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Executive Summary:
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Chapter 1

Introduction

This deliverable presents a resource-aware model of the ATB Case Study: the ABS model of the structural
and functional aspects of the ATB case study and its requirements. The main structural changes in this
report compared to the previous report D4.2.1 is more emphasis on mobile device modeling and less on the
modeling of crawling, this to better reflect changes in the actual system we try to model. The crawling part
in the actual system is simplified; it no longer focuses on broad crawling of an unknown number of web sites
and web pages, but rather on periodically checking a given set of sources for new data (see figure 2.2 and
2.1 in chapter 2 to see the architecture changes). Since the resource-aware developed ABS-model is a single
end-to-end model (see yellow parts of figure 2.1), it is presented in one chapter instead of being split up over
several chapters as in D4.2.1.

1.1 Offline Search on Mobile Devices

This chapter provides background for (large-scale) offline search on mobile devices and expectations to the
ABS model. Chapter 2 provides the architecture and scale for the mobile app and supporting cloud backend.
Chapter 3 provides the resource-aware ABS model of the entire system, while Chapter 4 offers conclusions
in relation to relevant Envisage objectives.

ATB works on a mobile search app named Memkite which features on-device search indices, a corre-
sponding subscription service, and a supporting cloud service to build and distribute indices to the mobile
app. Since the app has on-device search indices, it can also work offline independent of Internet services
as shown in Figure 1.2 for the query “Laks” (Norwegian word for salmon). In Figure 1.1 the app has been
extended with on-device Deep Learning based image recognition combined with on-device search, in this
case searching for a rose with the mobile camera. The high-level data flow from the cloud service (backend)
to mobile device overview is shown in Figure 1.3, where Memkite provides the cloud backend with the pro-

Figure 1.1: On-Device Image Recognition driven Search
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Figure 1.2: Offline Mode: Web Search vs Memkite

cessing and indexing and the distribution of data to the mobile search app. The system depends on external
sources for data, and app stores for distribution of the app to users; see chapter 2 for more information about
architecture.

1.1.1 Motivation for Offline Search

The primary goals for mobile offline search are to:

1. Increase Search Availability by not relying on network connectivity for providing search. This means
that search can work in situations where mobile network capacity is at strain (e.g. in crowded urban
areas), where there is no or poor network capacity (rural areas or in outer space), or in emergency
situations such as floods, hurricanes or earthquakes when network infrastructure may not work at all.

2. Reduce Search Latency by using consistently fast on-device storage rather than accessing mobile and
Wi-Fi network with highly variable latency.

3. Strengthen User Privacy by being privacy efficient [11] and not transferring or collecting search
queries since no query technically needs to leave user’s personal mobile device (e.g. strengthen support
of United Nations Declaration of Human Rights, Chapter 12).

4. Improve Utilization of Mobile Devices by using fast processing (GPU and CPU) and storage (SSD)
available on mobile devices instead of network services with higher latency. Individual mobile devices
in 2015 have the capacity of web search clusters in recent past (Figure 1.4).

1.1.2 Search Capabilities of a 1 TeraByte Mobile Device?

As mobile devices are approaching 1 TeraByte of storage - what are they able to store on-device? [12]:

1. Large knowledge sources such as Wikipedia, QA-sites like Quora and Stackoverflow

2. The last 10 years of all published academic papers (text only)

3. Five hundred thousand non-fiction books, which is the rough estimate of all English-language non-
fiction book published the large publishers: McGrawHill, Reed Elsevier, Springer-Verlag and Pearson
Education

4. Mobile app stores, e.g., Windows 8, iOS App Store and Google Play, which have less than 10 million
apps combined

5. 3 million images and thumbnails from Wikipedia

The hardware - processing and storage - capabilities of mobile devices is further described in appendix A.
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Figure 1.3: System Data Flow

Figure 1.4: Hardware: Web Search 1999 vs Mobile (tablet) 2015
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1.2 Expectations and how the ABS Model can help meet them

A key motivation for creating a resource-aware ABS model of the entire search system (cloud backend and
mobile search app) is to improve overall system quality and get accurate estimates on resource use (e.g.
expensive cloud computing resources) prior to using them. This aligns well with expectations both from
customers and ATB (as a service provider).

1.2.1 Customer Expectations

Customers - users of the mobile search app - can expect the following from the app:

Freshness — it will always have as fresh data as possible, i.e. the time from S0 (data arrived in Cloud
Backend) to S8 (indexed data is ready to be searched on Mobile Device) in figure 2.1 should be as
short as possible. This expectation is matched by an Service Level Agreement (SLA).
ABS Model: this time can be simulated for sets of cloud backend and mobile device configurations

Correctness — it will always work (e.g. independent of on-device index updates).
ABS Model: concurrency errors is one of the most frequent and severe cause of bugs; with ABS-based
deadlock analysis combined with code generation this can potentially be reduced

Cost Efficiency — it will use (costly) mobile bandwidth efficiently.
ABS Model: it can simulate with customer bandwidth cost models - e.g. mobile data plans - for indi-
vidual users and simulate costs over time

Privacy — it will not store or distribute customer search queries.
ABS Model: it can perhaps be proven with Envisage tool Key-ABS that search queries never leave the
mobile device

1.2.2 Service Provider Expectations

Cost Efficiency — cloud computing makes it very easy to over-allocate resources but finding a good initial
cloud configuration can be hard.
ABS Model: it models cloud resources (virtual machines) with a set of resources per machine - this can
be used to find a reasonable configuration through measurements from simulation with various simulated
cloud resource configurations

Performance — in a distributed system even a small code change might have a big impact on performance.
ABS Model: In a tuned model doing changes there and simulating the performance effect before doing
the actual code changes

Software Quality — Similar as for correctness expectation from customers, but from a software develop-
ment and maintenance perspective
ABS Model: use Envisage tools for automatic unit test generation, code generation and deadlock analysis
to improve software quality

Automation — automated continuous deployment of code to production
ABS Model: integrating the model with a continuous integration server to simulate cloud computing costs
prior to doing deployment and stopping deployment if the simulated cost change is too high/expensive

8



Chapter 2

Architecture Supporting
Large-Scale On-Device Search

This chapter describes the architecture of the ATB case study and provides more detail on the on-device
search problem the architecture needs to support.

The goal for the use of the Envisage tools in the ATB case study is to support the cloud backend archi-
tecture in order to:

1. simulate and analyze (cloud) cost-effects of code changes and changes in cloud configurations

2. simulate and analyze SLA-effects of code changes

3. provide (soft or hard) guarantees on reliability with automated unit test generation.

2.1 Changes in Architecture

In the initial cloud architecture the focus was on supporting flexible crawling of content (e.g. arbitrary-sized
web crawl), but this is no longer the case since the data in the business use cases is more limited (typically
just a single or a couple of data sources). This change is shown in figures 2.2 (before) and 2.1 (now). The
yellow parts show what is modelled with ABS.

2.2 Cloud Backend Architecture

Recall that the entire system has four main parts (Figure 2.2): 1) web and content sites with data; 2) the
cloud backend that crawls data from content sites, processes and indexes it and sends it to apps; 3) the
mobile app store where users can find and install the app from; and 4) the search app itself.

The cloud backend layered architecture is shown in Figure 2.3:

• Layer 1 is the cloud provisioning which allocates cloud resources (e.g. storage and virtual machines).
This is separated from deployment since provisioning is tightly coupled to a cloud platform, such as
Amazon Web Services or Azure, while deployment is more generic once the cloud resources have been
allocated.

• Layer 2 is the deployment, which consists of installing, configuring and starting services.

• Layer 3 is the storage. Since we use a mix of small/medium-scale data sources (e.g. Wikipedia and
custom data sources for customers) and big data sources (e.g. web crawls), both PostgreSQL and
Hadoop are used. Since we are using Hadoop and MapReduce on Amazon Web Services, the HDFS
file system is run on top of the Amazon S3 distributed key-value store.

• Layer 4 is the ETL and Data Retrieval layer responsible for getting data into the storage layer.

9
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Figure 2.1: Up-to-date System Overview - yellow parts modelled with ABS

Figure 2.2: Past System Architecture - presented in delivery D4.2.1
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Figure 2.3: Layered Cloud Backend Architecture

• Layer 5 is for processing and indexing. We are currently using Hadoop/MapReduce (which is modelled
with ABS in the ATB case study), but we consider moving to Hadoop/Spark instead since it is a faster
and more cost-efficient alternative.

• Layer 6 is the API layer where various web services related to, e.g., fetching and distributing data, run.
It is also used to expose APIs in lower layers.

• Layers 7 and 8 are logical layers concerned with distribution. In some cases Memkite data might be
preinstalled on mobile or storage devices and in other cases data might be downloaded from the cloud
service itself. Consequently, the API layer needs to support both ways of distributing data.

2.3 Mobile Device Search Architecture

In order to enable large-scale offline search on a mobile device, the mobile app needs support from the cloud
service to do i) data fetching, ii) processing and indexing and iii) distribution of indexed and processed data
to the mobile app as shown in Figure 2.1. This is modelled with ABS and described in Chapter 3.

In order to better understand what the cloud services need to support, the main types of search and
corresponding indices are presented in Section 2.3.1.

The on-device architecture for both search types is shown in Figure 2.4, where

• Layer 1 is the runtime environment, which is a mobile or wearable operating system such as Android,
iOS, Tizen, Firefox OS or Windows 8);

• Layer 2 is the app deployment (or distribution) mechanism, which makes use of app stores (e.g. iOS
or Google Play);

• Layer 3 is the (potentially encrypted) file system on the device;

• Layer 4 deals with the updates of search indices, either on-device indexing or retrieval of indices and
corresponding data from the cloud service; and

• Layer 5 is the main search index library (e.g., prefix and inverted index).
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Figure 2.4: Layered On-Device Search Architecture

The main search index is written in C++ for portability across platforms, i.e., for integration with Objective-
C/Swift on iOS, Java on Android, C# on Windows 8, Javascript on Firefox OS and C++ on Tizen.

2.3.1 Inverted Index-Based Search

Memkite search is a combination of prefix-based (direct lookup) and inverted index search, with inverted
index being the most flexible since it is independent of which query length to support Since inverted indices
have sorted lists of URIs per word in the dictionary, the means these indices can be strongly compressed
with techniques such as Variable Byte Encoding, Group Varint, and Elias γ code [8].

2.3.2 Experiment with large-scale on-device search

Compared to the key/value-based lookup, this is much more computationally expensive. For each individual
word in the query, one must look up the posting list (compressed set of URIs), decompress the posting
list, merge the posting list for each term and finally rank the results. This is in particular tedious for long
posting lists. When indexing 1 billion documents one could naively face the problem of decoding and merging
posting lists with ten to hundreds of millions of URIs each. This should happen within a maximum of a few
hundred milliseconds, which is particularly hard to do on a resource-constrained mobile device [8]. Common
techniques to address this problem are to use i) segmentation of posting list to speed up merging (not needing
to merge all segments) [5], ii) GPUs to decode and merge posting lists [14], or iii) RAM-based index caches
(which are hard to do on a resource-limited mobile device).

In the mobile device search experiments conducted by ATB, we were able to merge search results from 5
segmented posting lists, representing a query with 5 words, of length 100 million on an iPad Mini with a 64
bit A7 Cyclone CPU in 25 milliseconds - posting lists of length 100 million can correspond to a 1
billion document indexes, which with Zipf’s law has the potential to be a good approximation
of a regular web search.
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Chapter 3

ABS Model of the Atbrox Case Study

This chapter describes the resource-aware ABS Model for the ATB case study, how to orchestrate it and
description of its initial use in continuous deployment. Figure 3.1 presents the actual cloud and mobile
system (left) side-by-side with the ABS Model. The ABS model is end-to-end but does not cover newer
parts of the architecture related to training deep learning networks.

3.1 Cloud Model - Sample from Open Data (M0)

English Wikipedia document samples - tokenized as list of words - are used as a model for crawled data in
the ABS model. Wikipedia documents is a good choice to use as source data in the model because they are
representative for most types of textual data and easy to scale up/down with in several directions: document
size, number of languages, number of documents, multimedia documents. Wikipedia data can also be used
to simulate periodic updates by either sampling from it or using actual Wikipedia updates.

Characteristics of Wikipedia documents are:

document size - average comparable to business documents (with outliers being book-sized)

number of languages - 288 languages

number of documents - Wikipedia has approximately 35 million pages

multimedia documents - not only text, but also multimedia content (images, video and sound)

3.1.1 ABS Model for Documents (M0)

The listing below shows an example of documents modelled in ABS as a list of individual tokens and bigram
tokens that contains stop words. Documents are referred to with data type CrawledData in the ABS model.

List<Pair<URI, List<Word>>> documents =
list[Pair("Agriculture in Canada",

list["canada","canada is","is one","one","one of","of the","the largest","largest","agricultural", ..])];

data CrawledData = CrawledData(List<Pair<URI, List<Word>>> crawled_documents);

3.2 Cloud Model - Processing and Indexing with Mapreduce (M1 and
M2)

When data has been crawled from content sources it needs many types of processing before it can be sent to
the mobile device. This includes data cleaning, filtering, transformations, entity extraction, natural language
processing, clustering, classification, ranking, compression, and indexing (making it searchable). Finally, the

13
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Figure 3.1: Actual System compared with ABS Model

Figure 3.2: ABS model with classes, interfaces and data structures

Figure 3.3: Size of English Wikipedia (Text Only) as 2175 volumes of 1.6M words each
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index and the corresponding compressed content can be sent to the mobile device. Processing and indexing
constitutes the intermediate stage in the cloud backend (Figure 2.2 shows the full system context).

In the basic case of HTML or XML content that has a unique URI, the data is transformed into text
and then indexed, typically by prefix index or inverted index. This involves indexing large amounts of data,
and, in the case of prefix-indexing, heavy data processing. Therefore, it makes sense to use reliable parallel
computing tools like Hadoop with Spark or MapReduce (see also the cloud backend layered architecture in
Figure 2.3). In the ABS model we model processing with generic cloud-based parallel Mapreduce.

3.2.1 Relevant resources - Processing and Indexing

In the ATB use case, we have chosen to use Amazon Hadoop/Elastic MapReduce since it provides an auto-
configured Hadoop. However, the performance and cost of jobs can still vary based on the number of resources
and configurations:

A. HDFS distributed file system: the logically distributed file system.

B. Distributed Key Value Store: HDFS runs on top of this; in the AWS case we use Simple Storage
Service (S3).

C. Number of map tasks per virtual machine

D. Number of reduce tasks per virtual machine

E. Number of virtual machines used for mappers: the total number of map tasks = number of map
tasks per machine * the number of machines.

F. Number of virtual machines used for reducers: the total number of reduce tasks = number of re-
duce tasks per machine * the number of machines.

G. Number of input files: the number of files on HDFS (S3) needs to be larger than the number of
mapper tasks.

H. Virtual machine type used for mappers specifies CPU, RAM, IO Bandwidth (low, medium or high),
and local disk.

I. Virtual machine type used for reducers specifies CPU, RAM, IO Bandwidth (low, medium or high),
and local disk.

In the ABS Mapreduce model for processing and indexing we are abstracting away from the HDFS file
system, but instead model the number of virtual machine workers (and each of them as Deployment Compo-
nents) in map and reduce processes as well as their resources specified in the cloud machine configuration -
a given set of RAM, CPU, Bandwidth and Disk resources per virtual machine.

3.2.2 Functional Model - Processing and Indexing

We have modelled an inverted indexing job in ABS, reflecting how the Memkite system runs to prepare data
for searching on the client. This models the transformation of a list of pairs (filename and content) into a
list of index entries (prefix and filenames).

The MapReduce ABS model rely on two interfaces, one for the Worker and one for MapReduce:

Worker Interface

interface Worker extends DeployedObject {
List<Pair<Word, URI>> invokeMap(URI key, List<Word> value);
List<URI> invokeReduce(Word key, List<URI> value);

}

15
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MapReduce Interface

// MapReduce
interface MapReduce {

// invoked by client
List<Pair<Word, List<URI>>> mapReduce(List<Pair<URI, List<Word>>>

documents);
// invoked by workers
Unit finished(Worker w);

}

3.2.3 ABS Model of Cloud-deployed MapReduce (M1)

The concrete model computes all intermediate and final results and data structures. It can be used for e.g.
static analysis, testing, and resource analysis that rely on having concrete data available.

CMapreduce class - uses a CloudProvider (e.g. a model of Amazon Web Services) and a set of machines
with a given virtual machine resource configuration (similar to EC2 on AWS). It keeps track of a set of
workers and assigns map and reduce tasks to them.

class CMapReduce(CloudProvider p, Int maxMachines, Map<Resourcetype, Int> machineConfiguration)
implements MapReduce

MapReduce Data fMapResults is used to store output data in the mapper, intermediates is used in the
shuffler stage to group map results by key, fReduceResults is used for reducer output and results is the final
result (e.g. an inverted index in this case study).

Set<Fut<List<Pair<Word, URI>>>> fMapResults = set[];
Map<Word, List<URI>> intermediates = map[];
Set<Pair<Word, Fut<List<URI>>>> fReduceResults = set[];
List<Pair<Word, List<URI>>> result = Nil;

Mapper phase - iterates through input data (documents - pair of URI and list of terms) and requests
workers machines, then assigns data to the workers through async calls to the MapReduce map method
(invokeMap(key, value)), and finalyy updates map results.

while (~isEmpty(items)) {
Pair<URI, List<Word>> item = head(items);
items = tail(items);
Worker w = await this!getWorker();
URI key = fst(item);
List<Word> value = snd(item);
Fut<List<Pair<Word, URI>>> fMap = w!invokeMap(key, value);
fMapResults = insertElement(fMapResults, fMap);

}

Shuffler phase - When (intermediate) results produced by map workers are available it groups values
together for each unique key that the map method assigned (i.e. dependent on what map() task it is solving)

while (~emptySet(fMapResults)) {
Fut<List<Pair<Word, URI>>> fMapResult = take(fMapResults);
fMapResults = remove(fMapResults, fMapResult);
await fMapResult?;
List<Pair<Word, URI>> mapResult = fMapResult.get;
while (~isEmpty(mapResult)) {

Pair<Word, URI> keyValuePair = head(mapResult);
mapResult = tail(mapResult);
List<URI> inter = lookupDefault(intermediates, fst(keyValuePair), Nil);
intermediates = put(intermediates, fst(keyValuePair),

Cons(snd(keyValuePair), inter));
}

}
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Reducer phase 1 - iterates through grouped-by-key intermediate data, requests worker machines and
then assigns data to the workers - through async calls to the MapReduce reduce method (invokeReduce(key,
values))

Set<Word> keys = keys(intermediates);
while(~emptySet(keys)) {
Word key = take(keys);
keys = remove(keys, key);
List<URI> values = lookupUnsafe(intermediates, key);
Worker w = await this!getWorker();
Fut<List<URI>> fReduce = w!invokeReduce(key, values);
fReduceResults = insertElement(fReduceResults, Pair(key, fReduce));

}

Reducer phase 2 - collects reduce results produced by cloud workers.

while (~emptySet(fReduceResults)) {
Pair<Word, Fut<List<URI>>> reduceResult = take(fReduceResults);
fReduceResults = remove(fReduceResults, reduceResult);
Word key = fst(reduceResult);
Fut<List<URI>> fValues = snd(reduceResult);
await fValues?;
List<URI> values = fValues.get;
result = Cons(Pair(key, values), result);

}

Modeling of Cloud Workers in MapReduce - launches a new virtual machine if needed and within
resource limits or reuses an available virtual machine and returns back as a worker to the MapReduce
framework.

Worker getWorker() {
if (emptySet(workers)) {

if (nWorkers < maxMachines) {
DeploymentComponent machine = await p!launchInstance(machineConfiguration);
[DC: machine] Worker w = new Worker(this);
nWorkers = nWorkers + 1;
workers = insertElement(workers, w);

}
await ~(emptySet(workers));

}

Worker result = take(workers);
workers = remove(workers, result);
return result;

}

3.2.4 ABS Model for Inverted Indexing with Mapreduce (M2)

Inverted indexing is the most common way of document indexing to support search; it provides fast lookup
of a list of documents corresponding to a term.

Inverted Index Mapper Algorithm - algorithm that outputs pairs of word (term) and URI for each
word in the document given as input.

Unit map(URI key, List<Word> value) {
List<Word> wordlist = value;
while (~(wordlist == Nil)) {
[Cost:1] // cost annotation − simulates resource use
Word word = head(wordlist);
wordlist = tail(wordlist);
this.emitMapResult(word, key);

}
}

17
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Figure 3.4: Distribution of Indexed Data to Mobile Customers

Wrapper method for Mapper Algorithm - this method communicates with Mapreduce framework
and returns result back to it. This function is called from the Mapreduce worker virtual machine

List<Pair<Word, URI>> invokeMap(URI key, List<Word> value) {
mapResults = Nil;
this.map(key, value);
master!finished(this); // tells the Mapreduce master that map call has been performed
List<Pair<Word, URI>> result = mapResults;
mapResults = Nil;
return result;

}

Inverted Index Reduce Algorithm - algorithm that outputs all URIs for a given word (term).

Unit reduce(Word key, List<URI> value) {
Set<URI> resultset = set(value); //removes duplicates
while (~(emptySet(resultset))) {
[Cost:1] // cost annotation − simulates resource use
URI file = take(resultset);
resultset = remove(resultset, file);
this.emitReduceResult(file);

}
}

Wrapper Method for Reducer Algorithm - this method communicates with the MapReduce frame-
work and returns results back to it. This function is called from the MapReduce worker virtual machine.

List<String> invokeReduce(Word key, List<URI> value) {
reduceResults = Nil;
this.reduce(key, value);
master!finished(this);
List<URI> result = reduceResults;
reduceResults = Nil;
return result;

}

3.3 Cloud Model - Distribution of Indices to Mobile Device (M3)

The distribution of indexed and compressed data to the mobile app is necessary in order to provide updated
data the user can search in offline. This is the final step in the backend, as shown in Figure 3.3.
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3.3.1 Relevant Resources - Distribution

A. Outbound bandwidth to transfer index elements to the app

B. CPU to schedule and perform index updates to apps (push) or react when mobile users request updates

C. Memory to keep track of the states of mobile users, as input to scheduling and updating

The ABS model for distribution aligns directly with the described resources.

3.3.2 Functional Model - Distribution

We have modelled an distribution of indexed data from Cloud to Mobile Devices (Memkite Server) in ABS,
reflecting how the Memkite system runs to send data for searching on the mobile client.

The distribution ABS model rely on one ABS interface with API that allows processing and indexing
of data (process), and allows the mobile device to ask (in REST/RPC-manner) for an initial inverted index
(fetchInitialConfiguration) and index updates (fetchNewData).

Memkite Interface

interface Memkite {
Set<IndexDataBundle> process(CrawledData crawled_data);
// Unit provision(Set<IndexDataBundle> new_data);
Set<IndexDataBundle> fetchInitialConfiguration();
Set<IndexDataBundle> fetchNewData(MobileDevice mobile_device);

}

3.3.3 Cloud-based ABS Model for Distribution and Serving (M3)

CMemkite class - uses a CloudProvider (e.g. a model of Amazon Web Services) and a set of machines with
a given virtual machine resource configuration (similar to EC2 on AWS) to delegate resources to MapReduce
processing.

class CMemkite(CloudProvider provider) implements Memkite

Memkite Data - initial_configuration is used for the initial index produced by MapReduce (engine);
known_mobile_devices keeps track of all mobile devices that access the Memkite server; provisioned_data
keeps track of index data that will be sent to mobile devices; sent_data keeps track of data that has been
sent to mobile devices.

MapReduce engine;
Set<IndexDataBundle> initial_configuration = set[];
Set<MobileDevice> known_mobile_devices = set[];
Map<MobileDevice, Set<IndexDataBundle>> provisioned_data = map[];
Map<MobileDevice, Set<IndexDataBundle>> sent_data = map[];

process - starts MapReduce and creates indices for mobile devices.

Set<IndexDataBundle> process(CrawledData crawled_data) {
List<Pair<URI, List<Word>>> documents = crawled_documents(crawled_data);
List<Pair<Word, List<URI>>> results = await engine!mapReduce(documents);

Set<IndexDataBundle> new_data = set[IndexDataBundle(documents, map(results))];
initial_configuration = union(initial_configuration, new_data);
while (~emptySet(new_data)) {

IndexDataBundle bundle = take(new_data);
new_data = remove(new_data, bundle);
Set<MobileDevice> mobile_devices = keys(provisioned_data);
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while (~emptySet(mobile_devices)) {
MobileDevice mobile_device = take(mobile_devices);
mobile_devices = remove(mobile_devices, mobile_device);
provisioned_data = put(provisioned_data, mobile_device,

insertElement(lookupUnsafe(provisioned_data, mobile_device), bundle));
}

}
return set[];

}

fetchInitialConfiguration - remote API called by mobile device to get initial index.

Set<IndexDataBundle> fetchInitialConfiguration() {
return initial_configuration;

}

fetchNewData - remote API called by mobile device to get new data without any duplicates from what
is already sent (Memkite server keeps track of what is sent to the device).

Set<IndexDataBundle> fetchNewData(MobileDevice mobile_device) {
Set<IndexDataBundle> toSend = lookupDefault(provisioned_data, mobile_device, set[]);
Set<IndexDataBundle> alreadySent = lookupDefault(sent_data, mobile_device, set[]);
provisioned_data = put(provisioned_data, mobile_device, set[]);
sent_data = put(sent_data, mobile_device, union(toSend, alreadySent));
return difference(toSend, alreadySent);

}

3.4 Extended Cloud Model - Mobile Device (M4-M6)

From a user perspective the service is mainly the mobile device with an app that allows search on-device
with fresh data, and from an ABS model perspective the mobile device can be seen as an extension of the
cloud.

3.4.1 Relevant Resources - Mobile Device

A. User Bandwidth and Latency which may depend on their data subscription plan (which could be
maxed out on the number of gigabytes to download that month), location (e.g. abroad with constrained
mobile network), the settings on their phone (e.g. roaming on or off), the type of network to which they
are connected (e.g. EDGE, 4G, LTE or Wi-Fi), the time of day (perhaps following a weekly schedule),
or perhaps the context or situation in which they are situated.

B. App Settings and app version: how often they want updates and which updates they should receive.

C. App and Index State: what data they have on the phone, possible index synchronization issues and
index fragmentation (index merging may be needed on the device).

D. Device and Operating System Type: whether the device is a tablet, an Android or iOS phone, and
whether it has a GPU.

3.4.2 Functional Model - Mobile Device

We have modelled the Mobile Device as having two methods: pushButton that fetches either the initial index
or index updates from the cloud backend to mobile device, and search that searches for a particular query
in the index on the mobile device.
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MobileDevice Interface

interface MobileDevice {
Unit pushButton();
Set<URI> search(Term query);

}

3.4.3 Mobile Device ABS Model

CMobileDevice - objects of this class can run in parallel using Deployment Component (virtual machine)
- with more limited resources (RAM, CPU and Disk) than the server configuration.

class CMobileDevice(Memkite memkite) implements MobileDevice

pushButton - checks if there is an index on the device; if it is not it fetches an initial index from the
server, otherwise it fetches an index update and merges the existing index with the index update. Note that
this is an operation that is easy to do in the ABS model but very hard on the device, this because merging
of indices is costly resource-wise (RAM, CPU and disk operations on device) and may be interrupted if it is
running in the background since mobile operating systems (like iOS) have resource-restrictions when running
in the background.

Unit pushButton() {
if(emptySet(local_data)) {

local_data = await memkite!fetchInitialConfiguration();
} else {

Set<IndexDataBundle> new_data = await memkite!fetchNewData(this);
local_data = this.merge_data(local_data, new_data);

}
}

search - searches the index on the mobile device and returns a list of results.

Set<URI> search(Term query) {
Set<IndexDataBundle> to_search = local_data;
Set<URI> results = set[];
while(~emptySet(to_search)) {
IndexDataBundle index_data_bundle = take(to_search);
to_search = remove(to_search, index_data_bundle);
InvertedIndex inverted_index = inverted_index(index_data_bundle);
PostingList posting_list = lookupDefault(inverted_index, query, list[]);
while(~isEmpty(posting_list)) {
URI uri = head(posting_list);
posting_list = tail(posting_list);
results = insertElement(results, uri);

}
}
return results;
}

}

3.5 Cloud Orchestration of ABS Model

This shows an example of cloud orchestrating 2 mobile devices (with CPU resource of 5) and 1 Memkite
server (with CPU resource of 20) on a simulated Amazon Web Service cloud.

Setting up Cloud Backend and two Mobile Devices
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Figure 3.5: Initial use of ATB ABS model with Jenkins continuous deployment

CloudProvider provider = new CloudProvider("Amazon");

DeploymentComponent dc = new DeploymentComponent("Memkite", map[Pair(CPU, 20)]);
[DC: dc] Memkite memkite = new CMemkite(provider);

DeploymentComponent mobile_device_dc = new DeploymentComponent("MobileDevice", map[Pair(CPU, 5)]);
[DC: mobile_device_dc] MobileDevice mobile_device = new CMobileDevice(memkite);

DeploymentComponent mobile_device_dc2 = new DeploymentComponent("MobileDevice2", map[Pair(CPU, 5)]);
[DC: mobile_device_dc2] MobileDevice mobile_device2 = new CMobileDevice(memkite);

Note that the Memkite server does the cloud orchestrating of MapReduce; here is an example of using
(up to - depending on amount of input data) 5 virtual machines, each with CPU capacity of 20 and memory
capacity of 10000:

engine = new MapReduce(provider, 5, map[Pair(CPU, 20), Pair(Memory, 10000)]);

Start processing of crawled data with Hadoop/MapReduce on Cloud

await memkite!process(CrawledData(documents));

Get data onto mobile devices and search

await mobile_device!pushButton();
await mobile_device2!pushButton();

Set<URI> search_results_on_mobile1 = await mobile_device1!search("in");
Set<URI> search_results_on_mobile2 = await mobile_device2!search("in");

3.6 Current use of ATB ABS Model with Continuous Deployment

The current ATB ABS Model is integrated with continuous deployment so it covers step 1-4 (but not 5) as
shown in the upper part of figure 3.5. What runs in Jenkins (the continuous deployment framework) now is
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basically a system test for a resource-aware model, meaning that it runs through entire model.
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Chapter 4

Conclusions

This deliverable has presented our work on an end-to-end resource-aware model for the 7 parts (M0-M6) of
the ATB case study (figure 3.2):

M0 Sample from Open Data - What data to make searchable on the Mobile Device

M1 Processing of Data - Model of the Parallel Mapreduce Framework

M2 Indexing of Data - Model of Mapreduce-based Inverted Indexing Algorithm

M3 Distribute Data to Mobile Devices - Modeling of bandwidth

M4 Request and Receive Data from Cloud to Mobile Device - Modeling of REST-like API that can be called
from Mobile Device

M5 Merge Indices on Mobile Devices - Modeling what needs to be done to handle index updates from Cloud
Backend

M6 Search on Mobile Device - Models the primary purpose of the application

Challenges ahead are evaluating the model compared to the real deployment and tuning resource param-
eters (e.g. CPU, RAM, Bandwidth and Number of virtual machines) in addition to parameters controlling
resources consumed (cost-annotations) so it matches the real deployment well. When we achieve that we can
change the model prior to changing the actual deployment in order to estimate resource use; at that level
the model is ready to become a part of complete continuous deployment. When in Continous Deployment
it can also be extended with other Envisage outcomes related to automated unit test creation from the ABS
Model and deadlock detection. In addition to simulated costs from running the ABS model we can also get
a more careful and conservative cost-estimates using the static cost analysis tools developed in Envisage. We
also need to iterate on the scale of simulations with the ABS model (e.g. increase the number of concurrent
mobile devices connecting to the server and the resources made available on the cloud side).

4.1 Experience and Feedback to Technical Tasks

In this wection, we comment on our experiences gained from the ATB case study with respect to the technical
tasks of Envisage.

Task T1.2: Modeling of Resources Resources modelled in ABS that are used in the ATB case study
include:

Cloud Computing Level - API for access to several Cloud Vendors, e.g. Amazon Web Services, where
virtual machines can be requested
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Virtual Machine Level - API for specifying resources on individual machines, e.g. RAM, CPU and Disk
resources

The support for modeling cloud resources with ABS is overall good, but given the increasing importance
of mobile becoming the primary point of contact between people and the cloud, abstractions for modeling
mobile resources could be an advantage to add to ABS.

Task T1.3: Modeling of Deployment In the ABS model we cover 2 different types of deployment:

1. Cloud Backend - Using the CloudProvider class (set to Amazon Web Services) and the Deployment-
Component class for each virtual machine started.

2. Mobile Devices - Also using the CloudProvider and DeploymentComponent, but reducing the amount
of resources per virtual machine instance since they represent mobile phones and not cloud virtual
machines in data centers. This modeling aligns well with Amazon’s recent announcement of the AWS
Device Farm1 - where one can deploy to physical mobile hardware through a cloud API. One difference
is that the AWS Device farm is primarily for testing on various mobile hardware configurations (e.g.
choose from several vendors of Android phones) rather than (ABS simulation of) testing on scale -
which is more of interest in the case study.

In actual cloud deployment there is typically a separation between 1) provisioning of resources and 2)
performing software/data deployment on provisioned resources, where the prior might be specific for a cloud
vendor (e.g. AWS has tools like Elastic Beanstalk2 or third party libraries like Boto3 for doing this - ATB
uses Boto), and the second is usually more generic and is similar for most IAAS clouds (e.g. using tools like
Chef4 or Puppet5 - ATB uses Chef). The provisioning support in ABS is good (see also T1.2), but support
for modeling of (automated) software/data deployment could be extended. Typical issues that needs to
be handled in software/data deployment is version conflicts (e.g. on library dependencies), configuration
file handling, security (e.g. creation and distribution of encryption keys and SSL certificates) and tight
integration with continuous deployment system.

Task T1.4: Simulation The model supports simulation end-to-end, from the data arrives in the cloud
service until it has become searchable on the mobile devices. It also supports simulation with varying
amounts of load (e.g. amounts of data to index and number of mobile devices) and varying resources to
handle the load (e.g. number and capacity of virtual machines used for indexing and serving of data in the
cloud backend).

Since individual latency - from the data arrives in the cloud until it arrives on the mobile device - is of
key importance for the SLA, a useful addition to the model could be to add “tracer bullet” style logging that
follows the data through the system, i.e. annotate data with timestamps in every step of the model in order
to see where it uses time.

Task T2.2: Service Contracts and SLAs The primary SLA for ATB is how fast data that has arrived in
the Cloud Backend becomes searchable on a customer’s mobile device. The model, which allows simulations
of that time, is given various scenarios relevant for the SLA, e.g. mobile bandwidth capacity for customers.
Since latency is a common metric in SLAs, we expect that the support for SLAs can be combined with the
suggested “tracer bullet” approach for simulation in T1.4.

1http://aws.amazon.com/device-farm/
2http://aws.amazon.com/documentation/elastic-beanstalk/
3https://boto.readthedocs.org
4https://www.chef.io
5https://puppetlabs.com/

25

http://aws.amazon.com/device-farm/
http://aws.amazon.com/documentation/elastic-beanstalk/
https://boto.readthedocs.org
https://www.chef.io
https://puppetlabs.com/


Envisage Deliverable D4.2.2 Resource Aware Modelling of the ATB Case Study

Task T2.3: Monitoring Add-ons This combined with tuning of the model is where the main remaining
work is currently expected, i.e. monitor if SLA is fulfilled and visualize the state of the mobile devices during
simulations (e.g. amount of index data received and mobile bandwidth).
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Appendix A - Feasibility of Large-Scale
Mobile Offline Search

Mobile devices are approaching recent supercomputers in capacity (see figure 1.4 comparing web search with
a tablet) and this might change how people will use them for search.

Search: From Desktop Web Service to Mobile App

The number of mobile phone users has rapidly surpassed the number of desktop computer users (Figure 1),
and an increasing amount of those employ smartphones with computational capabilities rivaling desktop
computers. The smartphone capabilities and ease of distribution of software in app stores such as Google’s
Play for Android and Apple’s App Store for iOS, has spawned the development of a large amount of apps.

Time spent on mobile apps is rapidly replacing time spent on the mobile web (Figure 2), approaching
9/10 of the time spent in apps (currently 86%). The likely reason for this is that apps provide a better user
experience than that of the mobile web wrt. e.g., UI and latency, since they i) utilize the device capabilities
with natively compiled code compared to the interpreted code in the browser and ii) better utilize fast local
hardware on the mobile device.

Enabling large-scale on-device search for mobile, wearable and tablet devices requires significant on-device
CPU and storage resources, e.g., CPU to decode posting lists or decompress documents and low-latency
storage with enough capacity to store and retrieve search index data on the device. These CPU and storage
resources are becoming available on-device as shown in the next sections.

Figure 1: Mobile surpasses Desktop
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Figure 2: Apps replacing Mobile Web

Figure 3: iPhone faster than Cray Supercomputer, Tweet Posting March 16, 2014

CPU Capabilities on Mobile Devices

The performance of CPUs and GPUs on smartphones and tablets is accelerating towards matching what
could be found in current desktop/server computers and supercomputers from the recent past.

Marc Andreessen, the inventor of the Web Browser (Mosaic and Netscape), points out that his latest
smartphone (an iPhone 5S) is faster than a Cray Supercomputer that cost 10 Million dollars 20 years ago
(Figure 3). Marc’s phone has a 64 bit A7 Cyclone CPU combined with a GPU capable of high-performance
vector processing with Apple’s Metal API [2, 4]. Since Apple’s launch of the first 64 bit mobile CPU, there
have been several announcements of 64 bit and massively parallel CPUs for mobiles [6]:

1. Qualcomm announced mobile 64 bit CPUs Snapdragon 808 and 810

2. Intel announced the 22 nanometer 64 bit Atom CPU

3. Samsung announced the Exynos 5433 64 bit CPU

4. Nvidia announced Tegra K1 CPU with 192 parallel cores

These CPUs, as exemplified by the Apple A7 CPU, are capable of handling of a billion document-sized
indices in a fast way. Section 2.3.1 discuss the experiences gathered by ATB concerning large-scale inverted
index on an iPad Mini.

Storage Capabilities on Mobile Devices

Storage capacity on mobile devices is perhaps the fastest progressing hardware technology today. In less
than 10 years, from 2005 to 2014, there has been a 1000-fold increase in storage capacity on MicroSD cards
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Figure 4: 1000-fold increase in storage on MicroSD cards in 9 years

Figure 5: More data on USB stick in 2014 than Web Search Cluster in 1998/99

from 128 MB to 128 GB (Figure 4), and you can now purchase more than 1 terabyte on a USB stick. To
put that in perspective: 1 terabyte is more storage than the search engines of Altavista and Google had in
their computer clusters in 1999 [3, 13], and the USB stick with SSD storage has approximately 1/100th of
the random access latency of the hard drives used in the web search clusters (Figure 5).

While Flash/SSD-based storage used in MicroSD cards provides large mobile storage (approximately 700
GB per cubic cm), two technologies can replace it [10]:

1. RRAM: potential of storing 1 terabyte per square cm chip, with up to 20 times faster retrieval rates
than SSD [9]

2. Memristor: potential of storing hundreds of terabytes on a mobile device, combined with CPUs devel-
oped with Memristors to be able to process all that data rapidly [7]

Further into the future one can potentially utilize DNA based storage, where theoretically multiple
petabytes can be stored per gram (700 terabytes per gram has already been demonstrated [1]); to put that
into perspective, a current smart phone typically weighs around 100 grams.
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Glossary

Terms and Abbreviations

API Application programming interface.

ETL Extract, transform, load: A data warehousing term that describes the process of getting data into a
database or a data warehouse.

MapReduce A programming model for processing large data sets in a parallel, distributed manner.

N-gram A string sequence of n characters, collected from a text corpus. N-grams of size 1 are knowns as
"unigrams", size 2 as "bigrams" and size 3 as "trigrams".

Posting list In information retrieval, a list of document IDs. A simple inverted index is a dictionary of
terms where each term is linked to a posting list.

SPARQL Simple Protocol and RDF Query Language: A query language for data stored in the Resource
Description Framework (RDF) format.

SPDY An open networking protocol for transporting web content.

Swift A programming language developed by Apple for iOS and OS X. The language is designed to replace
Objective-C.

Tizen A Linux-based operating system for embedded devices.

URI A uniform resource indicator (URI) is a string used to identify a resource. The most common type of
URI is the URL, which identifies web resources.
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