2.1.6 Infrastructure Service

The Infrastructure Service offers an API to the Deployment Service to acquire and release virtualized re-
sources. At the time of writing the Fredhopper Cloud Services utilizes virtualized resources from the Amazon
Web Services (aws.amazon.com), where processing and memory resources are exposed through Elastic Com-
pute Cloud instances (https://aws.amazon.com/ec2/instance-types/).

1en.wikipedia.org/wiki/Full_text_search
2en.wikipedia.org/wiki/Faceted_navigation
3en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
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2.1.7 Monitoring and Alerting Service

The Monitoring and Alerting Service provides 24/7 monitoring services on the functional and non-functional
properties of the services offered by the Fredhopper Cloud Services, the service instances deployed by the
Platform Service, and the healthiness of the acquired virtualized resources.

If a monitored property is not satisfied, Cloud Engineers are alerted via emails and SMS messages
and Cloud Engineers can react accordingly. For example, if the query throughput of a service instance is
below a certain threshold, Cloud Engineers increase the amount of resources allocated to that service. For
broken functional properties, such as a runtime error during service uptime, Cloud Engineers notify Software
Engineers for further analysis.

2.2 Object Oriented Design

In order to apply the Envisage framework, to provide feedback to its ongoing development and to evaluate
its effectiveness, we develop a resource-aware ABS model of the Fredhopper Cloud Services in Task 4.3. In
this section we provide an overview of the resource-aware version of the ABS model of the Fredhopper Cloud
Services.

2.2.1 Resources and Virtual machines

To support a fine-grained management of resource usage, we first model the kinds of virtual machines that
are available, together with their associated resource properties and cost. Capturing the detailed resource
properties of a virtual machine is a prerequisite to be able to make an informed decision which kind of virtual
machine is appropriate to use when scaling. For instance, if the bandwidth is identified as a bottleneck using
the monitoring framework, use virtual machines with enhanced networking.

As noted above, the Fredhopper Cloud Services currently utilizes Amazon AWS instances. Figure 2.2
shows a JSON file with several kinds of AWS instances, and their associated resources. “CPU” denotes the
number of cores, “Memory” is the size of the memory (in MiB) and “IO” specifies the capacity of the storage
device in GB.

The JSON file is processed and converted automatically into a representation of the virtual machines in
the ABS. Figure 2.3 defines an ABS data type that enumerates the types of virtual machines.

The capacity of the resources associated to each type of virtual machine is stored in a map of type
Map<Resourcetype, Rat>. Figure 2.4 shows the map with the properties of each kind of virtual machine.
The “CostPerInterval” property indicates the pricing of an instance per hour. The priced used are for on-
demand instances: instances paid for by the hour, rather than “reserved” instances. Using a combination of
on-demand instances and reserved instances for the same kind of virtual machine is possible by distinguish-
ing two different virtual machine types (i.e., C3_LARGE_RESERVED and C3_LARGE_ONDEMAND) with the same
resources but different cost per interval.

2.2.2 Service Configuration

Figure 2.5 shows the basic data types involved in a service configuration. A service configuration is modeled
as a Config value that consists of the service type (ServiceType), the number of service instances and its re-
source requirement (List< Map<Resourcetype, Rat> >). Given a configuration c, the value instances(c)
is a list of resource descriptions l such that the length(l) is the number of service instances to be deployed
and the n-th map in the list denotes the minimal amount of resources required for the n-th instance. The
resource requirements are used to identify a suitable virtual machine. For instance, if the map for the n-th
instance contains the pair Pair(Memory, 3750), then the virtual machine on which the n-th service will be
deployed should have at least 3750 MiB of memory.
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"DC_description":

[ {

"name" : "c3.large",

"provide_resources" : {"IO" : 32, "CPU" : 2, "Memory" : 3750},

"cost" : 105

},

{

"name" : "c3.xlarge",

"provide_resources" : {"IO" : 80, "CPU" : 4, "Memory" : 7500},

"cost" : 210

},

{

"name" : "c3.2xlarge",

"provide_resources" : {"IO" : 160, "CPU" : 8, "Memory" : 15000},

"cost" : 420

},

{

"name" : "m3.medium",

"provide_resources" : {"IO" : 4, "CPU" : 1, "Memory" : 3750},

"cost" : 70

},

...

]

Figure 2.2: JSON file with virtual machine types

data VMType =

C3_LARGE

| C3_XLARGE

| C3_2XLARGE

| M3_MEDIUM

| ...

;

Figure 2.3: Enumeration of virtual machine types for Amazon infrastructure provider

2.2.3 Service Endpoints and Instances

Figure 2.6 shows the static structure of an endpoint and its implementation and Figure 2.7 presents the
corresponding ABS interface definition. The interface EndPoint models a service endpoint. It can be invoked
(invoke(Request)) with a request of type Request. Currently Request is a type synonym to Integer to
denote the size of the request. The method returns Response value to denote the corresponding response.
Currently Response is a type synonym to Boolean to denote whether the request is successful. It is True
if the invocation is successful, and False otherwise. In the production system of the Fredhopper Cloud
Services, the resource utilization, may be dependent on the following two factors:

• the amount of data over which a request queries4; and

• the size of the corresponding (HTTP) response.

We use a type synonym to Integer as an argument to invoke(Request) for modeling these factors. The
interface EndPoint is extended by Service and LoadBalancerEndPoint.

4In the context of the Query API, this is the size of the underlying product catalog
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/∗data Resourcetype = CPU
| Memory
| Bandwidth
| CostPerInterval
| ...; // Defined in ABS.DC

∗/

def Map<Resourcetype, Rat> vmResources(VMType v) =

case v {

C3_LARGE => map[Pair(Memory,3750), Pair(CPU,2),

Pair(CostPerInterval, 105/1000)];

C3_XLARGE => map[Pair(Memory,7500), Pair(CPU,4),

Pair(CostPerInterval, 210/1000)];

C3_2XLARGE => map[Pair(Memory,15000), Pair(CPU,8),

Pair(CostPerInterval, 420/1000)];

M3_MEDIUM => map[Pair(Memory,3750), Pair(CPU,1),

Pair(CostPerInterval, 67/1000)];

...

};

Figure 2.4: Properties of virtual machine types

data ServiceType = ..;

data Config = Config(ServiceType serviceType, List< Map<Resourcetype, Rat> > instances);

Figure 2.5: Service specification
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Iterate over services 

*..1
+invoke()

-cost
-service 

ServiceImpl

+remove()
+add() 

«interface» 
LoadBalancerEndPoint 

«interface» 
Service 

Figure 2.6: UML class diagram of the Fredhopper Cloud Services (1)

The interface Service models a service instance that performs the actual computation for the request
received by its service endpoint.

Figure 2.8 shows the implementation of ServiceImpl.invoke(Int). The class implementation takes as
arguments at construction its Integer id, its service type st, the name of the customer to which the service
is provided c, and the cost value, which denotes the amount of CPU resources consumed by the request
when the size of the request is 1. Besides these two parameters, the exact latency of a request depends on
the amount of resources available when performing the request: latency decreases if the virtual machine that
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type Id = Int; def Id init() = 1; def Id incr(Id id) = id + 1;

type Request = Int; def Int cost(Request r) = r;

type Response = Bool; def Response success() = True; def Bool isSuccess(Response r) = r;

interface EndPoint {

Response invoke(Request req);

Unit setStatus(State status);

State getStatus();

}

interface LoadBalancerEndPoint extends EndPoint {

Bool remove(Service service);

Bool add(Service service);

}

interface Service extends EndPoint {

Id getServiceId();

ServiceType getServiceType();

Customer getCustomer();

Int getLatency();

Int getRequestCount();

Rat getCPU();

Rat getBandwidth();

Rat getMemory();

}

Figure 2.7: ABS interface of the Fredhopper Cloud Services (1)

type Customer = String;

class ServiceImpl(Id id, ServiceType st, Customer c, Int cost) {

Int latency = 0; Int log = 0;

..

Int cost(Request request) {

return max(1, cost(request)) * cost;

}

Response invoke(Request request) {

Int cost = this.cost(request);
Int time = currentms();

[Cost: cost] this.log = this.log + 1;

time = currentms() - time;

this.latency = max(this.latency, time);

return success();

}

..

}

Figure 2.8: Implementation of ServiceImpl.invoke(Int)

processes the request has more CPU resources, and latency increases if cost and Request increase.
We use the type synonym Customer to model the customer’s name. The function currentms() is a

built-in ABS function that returns the current clock cycle, and function max(a, b) returns the larger value
of a and b. The method invoke uses the cost annotation [Cost: cost] to denote the required number of
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CPU units to execute the annotated statement.

class LoadBalancerEndPointImpl(List<Service> services) implements LoadBalancerEndPoint {

List<Service> current = services;

{ assert this.services != Nil; }

Response invoke(Request request) {

if (this.current == Nil) {

this.current = this.services;
}

Service ser = head(this.current);
this.current = tail(this.current);
return await ser!invoke(request);

}

..

}

Figure 2.9: Implementation of LoadBalancerEndPointImpl.invoke(Request)

class LoadBalanceCPU(List<Service> services) implements LoadBalancerEndPoint {

{ assert this.services != Nil; }

Response invoke(Request request) {

List<Service> remaining = services;

Service best = head(remaining);

Fut<Rat> fMostCPU = ser!getCPU();

Rat mostCPU = fMostCPU.get;

while(remaining != Nil) {

remaining = tail(remaining);

Service ser = head(remaining);

Fut<Rat> fCPU = ser!getCPU();

Rat cpu = fCPU.get;
if(cpu < mostCPU) {

best = ser;

mostCPU = cpu;

}

}

return await best!invoke(request);

}

..

}

Figure 2.10: Implementation of LoadBalancerEndPointImpl.invoke(Request)

The interface LoadBalancerEndPoint extends interface EndPoint with the ability to dynamically as-
sociate service instances to a service endpoint, thereby allowing requests to the endpoint to be dis-
tributed. The class LoadBalancerEndPointImpl implements LoadBalancerEndPoint and its implemen-
tation of invoke(Request) is shown in Figure 2.10. This method implements a simple round-robin load
balancing strategy to distribute requests. The class implementation LoadBalancerEndPointImpl is para-
metric to a non-empty list of unique Service references. The class LoadBalancerOptimizeCPU implements a
resource-aware load balancer to distribute requests. Specifically, a request is directed to the service instance
that currently has the most CPU resources available.

11



Envisage Deliverable D4.3.2 Resource-aware Modeling the FRH Case Study

2.2.4 Service Architecture

Figure 2.11 shows the static structure of the Fredhopper Cloud Services, and Figure 2.12 shows the corre-
sponding interfaces in ABS. We present the modeling of the Monitoring and Alerting Service in Section 2.2.5.
The static structure shown in Figure 2.11 models dependencies between various services in the Fredhopper
Cloud Services.
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Fut<DC> fd = r!acquire(r);
DC dc = fd.get;
[DC: dc] ser = new ServiceImpl();

Figure 2.11: UML class diagram of the Fredhopper Cloud Services (2)

ABS models virtualized resources as a DeploymentComponent. A DeploymentComponent takes a value
of the data type Map<Resourcetype, Rat> as the resource specification. The abbreviation DC is a type
synonym for DeploymentComponent.

The interface InfrastructureService is responsible for providing/managing virtual machines in the
form of DeploymentComponents. This interface is implemented by the class InfrastructureServiceImpl
shown in Figure 2.13. The figure shows the class’s implementation of acquire(Id, VMType). The method
takes as input an id of the virtual machine to be acquired and its type, and returns an instance of the
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interface InfrastructureService {

DeploymentComponent acquire(Id id, VMType vmType);

Unit release(DeploymentComponent component);

}

interface DeploymentService {

Unit install(Customer c, ServiceType st, Id serviceId, VMType v);

Unit uninstall(Id serviceId);

Unit start(Id serviceId);

Unit stop(Id serviceId);

}

interface LoadBalancerService {

Bool enable(Id endPointId);

Bool disable(Id endPointId);

Bool add(List<Service> services, Id endPointId);

Bool remove(Id endPointId);

Maybe<EndPoint> getServiceEndPoint(Id endPointId);

Bool decrease(Id endPointId, List<Service> services);

Bool increase(Id endPointId, List<Service> services);

}

interface PlatformService {

Unit incrService(Id endPoint, List< Map<Resourcetype, Rat> > instances);

Unit decrService(Id endPoint, List<Id> serviceIds);

List<Id> getEndPoints();

Maybe<Service> getService(Id serviceId);

List<Id> getServiceIds(Id endPoint);

Unit alterResource(Id serviceId, Map<Resourcetype, Rat> r);

Id createService(Config config, Customer customer);

Unit removeService(Id endPoint);

}

Figure 2.12: ABS interface of the Fredhopper Cloud Services (2)

specified kind of machine. The method acquire either creates a new DeploymentComponent of the specified
type, or reuses an existing DeploymentComponent if the id already exists. The capacity of the resources
associated to the virtual machine are retrieved through the Map<Resourcetypes, Rat> vmResources given
in Figure 2.4.

The interface LoadBalancerService in Figure 2.12 is responsible for binding requests to service endpoints
to their constituent service instances. DeploymentService is responsible for allocating virtualized resources
to service instances. This is implemented by the class DeploymentServiceImpl. Figure 2.14 shows the
implementation of method DeploymentServiceImpl.install(Customer, ServiceType, Id, VMType).
This method instantiates a service of the specified type on a machine of the given type. The
allocation of the virtualized resources to the new service instance is realized by the statement
[DC: vm] Service service = new ServiceImpl(serviceId, st, customer, 2);, which indicates that
the new service instance executes on the virtual machine vm.

PlatformService provides the interface to Cloud Engineers to add and to remove services. The interface
also provides operations to the Monitoring and Alerting Service for adding and removing service instances to
an endpoint and for adding and removing resources from a service instance. PlatformService is implemented
by class PlatformServiceImpl, whose definition of method Int createService(Config, Customer) is
shown in Figure 2.15. The method createService takes a service configuration and a customer identifier,
deploys a corresponding service for that customer and returns the identifier of the service endpoint. Figure
2.25 shows how the services in the Fredhopper Cloud Services interact to deploy a service. Specifically,
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class InfrastructureServiceImpl implements InfrastructureService {

...

Map<Id, DeploymentComponent> inUse = EmptyMap;

DC acquire(Id id, VMType vmType) {

DC vm = null;
Map<Resourcetype, Rat> resourceConfig = vmResources(vmType);

Maybe<DC> md = lookup(inUse, id);

case md {

Nothing => {

//Allocate new instance of type vmType
vm = new DeploymentComponent(intToString(id), resourceConfig);

inUse = InsertAssoc(Pair(id, vm), inUse);

}

Just(d) => {

//Use existing instance with the specified id
vm = d;

}

}

return vm;

}

}

Figure 2.13: Definition of InfrastructureServiceImpl.acquire(Id, VMType)

class DeploymentServiceImpl(InfrastructureService rp) implements DeploymentService {

Map<Service, DC> allocations = EmptyMap;

Map<Id, Service> services = EmptyMap;

Service install(Customer customer, ServiceType st, Id serviceId, VMType v) {

assert lookup(services, serviceId) == Nothing;

//acquire resource
DC vm = await rp!acquire(serviceId, v);

//instantiate service on vm
[DC: vm] Service service = new ServiceImpl(serviceId, st, customer, 2);

//update maps with resources (allocations) and service instances (services)
allocations = InsertAssoc(Pair(service, dc), allocations);

services = InsertAssoc(Pair(serviceId, service), services);

return service;

}

Figure 2.14: Definition of DeploymentServiceImpl.install

the method first iteratively creates the specified number of service instances, allocating each with a virtual
machine that satisfies the resource requirements. Figure 2.25 shows the following:

1. the PlatformService interacts with the DeploymentService to install
(install(Customer c, ServiceType st, Id serviceId, VMType v)) and start service instances
(start(Id));

2. the DeploymentService interacts with the InfrastructureService to allocate
(acquire(Id id, VMType vmType)) the required resources (DeploymentComponent) to the ser-
vice instances;
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3. after all service instances are deployed, the PlatformService interacts with the LoadBalancerService
to bind (add(List<Service>, Id)) the instances to its service endpoint and to enable the endpoint
(enable(Id)).

Figure 2.11 shows how the model of the Fredhopper Cloud Services respects the above dependencies.
Specifically, PlatformService depends on DeploymentService and LoadBalancerService via the imple-
mentation PlatformServiceImpl, while DeploymentService depends on InfrastructureService via the
implementation DeploymentServiceImpl. Dependencies are provided via dependency injection (i.e., passing
the object that provides the service to the object that depends on it).
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class PlatformServiceImpl(DeploymentService ds, LoadBalancerService ls) .. {

Map<Id, ResourceService> services = EmptyMap;

Map<Id, Id> serToEndPoint = EmptyMap; Map<Id, List<Id>> endPoints = EmptyMap;

Map<Customer, Map<Config, Id>> customers = EmptyMap; Id serviceId = init();

Id createService(Config config, Customer customer) {

//this customer cannot already have the same service deployed
ServiceType st = serviceType(config);

assert lookupCustomerService(customers, customer, st) == Nothing;

List<Int> instances = instances(config);

//number of instances must be positive
assert instances != Nil;

//endpoint id
Int endPoint = serviceId + 1;

//create service instances
List<Service> currentServices = Nil;

List<Id> ids = Nil;

while (instances != Nil) {

Int res = head(instances);

Service service = this.createServiceInstance(customer, st, res);

Fut<Id> idf = service!getServiceId();

Id id = idf.get;
ids = Cons(id, ids);

serviceToEndPoints = InsertAssoc(Pair(id, endPoint), serviceToEndPoints);

currentServices = Cons(service, currentServices);

instances = tail(instances);

}

//associate endpoint with service instances
endPoints = InsertAssoc(Pair(endPoint, ids), endPoints);

//update customer record
customers = put(customers, customer,

put(lookupDefault(customers, customer, EmptyMap), config, endPoint));

//add services to load balancer
await ls!add(currentServices, endPoint);

//enable service
await ls!enable(endPoint);

return endPoint;

}

}

Figure 2.15: Definition of PlatformServiceImpl.createService()

2.2.5 Monitoring

The static structure diagram of the Fredhopper Cloud Services shown in Figure 2.11 includes the Monitoring
and Alerting Service. This service is modeled by the interface MonitoringService, which is implemented
by the class MonitoringServiceImpl in ABS. The class MonitoringServiceImpl, shown in Figure 2.16,
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has a run method that iteratively checks which monitors in the list of scheduled monitors (monitorMap) are
ready in every clock cycle (await duration(1, 1)).

class MonitoringServiceImpl implements MonitoringService {

Map<Int, Map<Int, List<Monitor>>> monitorMap = EmptyMap;

..

Unit run() {

while (True) {

await duration(1, 1); // advance the clock
this.monitorMap = decr(this.monitorMap); //decrement
List<Monitor> toBeRun = lookupAllSecond(this.monitorMap, 0); //find all to be run
this.monitorMap = reset(this.monitorMap); //reset
//execute monitors
while (toBeRun != Nil) {

this!execute(head(toBeRun));
toBeRun = tail(toBeRun);

}

}

}

Unit execute(Monitor m) {

Action a = await m!monitor();

if (a != null) {

await a!action();

}

}

..

}

Figure 2.16: Definition of MonitoringServiceImpl.run()

The list of scheduled monitors are recorded as a two level map, where the first level key records the
number of clock cycles between each execution of the lists of Monitors in the second level map, and the
second level key records the number of remaining clock cycles until the next execution.

Given a Monitor m, the method invocation m!monitor() returns a possibly null Action object a. The
returned object is null if no further action is required. Otherwise, the corresponding method a!action()

executes the specified action.
Figures 2.26 – 2.28 depict the interactions between services to scale up the underlying resources of service

instances suffering from high latency.
Figure 2.26 shows a sequence diagram of the MonitoringServiceImpl invoking a Monitor object

to check the average latency of requests being served by all service instances (monitor()). The dia-
gram shows that the Monitor collects latency reading (Service.getLatency()) from all service instances
(PlatformService.getServiceIds(Int)) of all end points (PlatformService.getEndPoints()). If the
latency of one or more service instances is too high, the Monitor object returns an Action for scaling up the
virtualized resources underlying the service instances.

Figure 2.27 shows a sequence diagram of scaling up the virtualized resources (CPU unit per clock cycle)
of a service instance. The diagram shows that said instance must be first removed from the load bal-
ancer (LoadBalancerService.decrease(Int, List<Service>)), and uninstalled (uninstall(Int) from
the existing resource via the DeploymentService. Note that the said service instance must no longer
be serving requests before its removal from the load balancer. The instance is then installed onto a
new virtual machine with the specified resource requirements and then added back to the load balancer
(LoadBalancerService.increase(Int, List<Service>)).

Figure 2.28 shows a sequence diagram of scaling up the virtualized resources of a service instance when
it is the only instance to its service endpoint. In order to keep the service running, before removing the
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instance from the load balancer, a new service instance must first be installed onto the required resource and
added to the load balancer. The old instance may then be removed and uninstalled.

2.3 Resource consumption and deployment

To offer services with a high QoS level, it is crucial to find an optimal deployment configuration: the number
and kind of virtual machines used in a deployment must be sufficiently powerful and the cost of the virtual
machines must be maintained at an acceptable level. The deployment configuration must also take into
account several requirements. For example, some services should be co-located with other services: deploying
an instance of the Query Service to a machine requires the presence of the Deployment Service on that same
machine. Other service instances should be deployed on different machines, for example to increase fault
tolerance (a resource failure will then not affect both service instances) or for security or business reasons,
such as allocating a dedicated (per-customer) machine to services that manipulate sensitive private customer
data (Figure 2.17).

Figure 2.17: High-level view of a deployment

Finding an optimal deployment configuration that satisfies all requirements is a complex task that is
currently done manually by an operations team. This requires domain-specific knowledge and is prone to
human-error. Furthermore, the operations team takes conservative precautions to ensure customer quality,
by overspending on the deployment configuration. In D1.3.1, and in a recently accepted publication [3], a
tool-supported (“MODDE”) rigorous formal approach was developed that helps evaluating and automatically
synthesizes better deployment configurations in an early phase (statically, in the design phase). Since the
deployment configuration resulting from MODDE is known at an early stage, reserved instances of the
virtual machines can be used, which are typically cheaper than on-demand instances. We show here how we
have used these techniques to declaratively model deployment in the Fredhopper Cloud Services, using the
following ingredients.

• Annotations on ABS classes that specify:
(a) the amount of resource consumed by instances of the class, and
(b) dependencies to other classes.
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• A high-level declarative specification that captures requirements that should be satisfied of the desired
deployment.

• The number of available virtual machines of each kind. The types of virtual machines are provided
in a JSON file along the lines of Figure 2.2. An example JSON file showing the number of available
instances of each type is given in Figure 2.18.

{

"m1.large": 3,

"m1.xlarge": 3,

"c3.medium": 10,

"c3.large": 5,

"c3.2xlarge": 3

}

Figure 2.18: JSON file with the number of available instances of each type

Cost annotations specify the amount of resources that the annotated identity consumes, such as memory
consumption, bandwidth, or CPU cycles. We have annotated the ABS model of the Fredhopper Cloud
Services with cost annotations. The costs used in the annotations were extracted based on real-world log
files of the in-production system. The resource consumption varies over time, and scenarios can be used to
capture peaks and lows in the corresponding resource consumption. Figure 2.19 is a graph representation of
one of these log files showing the number of Query requests per second and the roundtrip time (the total time
of the HTTP request performing a Query Request as reported by the HTTP client handler). Figure 2.20
shows the size of the Query response over time (for the same customer, on the same date).

Figure 2.19: The number of queries per second (QPS) and roundtrip time (proctime) in seconds over time
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Figure 2.20: The response size (in kiB) of the Query Response over time

Figures 2.21 and 2.22 show annotations for the Query and Deployment services. The ABS annotation
Param("c", User) indicates that the automated deployer leaves the parameter unspecified, and the user is
expected to manually enter the right parameter instantiation. The annotation Param("ds", Req) means
that the parameter is required to be defined by the automated deployer (by first creating an appropriate
object of the desired type, and passing that as a parameter). Different scenarios (such as “DefaultUsage” and
“HeavyUsage”) can be defined to capture variations in deployment requirements (for example, for different
customers), and variations in resource consumption.

[Deploy: scenario[Name("DefaultUsage"), MaxUse(1), Cost("CPU", 1), Cost("Memory", 3000),

Param("c", User), Param("ds", Req)] ]

[Deploy: scenario[Name("HeavyUsage"), MaxUse(1), Cost("CPU", 2), Cost("Memory", 4500),

Param("c", User), Param("ds", Req)] ]

class QueryServiceImpl(DeploymentService ds, Customer c) implements Service

Figure 2.21: Cost annotation of Query service

[Deploy: scenario[MaxUse(2),Cost("CPU", 1), Cost("Memory", 800),

Param("rp", Req)]]

class DeploymentServiceImpl(InfrastructureService rp) implements DeploymentService}

Figure 2.22: Cost annotation of the Deployment service

When a system deployment is automatically computed, a user expects to reach specific goals and could
have some desiderata. For instance, in the considered Fredhopper Cloud Services use case, the goal is to
deploy a given number of Query Services and a Platform Service, possibly located on different machines (e.g.,
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to improve fault tolerance).
These goals and requirements are expressed in a Declarative Deployment Language: a language for stating

the constraints that the final configuration should satisfy. For instance, the following constraint states that at
least two QueryService instances and exactly one object of class PlatformServiceImpl should be deployed.
INTERFACE[IQueryService] >= 2 and CLASS[PlatformServiceImpl] = 1

More complex quantities involve constraints on the virtual machines used in deploying. For example, we
can specify that no virtual machine with less than two CPUs should contain more than one object of class
QueryServiceImpl as follows.
DC[ CPU <= 2 | CLASS[QueryServiceImpl] >= 2 ] = 0

Using such constraints it is also possible to express co-location or distribution requirements. For instance, for
efficiency reasons it could be convenient to co-locate highly interacting objects or, for security or fault toler-
ance reasons, two objects should be required to be deployed separately. We can require that an object of class
QueryServiceImpl must be always co-installed together with an object of class DeploymentServiceImpl

with the following constraint.
DC[CLASS[QueryServiceImpl] > 0 and CLASS[DeploymentServiceImpl] = 0 ] = 0

Based on the above deployment requirements, the ABS class annotations specifying resource consumption
and inter-class dependencies, and the available virtual machines in the JSON file, MODDE automatically
sythesizes a deployment configuration with the least cost. Figure 2.23 shows the output of MODDE when 2
instances of the Query service are required for a customer.

DeploymentComponent m1_large_1 =

new DeploymentComponent("m1.large_1", vmResouces(M1_LARGE));

DeploymentComponent m1_large_2 =

new DeploymentComponent("m1.large_2", vmResouces(M1_LARGE));

DeploymentComponent m1_xlarge_1 =

new DeploymentComponent("m1.xlarge_1", vmResouces(M1_LARGE));

DeploymentComponent m1_xlarge_2 =

new DeploymentComponent("m1.xlarge_2", vmResouces(M1_LARGE));

DeploymentComponent amazon_internals =

new DeploymentComponent("amazon_internals", map[]);

[DC: amazon_internals] InfrastructureService

o1 = new InfrastructureServiceImpl();

[DC: m1.xlarge_1] LoadBalancerService o2 = new LoadBalancerServiceImpl();

[DC: m1.large_1] DeploymentService o3 = new DeploymentServiceImpl(o1);

[DC: m1.large_2] DeploymentService o4 = new DeploymentServiceImpl(o1);

[DC: m1.xlarge_2] MonitorPlatformService

o5 = new PlatformServiceImpl(list[o3,o4], o2);

[DC: m1.large_2] IQueryService o6 = new QueryServiceImpl(o4, CustomerX);

[DC: m1.large_1] IQueryService o7 = new QueryServiceImpl(o3, CustomerX);

[DC: m1.xlarge_2] ServiceProvider o8 = new ServiceProviderImpl(o5, o2);

Figure 2.23: Initial optimal deployment configuration by MODDE

A graphical representation of the distribution of objects over the resources corresponding to this deploy-
ment configuration is shown in Figure 2.24. Virtual machines are depicted as boxes containing the objects,
and an edge from an object a to an object b represents the use of b as a parameter for the creation of a.

The deployment configuration suggested by MODDE differs from the one used in-production, which
uses only instances of type c3.xlarge (one for the Platform Service and the Service Provider, one for the
Load Balancer, two for the two Query and Deployment Service pairs). This discrepancy is due to the fact
that we allowed MODDE to use all the possible AWS instances. Currently, the machines of type m1 have
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Figure 2.24: Deployment Configuration synthesized by MODDE

been deprecated and new m1 machines could not be acquired any more. The optimal solution computed by
MODDE can therefore be only used by customers that have already m1 running machines. New customers
have to rely instead on machines of type m3 and c3.

If MODDE is executed taking into account just the new m3 and c3 AWS instances, the computed
configuration obtained is exactly the one currently adopted by the operations team.

2.4 Summary

Code Metric Value
Lines of code 1410
Functions 30
Classes 13

Interfaces 15
Data types and type synonyms 8

Table 2.1: Statistics

In this chapter we presented the resource-aware modeling of the Fredhopper Cloud Services and showed how
we modeled deployment in a declarative manner. Table 2.1 shows some code metrics of the resource-aware
ABS model of the Fredhopper Cloud Services.
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Figure 2.25: UML sequence diagram of creating a service using the Fredhopper Cloud Services
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Figure 2.26: UML sequence diagram of monitoring service latency
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Figure 2.27: UML sequence diagram of scaling a service with more than one service instance
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Figure 2.28: UML sequence diagram of scaling a service with only one service instance
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Chapter 3

Experience and feedback to technical tasks

We successfully applied the Envisage framework to obtain a resource-aware model and capture deployment
scenarios of the Fredhopper Cloud Services. Based on our experiences, in this chapter we give detailed
feedback to various ongoing technical tasks pointing out desired extensions and refinements to increase
accuracy and effectiveness. In particular, we provide input for the final reports of T1.2, T1.3, T1.4, T2.2
and T2.3.

Task T1.2: Modeling of Resources A virtual machine (VM) is modeled as a DeploymentComponent,
and consists of several resource types: CPU, Bandwidth and Memory. Each resource type in a VM has a
certain “capacity”, given by a (single) number. Modeling resources and deployment at design-time allowed
for early analysis comparing different deployments, in particular to identify trade-offs between the QoS-level
and the cost of the system. We suggest the following enhancements to further increase the accuracy of the
resource modeling.

• A fundamental additional resource type not currently supported is storage. The speed (rather than
the storage capacity) of the storage device has been a bottleneck in the in-production system at FRH,
and has affected deployment decisions, in the sense that I/O-optimized machines are used for certain
kinds of services.

• The accuracy of the modeling of the resource types can be enhanced by supporting multiple metrics as
the capacity of the resource. More specifically, for memory, in addition to the total size of the memory,
its speed can be considered. For the CPU resource type, the number of cores could be distinguished
from the speed of the cores. At the moment, the capacity of each resource type present is given by a
single number, forcing the user to choose between memory capacity or memory speed (and similarly
for the other resource types).

• In practice, virtual machines and resources can fail (more on this below, in T1.3), and machines can
be terminated. This should not change only the state of the machines (or DeploymentComponents), it
also affects the objects running on these machines: in reality, these stop executing / fail. To capture
this behavior accurately, the ABS semantics for objects should take failures of the underlying virtual
machine on which it runs into account.

Task T1.3: Modeling of Deployment The declarative language for modeling deployment was intuitive
to use and proved to be sufficiently expressive to capture the deployment scenarios of the in-production
Fredhopper Cloud Services. We identify several desired extensions below.

• Virtual machines can fail, for instance due to an operating system kernel error, or a hardware failure,
but currently, failures are not taken into account. Support for modeling such failures opens the door
for reasoning about failures (both static and dynamic analyses, through monitoring and simulation),
such as how failures propagate, and design of fault-tolerant systems.
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• Virtual machines can be started, stopped, fail, and so on: they have a well-defined state. Throughout its
lifetime, the instance moves from state to state. When an instance is started, it enters an initialization
state. After it initializes successfully, it enters a “running” state. Instance states can also be triggered
involuntarily, due to failures.

Adding states to virtual machines, and making it possible to retrieve this state for a specified machine,
is important for load balancing, monitoring, cost management (i.e. charge only for machines in running
state), etc. and allows implementing services with increased robustness. Figure 3.1 shows a possible
virtual machine lifecycle.

Figure 3.1: Instance lifecycle. Source: amazon.com

• The expressiveness of the cost annotations that the Model-Driven Deployment Engine (MODDE) (see
D1.3.1, Chapter 2) supports could be enhanced: currently costs are constants. In practice, the exact
cost is not necessarily fixed over time, and can depend on certain parameters, for instance: execution
of a query by the FRH query service typically increases the larger the product catalogue is.

We worked around this problem by using a constant upper-bound observed from actual customer
logs, and using scenarios to capture behavior varying over time. However, extracting a fixed constant
upper-bound for all “reasonable” inputs may be difficult in certain cases, and lead to over-provisioning.

• The Cloud API (D1.3.1, Chapter 3) currently does not take into account which kind of virtual machines
are offered by the infrastructure provider: it is possible to acquire a machine with any resource capacity,
include resource configurations not offered by any existing machine (for example, a machine with one
million CPU’s and 5 Bytes of memory). This could be addressed by making the API parametric with
respect to the available virtual machine types (i.e. using the ADT in Figure 2.3 and the Map from
Figure 2.4).

Task T1.4: Simulation The Maude back-end supports a powerful in-depth inspection of the system state
for simulation and debugging purposes. Furthermore it is easily extensible for prototyping experimental
features: simply add a new rewrite rule. We suggest to investigate the following idea’s.

• Simulation to observe the effect on the system while, for example, varying the number of received
requests can be done by modeling (various kinds of) “the user” in ABS code: the user triggers the
system by invoking requests to an end-point at a certain rate. Nonetheless, modeling the user in this
manner is cumbersome. A “log-replay” tool that fires queries to the system according to a specified
time and duration given in a log file would be a very useful addition for simulation purposes.

• An important enhancement to the Eclipse plug-in is support for navigation, such as “browse to decla-
ration”, “display type hierarchy” and “display call hierarchy”.
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• The Maude back-end supports inspection of the complete state of the system, which allows exploring
detailed run-time information. However, this state can be unwieldy; sometimes a more abstract version
of the information is already sufficient and allows faster identification of relevant data. In particular,
support for visualizing the object graph, visualization of resource usage over time, and a visualization
of the trace of messages between distributed COGs would be useful.

Task T2.2: Service Contracts and SLAs Behavioral interfaces (D2.2.1, Chapter 3) naturally capture
properties of the behavior of a single instance of a given type, such as the response time guarantee example.
Support for defining aggregated properties that involve multiple objects (or computation / communication
traces) executing on different (distributed) virtualized resources would be useful. This would allow to capture
properties of statistics - aggregations of a metric - such as “Total Number of Fredhopper Query Requests”,
or the “Maximum response size” (in a given time window).

Task T2.3: Monitoring Add-ons

• Service metric functions, or statistics, aggregate a sequence of basic measurements (of a certain metric)
to allow determining QoS levels. The question arises how such statistics can be defined in a systematic
manner. A possible option to investigate is using attributes defined in an attribute grammar [6] for
this purpose. Informally, an attribute is a function that assigns an aggregated value to a list of symbols
(in our context, basic measurements). The definition of attributes can exploit structure present when
different kinds of measurements should be aggregated. Attribute grammars were previously already
integrated into ABS in the context of run-time checking [2].

• The system is initially executed in a declaratively specified deployment configuration using the tech-
niques developed in T1.3. The monitors generated in T2.3 adapt the deployment configuration dynam-
ically, for example due to usage peaks of a Service. Thus it is interesting to investigate the relationship
between the monitoring service and possible dynamic re-deployment actions. In particular, do the
monitors ensure that the evolved system preserves (a certain subset of) the deployment requirements
specified initially? Could a monitor be generated automatically that checks at run-time whether the
current deployment configuration respects the requirements?
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Chapter 4

Summary

This deliverable reports on the detailed modeling of the different deployment scenarios of the FRH case study
in the abstract behavioral specification language. Based on this application of the Envisage techniques, we
give feedback to the technical tasks. In particular, we provide input for D1.2.2, D1.3.2, D1.4.2, D2.2.2 and
D2.3.2.
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Glossary

Terms and Abbreviations

Cloud Engineer A Cloud Engineer handles the day-to-day operation of the Fredhopper Cloud Services.
She deploys/updates services through PaaS and IaaS according to incomplete service requirements
from Consultants, diagnoses issues at service-level and either resolves them at real time or informs the
Support Engineers and/or the Software Engineers. She manages the up and down scaling of service
resources according to alerts and metric visualizations provided by the monitoring system. She also
performs any necessary infrastructural changes to the Fredhopper Cloud Services

Consultant A Consultant manages the technical setting that enables Customer to use the APIs offered by
the Fredhopper Cloud Services. She provides service requirements to Cloud Engineers

Customer A Customer is a business entity that powers her online shop using the APIs provided by the
Fredhopper Cloud Services

Faceted Navigation Faceted navigation is a technique for accessing information organized according to a
faceted classification system, allowing users to explore a collection of information by applying multiple
filters. Facets correspond to properties of the information elements

Fredhopper Cloud Services A set of services managed by FRH through cloud computing that allows the
offering of search and targeting facilities on a large product database to e-Commerce companies

Full Text Search In text retrieval, full-text search refers to techniques for searching a single computer-
stored document or a collection in a full text database

IaaS Infrastructure as a Service

Infrastructure as a Service A provision model in which an organisation outsources the equipment used
to support IT operations, including storage, hardware, servers and networking components. The service
provider owns the equipment and is responsible for housing, running and maintaining it. The client
typically pays on a per-use basis

JSON JavaScript Object Notation. A data format that uses human-readable text to transmit data objects
consisting of attribute–value pairs.

PaaS Platform as a Service

Platform as a Service A category of cloud service offerings that facilitates the deployment of applications
without the cost and complexity of buying and managing the underlying hardware and software and
provisioning hosting capabilities

QoS Quality of Service

Quality of Service Generic term encapsulating all the non-functional aspects of a service delivery
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Resource Configuration A description of the number of service instances initially required for a service
offered to a Customer and the virtualized resource to be allocated initially to those service instances

SaaS Software as a Service

Service Level Agreement A legal contract between a service provider and his customer. It records a
common understanding about services, priorities, responsibilities, guarantees, and warranties

Service Requirement A service requirement consists of the agreed SLA and the Customer’s specific con-
figuration such as expected query throughput based on historical data in terms of monthly and peak
page views

SLA Service Level Agreement

Software as a Service A software delivery model in which software and associated data are centrally
hosted on the cloud. SaaS is typically accessed by users using a thin client via a web browser

Software Engineer A Software Engineer develops and maintains the Fredhopper Cloud Services. She pro-
vides technical support to Cloud Engineers and Support Engineers. She fixes bugs on the Fredhopper
Cloud Services and continuously improves the Fredhopper Cloud Services by either adding new features
or improving existing ones

Support Engineer A Support Engineer receives and coordinates issues identified either by Customers or
Cloud Engineers. She receives questions from Customer. She interacts with Customer, and either
addresses them directly or informs the Software Engineers
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