
���

Deliverable D4.4.1 
Initial Modelling of the ENG Case Study

Date of document: T10 (resubmitted T14)

���

Final version

Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Start date of the project: 1st October 2013

Duration: 36 months

Organisation name of lead contractor for this deliverable: ENG

STREP Project supported by the 7th Framework Programme of the EC

Dissemination Level

PU Public ✓

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Initial Modelling of the ENG Case Study

This document summarises deliverable D4.4.1 of project FP7-610582 (Envisage), a Collaborative
Project supported by the 7th Framework Programme of the EC within the Information &
Communication Technologies scheme. Full information on this project is available online at
http://www.envisage-project.eu.

This deliverable reports on the initial modelling of the structural and functional aspects of the
ENG case study, and details how the case study plans to cover the objectives O1-O6 of Envisage.
This deliverable forms a part of the verification of Envisage project milestone M1.

List of Authors
Keven T. Kearney (ENG)

Contents

1. Introduction 1
1.1. Overview of the ENG Case Study 1

1.1.1. The ETICS Service 2
1.1.2. Objective of the Case Study 3

2. RPM System Requirements 3
2.1. Execution Context 4
2.2. ETICS Quality of Service (QoS) 5

2.2.1. Consumer Facing SLAs 5
2.2.2. Provider Facing SLAs 6

2.3. Functional Requirements for the RPM 6
2.3.1. UML Use Cases 7
2.3.2. Regulatory Behaviour of the RPM 8

2.4. ETICS Components 11
2.4.1. Resource Pool 11
2.4.2. Request Queue 12
2.4.3. Execution Engine 13
2.4.4. Resource Factory 14
2.4.5. User Database 14

2.5. Resource Pool Manager (RPM) 15
2.6. Simulator 15

2.6.1. User Model 16

3. Implementation 17
3.1. Simulator 18
3.2. Resources 19
3.3. Functional (non-procedural) Definitions 20
3.4. Execution Engine 21
3.5. RPM 23
3.6. Initial Comments 25

4. Relevance To Project Goals 26
4.1. Relation to Envisage Objectives & Milestones 26
4.2. Summary 28

Bibliography 29

1. Introduction

This document constitutes deliverable D4.4.1, “Initial Modelling of the ENG Case Study”, of the
FP7-ICT-2013 Project Envisage (Engineering Virtualised Services), and presents an initial, formal
model of the structural and functional aspects of the Engineering case study. The objective of the
case study is to employ the Envisage methodology (comprising the ABS language, its associated
tools & workflow) to develop an automated ‘Resource Pool Manager’ component for the elastic
management of the computational resources utilised by ENG’s ETICS service.

1.1. Overview of the ENG Case Study

The ENG case study concerns the development of ETICS (E-Infrastructure for Testing, Integration
and Configuration of Software), a web-based service for the execution and quality assurance of
builds and tests for distributed, multi-language, multi-platform software. ETICS was originally
developed within the European Research Projects ETICS and ETICS2 , and is currently being 1 2

extended and improved by Engineering’s Research & Development department. At the moment,
the service is used internally by Engineering’s Software Lab, and is hosted on a private cloud
(virtual infrastructure) maintained by Engineering’s Managed Operations (MO) division. For the
future, the objective is to offer ETICS as a commercial service - which minimally requires:

• moving from a private to a hybrid virtual infrastructure (incorporating public clouds such as
Amazon AWS , Microsoft Azure , Google Cloud) - to handle the case that demand exceeds the 3 4 5

capacities of Engineering MO; and
• employing reliable mechanisms to dynamically scale/reorganise the infrastructure to maintain

cost-effectiveness in the face of fluctuations in demand.
Within this commercial context, SLAs will govern both the use of ETICS by developers (consumer

facing SLAs), as well as Engineering’s use of third party clouds (provider facing SLAs). Figure 1.1-a
summaries the overall scenario.

!
Figure 1.1-a: Commercial Scenario for ETICS

The following subsections briefly describe the ETICS service, and the objectives of the case study.

ETICS Service

Developer

uses
Hybrid Cloudexecutes on

Private
Cloud

Public
Cloud

Public
Cloud …

ENG Third Party
Cloud Provider

SLASLA

provides

provides e.g.
Amazon AWS
Microsoft Azure
Google Cloud
É(consumer facing) (provider facing)

 ETICS (FP6 European Research Project): http://project-eu-etics1.web.cern.ch/project-eu-etics1/index.html 1

 ETICS2 (FP7 European Research Project): http://etics-archive.web.cern.ch/etics-archive/ 2

 Amazon AWS: https://aws.amazon.com 3

 Microsoft Azure: http://azure.microsoft.com/en-gb/ 4

 Google Cloud: https://cloud.google.com 5

 !1

http://azure.microsoft.com/en-gb/
https://aws.amazon.com
http://project-eu-etics1.web.cern.ch/project-eu-etics1/index.html
https://cloud.google.com
http://etics-archive.web.cern.ch/etics-archive/

1.1.1. The ETICS Service

In brief, ETICS consists of a build & test execution system, offered as a web-service, that is able to
dynamically exploit distributed computational resources, and incorporates a plug-in mechanism
for integrating tools for the design, maintenance and monitoring of builds and multi-node testing
scenarios. The main components of the ETICS architecture are as follows (Figure 1.1.1-a):

• A Web Portal, serving as the main access point for developer to access ETICS functionalities.
• A Configuration Web-Service (accessible through the Web Portal, and also by command line user

interface) exposing the core ETICS functionalities - which for present purposes are:
‣ the execution of software builds, independent of:

- programming language (e.g. C, C++, Java, Scala, Python, Ruby, …);
- project structure (e.g. Make, Ant, Maven, SCons, Rake, …);
- target platform (e.g. RedHat, Debian, Windows, …).

‣ the execution of unit tests (e.g. JUnit, CppUnit, PyUnit) and of distributed testing scenarios
(involving multiple interacting compute nodes);

‣ static code analysis (via an extensible plugin-in mechanism for integrating specialised tools -
e.g. Checkstyle, Findbugs, PMD, CppCheck, CCCC and PyLint);

• An Execution Engine whose role is to route build & test tasks (received from the Configuration
Web-Service) to available computational resources.

• A Repository Web-Service (accessible through the Web Portal) exposing database facilities for
storing and accessing reports, logs and artefacts from completed builds & tests.

!
Figure 1.1.1-a: ETICS Architecture

In the current incarnation of ETICS, the underlying pool of computational resources is managed
manually. Loosely (Figure 1.1.1-b), human operators monitor the inflow of requests to the
Execution Engine and dynamically add/remove resources to the pool as required to ensure that
requests can be satisfied (in accordance with consumer facing SLAs) in the most cost effective
manner (where costs primarily derive from provider facing SLAs).

!
Figure 1.1.1-b: Resource Pool Management in ETICS

ETICS Architecture

Repository
Web-Service

Configuration
Web-Service

> abc?

Build / Test Artefacts DB

Report / Metrics DB

Configuration DB

Web Portal

Command Line
User Interface

Execution Engine

Pool of Virtual
Resources

Queue of pending requests

Execution
Engine

Resource
Pool

Resource Pool Manager

managesmonitors

 !2

1.1.2. Objective of the Case Study

The ENG case study focuses on the Resource Pool Manager introduced in the previous section.
Specifically, the objective of the case study is to employ the Envisage methodology to develop an
automated ‘Resource Pool Manager’ (henceforth RPM) for the elastic management of the ETICS
computational resource pool. This objective can be taken as an extended and elaborated version of
Usage Scenario 1 presented in the DOW (Part B, page 8, Figure 7).

Some notes are in order to clarify the objective:
• The RPM will be implemented as an ABS model, and the Envisage analysis and simulation

tools will be used primarily to determine the characteristics of (and to tune) this model.
• As a critical component of the overall ETICS service, the non-functional properties of the RPM

are constrained by the same consumer-facing SLAs that govern the service as a whole, e.g.
‣ if the SLA specifies an availability, α, for the ETICS service, then since the service depends on

the RPM, the RPM must also obtain an availability equal to or greater than α;
‣ if the SLA specifies a maximum completion-time for end-user requests to the ETICS service,

then the RPM must be able to ensure that computational resources are available (in the pool)
to execute requests in a timely fashion (such that requests can be completed within the given
time limit).

• The RPM will use a distributed algorithm, and will dynamically (elastically) scale the quantity
of its own internal concurrent processes as the number of active requests change.
‣ The reason for a distributed approach is that, while the computational burden on the RPM

can be expected to increase with the number of end-user requests and resources, the time
taken for the RPM to compute resource requirements should be more-or-less constant
(assuming time constraints on request processing as noted above).

• The RPM is intended as a proof of concept prototype: it is not required to be of production quality
(ready for deployment within the operational ETICS system). Specifically, the RPM:
‣ will be implemented/executed within a mock-up of the wider ETICS architecture: using

dummy components to mimic internal service interactions; and
‣ will be tested within an idealised simulation environment using probabilistic models of end

user behaviour, rather than in a live setting (with actual end-users making actual requests) . 6

Both the mock-up components & simulation environment will also be implemented in ABS.
• The Envisage methodology only applies to the development of the RPM and associated ETICS

mock-up & simulation environment. In particular, it should be noted that the build and test
processes executed by ETICS are 3rd party proprietary tools (e.g. compilers), which will not be
modelled in ABS, and are thus not amenable to analysis by Envisage tools.

The system requirements for the RPM are defined in the next section.

2. RPM System Requirements

This section specifies requirements for the implementation of the RPM, and is divided into the
following subsections:

2.1 Execution Context: clarifying the relation of the RPM to the elements of the ETICS service.
2.2 Quality of Service (QoS): specifying relevant non-functional constraints from consumer and

provider facing SLAs.

 The simulation environment implemented in this case study should not be confused with the simulation tools provided 6

by Envisage. The purpose of the simulation environment is to test the reliability of the Envisage tools in predicting the
characteristics of the RPM.

 !3

2.3 Functional Requirements - in the form of UML Use Cases describing the external relations of
the RPM, and an overview of the problem space (governing the RPM’s internal calculations).

2.4 ETICS Components: UML class diagrams for the mock-up ETICS components.
2.5 Resource Pool Manager (RPM): UML class diagram for the RPM.
2.6 Simulator: UML class diagram for the simulation environment (for testing the RPM).

2.1. Execution Context

This section briefly clarifies the relation of the RPM to other ETICS components. Figure 2.1-a first
clarifies the relation of the RPM to the ETICS service, to consumer & provider facing SLAs, and to
the hybrid cloud (referring back to Figure 1.1-a) - specifically:

• The RPM is a component part of the ETICS service, and is thus (as noted earlier) constrained by
consumer-facing SLAs;

• The consumer & provider SLAs, or more precisely, data derived from these SLAs (to be defined
shortly in §2.2, below), also serve as input to the RPM.

• While the ETICS service as a whole executes on the hybrid cloud, the RPM executes only on the
private cloud (hosted by Engineering MO). As well as managing the computational resource
pool for ETICS, the RPM must also elastically reconfigure the virtual resources required for its
own computations - it is this latter elasticity that will be investigated using Envisage methods.

!
Figure 2.1-a: Relation of the RPM to the ETICS Service, SLAs and Hybrid Cloud

Figure 2.1-b (next page) instead clarifies the relation of the RPM to the internal components of the
ETICS service (referring back to Figure 1.1.1-a) - specifically, the RPM:

• mediates the flow of requests from the Configuration Web-Service to the Execution Engine:
‣ the RPM prioritises the incoming queued requests, and allocates each to an available virtual

machine in the resource pool (tagging each request with a machine identifier);
‣ once allocated to a machine, requests are forwarded to the Execution Engine for deployment

& execution on that machine (each machine executes only one request at a time).
• elastically manages the computational resource pool, by:

‣ monitoring the state of the resource pool (i.e. what machines exist in the pool, which of these
are currently occupied with executing requests, and the progress of the execution);

‣ adding/removing machines to/from the pool as required to ensure that end user requests
can be satisfied in a cost-effective manner (elaborated in the sections below).
- note that before the RPM can add a machine to the pool, it first has to procure that

machine (e.g. from a 3rd party cloud provider). To this end, and for simplicity and
modularity, we also introduce a Resource Factory component, which hides the details
(e.g. variation in cloud APIs) of the resource procurement process from the RPM.

ETICS Service
Hybrid Cloud

executes on

Private
Cloud

Public
Cloud

SLA

RPM

executes oninput
automatically manages

consumer-facing

SLA constrains

provider-facing

 !4

In short, the basic task of the RPM is to regulate (by observing and modifying) the states of both
the request queue and resource pool in order to ensure (as far as possible) that the ETICS service
operates at a profit.

!
Figure 2.1-b: Interaction of the RPM with ETICS

2.2. ETICS Quality of Service (QoS)

As already noted (§1.1.2 & §2.1), both the functional and non-functional properties of the RPM are
governed by quality-of-service (QoS) constraints defined in consumer- and provider-facing SLAs.
The QoS constraints particularly relevant to the RPM are defined in the following two sections
(note that this list is not an exhaustive account of the QoS terms defined in the SLAs). How these
QoS constraints affect the RPM is explained shortly in §2.3.2.

2.2.1. Consumer Facing SLAs

Consumer facing SLAs govern the use of the ETICS service by end users (software developers).
The following information derived from these SLAs is relevant to the RPM:

• request-cost: the cost (in €) per unit request-size, and dependent on request-priority, of using the
ETICS service, where:
‣ request-size is a measure of the computational load engendered by a request - calculated as

a fixed function of the task type (e.g. ANT build, JUnit test, etc.), task configuration (e.g.
dependencies) and the quantity of source code over which the task operates;

‣ request-priority is a Boolean value indicating whether the request is:
- scheduled (low priority & lower cost), e.g. as part of a regular (nightly) automated batch

build process; or
- ad-hoc (high priority & higher cost), received directly from the end user;

‣ end users only pay for successful requests (failed requests are penalised - see below).7

• maximum completion-time (ctmax): an upper-bound, specified as a function of request-size and
request-priority, on the completion-time, ct = tout − tin, of requests - where:
‣ tin is the time at which the request is received;
‣ tout (> tin) is the time at which execution of the request ‘successfully’ completes;

Execution EngineRPM

Queue of
pending requests

Pool of Virtual
Resources

Configuration
Web-Service

End-user requests

Queue of
pending requests

add/remove resources

A B C A
B

C

elastic resource management

Resource Factory

Private
Cloud

Public
Cloud

Public
Cloud

…

monitor state

 “Success” means that the task was executed, and was not prematurely halted by (either intentionally or due to a failure 7

of) the ETICS system:
• in particular note that the executed task per se may result in an exception (e.g. due to run-time 3rd party compiler

errors), but still be ‘successful’ from the point of view of the ETICS system;
• the end user receives a notification that the task is complete, including links/references to the resulting artefacts &

reports (which can be accessed through the Repository Web-Service).

 !5

‣ note that both tin and tout are measured server-side, i.e. network latency (for communications
between the end user and the ETICS server) is not taken into account.

‣ Ad-hoc requests have shorter maximum completion-times than scheduled requests;
• completion-time penalty: the penalty (a refund, in €, paid to the end user) for failing to satisfy

the maximum completion-time guarantee - calculated for each request as kct(ct − ctmax), where kct
is a constant (larger for ad-hoc requests) and the penalty only applies to tasks that successfully
complete and is thus 0 for ct ≤ ctmax.

• maximum failure rate (frmax): an upper-bound on the request failure-rate, fr = m/n, where:
‣ n is the total number of valid requests (both ad-hoc & scheduled) received in a standard time 8

period (e.g. ‘daily’); and
‣ m (≤ n) is the number of these requests that failed to ‘successfully’ complete.

• failure-rate penalty: the penalty (user refund, in €) for failing to satisfy the maximum failure-rate
bound - calculated (for each standard time period) as kfr(fr − frmax), where kfr is a constant, and
the penalty is 0 for fr ≤ frmax.

2.2.2. Provider Facing SLAs

Provider facing SLAs govern the use, by the ETICS system, of cloud provisioning services (e.g.
Engineering MO, Amazon AWS, etc.). The following information derived from these SLAs is
relevant to the RPM:

• resource-cost: the cost (in €) w.r.t. cost-time-unit of using (deploying) a given resource, where:
‣ The total cost, c’, of using a resource is calculated as c’ = c × ⎡T/t⎤ × t, where:

- c is the resource-cost;
- T is the total time the resource was used (deployed);
- t is the cost-time-unit (a duration, e.g. 1 hour);
- ⎡x⎤ is the ceiling of (= the smallest integer not less than) x.

• maximum deploy-time (dtmax): an upper-bound on the time, dt = tout − tin, required to provision
and deploy a resource, where:
‣ tin is the time at which the request to deploy a resource is received by the cloud provider;
‣ tout is the time at which the requested resource is available for use by the ETICS system.

• deploy-time penalty: the penalty (a refund, in €, from the cloud provider) for failing to satisfy
the maximum deploy-time bound - calculated for each deployed resource as kdt(dt − dtmax), where
kdt is a constant and the penalty is 0 for dt ≤ dtmax.

2.3. Functional Requirements for the RPM

This section describes the basic functional properties of the RPM, and is divided into 2 sections:
• §2.3.1 UML Use Cases: provides a high-level description of the input/output relations between

the RPM and other ETICS components - i.e. the information it receives, and actions it can take;
• §2.3.2 Regulatory Behaviour of the RPM: describes the high-level function (goal) of the RPM, and

outlines the basic nature of its decision making processes.

 A request is ‘valid’ if:8

• the request content is well-formed syntactically, and contains all required information;
• the request comes from an authenticated and valid user - in particular, that there exists an active (consumer facing)

SLA governing the user’s use of the ETICS service;
• the user is permitted to make the request, both with respect to:

- any security constraints, e.g. appropriate permissions for accessing shared content, and
- the terms of the governing SLA, e.g. the user has not exceeded usage limits.

 !6

2.3.1. UML Use Cases

The manifest behaviour of the RPM is captured by the UML use case diagram shown in Figure
2.3.1-a. The individual use cases are described in the dedicated subsections below.

!
Figure 2.3.1-a: UML Use Cases for the RPM

2.3.1.1. Use Case: Monitor Request Queue

As stated earlier, the basic task of the RPM is to monitor the inflow of requests and to manage the
resource pool to ensure that requests can be satisfied in accordance with consumer facing SLAs.
The queue itself is essentially a list of build/test requests, and the RPM just needs to be informed
of changes (additions/removals) to this list.

We assume that the queue only contains valid8 requests, and that each request has also been pre-
processed and elaborated (in some way) with the following information (required by the RPM -
refer back to §2.2.1):

• user identifier: required to access (data derived from) the user’s request history (for determining
failure-rates) and SLA (for user-specific QoS parameters);

• time at which the request was received;
• request-size: a measure of the computational load engendered by the request;
• request-priority: i.e. scheduled vs ad-hoc;
• minimal resource requirements: the minimal machine configuration necessary for executing the

requested build/test task - e.g. CPU architecture, operating system, pre-installed software, and
lower bounds on memory & disk space.

2.3.1.2. Use Case: Reject Request

If the RPM determines that a request cannot be satisfied, or that the cost of satisfying a request is
greater than the benefit, then it can reject the request: removing it from the queue, and potentially
incurring a penalty for failed requests (§2.2.1). Otherwise all requests are accepted.

2.3.1.3. Use Case: Monitor Resource Pool

As well as monitoring the state of the request queue (above), the RPM also monitors the state of
the computational resource pool. Specifically, the RPM needs to be informed:

• about which machines are currently in the pool;
• which are currently occupied with executing a request;
• what is the progress of the execution, i.e. how long until it completes.

2.3.1.4. Use Case: Search Resource Catalogue

The resource catalogue is essentially the list of different resource types/configurations available
from the Resource Factory. The RPM accesses this catalogue (indirectly) by querying the Resource
Factory for a list of resources satisfying particular constraints - e.g. maximum cost, required CPU
architecture, minimum CPU speed, maximum deploy-time, etc.

RPM

Monitor Request Queue

Reject Request

Monitor Resource Pool
Assign Resource to Request

Decommission Resource

Commission Resource

Search Resource Catalogue

 !7

2.3.1.5. Use Case: Commission Resource

Once the RPM has located a suitable resource in the resource catalogue (above), it can request the
Resource Factory to procure and deploy the resource on the hybrid cloud (Figure 1.1-a) - which is
equivalent to adding the resource to the resource pool. The procurement/deployment process may
take several minutes to complete.

• Note that the resource provider pays a penalty if the resource is not deployed within the
maximum deploy-time stipulated in the provider facing SLAs (§2.2.2).

2.3.1.6. Use Case: Assign Resource to Request

The RPM assigns specific resources to specific requests (tagging each request with the identifier
of its assigned resource). Once assigned, the request is removed from the incoming queue, and
forwarded to the Execution Engine, which if necessary, waits (up to some time-out limit) for the
assigned resource to become free, and then triggers the execution of the requested task on that
resource. If the resource is still occupied after the time-out, the request fails.

• Once a request has been posted to the Execution Engine its resource assignment is fixed, and
can no longer be changed by the RPM;

• Before the task proper can be executed, the Execution Engine first copies source files (and any
other data required for the task) to the resource for local access, which may take up to several
minutes depending on the request-size;

• Likewise, once the execution is complete, these local input files are deleted, and the artefacts/
reports generated by the task are transferred to the ETICS repository, which also takes time;

Note that the RPM can control/influence the timing of task execution by:
• delaying the assignment of a resource to the request;
• delaying posting the request to the Execution Engine;
• assigning a resource that is currently occupied with another request.

2.3.1.7. Use Case: Decommission Resource

If the RPM determines that a resource is no longer required, it can request the Resource Factory
to decommission that resource - which is equivalent to removing the resource from the resource
pool. Resources can be decommissioned at any time - with the caveat that a request will fail if its
assigned resource is removed before it has completed execution of the request.

2.3.2. Regulatory Behaviour of the RPM

The basic objective of the RPM is to manage the computational resource pool and the assignment
of end-user requests to available resources, in such a way as to (attempt to) maximise profit, which
we define as follows (refer back to the definitions in §2.2):

• profitT = (requestsT + refundsT) − (resourcesT + penaltiesT), where T is an arbitrary duration over
which the following values (in €) are calculated:
‣ requestsT = the total income from end user requests, i.e. ∑0 ≤ i ≤ n cisi where n is the number of

successful requests, ci the request-cost, and si the request-size (§2.2.1) of the ith request;
‣ refundsT = the total in penalties paid by cloud providers (to ENG as the cloud consumer) due

to violations of deploy-time guarantees (§2.2.2);
‣ resourcesT = the total cost of computational resources, i.e. ∑0 ≤ i ≤ n c’i where n is the total

number of resources used, and c’ is the total cost (§2.2.2) of the ith resource;
‣ penaltiesT = the total in penalties paid to end users due to violation of completion-time &

failure-rate guarantees (§2.2.1);

 !8

• note that neither requestsT nor refundsT fall under the direct control of the RPM (since they
depend on the activities of end users and cloud providers resp.), hence ‘maximising profit’
primarily entails minimising resourcesT (using as few resources as possible), and minimising
penaltiesT (ensuring as many requests are satisfied, on time, as possible).

The regulatory behaviour of the RPM can then be illustrated by the following concrete example:
• Suppose that a consumer facing SLA specifies that, for a request, r, of a certain size & priority:

‣ the consumer must pay €5;
‣ the provider (ENG):

- guarantees a maximum completion-time, ctmax, of 10 minutes (as measured from the time
of receipt, tin, of the request);

- must pay a penalty of €1/minute for completion-times over ctmax.
• Ignoring other cost factors, Figure 2.3.2-a then shows how the profit to the provider varies with

the actual completion-time, ct, of r (negative profit corresponds to the payment of penalties).

!
Figure 2.3.2-a: Plot of Profit vs Completion-Time

• Now suppose that for a given machine configuration, m, the execution-time, δ, for request r is 5
minutes, then if tstart is the time at which the execution of r begins, and Q = tin + ctmax:
‣ tin < tstart < Q − δ brings in a profit of €5 (Figure 2.3.2-b: ‘window for maximum profit’);
‣ Q − δ < tstart < Q brings in a steadily diminishing profit (Figure 2.3.2-b: ‘window for less than

maximum profit’); while
‣ Q < tstart results in steadily increasing loss.

• Accordingly, if no machine (m) is available at tin to execute r, then in order to make at least some
profit, the RPM must add such a machine to the pool before Q (and preferably before Q − δ).
‣ More precisely: the RPM needs to find a machine (m) with maximum deploy-time, dtmax < ctmax

− ∆, where ∆ is the additional time it takes the RPM to search for & request the deployment
of m, and for the Execution Engine to then setup m for executing r (e.g. copying files etc.).

!
Figure 2.3.2-b: Execution-Time of 5 mins

pr
ofi

t (
€) ct

0

5

−5

ctmax10 mins 10 mins

pr
ofi

t (
€) ct

0

5

−5

ctmax10 mins 10 mins

window for
maximum profit

window for less
than maximum profit

δ
δ

δ = execution time
(Q)

 !9

• Even if it is not possible to make a profit, however, it may still be worth attempting to satisfy
the request. In particular:
‣ if no machine (m) can be deployed in time to execute r at a profit,
‣ but rejecting r would result in exceeding the maximum failure-rate , frmax,
‣ then the RPM needs only to ensure that the penalty, pct, paid for exceeding the maximum

completion-time on r (in the case that r is executed) is less than the penalty, pfr, paid for
exceeding the maximum failure-rate (in the case that r is rejected);

‣ In short: the RPM needs to find a machine (m) with a maximum deploy-time, dtmax < T − δ,
where T (> ctmax) is the time (from tin) at which pct = pfr, as illustrated in Figure 2.3.2-c;
- Or again, to be precise: dtmax < T − δ − ∆ (see previous bullet).

‣ Indeed, this ‘loss cutting’ constraint is the general case, and applies to all requests.

!
Figure 2.3.2-c: Balancing Completion-Time & Failure-Rate Constraints

• To further complicate matters, however, we also need to account for the fact that machines:
‣ have a cost, which must be subtracted from the ‘raw’ profit above;
‣ run at different speeds, where a faster machine will:

- execute requests more quickly, allowing the execution to be delayed longer; but also …
- cost more, thus reducing both the profit, and the time that the execution can be delayed.

To illustrate, Figure 2.3.2-d compares two profit graphs: i) for a slow/cheap machine, and ii) for
a fast/expensive machine.
‣ For simplicity the machine cost is approximated as a constant in Figure 2.3.2-d (the dash-dot

line), but will instead increase step-wise with time (cf. the total-cost formula given in §2.2.2).

!
Figure 2.3.2-d: Machine Cost & Speed

i) on a slow, but cheap machine; ii) on a fast but more expensive machine

pr
ofi

t (
€)

ct0

5

−5

ctmax10 mins 10 mins

δ = execution time

pfr = penalty for exceeding
 max. failure-rate
pct = penalty for exceeding
 max. completion-time

T = the time at which pct = pfr

pfr

δ

max. profit some profit

window for
‘cutting losses’

5 mins

ctmax
1 min

raw profit

machine cost

total profitpr
ofi

t (
€) ct

0

5

−5

ctmax10 mins 10 mins

pr
ofi

t (
€) ct

0

5

−5

10 mins 10 mins

i) slow machine
execution-time δ = 5 mins

ii) fast machine
execution-time δ = 1 min

profit window
profit window

 !10

The basic problem for the RPM is to find a ‘best’ compromise: assigning machines (m) to requests
(r) to maximise the profit (or minimise the loss). For multiple concurrent requests and machines,
this is essentially a variation of the optimisation form of the knapsack problem , compounded by 9

the fact that the input (set of requests and machines) is continually changing. Accordingly, the task
faced by the RPM is at least NP-hard, such that the computational load on the RPM will increase
exponentially with the number of end-user requests and managed computational resources. We
will therefore adopt an heuristic (i.e. sub-optimal) approach to implementing the RPM.

In addition, the performance of the RPM is strongly constrained by consumer-facing completion-
time and failure-rate QoS constraints. Specifically, the profit/loss-cutting windows described above
are more than just variables in the RPM’s calculations, they also serve as strong constraints on the
time taken to perform those calculations. Ideally, the RPM should be able to allocate every request,
r, to a machine, m, such that m is ready to begin executing r before the end of the window for
maximum profit (or in the worst case, before the time T at which pct = pfr).

To keep calculation times low (and ideally constant) in the face of increasing numbers of requests
and resources, requires parallelisation (e.g. n processors achieving in time t what a single processor
would achieve in time nt). Accordingly, as already stated in §1.1.2, we intend the RPM to employ a
distributed algorithm, and to dynamically (elastically) scale the number of concurrent processes as
the number of active requests change. The cost of resources employed directly by the RPM detracts
from the overall profit (i.e. is part of resourcesT), and hence should also be minimised.

2.4. ETICS Components

This section specifies the (mock-up) components of the ETICS architecture with which the RPM
interacts: formalising the state variables & actions exposed by the resource pool, Resource Factory,
Execution Engine, and the RPM’s incoming request queue (in support of the use cases in §2.3.1).

2.4.1. Resource Pool

Figure 2.4.1-a defines a UML class diagram encapsulating the relevant functions and properties of
the resource pool - described in the bullets below (next page).

!
Figure 2.4.1-a: UML Class Diagram for the Resource Pool

config

ResourcePool

Resource

0+resource

- addResourceListener(ResourceListener l)
- removeResourceListener(ResourceListener l)

- requestChanged(Resource r)
0+

ResourceConfig

1

Request

listener
0+

request

0..11

cpu : String
cpu_speed : Float
cores : Int
memory : Int
capacity : Int
os : String
software : String[]

id : String
cost : Float
time_unit : Float

- resource(String : id) : Resource

«interface»
Mutable_RP

- addResource(Resource r)
- removeResource(Resource r) - resources() : Resource[]

«interface»
Monitored_RP

«interface»
Queriable_RP

«interface»
ResourceListener

 e.g. see https://en.wikipedia.org/wiki/Knapsack_problem.9

 !11

https://en.wikipedia.org/wiki/Knapsack_problem

• The ResourcePool class represents a mutable collection of Resource objects, and implements
the following three interfaces:
‣ Queriable_RP: with a single method to allow the ExecutionEngine (see §2.4.3 below) to

access Resource objects by their identifiers;
‣ Mutable_RP: with methods to allow the ResourceFactory (see §2.4.4 below) to add and

remove Resource objects; and
‣ Monitored_RP: with a single method to allow the RPM (see §2.5 below) to retrieve the list of
Resource objects in the pool (other interactions between the RPM and the resource pool are
mediated by the ResourceFactory);

• A Resource object represents an active (deployed & ready to use) computational resource (a
virtual machine), and has the following fields/relations:
‣ id: uniquely identifying the resource (within the scope of the ETICS system);
‣ cost: the resource-cost (see §2.2.2);
‣ time_unit: the cost-time-unit for the resource (see §2.2.2);
‣ config: a ResourceConfig instance describing the resource according to the following

properties:
- cpu: the CPU architecture (e.g. ‘Intel Core i7’);
- cpu_speed: the speed of the machines CPU in GHz;
- cores: the number of CPU cores;
- memory: the available RAM in GB;
- capacity: the available hard disk storage capacity in GB;
- os: the machine’s operating system (e.g. ‘OS X Yosemite 10.10.1’);
- software: an array of installed (ready to use) software applications.

‣ request: the Request instance (if any) that the Resource is currently executing (only one
Request may execute at a given time on a given machine) - see §2.4.2 below;

The Resource class has a single method allowing the RPM to register as a ResourceListener
to be notified whenever the value of its request field changes.

2.4.2. Request Queue

Figure 2.4.2-a defines a UML class diagram for a request queue - described in the bullets below.

!
Figure 2.4.2-a: UML Class Diagram for the Request Queue

• The RequestQueue class represents an ordered collection of zero or more Request objects, and
exposes a single method for adding (appending) a Request to the queue;
‣ The ExecutionEngine (§2.4.3) and RMP (§2.5) classes both specialise RequestQueue;

• A Request object represents a valid8 request on the queue, and has the following fields:
‣ user & team (ids): together identify the end user who sent the request (i.e. user n in team m,

see §2.6.1 ‘User Model‘ below), used by the RPM to access user-specific SLA data from a ‘user

RequestQueue
- addRequest(Request a)

Request

0+

config

1 ResourceConfig

request

0+

user : Int
team : Int
time : Long
size : Int
resourceId : String
progress : Int

- progressChanged(Request r)

0+
listener

- addRequestListener(RequestListener l)

«interface»
RequestListener

 !12

database’ (see §2.4.5 below) [note: user = −1 denotes a scheduled request, while user ≥ 0
denotes a higher priority ad-hoc request (see request-priority in §2.2.1)].

‣ time: the time at which the request was received;
‣ size: the request-size (see §2.2.1).
‣ an optional resourceId: uniquely identifying the resource (if any) assigned by the RPM to

execute the request; and
‣ progress: an Int with the following possible values:

 −1 : the request has failed;
 0 : the request is pending execution (i.e. on a queue);
1..99 : execution of the request is progressing (1% to 99%); and
 100 : execution of the request has been successfully completed.

‣ config: a ResourceConfig instance specifying the minimal resource requirements for the
request (§2.3.1.1);

The Request class also has a method allowing the RPM to register as a RequestListener to
be notified whenever the value of the progress field changes.

2.4.3. Execution Engine

Figure 2.4.3-a defines a UML class diagram for the Execution Engine, represented by the class
ExecutionEngine which:

• extends the RequestQueue class (§2.4.2), to receive requests from the RPM (§2.5);
• implements the ResourceListener interface (§2.4.1), in order to be notified when resources

become free to execute requests;
• interacts with the resource pool via its Queriable_RP interface (§2.4.1);

!
Figure 2.4.3-a: UML Class Diagram for the Execution Engine

The flow-chart in Figure 2.4.3-b gives an indication of how the ExecutionEngine (E) processes
incoming requests (refer back to the use case description in §2.3.1.6).

!
Figure 2.4.3-b: Execution Engine Flow Chart

ExecutionEngine

RequestQueue

Queriable_RP
1

pool

ResourceListener

request received

get assigned resource R = E.pool.resource(X.id)

Is the resource free? R.request() == nil ?

timed-out?

yes

yes

request fails

execute the request R.request = X

R.addResourceListener(E)

monitor the resource

E.addRequest(X)

Does the (still) resource exist? R != nil?

yes

 !13

2.4.4. Resource Factory

Figure 2.4.4-a defines a UML class diagram encapsulating the functions of the Resource Factory -
described in the bullets below (next page):

!
Figure 2.4.4-a: UML Class Diagram for the Resource Factory

• The ResourceFactory class exposes three methods allowing the RPM (§2.5) to:
‣ request a list (ResourceInfo array) of procurable resources (as offered by cloud providers)

that meet a minimal resource configuration (a ResourceConfig object) up to some maximum
cost (a Float value);

‣ request the commissioning (procurement & deployment) of a Resource instance (specified
by a ResourceInfo object): all commissioned Resource instances are automatically added
to the resource pool (with a short delay - cf. max_dt below);

‣ decommission a Resource: decommissioned Resource instances are automatically and
immediately removed from the resource pool.

The ResourceFactory interacts with the resource pool to add/remove Resource objects via
its Mutable_RP interface (§2.4.1);

• The ResourceInfo class represents a procurable resource. The RPM selects the most suitable
Resource to instantiate, based on the following resource information (defined in §2.2.2):
‣ cost: the resource-cost of the resource;
‣ time_unit: the cost-time-unit for the resource;
‣ max_dt: the maximum deployment-time for the resource;
‣ penalty_dt: the deployment-time penalty constant, kdt;
‣ config: a ResourceConfig instance (§2.4.1) describing the Resource;

2.4.5. User Database

As noted in §2.4.2, user-specific SLA data is maintained in a user database. Figure 2.4.5-a defines
the UML class diagram for this database - described in the bullets below.

!
Figure 2.4.5-a: UML Class Diagram for the User Database

• The UserDB class represents the user database. It implements the RequestListener interface
in order to monitor the progress of all Request objects, and exposes a single method to retrieve
user-specific Record objects (given an end user’s user & team identifiers, see §2.4.2);

• Each Record instance is linked to an SLA instance and keeps track of the success_count and
failure_count for a given user (which fields are updated by the parent UserDB object).

ResourceFactory
- resources(ResourceConfig r, Float : max_cost) : ResourceInfo[]
- commission(ResourceInfo : t) : Resource
- decommission(Resource r)

ResourceInfo
cost : Float
time_unit : Float
max_dt : Float
penalty_dt : FloatResourceConfig

config

1

Mutable_RP
1

pool

UserDB
- record(Int : team, Int : user) : Record

Record
success_count : Int
failure_count : Int

0+
record

SLA

- cost(Request : r) : Float
- maxCT(Request : r) : Float

max_fr : Float
penalty_ct : Float
penalty_fr : Float

1

sla

RequestListener

 !14

• An SLA instance captures relevant information from consumer facing SLAs (see §2.2.1), namely:
‣ max_fr: the maximum failure-rate for requests;
‣ penalty_ct: the completion-time penalty constant, kct;
‣ penalty_fr: the failure-rate penalty constant, kfr;
‣ a cost method returning the financial cost (to the user) of a given request;
‣ a max_ct method returning the maximum completion-time for a given request.

We will assume that consumer-facing SLAs are standardised, and come in just three varieties:
‘bronze’ (low cost, weak QoS), ‘silver’ (mid-range) and ‘gold’ (high cost, strong QoS).

2.5. Resource Pool Manager (RPM)

Figure 2.5-a defines a UML class diagram for the RPM - described in the bullets below.

!
Figure 2.5-a: UML Class Diagram for the RPM

• The RPM class represents the Resource Pool Manager (RPM), which:
‣ extends the RequestQueue class (in the complete ETICS system requests are forwarded to

the RPM from the Configuration Web-Service), adding only a run() method for activation
(the RPM then runs continuously in its own thread);

‣ implements the RequestListener interfaces (§2.4.2) to monitor the progress of requests;
‣ forwards (resource tagged) requests to the ExecutionEngine for execution;
‣ queries the UserDB for user-specific QoS details;
‣ uses the ResourceFactory to obtain lists of procurable resources, and to (de)commission
Resources, but can otherwise only directly interact with the resource pool through its
Monitored_RP interface;

An outline of the regulatory behaviour of the RPM w.r.t. the resource pool was given in §2.3.2
(above), while its implementation is discussed in §3.5 (below).

2.6. Simulator

As a prototype, the RPM will be tested within a simulation environment, the UML class diagram
for which is given in Figure 2.6-a (next page) and described in the subsequent bullets.

!
Figure 2.6-a: UML Class Diagram for the Simulator

RPM

RequestListener

- run()
Monitored_RP

1
pool

UserDB1database

ExecutionEngine
1
engine

ResourceFactory factory1

RequestQueue

Simulator
- run()

ResourcePool

RPM

ExecutionEngine UserDB

ResourceFactory

1

1

1

1

1

RequestGenerator1

- nextRequest() : Request
UserModel

1
model

 !15

• The Simulator class is little more than a container for the RPM, its environment (UserDB,
ExecutionEngine, ResourceFactory & ResourcePool), and a RequestGenerator object.

• The RequestGenerator class represents a timed sequence of requests, and:
‣ exposes a single method nextRequest() returning the next Request in the sequence;
‣ is associated with a UserModel, encapsulating probabilistic data about how the service is

used, from which data the sequence of requests is constructed - as explained in §2.6.1 below.
• The simulation then runs as a continuous loop. On each cycle the Simulator instance:

‣ invokes nextRequest(), on the RequestGenerator, with result R;
‣ waits until R.time (the scheduled time of the request);
‣ then invokes addRequest(R) on the RPM: adding the request to the RPM’s request queue;

2.6.1. User Model

As noted above, the UserModel captures probabilistic service usage data and serves as the basis
for simulating requests. For simplicity, we make the following assumptions:

• The ETICS service is hosted at a single data-centre with a specific geographical location;
• Developers work in teams (of say 10-100 individuals) on collaborative software projects, where

each member of a given team:
‣ has the same standard working hours, say: 9-5, Monday-Friday (with occasional overtime),

and geographical location, the international time-zone of which offsets the working hours
relative to the data centre hosting the ETICS service;

‣ is subject to identical QoS terms, i.e. a single (consumer-facing) SLA is agreed between the
team and the ETICS provider.

The UserModel, as indicated by the UML class diagram in Figure 2.6.1-a, is then essentially a
collection of Team instances, each with the following fields/relations:

• index: a unique identifier for the team;
‣ corresponds to the team identifier in the Request class (§2.4.2);

• timezone: a relative time offset (−12 to +12 hours);
• user_count: the number of developers in the team;

‣ the user identifier in the Request class (§2.4.2) denotes the nth member of the team;
• SLA: the SLA governing each team member’s use of the ETICS service (see §2.4.5.);
• config: an array of 1+ ResourceConfig instances (§2.4.1.), one of which is randomly assigned

to each request generated by the team;

!
Figure 2.6.1-a: UML Class Diagram for the User Model

Requests can then be generated according to the following (or similar) simple rules:
• let p = k * user_count be the size of the collaborative software project that the team is working

on, where k is some constant.
• each developer generates a random number (say, between 20..50) of small scale ad-hoc requests

(say, request_size = 1..5% × p) at random intervals during the working day.
• each team generates one large scale scheduled request (request_size = p) at, say, midnight each

working day (i.e. corresponding to a regular ‘nightly build’).

UserModel Team
0+

team
index : Int
timezone : Int
user_count : Int

SLA
1

sla
0+

config
1+ ResourceConfig

 !16

3. Implementation

This section describes an initial ABS implementation of the RPM, mock-up ETICS components
and simulation environment specified in the previous section. This initial model comprises the
twelve ABS modules listed in Table 3-a. The complete code is available at the following link:

• https://envisage.ifi.uio.no:8080/redmine/projects/abstools/repository/
revisions/master/raw/examples/T4.4/D4.4.1/ENGCaseStudy_ETICS.abs.

Table 3-a: List of ABS Modules

Most of the modules are a fairly straightforward translation of the UML class diagrams given in
the previous sections into ABS . Subsections §3.1 - §3.5 below provide sample code snippets from 10

select modules to highlight various features of the implementation, while Section §3.6 lists various
ABS-specific issues encountered during the code development.

Module Module Contents See

Interfaces Classes
class “XImpl” implements interface “X”

Common User-defined data-type & functional definitions, and Exception Types §3.3

Config ResourceConfigImpl

Engine TimeOut TimeOutImpl
ExecutionEngineImpl

§3.4

Factory ResourceInfoImpl
ResourceFactoryImpl

Generator RequestData
RequestGenerator

UserModel
Team

RequestDataImpl
RequestGeneratorImpl

UserModelImpl
TeamImpl

Interfaces ResourceConfig
ResourceListener

Resource
Monitored_RP
Mutable_RP

Queriable_RP
ResourceInfo

ResourceFactory
Request

RequestListener
RequestQueue

ExecutionEngine
UserDB
Record
SLA
RPM

Pool ResourcePool

Request RequestImpl

Resource ResourceImpl §3.2

RPM RPMImpl §3.5

Simulator Simulator §3.1

UserDB MutableQoS MutableQoSImpl
UserDBImpl

 With appropriate adaptations for ABS datatype and interface/class specialisation idiosyncrasies.10

 !17

3.1. Simulator

The code snippet below captures the basic behaviour of the simulator, which:
• first creates the required environment objects (UserDB, ResourcePool, ResourceFactory &
ExecutionEngine), and the RPM - each in a distinct COG;

• creates a RequestGenerator in the local (simulator) COG;
• performs a fixed number of simulation iterations: firing one request to the RPM per iteration.

class Simulator{

 RequestGenerator generator = Nil ;

 Unit run(){

 // create the environment objects (each in a separate COG)
 UserDB user_db = new UserDBImpl();
 ResourcePool pool = new ResourcePoolImpl();
 ResourceFactory factory = new ResourceFactoryImpl(pool);
 ExecutionEngine engine = new ExecutionEngineImpl(pool);

 // create RPM
 RPM rpm = new RPMImpl(user_db, factory, engine, pool);

 // create RequestGenerator (in the local COG)
 generator = new local RequestGenerator(user_db);

 // simulation loop
 Int iterations = 100000; // an arbitrary value
 while (iterations > 0){
 Unit u = this.fireNextRequest();
 iterations = iterations - 1;
 }

 }

 Unit fireNextRequest(){

 // get the next request
 RequestData x = generator.nextRequest();

 // wait for the specified delay
 Int delay = x.delay();
 Time t = now();
 await timeDifference(now(), t) > delay; // suspends the current process

 // fire the request
 Request request = x.request();
 Unit u = RPM!addRequest(request); // asynchronous

 }

}

The simulator is then started from the main loop:

// MAIN
{
 new Simulator();
}

Access to system states during simulation runs (for feedback/visualisation of execution progress
and resource consumption under different usage assumptions) is expected to be supported by the
simulation and querying tools developed in WP1 (Task T1.4).

 !18

3.2. Resources

The following code snippets are taken from the ResourceImpl class. The first demonstrates how
the execution of requests is triggered/cancelled and simulated.

Request current_request = Nil;

// invoked by the execution engine & this resource
Unit setRequest(Request new_request){

 if (new_request != Nil && new_request != current_request){
 if (current_request == Nil){

 // start executing the new request
 current_request = new_request;
 Unit u = this.notifyListeners();
 u = this!execute(); // asynchronous

 }else{

 // the resource is already processing another request
 throw IllegalStateException;

 }
 }else if (current_request != Nil){ // && new_request = Nil

 // try to cancel the current request
 Int progress = await current_request!progress();
 if (progress < 100){

 // the current_request is not complete & hence fails
 Unit u = await current_request!setProgress(-1);

 }else{

 // it’s safe to delete the current_request
 current_request = Nil;
 Unit u = this.notifyListeners();

 }
 }
}

// simulation of request execution
Unit execute(){

 // if/while there is a request to execute
 if (current_request != Nil){

 Int size = await current_request!size();
 Int setup_delay = size * 50;
 Unit u = this.doDelay(setup_delay); // mimic setup by waiting

 while (current_request != Nil){

 // mimic the processing of the request by waiting
 u = this.doDelay(size);

 // advance the progress of the request (in increments of 1%)
 Int progress = await current_request!progress();
 progress = progress + 1;
 u = await current_request!setProgress(progress);
 if (progress == 100){
 this.setRequest(Nil); // execution of the request is complete
 }

 }

 }

}

 !19

// delay = proportional to size (with some random variation)
Unit doDelay(Int request_size){
 Int delay = (request_size * 100) + 5 - random(10);
 Time t = now();
 await timeDifference(now(), t) > delay;
}

The second code snippet illustrates the general coding pattern adopted for asynchronous listener
notifications.

// ivar
List<ResourceListener> listeners = Nil;

// add & remove listeners
// both use the user-defined function ‘list_contains’ (see Common.abs)

Unit addResourceListener(ResourceListener l){
 if (not(list_contains(listeners, l))){
 listeners = Cons(l, listeners); // built-in: add ‘l’ to listeners
 }
}

Unit removeResourceListener(ResourceListener l){
 if (list_contains(listeners, l)){
 listeners = without(listeners, l); // built-in: remove ‘l’
 }
}

// asynchronously send ‘requestChanged’ message to all listeners
Unit notifyListeners(){

 List<ResourceListener> list = listeners;
 while (list != Nil){

 // send the notification to the first item
 ResourceListener l = head(list);
 Unit u = l!requestChanged(this); // asynchronous

 // continue with the remaining elements
 list = tail(list);
 }
}

3.3. Functional (non-procedural) Definitions

The ResourceImpl class (§3.2 above) employs the user-defined function list_contains . The 11

following code snippet gives the definition of this function (from the Common.abs module), and is
included here just to illustrate the functional aspects of ABS.

// function: returns True if ‘list’ contains ‘item’
def Bool list_contains<A>(List<A> list, A item) =

 case list{

 Nil => False; // False if ‘list’ is Nil
 Cons(item, _) => True; // True if ‘item’ is the first element in ‘list’

 // Otherwise: recurse through the remaining list elements
 Cons(_, tail) => list_contains(tail, item);

};

 At the time of writing this functionality is not included in the ABS standard library. 11

 !20

3.4. Execution Engine

The code snippets presented in this section are from the ExecutionEngineImpl class, and serve
to show how the Execution Engine handles requests received from the RPM. The code is essentially
an implementation of the flow-chart shown earlier in Figure 2.4.3-b.

The first snippet defines a helper interface & class for postponed requests (covering the case that
the resources assigned to requests by the RPM are not immediately available). Each instance of this
class is a timer, which (on creation) suspends for a predefined ‘timeout’ period, and then simply
informs the Execution Engine that the timeout has occurred.

interface Postponed{
 Request request();
 Unit cancel();
}

class PostponedImpl(
 Request request,
 ExecutionEngineImpl engine,
 Int delay
) implements Postponed {

 Bool cancelled = False;

 Unit run(){

 // wait for the timeout delay
 Time t = now();
 await timeDifference(now(), t) > delay;

 // notify the execution engine of the timeout
 if (not(cancelled)){
 Unit u = engine!timedOut(request);
 }
 }

 Request request(){
 return request;
 }

 Unit cancel(){
 cancelled = True;
 }

}

The following snippet defines the Execution Engine’s behaviour when it receives a request (via
the addRequest(~) method inherited from the RequestQueue interface):

Unit addRequest(Request request){

 // retrieve the resource assigned to the request from the pool ...
 String resource_id = await request!resourceId();
 Resource resource = await pool!resource(resourceId);

 if (resource == Nil){

 // no resource was found, so the request fails
 // note: the UserDB is automatically notified of the failure
 Unit u = await request!setProgress(-1);

 }else{
 // is the resource free ?
 Request current = await resource!request();
 // continued ...

 !21

 if (current == Nil){

 // the resource is free: so execute the request immediately
 Unit u = await resource!setRequest(request);

 }else{

 // wait until the resource becomes free
 Unit u = this.postponeRequest(request, resource); // synchronous

 }
 }
}

The next snippet shows the implementation of the (private) postponeRequest method, which
relies on a local dictionary associating resource identifiers with lists of Postponed objects.

Map<String, List<Postponed>> postponed_map = EmptyMap;

Unit postponeRequest(Request request, Resource resource){

 // get the list of (any previously) postponed requests for the resource
 String resource_id = await resource!id();
 List<Postponed> ps = lookup(postponed_map, resource_id);

 // create a new Postponed object for the request in a new COG
 // ‘10000’ is the timeout period in ms
 Postponed p = new PostponedImpl(request, this, 10000);

 // add the new Postponed object to the list
 pr = Cons(pending, ps);
 postponed_map = put(postponed_map, resource_id, ps);

 // listen for changes to the resource's request …
 // the resource is free to execute a request if its current request is Nil
 Unit u = await resource!addResourceListener(this);

}

The following method (inherited by the ExecutionEngineImpl from the ResourceListener
interface) is invoked by a resource when its request field changes value.

Unit requestChanged(Resource resource){

 // get the list of (any previously) postponed requests for the resource
 String resource_id = await resource!id();
 List<Postponed> ps = lookup(postponed_map, resource_id);

 // if there are pending requests
 if (not(isEmpty(ps))){

 // is the resource free now?
 Request request = await resource!request();
 if (request == Nil){

 // the resource is free, so get the oldest postponed request
 Postponed p = head(ps);
 Unit u = await p!cancel(); // cancel the timeout notification
 Request request = await p!request();

 // execute this request immediately
 u = await resource!setRequest(request);

 // the request is no longer postponed, so update the map
 ps = tail(ps);
 postponed_map = put(postponed_map, resource_id, ps);

 }

 } // continued ...

 !22

 if (isEmpty(ps)){
 // there are no more postponed requests assigned to the resource
 // so we can stop listening to it
 Unit u = await resource!removeResourceListener(this);
 }
}

Finally, if the assigned resource has not become available before a timeout, the Postponed object
invokes the following (private) method on the ExecutionEngineImpl instance, which just marks
the request as failed and destroys the Postponed object.

Unit timedOut(Postponed p){

 // the request fails (due to timeout)
 Request request = await p!request();
 Unit u = await request!setProgress(-1);

 // remove the timeout from the pending list
 String resource_id = await request!resourceId();
 List<Postponed> ps = lookup(postponed_map, resource_id);
 ps = without(ps, p);
 postponed_map = put(postponed_map, resource_id, ps);

}

3.5. RPM

The following code snippet is the current implementation of the RPM (class RPMImpl) - which at
the moment is just a shell:

class RPMImpl (
 UserDB user_db,
 ResourceFactory factory,
 ExecutionEngine engine,
 Monitored_RP pool
) implements RPM{

 Unit run(){
 // TODO - continuously search for optimal request <-> resource assignments
 // incl. elastically add/remove resources to/from the pool
 }

 // RequestQueue implementation
 Unit addRequest(Request r){
 // TODO - received a new request
 }

 // RequestListener implementation
 Unit progressChanged(Request r){
 // TODO - received an update on the progress of executing requests
 }

}

The implementation proper of the RPM will be reported in D4.4.2 (Resource-aware Modelling for the
ENG Case Study, due in M22). The current idea is to develop a handful of distinct implementations,
each employing a different decision algorithm. These different versions comprise a simple software
product line, modelled in ABS by a feature model (with automatic code generation determined by
appropriate feature selection).

 !23

Figure 3.5-a shows an initial feature model for the ENG case study. Each of the three sub-features
denotes a particular approach to implementing the RPM, as briefly described in the bullets below:

!
Figure 3.5-a: Feature Model for the ENG Case Study

• Baseline: A trivial ‘worst-case’ algorithm serving as baseline for comparison, e.g. in the most
simple case: the RPM commissions a new resource for each request received, decommissioning
the resource once the request is complete.

• Drive-Based: Denoting a particular sub-class of action selection mechanisms, originally derived 12

from ethological ‘drive’ models of animal behaviour, but more properly characterised as based
on homeostatic principles - notable examples include [2], [3] and [4]. These mechanisms are
inherently distributed with elastic resource requirements (cf. the non-functional constraints
described in §2.3.2), and are thus good candidates for modelling in (resource-aware) ABS.

• Envisage: At least two options:
‣ The Envisage tools can be used to establish (possible) runtime criteria for switching between

simple, pre-defined request scheduling and/or resource commissioning policies (akin to
Usage Scenario 2 from the DOW Part B, page 8, Figure 7), which criteria can then be used at
runtime to decide the most appropriate policy.

‣ More ambitiously, experience in applying the Envisage toolset to develop the RPM will help
to establish whether it is possible to implement the RPM exclusively in terms of the toolset -
in particular: utilising the fully automated Envisage hybrid analysis/simulation tools (from
WP3) at runtime to determine the most appropriate request/resource configurations.

As already stated, these algorithms will be developed in ABS, and (in addition to their resource
management role within the ETICS service) will reflectively schedule their own internal processes
and manage the resources that execute these processes. To this end, they will also make use of:

• standard ABS primitives and APIs for dealing with processes & resources - i.e. (at the time of
writing) the Scheduler, Process and DeploymentComponent primitives/types (defined in
the built-in ABS modules ABS.Scheduler & ABS.DC);13

• autonomous monitors (cf. Task T2.3) for detecting significant events, e.g. runtime criteria for
policy switching (above), or (if possible) preemptive warnings of failures and demand spikes.

Likewise, the development of the algorithms will employ the Envisage tools (developed in WP3)
and methodology to:

• automatically generate executable versions in Java;
• verify conformance of the generated code to the ABS models; and
• test for conformance of the ABS models to non-functional constraints (service contracts);
For comparative purposes, the various RPM algorithms may be judged according to the simple

profit metric defined in §2.2.3. Note, however, that the main objective is not to evaluate the utility of
the different RPM algorithms per se, but to evaluate the utility of ABS and the Envisage toolset/
methodology for the development of the RPM.

ENG Case Study

Baseline EnvisageDrive-Based …

 e.g. see https://en.wikipedia.org/wiki/Action_selection.12

 Included in the ABS source file: abslang.abs.13

 !24

https://en.wikipedia.org/wiki/Action_selection

3.6. Initial Comments

The following bullets lists some of the main difficulties that were encountered during the initial
development of the ABS implementation of the RPM & Simulator .14

• A lack of comprehensive and up-to-date reference documentation for the ABS language and (in
particular) the standard libraries - e.g. the primary documentation for built-in datatypes and
functions consists of sparse inline comments in the abslang.abs source code file.

• The ABS plugins for the Eclipse IDE used to develop the implementation model are unstable 15

(exhibiting repeated low-level compiler exceptions).
• A lack of high-level APIs for file-system/database access, e.g. for the UserDB or UserModel.
• No support for class inheritance , i.e. in ABS there are no sub-classes inheriting (re-using) code 16

from their parent classes, and no calls to ‘super’ in class methods . This departure from the 17

‘usual’14 class-based principles entails quite a radical shift in thinking about code design.
• The constraint that synchronous (blocking) method calls are only permitted between objects in

the same COG blurs the distinction between synchronous (blocking) and asynchronous (non-18

blocking) calls. To illustrate, consider the following naive code snippet:

interface X{ Int a(); }

interface Y{ Int b(); }

class Z (X x) implements Y{
 Int b(){
 Int a = x.a(); // synchronous (blocking) call
 return a + 1;
 }
}

The synchronous invocation x.a() used here appears fairly natural14 but will in fact result in a
runtime error whenever the Z instance and its x parameter reside in different COGs. To avoid
this possibility, an asynchronous non-blocking call must be used to mimic the intended blocking
behaviour - which is somewhat counter-intuitive:

Int a = await x!a(); // asynchronous (non-blocking) call

• On a lesser note: the ABS syntax requires that the results of all method invocations are assigned
to variables, even for methods with no return values (i.e. return type Unit). So, given:

interface X{ Unit a(); }

The following code must be used to invoke the method a() on an instance, x, of X:

Unit u = x.a();

• Related to the last point, ABS does not support nested method calls, so the following is illegal:

Int a = x.foo(y.goo());

The correct form is:

Int b = y.goo();
Int a = x.foo(b);

 From the perspective of a novice ABS developer with experience of standard OO languages (Java, Objective-C, …). 14

 Eclipse Java IDE: www.eclipse.org.15

 An interface may extend another interface, but a class cannot extend another class, it can only implement interfaces.16

 Code re-use in ABS is instead achieved through Software Product Line methods - see: http://docs.abs-models.org/.17

 Explained in [1], p20 (section “Location Types”).18

 !25

http://docs.abs-models.org/
http://www.eclipse.org

4. Relevance To Project Goals

The overall relevance of the ENG case study to the project goals has two aspects:
• First, the case study uses the ABS tools/methodology to develop a (prototype) Resource Pool

Manager (RPM) component for the ETICS service, together with mock-ups of other relevant
ETICS components and a simulation environment for testing the RPM’s behaviour. The RPM
will be implemented with a scalable distributed architecture, and will elastically manage the
computational resources on which it executes in order to adapt to dynamic request rates. The
RPM, mock-up components and simulation environment will all be developed entirely in ABS,
exploiting the language’s built-in features for event monitoring & elastic resource deployment,
and employing Envisage analytic and simulation tools to ensure scalable robust performance.

• Second, the role/function of the RPM within the ETICS architecture is to elastically manage the
virtual computational resources used by ETICS to respond to end user requests. This function
is independent of the Envisage development methodology used to construct the RPM, but it
never-the-less serves as a concrete illustration of some of the issues involved in elastic resource
management (in particular from the business perspective of operating services at profit). In this
sense the case study is intended to provide useful input to the technical work packages.

The next subsection describes how the case study relates to the Envisage objectives & milestones.

4.1. Relation to Envisage Objectives & Milestones

This section relates the ENG case study to the Envisage objectives (O1 - O6) and milestones (M1 -

M5), summarised for reference in Table 4.1-a, and w.r.t. to the timeline for WP4 deliverables in
Figure 4.1-b (next page) . 19

Table 4.1-a: Summary of Envisage Objectives, Milestones, Outcomes & Timing

Objective Objective Description Milestone Outcomes Month

O1 Foundations of
computation with

virtualised resources

M2
(modelling capabilities)

Semantic framework for scalable
architectures, infrastructures, and

virtualised resources.

18

O2 Behavioural
specification language

for virtualised
resources

M2 Resource-aware, abstract behavioural
specification language and its prototype

simulator.

18

O3 Design-by-contract
methodology for
service contracts

M3
(design-by-contract of services)

Formal specification language for service
contracts.

24

O4 Model conformance
demonstrator

M4
(tool demonstrator)

Demonstrator for the conformance of
generated or legacy code to the abstract

model.

30

O5 Model analysis
demonstrator

M4 Runtime support for the resource analysis
and for the validation with the SLA.

30

O6 Demonstration of
Impact

M1
(modelling of the case studies)

M5
(project assessment)

Case studies artefacts and their formal
verification; Envisage toolset available as a

service, Public releases, Academia and
Industrial dissemination.

12

36

 The table & figure are respectively adapted from Figures 8 & 9 (page 8) in the Envisage DOW (Part B) 19

 !26

!
Figure 4.1-b: Timeline for WP4 w.r.t. Objectives & Milestones

The present deliverable represents the means of verification for Milestone M1 (modelling of the
case studies) and hence covers the initial M12 outcome of Objective O6 (demonstration of impact).
The bullets below highlight how the ENG case study impacts the remaining objectives.

• O1 - Foundations of Computation with Virtualised Resources:
The ENG case study provides a service scenario in which the elastic management of virtualised
resources is central. This deliverable offers a detailed account of what (from the perspective of
industry) such elastic management entails, and serves as input to WP1. In particular, we have:
‣ provided an object-oriented model (§2.4 & §2.5) of the ETICS service;
‣ detailed how this service employs elastically provisioned virtual computing resources for

the distributed execution of both end-user requests and the decision algorithm employed by
the RPM;

‣ enumerated the relevant properties of computational resources (cf. T1.2); and
‣ specified an appropriate level of abstraction for modelling resource deployment (cf. T1.3).

In §2.6.1 (‘User Model’) we also outlined a probabilistic model of service demand, from which
estimates of workload (and in particular, of dynamic variation in workload) can be derived.

• O2 - Behavioural Specification Language for Virtualised Resources:
The RPM, mock-up ETICS components and simulation environment will all be implemented
(as executable models) entirely in the abstract behavioural specification language (ABS) to be
developed within WP1. An initial ABS implementation is presented in §3, to be elaborated in
future deliverables. In particular:
‣ the ResourceFactory will be updated in line with the results of T1.1 (modelling support

for scalable infrastructure - esp. dynamic creation and management of virtual machines);
‣ likewise the Resource model will be updated in line with the results of T1.2 (modelling of

resources); and
‣ the implementation of the RPM will incorporate the results of T1.3 (deployment modelling)

as part of its decision making processes.

• O3 - Design-by-Contract Methodology for Service Contracts:
The ENG case study is defined in terms of the relation between functional service components
(in particular the RPM) and their required non-functional properties (derived from consumer &
cloud provider facing SLAs). This deliverable provides detailed definitions of the relevant QoS
terms, and explains (in §2.3.2) how these terms impact:
‣ the functional properties of the service (in particular, the internal calculations of the RPM);
‣ the non-functional properties of the service - i.e. the actual completion-times & failure-rates (as

opposed to the normative values specified in SLAs); and
‣ the overarching business-level concerns of the service (for simplicity, just profit).

As such, this deliverable provides direct input to task T2.2, both for the specification of QoS,
and for defining criteria for the conformance of the service to QoS.

Initial User
Requirements

Case Study:
Initial Modelling

Case Study:
Resource Modelling

Case Study:
Assurance

Overall
Assessment

Objectives O1, O2 O3 O4, O5

1 7 10 22 34 36

Milestones M2 M3M1 M4

month

M5
O6O6

 !27

• O4 - Model Conformance Demonstrator:
As stated above, the RPM, mock-up ETICS components & simulation environment will all be
modelled entirely in ABS. The ENG case study will then use the results of T3.1 to automatically
generate an executable version in Java, and to ensure that this code conforms to the operational
semantics of the source ABS model. The development of the ABS model will also make
extensive use of the automatic test-case generation mechanisms (T3.5), and the prototype
simulator (T1.4) for debugging, tracing the execution, and testing of:
‣ the distributed simulator & ETICS components - i.e. the overall flow of requests from the
RequestGenerator, to the RPM, to the ExecutionEngine, to Resource instances, as well
the various interactions (in particular the asynchronous ~Listener notifications and timed
interrupts) between these objects and the ResourceFactory, UserDB, and UserModel.

‣ the distributed decision algorithm(s) employed by the RPM.
Future deliverables will also investigate the use of dedicated monitoring add-ons (T2.3) to
monitor the status (i.e. composition, QoS & ongoing tasks) of the ResourcePool.

• O5 - Model Analysis Demonstrator:
The ENG case study will use the tools developed in WP3 to verify the ABS model of the RPM
against non-functional requirements. Specifically, we will employ a hybrid (T3.4) approach
based mainly on formal verification (T3.2) & resource analysis (T3.3), but likely also requiring
input from test-case execution (T3.5) and possibly monitoring (T2.3). The basic aim is to ensure
the scalability and cost-effectiveness of the RPM (as described in §2.3.2).

4.2. Summary

This deliverable constitutes an initial model of the ENG case study, the objective of which is to
employ the Envisage tools & methodology to develop an automated Resource Pool Manager (RPM)
component for the elastic management of the computational resources utilised by ENG’s ETICS
service. The deliverable has presented a detailed account of, and requirements specification for, the
RPM (in terms of both functional & non-functional properties), for mock-up versions of the other
ETICS architectural components with which the RPM interacts, and for a simulation environment
for evaluating the performance of the RPM in the face of diverse usage patterns. A preliminary
ABS implementation of the RPM and simulator has also been developed (to be expanded and
improved in subsequent deliverables), and some initial observations on the status and use of ABS
recorded. Finally, we have outlined how the ENG case study both provides input to and utilises
the results of the technical work-packages, and how in general terms it contributes to the main
project objectives.

 !28

Bibliography

Web links are valid as of December 10th 2014.

[1] Hähnle, R. (2013) The Abstract Behavioural Specification Language: A Tutorial Introduction :
FMCO 2012, LNCS 7866, pp. 1-37, 2013.

[2] Bryson, J.J. (2003) The Behaviour-Oriented Design of Modular Agent Intelligence : Agent
Technologies, Infrastructures, Tools & Applications for e-Services, R. Kowalszyk, J. P. Müller,
H. Tianfield and R. Unland, eds., pp. 61-76, Springer, 2003.  
 

- available at: http://www.cs.bath.ac.uk/%7Ejjb/ftp/AgeS02.pdf

[3] Tyrrell, T. (1993). Computational Mechanisms for Action Selection : PhD thesis, University of
Edinburgh, Centre for Cognitive Science.  
 

- available at: http://w2mind.computing.dcu.ie/worlds/w2m.TyrrellWorld/tyrrell_phd.pdf

[4] Pezzulo, G., Calvi, G. & Castelfranchi, C. (2007). DiPRA - Distributed Practical Reasoning
Architecture : IJCAI ’07, pp. 1458-1463.  
 

- available at: http://www.ijcai.org/papers07/Papers/IJCAI07-235.pdf

 !29

http://www.cs.bath.ac.uk/%7Ejjb/ftp/AgeS02.pdf
http://w2mind.computing.dcu.ie/worlds/w2m.TyrrellWorld/tyrrell_phd.pdf
http://www.ijcai.org/papers07/Papers/IJCAI07-235.pdf

