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Executive Summary:

Verification
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ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eul

This report presents static analysis methods which can be used to formally verify the behavior of an
abstract system model (Task T1.1) against contracts derived from behavioral interfaces (Task T2.1).

The following aspects are reported:

1. the sound compositional reasoning system in dynamic logic for ABS
2. the implementation of the deductive verification tool KeY-ABS

3. the application of KeY-ABS on unbounded systems

4. the tool DF4ABS for deadlock detection
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Chapter 1

Introduction

According to the Envisage Description of Work, the Deliverable 3.2

e develops static analysis methods which can be used to formally verify compliance of system models
with their contracts. In other words, we ensure that any possible behavior of an abstract system model
(Task T1.1) complies with requirements derived from behavioral interfaces (Task T2.1).

In ABQH as developed in Task T1.1, two different kinds of concurrency are supported depending on
whether two objects belong to the same or to different concurrent object groups (COGs). Within a COG
several threads might exist, but only one of these threads (and hence one object) can be active at any time.
Another thread can only take over when the current active thread explicitly releases control. In other words,
ABS realizes cooperative scheduling within a COG. All interleaving points occur syntactically explicit in an
ABS program.

While one COG represents a single processor with task switching and shared memory, two different COGs
run actually in parallel and are separated by a network. As a consequence, objects within the same COG
may communicate either by asynchronous or by synchronous method invocation, while objects living on
different COGs must communicate with asynchronous method invocation and message passing. Technically,
the decoupling of method invocation and the returned value is realised using future variables [4], which are
pointers to values that may be not available yet. Clearly, accessing values of future variables may require
waiting for the value to be returned.

Task T2.1 introduces two notions of behavioral interface for the basic virtualized services as developed in
Task T1.1. These interfaces are mostly used to verify the interoperability obligations between the different
(concurrent) parties that compose a virtual system. One type of behavioral interface is based on communi-
cation histories. These histories abstractly capture the system state at any point in time. Partial correctness
properties of a system may thereby be specified by the set of finite initial segments of its communication his-
tories. A history invariant is a predicate over the communication history, which holds for all finite sequences
in the (prefix-closed) set of possible histories. Such invariants express safety properties. Another type of
behavioral interface is called lams, which are sequences of basic terms recording the method invocations
and the synchronisations between calling and called methods. Task T2.1 provides the formalisation of the
obligations of components of ABS systems that guarantee never-ending waitings for returned values. This
property, which turns out to be a consequence of deadlock freedom, is enforced by associating behavioral
interfaces to method definitions.

In this Deliverable, we describe two tools. Each tool can formally verify compliance of system models
with their contracts derived from each type of behavioral interface, respectively. Chapters 2}{4] relate to the
history-based behavioral interface and Chapter |5 relates to the behavioral interface using lams.

In Chapter [2| a sound compositional reasoning system for ABS is formulated within dynamic logic. This
reasoning framework establishes an invariant over the global history from invariants over the local histories
of each object. In Chapter [3| we present the deductive verification tool KeY-ABS which realises the dynamic

!The ABS language used in this Task excludes the modeling of variability in software product line engineering [3].
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logic reasoning system introduced in the previous chapter. According to the Envisage Description of Work,
the design of KeY-ABS concerns the following: (i) symbolic execution is used as the underlying key technology
for state exploration, (ii) generalized contracts provide compositionality of verification and (iii) there is an
explicit representation of symbolic states. Besides design issues we also discuss the usage of KeY-ABS and its
application in Chapter 4] in which we show that KeY-ABS can handle unbounded and complex concurrent
ABS systems. In Chapterwe present the DF4ABS tool, which (i) automatically infers the lams associated to
each method of an ABS program and (ii) detects possible deadlocks by analysing those lams. Lams provide
useful information for inter-cog synchronisation dependencies which are analysed in this task in order to
discover possibly harmful circular waits for resources.

Currently we are investigating the relation between the two types of behavioral interfaces. The ultimate
goal is to bridge the gap between the two techniques by translating the inference system for deadlock analysis
developed at BOL into a dynamic logic proof system for KeY and reformulate lams as suitable invariants on
communication histories. This work is planned to be done within the scope of Task T3.4, Hybrid Analysis.

1.1 List of Papers Comprising Deliverable D3.2

This section lists all the papers that this deliverable comprises, indicates where they were published, and
explains how each paper is related to the main text of this deliverable. The deliverable contains either
extended abstracts of the papers or the parts that are relevant for the Envisage project. The full papers
are made available in the appendix of this deliverable and on the Envisage web site at the url http://www.
envisage-project.eu/ (select “Dissemination”). Direct links are also provided for each paper listed below.

Paper 1: A Sound Compositional Reasoning System in Dynamic Logic This paper presents a
model for ABS asynchronously communicating objects, where return values from method calls are handled
by futures. The model facilitates invariant specifications over the locally visible communication history of
each object. Compositional reasoning is supported and proved sound, as each object may be specified and
verified independently of its environment. A compositional proof system for ABS is presented, formulated
within dynamic logic.

The paper was written by Crystal Chang Din and Olaf Owe and was published in the Journal of Formal
Aspects of Computing (FAC) 2014.

Download the paper at http://dx.doi.org/10.1007/s00165-014-0322-y.

Paper 2: The Deductive Verification Tool: KeY-ABS We present KeY-ABS, a tool for deduc-
tive verification of concurrent and distributed programs written in ABS. KeY-ABS allows to verify data
dependent and history-based functional properties of ABS models. In this paper we give a glimpse of
system workflow, tool architecture, and the usage of KeY-ABS. In addition, we briefly present the syntax,
semantics and calculus of KeY-ABS Dynamic Logic (ABSDL). The system is available for download at
http://www.envisage-project.eu/7page_id=1558.

The paper was written by Crystal Chang Din, Richard Bubel and Reiner Héhnle and was submitted to
an international conference.

Paper 3: The NoC Verification Case Study with KeY-ABS We present a case study on scalable
formal verification of distributed systems that involves a formal model of a Network-on-Chip (NoC) packet
switching platform. We provide an executable model of a generic m x n mesh chip with unbounded number
of packets, the formal specification of certain safety properties, and formal proofs that the model fulfils
these properties. The modeling has been done in ABS. Our paper shows that this is indeed possible and so
advances the state-of-art verification of NoC systems. It also demonstrates that deductive verification is a
viable alternative to model checking for the verification of unbounded concurrent systems that can effectively
deal with state explosion.


http://www.envisage-project.eu/
http://www.envisage-project.eu/
http://dx.doi.org/10.1007/s00165-014-0322-y
http://www.envisage-project.eu/?page_id=1558
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The paper was written by Crystal Chang Din, S. Lizeth Tapia Tarifa, Reiner Hahnle, and Einar Broch
Johnsen and was submitted to an international conference.

Paper 4: Deadlock Analysis A framework for statically detecting deadlocks in ABS is presented. The
basic component of the framework is a front-end inference algorithm that extracts abstract behavioral de-
scriptions of methods, called contracts, which retain resource dependency information. This component is
integrated with a number of possible different back-ends that analyse contracts and derive deadlock infor-
mation. As a proof-of-concept, two such back-ends are discussed: (i) an evaluator that computes a fixpoint
semantics and (ii) an evaluator using abstract model checking.

The paper was written by Elena Giachino, Cosimo Laneve and Michael Lienhardt and was published in
the Journal of Software and Systems Modeling (SoSyM) 2015.

Download the paper at http://dx.doi.org/10.1007/s10270-014-0444-y.


http://dx.doi.org/10.1007/s10270-014-0444-y

Chapter 2

A Sound Compositional Reasoning System
in Dynamic Logic

2.1 Introduction

In Deliverable D2.1 [5] Section 3.2 we introduced the representation of behavioral interfaces using commu-
nication histories. We formalised object communication by an event-based operational semantics, capturing
shared futures. Since message passing in ABS is asynchronous, we consider separate events for method invo-
cation, reacting upon a method call, resolving a future, fetching the value of a future, and object creation.
Each event is visible to only one object. Consequently, the local histories of two different objects share no
common events, and invariants based on communication histories can be established independently for each
object. The global history of the whole system is formed by the composition of the local history of each
instance of the class, and a global invariant can be obtained as a conjunction of the class invariants for
all objects in the system, adding well-formedness [7] of the global history. The well-formedness serves as a
connection between the local histories, relating events with the same future to each other.

In this chapter we continue the work and develop a history-based dynamic logic proof system for class
verification of ABS, facilitating independent reasoning about each class. A verified class invariant can be
instantiated to each object of that class, resulting in an invariant over the local history of the object. The
compositionality of this dynamic logic proof system is proved sound.

2.2 The ABS Dynamic Logic

Specification and verification of ABS models is done in ABS dynamic logic (ABSDL). ABSDL is a typed
first-order logic plus a box modality: For an ABS program s and ABSDL formulae 1 and ¢, the formula
1 — [S]¢ expresses: If the execution of a program s starts in a state where the assertion ¢ holds and
the program terminates normally, then the assertion ¢ holds in the final state. Hence, [-] acts as a partial
correctness modality operator.

Verification of an ABSDL formula proceeds by symbolic execution of s, where state modifications are
handled by the update mechanism [I]. A dynamic logic formula [v = e;s]¢, i.e., where an assignment
is the first statement, reduces to {v := e}[s]¢, in which {v := e} is an update and s is the remaining
program. Updates can only be applied on formulas or terms without programs, which means that updates
on a formula [s]¢ are accumulated and their application is delayed until the symbolic execution of s is
complete. Update application {v := t}e, on an expression e, evaluates to the substitution e}, replacing all
free occurrences of v in e by t. There are operations for sequential as well as parallel composition of updates,

e, {v1 = epl]...||vn :==en}.



Envisage Deliverable D3.2 Verification

2.3 Compositional Reasoning

The concurrency model of ABS admits a proof system that is modular and permits to reduce correctness
of concurrent programs to reasoning about sequential ones [2, [6]. We must prove a class invariant I for
class C' is established by the initialization code, satisfied at any process release points and maintained by all
method definitions in class C, assuming well-formedness of the local history. Any execution between where
the class invariants are verified is sequential.

For a method definition m(Z){s; return e} in C where T is a list of method parameters, s the method
body, and e the return data, this amounts to a proof of the sequent:

Fwf(H) A Ic = [H = H - (caller — this, destiny, m, T);
s; H =H - (+ this,destiny, m, e)](wH) = I¢)

where wf(H) expresses the well-formedness of local history #. The method body is extended with an
assignment statement of history extension, H = H - (caller — this, destiny, m,Z), capturing the starting
point of method execution. The variable destiny contained in the appended invocation reaction event is the
future variable generated for this current method execution. The return statement is treated as another
history extension, H = H - (< this,destiny,m,e), in which the future event captures the termination of
method execution. The definition of communication events can be found in D2.1 [5] Section 3.2.

The deductive component of our reasoning system is an axiomatization of the operational semantics of
ABS in the form of a sequent calculus. We define proof rule for each ABS statement. For example, the rule
for method invocation is:

FYu.{fr:=u||H:=H- (this — v,u,m,€)} [s]¢
F [fr=vlm(e); s]o

When invoking a method, the update in the premise of rule invoc captures the generation of a fresh future
identity u and the history extension, in which the invocation of method m on object v is captured in an
invocation event (this — v, u, m,€). Similarly, an object creation event containing a fresh object identity is
appended to the history upon symbolically executing an object creation statement. The details of this proof
rule can be found in Appendix [A]

The proof rule for modular reasoning is formulated below:

invoc

- Ic(h), for each C in CI

Cl+ wf(h) A A Io.c@) (h)
(0:C(€))€ob(h)

composition

where we show that the obtained global invariant can be proved (in the conclusion) if all the class invariants
belong to the system are provable (in the premise). The variable C1 is the set of classes in the system, wf(h)
the well-formedness of global history h, ob(h) the set of objects generated within the history h, o : C(€) the
instance of class C', and I,.c()(h) the invariant for object o : C(€). This rule allows to prove global safety
properties of the system using local rules and symbolic execution. In Appendix [A] we provide the detailed
soundness proof for our compositional reasoning system and show a verified ABS concurrent program is
correct for all possible scheduling.



Chapter 3

The Deductive Verification Tool: KeY-ABS

3.1 Introduction

KeY-ABS is a deductive verification system for the concurrent modelling language ABS. It is based on the KeY
theorem prover [I] and realises the reasoning system given in Chapter . KeY-ABS provides an interactive
theorem proving environment and allows one to prove properties of object-oriented and concurrent ABS
models. The deductive component of KeY-ABS is an axiomatization of the operational semantics of ABS in
the form of a sequent calculus for first-order dynamic logic for ABS (ABSDL). The rules of the calculus that
axiomatize program formulae define a symbolic execution engine for ABS. The system provides heuristics
and proof strategies that automate large parts of proof construction. For example, first-order reasoning,
arithmetic simplification, symbolic state simplification, and symbolic execution of loop- and recursive-freef
programs are performed mostly automatically. The remaining user input typically consists of universal and
existential quantifier instantiations.

In contrast to model checking, KeY-ABS allows to verify complex functional properties of systems with
unbounded size, see Chapter KeY-ABS itself consists of around 11,000 lines of Java code (KeY-ABS + reused
parts of KeY: ca. 100,000 lines in total). The rule base consists of around 10,000 lines written in KeY’s taclet
rule description language [I]. At http://www.envisage-project.eu/?page_id=1558| the KeY-ABS tool can
be downloaded.

In Appendix [B] we provide a more detailed explanation of KeY-ABS. Here we give a glimpse of system
workflow, tool architecture and the usage of KeY-ABS.

3.2 System Workflow

The input files to KeY-ABS comprise (i) an .abs file containing ABS programs and (ii) a .key file containing
the class invariants, functions, predicates and specific proof rules required for a particular verification case.
Given these input files, KeY-ABS opens a proof obligation selection dialogue that lets one choose a target
method implementation. From the selection the proof obligation generator creates an ABSDL formula. By
clicking on the Start button (see Fig. the verifier will try to automatically prove the generated formula.
A positive outcome shows that the target method preserves the specified class invariants. In the case that a
subgoal cannot be proved automatically, the user is able to interact with the verifier to choose proof strategies
and proof rules manually. The reason for a formula to be unprovable might very well be that the target
method implementation does not preserve one of the class invariants, that the specified invariants are too
weak /too strong or that additional proof rules are required.

3.3 KeY-ABS Architecture

Fig. depicts the architecture of the KeY-ABS system. KeY-ABS is based on the KeY 2.0 platform—a
verification system for Java. To be able to reuse most parts of the system, we had to generalize various


http://www.envisage-project.eu/?page_id=1558
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The Start button for automatic verification

“) ’u/ v 9K 1 ||[Me]8s]P B [Proof Management

Proofs ' Current Goal
Env. with model bank example@

G rcscrves inarian ccfin
\forall ABSAnyInterface caller;
( !caller = null
—> \forall int x_0;
{x:=x_0}
{history:=seqConcat(history,
seqSingleton(invocREv(caller,
this,

future,
Account.Account: :deposit#ABS.StdLib.Int,

_m Goals »| seqConcat(seqEmpty, seqSingleton(x)))))}
E— ( vellFormed (heap)
5 Proof Tree | & wfHist(history)
IRl L. GPEN GOAL] & !this = null

& Precondition_of_Account.Account::deposit#ABS.StdLib.Int(history, heap, this, x)
& CInv(history, heap, this)
—> \[{ methodframe(source <- Account.Account::deposit#ABS.StdLib.Int, return <- (var: result, fut: future):{

this.balance = this.balance + x;
return
this.balance;

An ABSDL formula generated by keY-ABS

NICInv(history, heap, this)))

Kﬁ)’ Integrated Deductive Software Design: Ready (Hint: type F3 to search in proof trees or sequents.)

Figure 3.1: A screen shot of KeY-ABS.

ABS

subsystems and to abstract away from their Java | specification

specifics. For instance, the rule application logic [ Proof Obiigation

of KeY made several assumptions which are valid 5S oda Generator

for Java but not for other programming languages. o

Likewise, the specification framework of KeY, even
though it provided general interfaces for contracts
and invariants, made implicit assumptions that were
insufficient for our communication histories and
needed to be factored out. After refactoring, the
KeY system provides core subsystems (rule engine,
proof construction, search strategies, specification
language, proof management etc.) that are inde-
pendent of the specific program logic or target language. These are then extended and adapted by the ABS
and Java backends.

The proof obligation generator needs to parse the source code of the ABS model and the specification.
For the source code we use the parser as provided by the ABS toolkit [19] with no changes. The resulting
abstract syntax tree is then converted into KeY’s internal representation. The specification parser is an
extension of the parser for ABSDL logic formulas and is an adapted version of the parser for JavaDL [I].
The rule base for ABSDL reuses the language-independent theories of the KeY tool, such as arithmetic,
sequences and first-order logic. The rules for symbolic execution have been written from scratch for ABS as
well as the formalisation of the history datatype.

Proof Engine

[
KeY ABS /
Rulebase

‘ KeY 2.0 Platform ‘

Figure 3.2: The architecture of KeY-ABS

3.4 The Usage of KeY-ABS

The compositionality of the reasoning system explained in Chapter [2]allows to scale verification to non-trivial
programs, because it is possible to specify and verify each ABS method separately, without the need for a
global invariant. KeY-ABS follows the Design-by-Contract paradigm with a focus on specification of class
invariants for ABS programs.

A history-based class invariant in ABSDL can relate the state of an object to the local history of the
system. A simple banking system is verified in [2] by KeY-ABS, where an invariant ensures that the value of

10
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the account balance (a class attribute) always coincides with the value returned by the most recent call to a
deposit or withdraw method (captured in the history).

A history-based class invariant in ABSDL can also express temporal or structural properties of the history.
To formalize this kind of class invariant, quantifiers and indices of sequences are used to locate the events at
certain positions of the history. In Chapter [ we show a case study using KeY-ABS to verify an ABS model of
a Network-on-Chip (NoC) packet switching platform [13]. We proved that the NoC model drops no packets.
Both styles of class invariants mentioned above were used. The KeY-ABS verification approach to the NoC
case study deals with an unbounded number of objects and is valid for generic NoC models for any m x n
mesh in the ASPIN chip as well as any number of sent packets.

Based on the theory of compositionality in Chapter 2, we prove global safety properties of the system
using local rules and symbolic execution of KeY-ABS. In contrast to model checking this allows us to deal
effectively with unbounded target systems without suffering from state explosion.

11



Chapter 4

The NoC Verification Case Study with
KeY-ABS

4.1 Introduction

This chapter presents a case study on scalable formal verification of the behavior of distributed systems. We
create a formal, executable model of a Network-on-Chip (NoC) packet switching platform [13] called ASPIN
(Asynchronous Scalable Packet Switching Integrated Network) [17]. ASPIN has physically distributed routers
in each core. Each router is connected to four other neighboring routers and each core is locally connected
to one router. ASPIN routers are split into five separate modules (north, south, east, west, and local) with
ports that have input and output channels and buffers. Each input channel is provided with an independent
FIFO buffer. Packets arriving from different neighboring routers (and from the local core) are stored in
the respective FIFO buffer. Communication between routers is established using a four-phase handshake
protocol. The protocol uses request and acknowledgment messages between neighboring routers to transfer
a packet. This is a practically relevant system whose correctness is of great importance for the network
infrastructures where it is deployed.

The main contributions of this work are as follows: (i) a formal model of a generic m xn mesh ASPIN chip
in ABS with unbounded number of packets, as well as a packet routing algorithm; (ii) the formal specification
of a number of safety properties which together ensure that no packets are lost; (iii) formal proofs, done with
KeY-ABS, that the ABS model of ASPIN fulfills these safety propertiesE]

4.2 The NoC Model in ABS

We model each router as an object that communicates with other routers through asynchronous method
calls. The abstract data types used in our model are given in Fig. We abstract away from the local
communication to cores, so each router has four ports and each port has an input and output channel, the
identifier rId of the neighbor router and a buffer. Packets are modeled as pairs that contain the packet
identifier and the final destination coordinate.

The ABS model of a router is given in Fig. The method setPorts initializes all the ports in a router
and connects it with the corresponding neighbor routers. Packets are transferred using a protocol expressed
in our model with two methods redirectPx and getPk. The internal method redirectPk is called when a
router wants to redirect a packet to a neighbor router. The X-first routing algorithm (implemented by the
function xFirstRouting) decides which port direc (and as a consequence which neighbor router) to choose.
The parameter srcPort determines in which input buffer the packet is temporarily and locally stored. As
part of the communication protocol, the input channel of srcPort and the output channel of direc are blocked
until the neighbor router confirms that it has gotten the packet, using £ = rlgetPk(...); await £? statements

!The complete model with all formal specifications and proofs is available at
https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/noc.

12
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type Pos = Pair<Int, Int>; // (xy) coordinates
type Packet = Pair<Int, Pos>; // (id, destination)
type Buffer = Int;
data Direction = N | W | S | E | NONE ; // north, west, south, east, the direction for not moving
data Port = P(Bool inState , Bool outState, Router rId, Buffer buff);
// (input port state, output port state, neighbor router id, buffer size)
type Ports = Map<Direction, Port>;

Figure 4.1: ADTs for the ASPIN model in ABS

to simulate request and acknowledgment messages (here r is the Id of the neighbor router). The method
getPk checks if the final destination of the packet is the current router, if so, it stores the packet, otherwise
it temporarily stores the packet in the srcPort buffer and redirects it. The model uses standard library
functions for maps and sets (e.g, put, lookup, etc.) and observers as well as other functions over the ADTs
(e.g., addressPk, inState, decreaseBuff, etc.).

4.3 Formal Specification and Verification of the Case Study

We formalize and verify global safety properties about our ABS NoC model in ABSDL using the KeY-ABS
verification tool. This excludes any possibility of error at the level of the ABS model. According to Chapter
Section 3.4, we specify history-based class invariants which relate the state of an object to the local history
of the system and express temporal or structural properties of the history. Our verification approach uses
local reasoning about RouterImp objects and establishes a system invariant from the proof results.

4.3.1 Local Reasoning

We present the class invariants for RouterImp in Lemma and and we show the proof obligations
verified by KeY-ABS that result from the reasoning of our model against the class invariants.

Lemma 4.3.1 Whenever a router R terminates an execution of the getPk method, then R must either have
sent an internal invocation to redirect the packet or have stored the packet in its receivedPks set.

We formalize this lemma as an ABSDL formula (slightly beautified):

Vi, u.0 <iy <len(h) A futEv(this,u, getPk, ) = at(h,ii)
=
Jig, pk .0 < 'ig < i3 NinvREv(_,this,u,getPk, (pk, )) = at(h,iz) A
((dest(pk) # address(this) =
iz .ig < i3 < i1 A invEv(this, this, , redirectPk, (pk, )) = at(h,i3)) V
(dest(pk) = address(this) = pk € receivedPks))

where “ 7 denotes a value that is of no interest. The function len(s) returns the length of the sequence
s, the function at(s,i) returns the element located at the index ¢ of the sequence s, the function dest(pk)
returns the destination address of the packet pk, and address(r) returns the address of the router r.

This formula expresses that for every future event evy of getPk with future identifier v found in history h
we can find by pattern matching with u in the preceding history a corresponding invocation reaction event
evs that contains the sent packet pk. If this router is the destination of pk, then pk must be in its receivedPks
set, otherwise an invocation event of redirectPk containing pk must be found in the history between events
evp and evs.

Lemma 4.3.2 Whenever a router R terminates an execution of redirectPk, the input channel of srcPort and
the output channel of direc are released.

13
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interface Router{
Unit setPorts(Router e, Router w, Router n, Router s);
Unit getPk(Packet pk, Direction srcPort);}

class RouterImp(Pos address, Int buffSize) implements Router {
Ports ports = EmptyMap;
Set<Packet> receivedPks = EmptySet; // received packages

Unit setPorts(Router e, Router w, Router n, Router s){
ports = map[Pair(N, P(True, True, n, 0)), Pair(S, P(True, True, s, 0)),
Pair(E, P(True, True, e, 0)), Pair(W, P(True, True, w, 0))];}

Unit getPk(Packet pk, Direction srcPort){
if (addressPk(pk) != address) {
await buff (lookup(ports,srcPort)) < buffSize;
ports = put(ports,srcPort,increaseBuff (lookup(ports,srcPort)));
this!redirectPk(pk,srcPort);}
else { // record that packet was successfully received
receivedPks = insertElement(receivedPks, pk); } }

Unit redirectPk(Packet pk, Direction srcPort){
Direction direc = xFirstRouting(addressPk(pk), address);
await (inState(lookup(ports,srcPort)) == True)

&& (outState(lookup(ports,direc)) == True);

ports = put(ports, srcPort, inSet(lookup(ports, srcPort), False));
ports = put(ports, direc, outSet(lookup(ports, direc), False));
Router r = rId(lookup(ports, direc));
Fut<Unit> f = r!getPk(pk, opposite(direc)); await £?;
ports = put(ports, srcPort, decreaseBuff(lookup(ports, srcPort)));
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), True));
ports = put(ports, direc, outSet(lookup(ports, direc), True));}}

Figure 4.2: A model of an ASPIN router using ABS

Again, we formalize this lemma as an ABSDL formula:

Vu. futEv(this, u, redirectPk, ) = at(h,len(h) — 1)
=
diq, 49, pk, srcP,dirP. 0 < i1 < ig < len(h) —1A
(invREv(this, this, u, redirectPk, (pk,srcP)) = at(h,i;) A
invEv(this, , |, getPk, (pk, opposite(dirP))) = at(h,iz)) A
(inState(lookup(ports, sxcP)) A outState(lookup(ports,dirP)))

This formula expresses that whenever the last event in the history h is a future event of redirectPk method,
by pattern matching with the same future and packet in the previous history, we can find the corresponding
1nwocation reaction event and the invocation event. In these two events we filter out the source port srcP and
the direction port dir P used in the latest run of redirectPx. The input channel of srcP and the output channel
of dirP must be released in the current state. This invariant captures the properties of the current state and
is prefix-closed. With KeY-ABS we proved that the RouterImp class of our model satisfies this invariant.

The statistics of verifying these two invariants is given below. For each of the three methods of the
RouterImp class we show it satisfies both invariants.

’ # nodes — # branches | setPorts getPk redirectPk

Lemmea. 4.3.1 1638-12 | 11540-108 | 27077-200
Lemmea. |4.3.2 214-1 1845-11 4634-34
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KeY-ABS provides heuristics and proof strategies that automate large parts of proof construction. The
remaining user input typically consists of universal and existential quantifier instantiations.

4.3.2 System Specification

According to the theory of compositional reasoning provided in Chapter [2, we establish a system invariant
for the NoC model based on the invariants of the RouterImp class proved by KeY-ABS:

Theorem 4.3.3 Whenever a router R releases a pair of input and output channels used for redirecting a
receiving packet, the next router of R must either have sent an internal invocation to redirect the packet or
have stored the packet in its receivedPks set. Hence, the network does not drop any packets.

4.4 Conclusion

ABS has been developed with the explicit aim to permit scalable verification of detailed, precisely modeled,
executable, concurrent systems. Our paper in Appendix. [C] shows that this claim is indeed justified. In
addition it advances the state-of-the-art with the first successful verification of a generic NoC model that
has an unbounded number of nodes and packets. This has been achieved with manageable effort and thus
shows that deductive verification is a viable alternative to model checking for the verification of concurrent
systems that can effectively deal with state explosion.
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Chapter 5

Deadlock Analysis

5.1 Introduction

Modern systems are designed to support a high degree of parallelism by letting as many system components
as possible operate concurrently. When such systems also exhibit a high degree of resource and data sharing
then deadlocks represent an insidious and recurring threat. In particular, deadlocks arise as a consequence of
exclusive resource access and circular wait for accessing resources. A standard example is when two processes
are exclusively holding a different resource and are requesting access to the resource held by the other. That
is, the correct termination of each of the two process activities depends on the termination of the other. The
presence of a circular dependency makes termination impossible.

Deadlocks may be particularly hard to detect in systems with unbounded (mutual) recursion and dynamic
resource creation. A paradigm case is an adaptive system that creates an unbounded number of processes
such as server applications. In these systems, the interaction protocols are extremely complex and state-of-
the-art solutions either give imprecise answers or do not scale.

In order to augment precision and scalability we propose a modular framework—which is described in the
paper in Appendix[D}—that allows several techniques to be combined. We meet the scalability requirement by
designing a front-end inference system that automatically extracts abstract behavioral descriptions pertinent
to deadlock analysis, called contracts, from code. The inference system is modular because it (partially)
supports separate inference of modules. To meet precision of contracts’ analysis, as a proof-of-concept we
define and implement two different techniques: (i) an evaluator that computes a fixpoint semantics and (ii)
an evaluator using abstract model checking.

Our framework targets ABS. Because of the presence of explicit synchronisation operations, the analysis
of deadlocks in ABS is more fine-grained than in thread-based languages (such as Java). However, as usual
with (concurrent) programming languages, analyses are hard and time-consuming because most parts of
the code are irrelevant for the properties one intends to derive. For this reason, we design an inference
system that automatically extracts contracts from ABS code. These contracts are similar to those ranging
from languages for session types [10] to process contracts [14] and to calculi of processes as Milner’s CCS or
pi-calculus [15] [16]. The inference system mostly collects method behaviors and uses constraints to enforce
consistencies among behaviors. Then a standard semiunification technique is used for solving the set of
generated constraints.

Since our inference system addresses a language with asynchronous method invocations, it is possible
that a method triggers behaviors that will last after the execution of the method has been completed (and
therefore will contribute to future deadlocks). In order to support a more precise analysis, we split contracts
of methods in synchronised and unsynchronised contracts, with the intended meaning that the former collect
the invocations that are explicitly synchronised in the method body (namely there is a blocking operation
that waits for the result of the asynchronous invocation) and the latter ones collect the other invocations
(those that are not synchronised within the caller’s method and keep executing even after the caller’s method
execution terminates).
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Our contracts feature recursion and resource creation; therefore their underlying models are infinite state
and their analysis cannot be exhaustive. We propose two techniques for analysing contracts (and to show the
modularity of our framework). The first one, is a fizpoint technique on models with a limited capacity of name
creation (possibly resorting to a saturation technique since contract pairs models may be infinite-state). This
entails fixpoint existence and finiteness of models. While we lose precision, our technique is sound (in some
cases, this technique may signal false positives). The second technique is an abstract model checking that
consists of computing contract models by expanding their invocations. Instead of a saturation technique,
which introduces inaccuracies, we exploit a generalisation of permutation theory that let us decide when to
stop the evaluation with the guarantee that if no circular dependency has been found up to that moment
then it will not appear afterwards. That stage corresponds to the order of an associated permutation. It
turns out that this technique is suited for so-called linear recursive contract class tables. When the recursions
are linear, this technique is precise—namely the contract contains a deadlock if and only if the technique
finds a circular dependency—, while it is over-approximating in general. Notice that the precision of the
analysis is not evaluated with respect to the program, but with respect to the contract.

5.2 The DF4ABS tool

We extended the ABS suite [19] with an implementation of our deadlock analysis framework (at the time of
writing the suite has only the fixpoint analyser, the full framework is available at http://df4abs.nws.cs.
unibo.it). The DF4ABS tool is built upon the abstract syntax tree (AST) of the ABS type checker, which
allows us to exploit the type information stored in every node of the tree. This simplifies the implementation
of several contract inference rules. There are four main modules that comprise DF4ABS:

1. Contract and Constraint Generation. This is performed in three steps: (i) the tool first parses the
classes of the program and generates a map between interfaces and classes, required for the contract
inference of method calls; (ii) then it parses again all classes of the program to generate the initial
environment that maps methods to the corresponding method signatures; and (iii) it finally parses the
AST and, at each node, it applies the contract inference rules defined in the paper.

2. Constraint Solving is done by a generic semi-unification solver implemented in Java, following the
algorithm defined in [I2]. When the solver terminates (and no error is found), it produces a substitution
that satisfies the input constraints. Applying this substitution to the generated contracts produces the
abstract class table and the contract of the main function of the program.

3. Fizpoint Analysis uses dynamic structures to store the lam (the abstract models of programs in term of
their synchronisation dependencies) of every method contract (because lams become larger and larger as
the analysis progresses). At each iteration of the analysis: i) a number of fresh cog names is created, ii)
the states are updated according to what is prescribed by the contract, and iii) the tool checks whether
a fixpoint has been reached. Saturation starts when the number of iterations reaches a maximum value
(that may be customised by the user). In this case, since the precision of the algorithm degrades, the
tool signals that the answer may be imprecise. To detect whether a relation in the fixpoint lam contains
a circular dependency, we run Tarjan’s algorithm [I8] for connected components of graphs and we stop
the algorithm when a circularity is found.

4. Abstract model checking algorithm for deciding the circularity-freedom problem in linear recursive
contract class tables performs the following steps. (i) Find (linear) recursive methods: by parsing the
contract class table we create a graph where nodes are function names and, for every invocation of D.n
in the body of C.m, there is an edge from C.m to D.n. Then a standard depth first search associates
to every node a path of (mutual) recursive invocations (the paths starting and ending at that node, if
any). The contract class table is linear recursive if every node has at most one associated path. (i)
Computation of the orders: given the list of recursive methods, we compute the corresponding orders.
(ii1) FEvaluation process: the contract pair corresponding to the main function is evaluated till every
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. DF4ABS/fixpoint DF4ABS /model-check DECO
program lines result time result time result time
PingPong 61 v 0311 v’ 0.046 v 1.30
MultiPingPong 88 D 0.209 D 0.109 D 1.43
BoundedBuffer 103 v 0.126 v 0.353 v 1.26
PeerToPeer 185 v' 0.320 v' 6.070 v 1.63
[ FAS Module | 2645 | v 3188 \ v 39.78 | v 438

Table 5.1: Assessments of DF4ABS.

recursive function invocation has been unfolded up-to twice the corresponding order. (iv) Detection of
circularities: this is performed with the same algorithm of the fixpoint analysis.

Regarding the computational complexity, the contract inference system runs in polynomial time with
respect to the length of the program in most of the cases [12]. The fixpoint analysis is exponential in
the number of cog names in a contract class table (because lams may double their size at every iteration).
However, this exponential effect actually bites in practice. The abstract model checking is linear with respect
to the length of the program as far as steps (i) and (ii) are concerned. Step (iv) is linear with respect to the
size of the final lam. The critical step is (iii), which may be exponential with respect to the length of the
program. Below, there is an overestimation of the computational complexity. Let

0maz be the largest order of a recursive method contract (without loss of generality, we assume there is no
mutual recursion).

Mymaez b€ the maximal number of function invocations in a body or in the contract of the main function.

An upper bound to the length of the evaluation till the saturated state is Y j; (2 X 0pnasz X mmam)i, where
¢ is the number of methods in the program. Let kg, be the maximal number of dependency pairs in a
body. Then the size of the saturated state is O(kmaz X (0maz X Mumaz)’), Which is also the computational
complexity of the abstract model checking.

5.3 Assessments

We tested DF4ABS on a number of medium-sized programs written for benchmarking purposes by ABS
programmers and on an industrial case study based on the Fredhopper Access Server (FAS) [8]. The Table
reports the experiments: for every program we display the number of lines, whether the analysis has reported
a deadlock (D) or not (v), the time in seconds required for the analysis. Concerning time, we only report
the time of the analysis of DF4ABS (and not the one taken by the inference) when they run on a QuadCore
2.4GHz and Gentoo (Kernel 3.4.9).

The rightmost column of the table in Figure reports the results of another tool that has also been
developed for the deadlock analysis of ABS programs: DECO [9]. This technique integrates a points-to analysis
with an analysis returning (an over-approximation of) program points that may be running in parallel. As
highlighted by the above table, the three tools return identical results regarding deadlock analysis, but are
different with respect to performance. In particular the fixpoint and model-checking analysis of DF4ABS are
comparable on small/mid-size programs, DECO appears less performant (except for PeerToPeer, where our
model-checking analysis is quite slow because of the number of dependencies produced by the underlying
algorithm). On the FAS module, our two analysis are again comparable, while DECO has a better performance
(DECO’s worst case complexity is cubic in the size of the input).

A few remarks about the precision of the techniques follow. DF4ABS/model-check is the most powerful
tool we are aware of for linear recursive contract class tables. We found and reported in the paper examples
for which it correctly detects the deadlock-freedom, while DF4ABS/fixpoint and DECO signal a false positive.
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However, DF4ABS /model-check is not defined on non-linear recursive contract class tables. In these cases,
DF4ABS /model-check fails to analyse while DF4ABS /fixpoint and DECO successfully recognise as deadlock-free.
Nonetheless, studies show that program are generally linearly recursive, so that restriction is not too strong
in practice. This substantiates the usefulness of our technique in these programs; the analysis of a wider
range of programs is matter of future work.

5.4 Conclusive remarks

DF4ABS, being modular, may be integrated with other analysis techniques. In fact, we have recently defined an
even more powerful technique (which is decidable also on non-linear recursive lams), described in Deliverable
D2.1 [5]. This technique was a later improvement of our approach, thus was not described in the paper
attached in Appendix [D] nor in the version of the tool integrated with the ABS suite. But the theory has
been completely investigated [11I] and its implementation is part of the new release of the tool available
at http://df4abs.nws.cs.unibo.itl
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Glossary

ABS Abstract behavioral Specification language. An executable class-based, concurrent, object-oriented
modelling language based on Creol, created for the HATS project.

Behavioral Interface The intended behavior of programs such as functional behavior and resource con-
sumption can be expressed in the behavioral interface. Formal specifications of program behavior is useful
for precise documentation, for the generation of test cases and test oracles, for debugging, and for formal
program verification.

Communication History The communication history h of a system of objects S is a sequence of events,
such that each event in h is generated by an object in S.

Contract Abstract specification of a program’s behavior at runtime, used to perform specific analysis on
the program, like deadlock detection or resource consumption analysis.

Contract Class Table Given an ABS program, its contract class table associates a contract to each
method of each class in the program.

Linear Recursive Contract Class Table A contract class table where (mutual) recursive invocations
in bodies of methods have at most one recursive invocation.

Observable Behavior The observable behavior of an object is the interaction between the object and its
environment which can be captured in the communication history over observable events.

Deductive Verification A process of reasoning from one or more statements (premises) to reach a logically
certain conclusion. A proof may be seen as a tree with axioms as leaves and the main theorem as the root.
Each internal node of the proof tree is a consequence of its immediate descendant nodes according to given
proof rules.

Lam Main data structure of the Deadlock Analysis which stores all the sets of await and get synchronisa-
tions between cogs possibly generated by a method’s execution.
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A Sound Compositional Reasoning System
in Dynamic Logic
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Abstract. Distributed and concurrent object-oriented systems are difficult to analyze due to the complexity of
their concurrency, communication, and synchronization mechanisms. The future mechanism extends the tradi-
tional method call communication model by facilitating sharing of references to futures. By assigning method
call result values to futures, third party objects may pick up these values. This may reduce the time spent waiting
for replies in a distributed environment. However, futures add a level of complexity to program analysis, as the
program semantics becomes more involved. This paper presents a model for asynchronously communicating ob-
jects, where return values from method calls are handled by futures. The model facilitates invariant specifications
over the locally visible communication history of each object. Compositional reasoning is supported and proved
sound, as each object may be specified and verified independently of its environment. A kernel object-oriented
language with futures inspired by the ABS modeling language is considered. A compositional proof system for
this language is presented, formulated within dynamic logic.

Keywords: Distributed systems, Object orientation, Concurrent objects, Asynchronous communication, Shared
futures, Operational semantics, Communication history, Compositional reasoning, Dynamic logic

1. Introduction

Distributed systems play an essential role in society today. However, quality assurance of distributed systems
is non-trivial since they depend on unpredictable factors, such as different processing speeds of independent
components. Therefore, it is highly challenging to test such distributed systems after deployment under different
relevant conditions. These challenges motivates frameworks combining precise modeling and analysis with suit-
able tool support. In particular, compositional verification systems allow the different components to be analyzed
independently from their surrounding components.

Object orientation is the leading framework for concurrent and distributed systems, recommended by the RM-
ODP [Int95]. However, method-based communication between concurrent units may cause busy-waiting, as in the
case of remote and synchronous method invocation, e.g., Java RMI [AY07]. Concurrent objects communicating
by asynchronous method calls have been proposed as a promising framework to combine object-orientation and
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distribution in a natural manner. Each concurrent object encapsulates its own state and processor, and internal
interference is avoided as at most one process is executing on an object at a time. Asynchronous method calls
allow the caller to continue with its own activity without blocking while waiting for the reply, and a method call
leads to a new process on the called object. The notion of futures [BIH77, HI85, LS88, YBS86] improves this
setting by providing a decoupling of the process invoking a method and the process reading the returned value. By
sharing future identities, the caller enables other objects to wait for method results. However, futures complicate
program analysis since programs become more involved compared to semantics with traditional method calls,
and in particular local reasoning is a challenge.

The execution of a distributed system can be represented by its communication history or trace; i.€., the se-
quence of observable communication events between system components [BSO1, Hoa85]. At any point in time the
communication history abstractly captures the system state [Dah87, Dah92]. In fact, traces are used in semantics

for full abstraction results (e.g., [AGGS09, JR05]). The local history of an object reflects the communication
visible to that object, i.e., between the object and its surroundings. A system may be specified by the finite initial
segments of its communication histories, and a history invariant is a predicate which holds for all finite sequences
in the set of possible histories, expressing safety properties [AS85].

In this work we consider a kernel object-oriented language, where futures are used to manage return values
of method calls. Objects are concurrent and communicate asynchronously. We formalize object communication
by a four event operational semantics, capturing shared futures, where each event is visible to only one object.
Consequently, the local histories of two different objects share no common events, and history invariants can
be established independently for each object. We present a dynamic logic proof system for class verification,
facilitating independent reasoning about each class. A verified class invariant can be instantiated to each object of
that class, resulting in an invariant over the local history of the object. Modularity is achieved as the independently
derived history invariants can be composed to form global system specifications. Global history consistency is
captured by a notion of history well-formedness. The formalization of object communication extends previous
work [DDJO12] which considered concurrent objects and asynchronous communication, but without futures.

Paper overview. Section 2 presents a core language with shared futures. The communication model is presented
in Sect. 3, and Sect. 4 defines the operational semantics. Sect. 5 presents the compositional reasoning system, and
Sect. 6 contains related work and concludes the paper.

2. A core language with shared futures

A future is a placeholder for the return value of a method call. Each future has a unique identity which is generated
when a method is invoked. The future is resolved upon method termination, by placing the return value of the
method in the future. Thus, unlike the traditional method call mechanism, the callee does not send the return
value directly back to the caller. However, the caller may keep a reference to the future, allowing the caller to
fetch the future value once resolved. References to futures may be shared between objects, e.g., by passing them
as parameters. After achieving a future reference, this means that third party objects may fetch the future value.
Thus, the future value may be fetched several times, possibly by different objects. In this manner, shared futures
provide an efficient way to distribute method call results to a number of objects.

For the purposes of this paper, we consider a core object-oriented language with futures, presented in Fig 1.
It includes basic statements for first class futures, inspired by 4 BS [HAT]. Class instances are concurrent, encap-
sulating their own state and processor. Each method invoked on the object leads to a new process, and at most
one process is executing on an object at a time. Object communication is asynchronous, as there is no explicit
transfer of control between the caller and the callee. Methods are organized in classes in a standard manner. A
class C takes a list of formal parameters ¢p, defines fields w, initialization block s and methods M. There is
read-only access to the parameters ¢p. A method definition has the form m(Z){var 7¥; s; return e}, ignoring
type information, where 7 is the list of parameters, 7 an optional list of method-local variables, s is a sequence of
statements, and the value of e is returned upon termination.

A future variable fr is declared by Fut < T'> fr, indicating that fr may refer to futures which will eventually
contain values of type T'. The call statement f := z!m(€) invokes the method m on object z with input values e.
The identity of the generated future is assigned to fr, and the calling process continues execution without waiting
for fr to become resolved. The query statement v := fr? is used to fetch the value of a future. The statement blocks
until fi is resolved, and then assigns the value contained in f# to v. The language contains additional statements
for assignment, skip, conditionals, and sequential composition.
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Cl = class C([T cp|*) {[T w[:=¢]"]* s M*}  class definition

M =T m([T 2]*) {[var [T 2]*]" 5; return e} method definition

T == C'|Int|Bool | String | Void | Fut<T > types

v o= |w variables (local or field)
e ==null|this |v|cep] f(€) pure expressions

s n=wv:=el| fri=vim(e) | v:=e? statements

| skip | if e then s [else 5] £i | s;s
| while e do s od | v := new C(e)

Figure 1. Core language syntax, with C' class name, ¢p formal class parameter, m method name, w fields,  method parameter or local
variable, and where fi is a future variable. We let [ ]* and [ ]’ denote repeated and optional parts, respectively, and € is a (possibly empty)
expression list. Expressions e and functions f are side-effect free

Map Shuffle Reduce

—
> P
data 1 —> key2
key3
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—
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data 2 —> key2
key3
~———

Figure 2. MapReduce model

We assume that call and query statements are well-typed. If z refers to an object where m is defined with
no input values and return type Int, the following is a well-typed blocking method call: Fut < Int > fr; Int v;
fri=x!m(); v :=frl.

To avoid blocking, ABS provides statements for process control, including a statement await fi?, which
releases the current process as long as fr is not yet resolved. This gives rise to more efficient computing with
futures. It is possible to add a treatment of process release statements as a straight forward extension of the
present work, following the approach of [DDJO12]. We here focus on a core language for futures, with a simple
semantics, avoiding specialized features such as process control. The core language ignores ABS features that are
orthogonal to shared futures, including interface encapsulation, inheritance, local synchronous calls, and internal
scheduling of processes by means of cooperative multitasking. We refer to the report version of this paper for a
treatment of these issues [DDO12a].

2.1. The MapReduce example

In order to illustrate the usage of futures, we consider the problem of counting the number of occurrences of each
word in a large collection of documents. We consider the computing model MapReduce in Fig. 2. MapReduce
is invented and used heavily by Google for efficient distributed computing over large data sets [DGO0S]. It has
three major steps: Map, Shuffle and Reduce. The Map phase runs over input data, which might be a database
or some files, and output key-value pairs. The input data is split in parts so they can be processed by workers
in parallel. The second step is the Shuffle phase, which collates values with the same key together. At last, the
Reduce function is called by workers in parallel on the shuffled data distinguished by keys.



C. C. Din, O. Owe

class Worker () implements WorkerI ({

List<Pair<String, Int>>
invokeMap (String filename, List<String> content) {...}

Int invokeReduce (String key, List<Int> value) {...}
}
class WorkerPool () implements WorkerPoolI {

WorkerI getWorker () {/ provides idle workers,
// or generates new workers if needed.}

Listing 1. Sketch of the classes Worker and WorkerPool

class MapReduce (WorkerPoolI wp) implements MapReduceI {

List<Pair<String, Int>> mapReduce (
List<Pair<String, List<String>>> files) {

Set<Fut<List<Pair<String, Int>>>> fMapResults := EmptySet;
Set<Pair<String, Fut<Int>>> fReduceResults := EmptySet;
List<Pair<String, Int>> result := Nil;

// Map phase //

while (~isEmpty (files)) do
WorkerI w := wp.getWorker();

Fut<List<Pair<String, Int>>>

fMap := w!invokeMap (filename, content) ;
fMapResults := insertElement (fMapResults, fMap)
od;
// Shuffle phase //

while (~emptySet (fMapResults)) do
Fut<List<Pair<String, Int>>>
fMapResult := take(fMapResults) ;

List<Pair<String, Int>> mapResult := fMapResult?;
// collates values with the same key together
od;

// Reduce phase //
while (~emptySet (keys)) do

WorkerI w := wp.getWorker();
Fut<Int> fReduce := w!invokeReduce (key, values);
fReduceResults := insertElement (
fReduceResults, Pair(key, fReduce)) od;
while (~emptySet (fReduceResults)) do

Pair<String, Fut<Int>> reduceResult := take(fReduceResults) ;
String key := fst(reduceResult) ;

Fut<Int> fvalue := snd(reduceResult);

Int value := fValue?;

result := Cons (Pair (key, value), result) od;

return result;
}
}

Listing 2. The MapReduce class. Here the notation z := o.m(€) abbreviates u := o!m(€); z := u? (for some fresh future ) to de-emphasize

trivial usage of futures
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We assume two interfaces, Workerl and Map Reducel. The interface Workerl is implemented by a class Worker
shown in Listing 1, in which the method invoke Map takes a file and emits a list of pairs such that each word in
the file is associated with a counting number: ‘1’ in this example. For instance, if the content of the file is ‘T am
fine’, the output of invokeMap is ‘(1,1),(am,1),(fine,1)’. The method invokeReduce in class Worker sums together
all counts emitted for a particular word. For instance, if the word “am” appears twice, invoke Reduce takes ‘(am,
(1,1))’ and outputs 2.

The interface MapReducel is implemented by class Map Reduce, shown in Listing 2. We here assume generic
data types for sets, lists, and pairs, the latter with fsz and snd to extract the first and second element, respectively.

The input to the method map Reduce is a list of files each starts with a filename and contains a list of words,
i.e. the content of the file. Each file are handled by a worker in parallel. To achieve concurrency, for each file
the object of MapReduce calls asynchronously the method invoke Map on the assigned worker w. This is realized
by the statement fMap := w!linvoke Map( filename, content). The function insertElement collects all the futures
into a set fMap Results. Next is the Shuffle phase. The function take randomly extracts an element from a set.
The method mapReduce waits upon each future, gets the results from each future: mapResult := fMap Result?,
and collates all the values with the same key, i.e. word, together. For instance, ‘(I,1),(am,1),(who,1),(I,1),(am,1)’
is shuffled to ‘(I,(1,1)),(am,(1,1)),(who,(1))’. In the Reduce phase, each ‘key’ and the corresponding values are
handled by a worker in parallel. In the same way as the Map phase for achieving concurrency, the first part of
the reduce phase calls asynchronously the method invokeReduce on the assigned worker w. This is realized by
the statement fReduce := wlinvoke Reduce(key, values). The function insertElement collects all the futures into
a set fReduceResults. At the very last, the method map Reduce waits upon each future, gets the results from each
future: value := fValue?, and return the number of occurrences of each word in a large collection of files.

Here the future mechanism is exploited to make an efficient implementation, avoiding blocking calls on the
workers: The Map phase is not waiting for the workers to do invokeMap, and is storing future identities only,
thereby allowing many workers to start and work concurrently. Likewise in the loop calling invoke Reduce, only
futures identities are recorded. Blocking is delayed to phases where the future value information is actually needed.

2.1.1. The intentional reasoning about the MapReduce example

The implementation of MapReduce must guarantee the accuracy of the output. Namely, the summation of the
occurrences of each word in the collection of documents is correct. However, it is not straight forward to verify
this system property. The steps of calculation take place in different components in parallel: the Worker objects
execute either the Map phase or the Reduce phase, and the MapReduce object shuffles the data and collects the
result from the Worker objects. If we only prove the functional correctness of each class, it is not strong enough
to prove this system property. Compositional reasoning is therefore required. We need a formalism to capture the
interaction (order) between the components such that we are able to derive the system property from the local
reasoning of each components. In the end of this paper, we will present a compositional proof of MapReduce
which does provide correct number of occurrences of each word in the collection of documents.

3. Observable behavior

In this section we describe a communication model for concurrent objects communicating by means of asyn-
chronous message passing and futures. The model is defined in terms of the observable communication between
objects in the system. We consider how the execution of an object may be described by different communication
events which reflect the observable interaction between the object and its environment. The observable behavior
of a system is described by communication histories over observable events [BS01, Hoa85].
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<0—>0',u,m, € >

2/‘ <—o,u,m,e>
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Figure 3. A method call cycle: object o calls a method m on object o’ with future u. The events on the left-hand side are visible to o, those in
the middle are visible to o, and the ones on the right-hand side are visible to o”. There is an arbitrary delay between message receiving and
reaction

3.1. Communication events

Since message passing is asynchronous, we consider separate events for method invocation, reacting upon a
method call, resolving a future, and for fetching the value of a future. Each event is observable to only one object,
which is the one that generates the event. The events generated by a method call cycle is depicted in Fig. 3. The
object o calls a method m on object o’ with input values € and where u denotes the future identity. An invocation
message is sent from o to o’ when the method is invoked. This is reflected by the invocation event (o0 — o', u, m, €)
generated by o. An invocation reaction event (o — o, u, m, €) is generated by o’ once the method starts execution.
When the method terminates, the object o’ generates the future event (< o', u, m, e). This event reflects that u
is resolved with return value e. The fetching event (o «, u, e) is generated by o when o fetches the value of the
resolved future. Since future identities may be passed to other objects, e.g, o”, this object may also fetch the
future value, reflected by the event (0” «, u, e), generated by o”. The creation of an object o’ by an object o is
reflected by the event (o 2% o', O, €), where o is the instance of class C' and € are the actual values for the
class parameters. Let type Mid include all method names, and let Data be the supertype of all values occurring
as actual parameters, including future identities Fid and object identities Oid.

Definition 3.1 (Events) Let caller, callee, receiver : Oid, future : Fid, method : Mid, class : Cls, args : List[Data],
and result : Data. Communication events Ev include:

o Invocation events (caller — callee, future, method, args), generated by caller.

e Invocation reaction events (caller — callee, future, method, args), generated by callee.

o Future events (< callee, future, method, result), generated by callee.

e Fetching events (receiver «—, future, result), generated by receiver.

o Creation events (caller = callee, class, args), generated by caller.

Events may be decomposed by functions. For instance, _.result : Ev — Datais well-defined for future and fetching
events, e.g., (< o', u, m, e).result = e.

For a method invocation with future u, the ordering of events depicted in Fig. 3 is described by the following
regular expression (using - for sequential composition of events)

(0> o, u,m,€) (oo, u,m,e - (< o, um, el «,u, e)]

for some fixed o, o', m, €, e, and where _ denotes an arbitrary value. This implies that the result value may be
read several times, each time with the same value, namely that given in the preceding future event.
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3.2. Communication histories

The execution of a system up to present time may be described by its history of observable events, defined as a
sequence. A sequence over some type 7' is constructed by the empty sequence ¢ and the right append function
_-_:8eq[T] x T — Seq[T] (where “_” indicates an argument position). The choice of constructors gives rise to
generate inductive function definitions, in the style of [Dah92]. Projection, _/_: Seq[T] x Set[T] — Seq[T]is
defined inductively by /s £ g and (a - z)/s £ if z € s then (a/s)- z else a/s £i, for a : Seq[T], z : T,
and s : Set[ T, restricting a to the elements in s. We use dot notation to extract components from record-like
structures, for instance (0 — o/, f, m, €).callee is o’, and also lift the dot notation to sequences. For a sequence
h of events, h/ <« is the subsequence of invocation events, and (h/ <).callee is the sequence of callee elements
from these invocation events.

A communication history for a set S of objects is defined as a sequence of events generated by the objects in
S. We say that a history is global if S includes all objects in the system.

Definition 3.2 (Communication histories) The communication history h of a system of objects S is a sequence of
type Seq[EV], such that each event in A is generated by an object in S.

We observe that the local history of a single object o is achieved by restricting S to the single object, i.e., the
history contains only elements generated by o. For a history A, we let h/o abbreviate the projection of h to the
events generated by o. Since each event is generated by only one object, it follows that the local histories of two
different objects are disjoint.

Definition 3.3 (Local histories) For a global history h and an object o, the projection A/ o is the local history of o.

4. Operational semantics

Rewriting logic [Mes92] is a logical and semantic framework in which concurrent and distributed systems can
be specified in an object-oriented style. Unbounded data structures and user-defined data types are defined
in this framework by means of equational specifications. Rewriting logic extends membership equational logic
with rewrite rules, so that in a rewrite theory, the dynamic behavior of a system is specified as a set of rules on
top of its static part, defined by a set of equations. Informally, a labeled conditional rewrite rule is a transition
l: t— t' if cond, where [ is a label, t and t’ are terms over typed variables and function symbols of given
arities, and cond is a condition that must hold for the transition to take place. Rewrite rules are used to specify
local transitions in a system, from a state fragment that matches the pattern ¢, to another state fragment that is
an instance of the pattern ¢’. Rules are selected nondeterministic if there are at least two rule instantiations with
left-hand sides matching overlapping fragments of a term. Concurrent rewriting is possible if the fragments are
non-overlapping. Furthermore, matching is made modulo the properties of the function symbols that appear in
the rewrite rule, like associativity, commutativity, identity (ACI), which introduces further nondeterminism. The
Maude tools [CDE*07] allow simulation, state exploration, reachability analysis, and LTL model checking of
rewriting logic specifications. The state of a concurrent object system is captured by a configuration, which is an
ACI multiset of units such as objects and messages, and other relevant system parts, which in our case includes
futures. Concurrency is then supported in the framework by allowing concurrent application of rules when there
are non-overlapping matches of left-hand sides. The following context rule, which is implicit in rewriting logic,
describes interleaving semantics (letting G, G;, G, denote subconfigurations):

teat rule L2 G2
COntext ruLe GGIHGGZ

4.1. Operational rules

For our purpose, a configuration is a multiset of (concurrent) objects, classes, messages, futures, as well as a repre-
sentation of the global history. We use blank-space as the multiset constructor, allowing ACI pattern matching.
Objects have the form object(/d : 0, A) where o is the unique identity of the object and 4 is a set of semantic
attributes, including
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Cl:c the class ¢ of the object,
Pr:s the remaining code s of the active process,
Lvar : [  thelocal state / of the active process, including
method parameters and the implicit future identity destiny,
Flds : a  the state a of the fields, including class parameters,
Cnt:n  acounter n used to generate future identities,
Mtd :m the name m of the current method.

Similarly, classes have the form
class(/d : ¢, Par: z, Flds : a, Init : s, Mtds : q, Cnt : n)

where c is the class name, z the class parameters, a the fields, and s the initialization code. The variable ¢ is a
multiset of method definitions of the form

(m,p.1,5)

where m is the method name, P is the list of parameters, / contains the local variables (including default values),
and s is the code. The counter 7 in the class is used to generate object identities.

Messages have the form of invocation events as described above. And, a future unit is of the form fut(/d :
u, Val : v) where u is the future identity and v is its value. The global history is represented by a unit hist(7) where
h is finite sequence of events (initially empty). Remark that a system configuration contains exactly one history.
The history is included to define the interleaving semantics upon which we derive our history-based reasoning
formalism.

The initial state of an object o of class C with actual class parameter values 7 is denoted init,.c() and is
defined by

init,:. o) = object(Id : o, Cl: C, Pr: initc, Lvar : 9, Flds : a, Cnt : 0, Mtd : init)
where a is the initial state of the object fields given by [this — o, Parc — v, Flds¢c +— d]. Here Par¢, Fldsc,
and initc, represent the class parameters, the fields, and the initialization code of C, respectively. The class
parameters Par ¢ are initialized by the actual parameters v, the fields Flds are initialized by default values d (of
the appropriate types), and the initial code is ready to be executed with an empty local state.

A system is given by a set of self-contained classes CI, including a class Main, without class parameters, used
to generate the initial object ingty,qin: Main(e). The initial configuration of a system is defined by

inita; = Cl initmain: Main(e) hist(e)

The operational rules are summarized in Fig. 4. The rules for skip, assignment, initialized variable declarations,
if- and while-statements are standard. Note that (a; [) represents the total object state, composed by a, the state of
the fields/class parameters, and [, the state of the local variables/parameters of the method. Lookup of a variable
if left to right, i.e., [ is tried before a. Expressions e without side-effects are evaluated by a semantic function
depending on the total state, i.c., eval(e, (a; 1)).

Method invocation is captured by the rule call. The generated future identity f#(o, n) is globally unique
(assuming the next function is producing locally unique values). The future unit itself is not generated yet; it will
be generated by return from the called method.

If there is no active process in an object, denoted Pr : empty, a method call is selected for execution by
rule method. The invocation message is consumed by this rule, and the future identity of the call is assigned
to the implicit parameter destiny. Method execution is completed by rule return, and a future value is fetched
by rule query. A query can only succeed if the appropriate future unit is generated. A future unit appears in
the configuration when resolved by rule return, which means that a query statement blocks until the future is
resolved. Remark that rule query does not remove the future unit from the configuration, which allows several
processes to fetch the value of the same future.

In rule new, the new object gets a unique identity, ob(C, n), given by that of the generating object and a counter,
the actual class parameters are evaluated, and the initialization is performed. The given language fragment may
be extended with constructs for inter object process control and suspension, e.g., by using the 4BS approach of
[DDJO12].
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skip: object(Id: o, Pr: (skip;s)) — object(Id: o, Pr: s)

assign :  object(Id: o,Pr: (v:=e;s),Lvar: [, Flds: a)
—
if v inl then object(Id: o, Pr: s, Lvar: l[v — eval(e, (a;1))], Flds : a)
else object(Id: o, Pr: s, Lvar: [, Flds : a[v — eval(e, (a;1))])

init : object(Id: o,Pr: (Tv:=e¢;s),Lvar: [, Flds: a)
H L
object(Id: o, Pr: (Tv;v:=¢;s),Lvar: [, Flds: a)

if-else :  object(Id: o, Pr: (if e then sy else so fi;s), Lvar: [, Flds: a)
—
if eval(e, (a;1)) then object(Id: o, Pr: (s1;s), Lvar: [, Flds: a)
else object(Id: o, Pr: (s9;s), Lvar: [, Flds : a)

while : object(Id : o, Pr: (while e do sy od;s), Lvar : |, Flds : a)
—
object(Id : o, Pr: (if e then si;while e do s1 od fi;s), Lvar: 1, Flds : a)

new : hist(h) class(Id : C, Cnt : n)
object(Id : o, Pr: (v :=new C(€);s), Lvar: [, Flds : a)
—

hist(h - (0 ““% ob(C,n), C, eval(e,
object(Id : o, Pr: (v := ob(C,n);
Z.nitob(C';rL):C'(eval(a(a;l)))

(a;1)))) class(Id : C, Cnt : next(n))
s), Lvar : I, Flds : a)
call : hist(h) object(Id: o, Pr: (fr:= vlm(€);s), Lvar: [, Flds : a, Cnt : n)
—
MsSG hist(h - MSG)
object(Id : o, Pr: (fr:= ft(o,n);s), Lvar : [, Flds : a, Cnt : next(n))

method : (0’ — o, u,m, D) hist(h) class(Id : ¢, Mtds: (¢ (m,D,l,s)))
object(Id : 0, Cl: ¢, Pr: empty, Flds : a)
_>
hist(h - (o' — 0, u,m, 7)) class(Id : ¢, Mtds : (¢ (m,D,l,s)))
object(Id: o,ClI: ¢, Pr: s, Lvar : I[p — 9][destiny — 4], Flds : a, Mtd : m)

return :  hist(h) object(Id: o, Pr: return e, Lvar: [, Flds : a, Mtd : m)
—
hist(h - («+ o, eval(destiny, ), m, eval(e, (a;1))))
fut(Id : eval(destiny,l), Val : eval(e,(a;l)))
object(Id : o, Pr: empty, Flds : a)

query : hist(h) fut(Id : u, Val : d) object(Id : o, Pr: (v:=e?;s), Lvar: [, Flds : a)
—
hist(h - (0 «, u, d)) fut(Id : u, Val : d)
object(Id: o,Pr: (v:=d;s),Lvar:l,Flds: a)
if eval(e, (a;l)) = u

Figure 4. Operational rules, using the standard rewriting logic convention that irrelevant attributes may be omitted in a rule. Variables are
denoted by single characters (the uniform naming convention is left implicit), (a; [) represents the total object state, and a[v +— d] is the
state a updated by binding the variable v to the data value d. The eva/ function evaluates an expression in a given state, and in is used for
testing domain membership. In rule call, MSG denotes (0 — eval(v, (a; 1)), ft(o, n), m, eval(e, (a; 1))
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4.2. Semantic properties

Semantic properties are stated by means of notions of validity. We define global validity (denoted |=) and local
validity with respect to a class C' (denoted [=¢). A global object system initiated by a configuration inits; is said
to satisfy a global invariant property I(h), if the global history A of any reachable configuration G satisfies 7(h):

ClEI(h) 2V G . initg; —* G A G.hist = h = I(h)

where — * denotes the transitive and reflexive extension of the transition relation, lifted to configurations, and
where G.hist extracts the history of the configuration G.

Similarly, an object system initiated by a configuration initz; is said to satisfy a C-local invariant property
I(h) if every object o of class C' in any reachable configuration G satisfies I(h/0), i.e., the projection from global
history to the object o:

Clic I(h) 2 VG, o.initg; —" G A G.hist =h A o € G.obj A Glo].class = C' = I(h/o)

where G.obj extracts the object identities from the objects in the configuration G.

We next provide notions of global and local well-formedness for global histories. We first introduce some
notation and functions used in defining wellformed histories. For sequences a and b, let ¢ ew z denote that z is
the last element of a, agree(a) denote that all elements (if any) are equal, and a < b denote that a is a prefix of
b. Let [z, 2, . . ., x;] denote the sequence of z;, 13, ..., z; for i > 0 (allowing repeated parts [...]*). Functions for
event decomposition are lifted to sequences in the standard way, ignoring events for which the decomposition is
not defined, e.g., _.result : Seq[Ev] — Seq[Data].

Functions may extract information from the history. In particular, we define oid : Seq[Ev] — Set[Obj]
extracting all object identities occurring in a history, as follows:

oid(e) £ {main) oid(h - y) £ oid(h) U oid(y)
oid((o — o', u, m, (€))) £ {0, 0’} Uoid(e)  oid({0o' = o,u, m,€)) = {0, 0’} U oid(€)
oid((« o,u, m, e)) £ {0} U oid(e) oid({0 «,u, e)) £ {0} Uoid(e)

oid((0 253 o/, C, %) £ {0, 0’} U oid(e)

where y : Ev, and oid(e) returns the set of object identifiers occurring in the expression list €. The function
fid : Seq[Ev] — Set[Fid] extracts future identities from a history:

fid(e) £ @ fid(h - y) £ fid(h) U fid(y)
fid({o = o', u, m,e)) £ (u) fid((o' — o,u, m,e)) £ (u) U fid(e)
fid((< o,u,m, €)) 2 0 fid({o «, u, e)) £ fid(e)

fid((o == o', C. %)) £ fid(e)

where y : Ev, and fid(e) returns the set of future identities occurring in the expression list €. For a global history
h, the function fid(h) returns all future identities on h, and for a local history A/ o, the function fid(h /o) returns
the futures generated by o or received as parameters. At last, h/u abbreviates the projection of history A to the
set {y | y.future = u}, i.e., all events with future u.

Definition 4.1 (Wellformed histories) Let h : Seq[Ev] be a history of a global object system S. The well-formedness
predicate wf: Seq[Ev] — Bool is defined by:

wfie)
wf(h - (
wf(h - {
wf(h - (< o,u, m, e))
(
(

true

wf(h) A o £ null A u & fid(h) U fid(e)

wflh) Ao Znull Ah/u=1[(0o"— o,u, m,e)]
wflh) A hjuew (_— o,u, m,_)

wf(h) A u € fid(h/o) A agree(((h/u).result) - €)
wfh) A o Znull A o' £ null A o & oid(h) U oid(e)

wf(h -
wf(h -

> 11> > 1> e [>

It follows directly that a wellformed global history satisfies the communication order pictured in Fig. 3, i.e.,

Yu.3Jo,0,m,e, e.
h/u <[{o' = o,u, m,€), (0 — o,u, m,e), (< o,u, m, e),[{_«,u,e)]*]
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Also, it ensures the uniqueness of object identifiers and future identities. We can prove that the operational
semantics guarantees well-formedness:

Lemma 4.1 The global history h of a global object system S obtained by the given operational semantics, is
wellformed, i.e., = wf(h) where wf(h) is strengthened by the two conditions fid(h) C (h/ —).future and

oid(h) — null C (h] =53).callee.

The two conditions ensure that a history may not refer to object and future identities before generated by creation
and invocation events, respectively. This lemma follows by induction over the number of rule applications.

Well-formedness of a local history for an object o, denoted wf,(h), is defined as in Definition 4.1, except that
the last conjunct of the case (o’ — o, u, m, €) only holds for self calls, i.e., where o and o’ are equal. For local
well-formedness, the conjunct is therefore weakened to o = o’ = h/u =[{0’ = o, u, m,€)]. If h is a wellformed
global history, it follows immediately that each projection A/ o is locally wellformed, i.e.,

wf(h) = wf,(h/o)

5. Program verification

The communication history abstractly captures the system state at any point in time [Dah87, Dah92]. Partial
correctness properties of a system may thereby be specified by finite initial segments of its communication histories.
A history invariant is a predicate over the communication history, which holds for all finite sequences in the (prefix-
closed) set of possible histories, expressing safety properties [AS85]. In this section we present a framework for
compositional reasoning about object systems, establishing an invariant over the global history from invariants
over the local histories of each object. Since the local object histories are disjoint with our four event semantics,
it is possible to reason locally about each object. In particular, the history updates of the operational semantics
affect the local history of the active object only, and can be treated simply as an assignment to the local history. The
local history is not effected by the environment, and interference-free reasoning is then possible. Correspondingly,
the reasoning framework consists of two parts: A proof system for local (class-based) reasoning, and a rule for
composition of object specifications.

5.1. Local reasoning

Pre- and postconditions to method definitions are in our setting used to establish a class invariant. The class
invariant must hold after initialization of all class instances and must be maintained by all methods, serving as a
contract for the different methods: A method implements its part of the contract by ensuring that the invariant
holds upon termination, assuming that it holds when the method starts execution. A class invariant establishes
a relationship between the internal state and the observable behavior of class instances. The internal state reflects
the values of the fields, and the observable behavior is expressed as potential communication histories. A user-
provided invariant 1(w, H) for a class C is a predicate over the fields w, the read-only parameters ¢p and this, in
addition to the local history H which is a sequence of events generated by this. The proof system for class-based
verification is formulated within dynamic logic as used by the KeY framework [BHS07], facilitating class invariant
verification by considering each method independently. The dynamic logic formulation suggests that the proof
system is suitable for an implementation in the KeY framework.

Dynamic logic provides a structured way to describe program behavior by an integration of programs and
assertions within a single language. The formula [s]¢ expresses the precondition of s with ¢ as postcondition.
The formula v = [s]¢ express partial correctness properties: if statement s is executed in a state where ¢ holds
and the execution terminates, then ¢ holds in the final state. The formula is verified by a symbolic execution
of s, where state modifications are handled by the update mechanism [BHS07]. A dynamic formula [s;; s]¢ is
equal to [s][s]¢. A dynamic formula [v := e; s]¢, i.e., where an assignment is the first statement, reduces to
{v := e}[s]¢, where {v := e} is an update. We assume that expressions e can be evaluated within the assertion
language. Updates can only be applied on formulas without programs, which means that updates on a formula
[s]¢ are accumulated and delayed until the symbolic execution of s is complete. Update application {v := t}e,
on an expression e, evaluates to the substitution e;’, replacing all free occurrences of v in e by ¢.
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FVYu. {H :=H - (this — v,u,m,e)|| fr:= u} [s]¢
F [fr:=vlm(e); s]o

invoc

Vo' {H = H - (this «,e,0)|| v:=2"} ([s]p ATw. I(w,H))

fetch
Flv:i=e?; slo

F Yo' {H = H - (this "8, C,8)|| v ="} [s]¢
F[v :=new C(€); s]¢

new

Figure 5. Dynamic logic rules for method invocation, future query and object creation. /(w, H) is the class invariant

skip [skip; s]¢ = [s]¢

assign [v:=¢; s]¢p ={v:=¢e} [s]d

decllnit [Tv=e; slp = :=¢e; si]p

declNolnit [T v; s]¢p = [v' := defaultr; st]¢

ifElse [if b then s; else sy £i; s|¢ = if b then [s1;s]¢ else [s2;s]¢
while [while b do s’ od; s|¢ = if b then (Jw.I(w, H))A

([¢'; while b do s’ od; s|¢) else [s]|®

Figure 6. Semantical definitions for standard 4BS statements. Here ¢ is the postcondition, s is the remaining program yet to be executed,
primes denote fresh variables, s, is s with all (free) occurrences of v replaced by v’, and default is the default value defined for type T'

The parallel update {v; := ¢; || ... || vn := e}, for disjoint variables vy, ..., v,, represents an accumulated
update, and the application of a parallel update leads to a simultaneous substitution. For an update U, we have
Ul A ) = Upy A Ugy. A sequent yry, ..., Y, =1, ..., ¢, contains assumptions vy, ..., ¥,, and formulas
1, - - ., ¢m to be proved. The sequent is valid if at least one formula ¢; follows from the assumptions, and it can
be interpreted as Y1 A ... AV, = d1 V...V Do

In order to verify a class invariant I(w, H), we must prove that the invariant is established by the initialization
code and maintained by all method definitions in C, assuming well-formedness of the local history. For a method
definition m(Z){s; return e}in C, this amounts to a proof of the sequent:

= (Wfihis(H) A I(w, H) = [H := H - {caller — this, destiny, m, T);
s; H:=H - (« this, destiny, m, e)](Wfinis(H) = I(w, H))

Here, the method body is extended with a statement for extending the history with the invocation reaction event,
and the return statement is treated as a history extension. Dynamic logic rules for method invocation, future
query, and object creation, can be found in Fig. 5. When invoking a method, the update in the premise of rule
invoc captures the history extension and the generation of a fresh future identity . Similarly, the update in
rule fetch captures the history extension and the assignment of a fresh value to v, where the well-formedness
assumptions ensure that all values received from the same future are equal. The update in the premise of rule
new captures the history extension and the generation of a fresh object identity v’, and the universal quantifier
reflects non-determinism. The prime is needed here since v may occur in e. The query rule insists that the class
invariant holds for local history, ignoring the field values of the current state, as discussed in the soundness proof.
Assignments are analyzed as explained above, and rules for skip and conditionals are standard. We refer to Din
et al. for further details [DDO12a].

The rules for the rest of the ABS statements can be defined as substitution rules introduced in Fig. 6. For
instance, [skip; s]¢ can be rewritten to [s]¢. In rule declinit and decINolnit v is needed since the postcondition
may talk about a field with the same name v. If-statements without an else-branch are as usual.
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5.2. Soundness

The reasoning system for statements in dynamic logic is sound if any provable property is valid, i.e.,

Fy=slp=FEv=[sl¢
Validity of a dynamic logic formula, denoted = v = [s]¢, is defined by means of the operational semantics. We
base the semantics on the operational semantics above, as given by unlabeled transitions of the form G; — G».
Note that each rule is local to one object, and we write G; —> G» to indicate an execution involving only

0:8
object o such that exactly the statement (list) s has been executed by o. And we write G; = G, if o executes s
while other objects may execute.

Definition 5.1 (Explicit execution step)

G5 G 2 Gy —" Gy A Gi[0].Pr=s; Go[o].Pr

G356 LG g Gy AV O .0 # 0= Gi[0'] = Gy[0]

expressing one or more transitions from the configuration G to G, such that o executes s, with or without,
respectively, interleaved execution by other objects. The notation G[o] denotes the object o of the configuration
G.

We consider pre- and postconditions over local states and the local history. Such an assertion can be evaluated
in a state defining values for attributes (of the appropriate class), parameters and local variables (of the method)

and the local history. We let [y => @] G.o express that if the condition ¢ holds for object o before execution
of s by the object in configuration G, then ¢ holds for o after the execution. As above, we let 5 express local

0.8
execution by o, and = execution by o interleaved with other objects:
Definition 5.2 (Validity of prelpost-conditions over execution steps)

[v =5 dle.. 2 VG, Z.wAG hist) A G =5 G’ A loc(G, 0)[¥] = loc( G, 0)[¢]
[V = ¢la. 2 VG 2w G hist) A G = G A loc(G, 0)yr] = loc(G', 0[]

where Z is the list of auxiliary variables in ¥ and/or ¢, not bound by G nor G’. Here loc(G, 0) denotes the local
state of object o, as derived from the global state G. The function loc : Config x Oid — State is defined by

loc(G, 0) = (G[o).Flds; G[o].Lvar) +[H ~ (G.hist)/o]

where the resulting H ranges over local histories (i.e., in the alphabet of 0), and where this is bound to o in G as
explained earlier. Thus the extraction is made by taking the state of object o and adding the history localized to
0. We let loc(G, o)[¥] denote the value of v in state loc(G, o).

It follows that local reasoning suffices for local pre/post-conditions, in the sense that when reasoning about
one object in our system, one may ignore the activity of other objects.

Lemma 5.1 [y => dlc.o is the same as [ 0:51 dlc.o

The lemma follows by induction on the length of executions, and the fact that loc( G, o) for any G is not affected
by execution steps by other objects than o, since remote access to fields is not allowed in our language and since
h/o only contains events generated by o.

In our setting, we may understand a sequent by means of the —> relation, letting a dynamic logic subformula
depend on a given pre-configuration G and object o.
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Definition 5.3 (Validity of dynamic logic sequents)
|= 1#1, ey lﬁn |_¢1, ey ¢m VG, 0. Wf(G.hiSt) = [[101 A oA wn = ¢1 V..V ¢m]|G,o

[sl¢lc.o = Ttrue = $la.o
[elc.o £ loc(G, o0)e]
[{v:="telc.o £ [ef]c.o

v A dle.o = [Wlc.o Aldlc.o

v v éleo = [Wlc.o v [¢lc.o

[v = dleo = [Wlc.o = [#lc.o
[U@ Adlao = [U¥le.o AlUSlG.o
[U@ v lao = [Uvle.o VIUSlG.o
[UW = dle.o = [U¥le.o=[Udlc.o

where e is a formula without the dynamic logic operators, and the equations for updates are as given earlier. The
application of a parallel update U, for instance, {v; := t || ... || v, := t,}, is for short written as {v := ¢}. It
follows from the definition that

[v = [sl¢lc.o = [¥v = ¢lc.o

Here o is the executing object and the object on which ¢ and ¢ are interpreted. Thus the formula is valid if for
any object o executing s, the postcondition holds in the poststate, provided the precondition holds in the prestate.
In dynamic logic the prestate given by G and o is fixed for the whole sequent, and therefore the meaning of the
individual operators is given in the context of G and o.

We verify an invariant I(w, H) for a class C' by showing that /(w, H) is established by the initialization of C,
i.e. init o, and is maintained by all methods in C, assuming local well-formedness. The rule is:

Flw.[(w,H-y)=>Jw.I(w,H)
= H = ¢ = [initc](Wfnis(H) = I(w, H))
= Wfhis(H) A I(w, H)) = [bodyc m(Whinis(H) = I(w, H)), for all methods m in C'

class

e dw. I(w, H)

where bodyc,, denotes the body s of method m of C augmented with effects on the local history reflecting the
start and end of the method, namely

‘H := H - (caller — this, destiny, m, Z); s; H := H - (« this, destiny, m, e)
Lemma 5.2 Reasoning about statements is sound.:

Y = [sl¢ = E v = [slp
Theorem 5.1 The proof system for reasoning about classes is sound:

Fo I(H) =FEc 1(H)

Proof of Lemma 5.2. We focus on the rules for statements involving futures and object generation, and consider
therefore the rules invoc, fetch and new, as given in Fig. 5. The axioms given in Fig. 6 represent standard statements
not involving futures, and we omit the soundness proof of these. O

5.2.1. Asynchronous method call statement

We prove that the invoc rule preserves validity. The validity of the conclusion is = [fi := v!m(€); s]¢. Consider
now a given G and o, and let ¢’ denote [s]¢. According to Definition 5.3, the validity can be written as

oifr:=vlm(e)

WA G.hist) = [true ?'la.o
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which by Definition 5.2 is

oifirr=vlm(e)

Y G, Z . wf(G.hist) A wf{(G".hist) A G G = loc(G', 0)[¢']

By the operational semantics of call and assign, we have that G’ is G with MSG and G’.hist = G.hist -MSG, where
MSG denotes (0 — loc(G, o)[v], ft(0, n), m, loc(G o)[e]), and such that the object state G'[o0].lis (G[o].D[fr —
ft(o, n)]if fr € G[o].l, and otherwise G'[o].a is (G[o0].a)[fr — ft(0, n)]. Here n is the counter value of G[o] (same
as in G’[o]). Other parts of the object state are unchanged

Thus loc(G’, 0)[¢’] can be reduced to loc(G, o)[qb’ ﬁ(o 1) H-{this— v fi(0.n),m. 2]
since loc( G, o)[{this = w, ft(0, n), m, €)] = MSG, and it suffices to prove

VZ. WA G.hist) = loc(G. 0@l 1) 1v.thisos o sicomym.e)]
The validity of the premise is

EVu.{H:=H-(this— v,u,m,e) || fr:=u}¢
which by Definition 5.3 is

VZ, u. w G.hist) = loc(G, o)[¢’ ™ ]

u,H-(this— v,u,m,e)
Clearly this is sufficient to ensure validity of the conclusion, since the universal quantifier on u covers the value
given by ft(o, n).
5.2.2. Query statement

We prove that the fetch rule preserves validity. The validity of the conclusion is = [v := €?; s]¢. Consider now
a given G and o, and let ¢’ denote [s]¢. According to Definition 5.3, the validity can be written as

wi(G.hist) = [true ow=e d'c.o
which by Definition 5.2 is

o:v:=e?

VG, Z.wi(G.hist) A WG . hist)y A G ——— G' = loc(G’, 0)[¢']

By the operational semantics of query and assign, we have that G’ is G with MSG and G’.hist = G.hist - MSG,
where MSG denotes (0 «, loc(G, o)[e], d) and such that the object state G'[0].l is (G[o].])[v — d]if v € G[o].l,
and otherwise G'[0].a is (G[o].a)[v — d]. Other parts of the object state are unchanged.

Thus loc(G’, 0)[¢’] can be reduced to loc(G, 0)[¢’ ZZ this.e.d)]
since loc(G, o)[(this «, e, d)] = MSG, and it suffices to prove

VZ. WA G.hist) = loc(G, 0)[¢' 5 . ahise.c.a)]
The validity of the premise is
EVY . {H:=H- (this«, e, v) || vi=0}( ATw.I(w,H))
which by Definition 5.3 is
VZ, v w G.hist) = loc(G, o)[(¢' ATw. (W, H)) ., H this«.e.v)]
Clearly this is sufficient to ensure validity of the conclusion, since the universal quantifier on v’ covers the value

given by d. Note that the invariant is not required here.

5.2.3. Object creation statement

We prove that the new rule preserves validity. The validity of the conclusion is = [v := new C(€); s]¢. Consider
now a given G and o, and let ¢’ denote [s]¢. According to Definition 5.3, the validity can be written as

o:v:=new C(€)

WA G.hist) = [true Te.o
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which by Definition 5.2 is

o:v:=new C(€)
_—

VG, 7. whG.hist) A wi( G hist) A G G' = loc(G, 0)[¢']

By the operational semantics of new and assign, we have that G’ is G with MSG and G’.hist = G.hist-MSG, where
MSG denotes (0 ——s ob(C, n), C, loc(G, o)[€]) and such that the object state G'[0].1is (G[o].[)[v = ob(C, n)]if
v € G[o].l, and otherwise G'[0].a is (G[o].a)[v — ob(C, n)]. Here n is the counter value of G[C] (same as in
G'[ C]). Other parts of the object state are unchanged.

Thus loc(G’, 0)[¢'] can be reduced to loc(G, o)[¢’ UbZ{c ) Hethis S b Cm). €2 ]

since loc( G, o)[({this — 0b(C, n), C,€)] = MSG, and it suffices to prove

_ . N
VZ.wf(G.hist) = loc(G, o)[¢ ob(Com) M-S ob(C ), C. ) ]

The validity of the premise is

new

EVY . {(H:=H- (this— v, C,e) || vi=0v}¢
which by Definition 5.3 is

—_ . v, H
VZ, v . wh G.hist) = loc(G, o)[¢ i . E>]
Clearly this is sufficient to ensure validity of the conclusion, since the universal quantifier on v’ covers the value
given by ob(C, n).

Proof of Theorem 5.1. The theorem follows by Lemma 5.2 above and by proving that if one can prove ¢ I (H)
by the class rule, then =¢ I'(H), letting I'(H) denote 3w . I(w, H).

Consider the rule class. We may assume that the premises of the rule are valid. By definition, the validity of
I'(H)1is

VG, o.initg; —* G A G.hist =H A 0 € G.obj A G[o].class = C = I'(H/0)

We first prove that this holds for all C objects o in states G such that G[o]. Pr = empty. With the given operational
semantics, Pr is empty for an object o when o has finished a method, or init ¢, and it can only start a new method
when Pr is empty. By Lemma 4.1 we only need to consider states with a wellformed history. We need to show that
the invariant I(w, H) holds after the initialization and is maintained by every methods of class C', considering
any interleaved execution according to the operational semantics. The validity of the second premise gives

— Wfinis(H) = 1(w, H))] .o

o: Imf(

VG, o.wf(G.hist) = [H =

which by Lemma 5.1 is the same as

o:init ¢
VG, o wAG.hist) = [H=¢ = (wfns(H)= 1@ H)]c.o
which by definition is

o:init

:; G’ A loc(G, 0)[H = ] = loc(G', o)[wfiis(H) = I(w, H)]

for all states G’ with wellformed histories, and Z. This states that the class invariant /(w, ) holds after the
initialization of class C, conditioned by local well-formedness. The condition on local well-formedness follows
from the global well-formedness wf{ G’. hist). The condition loc(G, o)[H = ¢] follows by induction on the length
of an execution showing that no object can generate events before its initial code has started.

Similarly, the validity of the third premise gives that

0:bodyc.m

G = G Aloc(G, 0)Wfinis(H) A L@, H)] = loc(G', o)[whnis(H) = I(w, H)]

for all states G, G’ with wellformed histories, and all o, Z. This states that the class invariant is maintained by
a method m of C under the assumption of local well-formedness. As before local well-formedness follows from
global well-formedness. Thus I(w, ), and therefore also I'(), hold for all C objects o in reachable states G
with empty G[o]. Pr



Compositional reasoning about active objects with shared futures

It remains to show that the invariant also holds in states G where G[o]. Pr is nonempty. By the first premise,
we have that I’ is prefix-closed with respect to the history. Thus all states in between those where G[o]. Pr is empty
will also satisfy I’. In order to ensure I’ in case of nonterminating methods (or init), we must consider loops and
other sources of non-termination. For loops it suffices to let I’ be required at the beginning of each loop iteration,
which we do require in the while axiom. The other source of nonterminating methods is the query statement;
however, here the proof rule fetch insists that we verify I’. Thus any proof of that method (or init) must establish
I’ at his point. By Lemma 5.2 we have that [’ is valid. We may conclude that reasoning about classes is sound.

We remark that it would be sufficient to verify I’ for queries where the caller of the future equals this as
reasoning is local, and independent of the behavior of other objects. But this would require notation for expressing
the caller of a future (say u.caller, defined by f#(o, n).caller = o) in the specification (and possibly programming)
language. However, the verification cost of having I’ in the rule for query and in the axiom for while, is not great
since one is obliged to prove I(w, H) at the end of the body.

5.3. Compositional reasoning

The class invariant I(w, H) for some class C is a predicate over the fields w, the local history H, as well as
the formal class parameters ¢p and this, which are constant (read-only) variables. History invariants 1-(H) for
instances of C, expressed as a predicate over the local history, can be derived from the class invariant by hiding
fields, i.e., 3w . I(w, H).

Ic(H) £ 3w. I(w, H)

Notice that the history invariants should be prefix-closed since according to the definition in Sect. 4.2 C-local
invariant property must be satisfied by all reachable states. Consequently, 37w . I(w, H) should be weakened if
needed in order to obtain prefix-closedness. Then we assume from now on that I (#) is prefix-closed.

For an instance o of C' with actual parameter values €, the object invariant 1,.c()(h) is defined by the class
invariant applied to the local projection of the history and instantiating this and the class parameters:

L:c@(h) 2 To(h/o)ys ™

0,€

where I is a prefix-closed class invariant as above, with hidden internal state w. We consider a composition rule
for a system S of objects o : C(e) together with dynamically generated objects by S. The history invariant Ig(h)
for such a system is then given by combining the history invariants of the composed objects:

Is(h) 2 wflh) N I.cce(h)

(0:C(®))eSUob(h)

where the function ob : Seq[Ev] — Set[Obj x Cls x List[Data]] returns the set of created objects (each given by
its object identity, associated class and class parameters) in a history:

ob(e)
ob(h- (0 253 o', C, %)
ob(h - others)

{main : Main(e)}
ob(h)U {0’ : C(e)}
ob(h)

> 1> 1>

(where others matches all other events). By choosing S as {main : Main(¢)} we may reason about a global
system by means of I ain: Main(e)y (R).

The local histories represent the activity of each concurrent object. Each wellformed interleaving of the local
histories represents a possible global history. The set of possible wellformed global histories reflects interleaving
semantics where the relative speed of each object is non-deterministic. The concurrent objects may execute in
true concurrency, but the events are interleaved when we consider the global system since they are considered
timeless. Note that the system invariant is obtained directly from the history invariants of the composed objects,
without any restrictions on the local reasoning, since the local histories are disjoint. This ensures compositional
reasoning. The composition rule is similar to [DDJO12], which also considers dynamically created objects.
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5.4. Soundness proof of compositional reasoning

The proof rule for composition is:

¢ Ic(h), foreach C in CI

composition —

Cl = wf(h) A Io.cee(h)
(0:C(€)eob(h)

Note that ¢ I¢(h) is trivial for I(h) £ true, thus one may provide invariants for a subset of the classes and
using true as default invariant for the rest.

Theorem 5.2 The object composition rule is sound.

Proof of Theorem 5.2. We show that the composition rule preserves soundness. For each class C' we may then
assume = I¢(h) which by definition is

VG, o.initg; —"* G A G.hist = h A o € G.obj A G[o].class = C = I,.ce@)(h)
Next we prove |= I,.c)(h) for all C-objectsin £, i.e.,

VG . initg; —* G A G.hist = h = A L.cce(h)
(0:C(€))eobe(h)

letting ob o (h) denote the set of all C-objects in h. This reduces to proving that each C-object in G.hist is found
in G.obj. This can be proved by induction on the length of an execution. Finally by Lemma 4.1 we have = wf(h);

and since conjunction commutes with validity we have = wf(h) A Lo.ce(h). O
(0:C(@))eob(h)

5.5. Example

In this example we consider object systems based on the classes found in Listings 1 and 2. In order to prove that
MapReduce really does output the correct number of occurrences of each word in the collection of documents,
each class should guarantee the corresponding functional correctness. For example, the method invoke Map does
take a file and emit a list of pairs such that each word in the file is associated with a counting number “1”. Moreover,
we need to specify class invariants which capture the concurrent interaction between the Worker objects and the
MapReduce object. For instance, the Reduce phase handled by the method mapReduce will start only after the
Map phase has been completed. In this paper the functional correctness is given by assumption and we focus on
the compositional proof based on histories such that we can derived the system property mentioned above.

Assume that the global system consists of the objects w; : Worker, wn : Worker, ws : Worker, mr :
MapReduce(wp), and m : Main(mr), where the only visible activity of m is that it invokes map Reduce method
on the object mr. The semantics may lead to several global histories for this system, depending on the interleaving
of the different object activities. For convenience, below we abbreviate the method names map Reduce to mR,
invokeMap to ivM, and invoke Reduce to ivR. One global history h caused by a call to mR on mr from m is as
follows:

[(m — mr,u;, MR, er), (m — mr,u, MR, &),
(mr — wy, uz, WM, &), (mr — wy, u3, VM, &),
mr — wp, U3, , €3), {mr — wy, Uy, , €2),
ivM ivM
(= wi, uz, WM, e2), (= wp, u3, WM, €3), (mr <=, up, €2), (mr «—, u3, €3),
(mr — wy, us, VR, &), (mr — wy, us, WR, &), (mr — wy, us, VR, &),
(mr — ws, us, IVR, &), (mr — ws, ug, IVR, €), (< wn, us, iVR, e4),
(< ws, ug, IVR, eg), (mr — wi, us, VR, es), (< wi, us, iVR, es),
(mr «—, ug, e4), (Mmr «, ug, eg), {mr «, us, es), (<= mr, u;, MR, er)]
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It follows that the Reduce phase will starts only after the Map phase has been completed. In addition, none of
the requests sent out to the workers is uncompleted when the call to mR on mr is finished. We may derive these
properties within the proof system from the following class invariants:

Tworker(H) £ H < [(c — this, uy, iVM, &), (« this, uy, iVM, e;) |
(¢ — this, up, iVR, &), (« this, uy, iVR, e;) . some c, u;, uy, €1, €1, €, e2]*
IntapReducewpy(H) 2 H < [(c — this, d, mR, &7), (this — _, _,ivM, )¢,
(this «, _, )@, (this — _, _, ivR, _)®, (this «, _, _)?,
(« this, d, mR, ¢|) . some ¢, dJ*

Here we use regular expression notation to express patterns over the history, letting | denote choice, letting
superscript b specify b repetitions of a pattern, and h < p* express that h is a prefix of a repeated pattern p where
additional variables occurring in p (after some) may change for each repetition. Notice that the class invariant
of MapReduce ensures that for each of the invocation event in (this — _, _, ivM, _)¢, there is a corresponding
fetch event in (this «—, _, _)® by the same future identity. Same approach is applied to (this — _, _, ivR,_)® and
(this «, _, _)*. These class invariants are straightforwardly verified in the above proof system.

The corresponding object invariants for w, : Worker, w, : Worker, wsy : Worker and mr : Map Reduce(wp)
are obtained by substituting actual values for this and class parameters:

Iw,:Worker(h) £ h/w1 < [<7 - W;, U, |VM, er), (¢ wy, ug, ivM, er) |
(- = wi, w, IVR, &), (¢ ws, w, VR, ) . some uy, w, €1, €1, €&, e2]*
Imr:MapReduce(wp)(h) £ h/mr < [<7 —» mr, ds mR7 671>1 (mr — - iVM, 7)(17
(mr «—, _, )% (mr = _, _,iVR, ), (mr «, _, )?,
(¢~ mr, d, mR, ¢]) . some d]*

The global invariant of a system S with the objects, w; : Worker, wy : Worker, wy : Worker, mr :
MapReduce(wp) and m : Main(mr) is then

IS(h) £ Wﬂh) A Im:Main(mr)(h) A Imr:MapReduce(wp)(h) /\ Iw,:Worker(h)
1€{1,2,3}

where well-formedness allows us to relate the different object histories. From this global invariant we may derive
that the Reduce phase will starts only after the Map phase has been completed. Besides, none of the requests sent
out to the workers is uncompleted when the call to mR on mr is finished.

As a special case, we consider a system where the instance of Main invokes mR only once, i.€. L. main(mr)(h) £
h/m < [{m — mr, u, mR,€).some u]. History well-formedness then ensures that the cycles defined by the
remaining invariants are repeated at most once, and that variables in the patterns are connected, i.e., the future u
0 Ly Main(mr) 18 1dentical to the future d in Ly pmapreduce(wp)- The global invariant then reduces to the following:

Is(h) & wf(h) A h/m < [(m — mr, u, mR,¢)]
A hjwy < [(mr — wy, ug, IVM, ep), (¢« wy, up, iVM, ep) |
(mr — wy, wy, IVR, &), (< wy, up, IVR, &) . some u;, u, €, e, €, ]
A hjwy < [(mr — wn, uz, IVM, &3), (¢ wn, uz, iVM, e3) |
(mr — wn, w, VR, &), (< ws, u, iVR, e;) . some u3, ug, €3, €3, €, e4]*
A hjws < [(mr — ws, us, IVM, €3), (¢« ws, us, iVM, es) |
(mr — ws, ug, IVR, &), (< ws, ug, IVR, ¢) . some us, ug, €5, es, €, e]*
A h/mr <[(m — mr,u,mR,e), (mr > _, _,ivM, _)?,
(mr «—, _, )% (mr = _, _,ivR, )b, (mr «, _, _)?,
(¢ mr, u, mR, e)]

This invariant allows a number of global histories, depending on the interleaving of the activities in the dif-
ferent objects. The history h presented first in this section satisfies the invariant, and represents one particular
interleaving.

Based on the assumption of functional correctness of each class, we now can derive that the MapReduce
object does output the correct number of occurrences of each word in the collection of documents.
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6. Related work

Models for asynchronous communication without futures have been explored for process calculi with buffered
channels [Hoa85], for agents with message-based communication [AFK*93], for method-based communication
[MBMOS], and in particular for Java [FCO99]. Behavioral reasoning about distributed and object-oriented systems
ischallenging, due to the combination of concurrency, compositionality, and object orientation. Moreover, the gap
inreasoning complexity between sequential and distributed, object-oriented systems makes tool-based verification
difficult in practice. A survey of these challenges can be found in [AD12]. Soundness of the parallel composition
rules for shared-variable concurrency and synchronous message passing are proved in [{RABH*01]. A Hoare
Logic for concurrent processes (objects) is presented in [dB02]. The Hoare Logic is compositional, and soundness
and relative completeness are proven. In contrast to our work, communication is by message passing rather than
by futures, and the objects communicate through FIFO channels.

The present approach follows the line of work based on communication histories to model object communi-
cation events in a distributed setting [BS01, Dah77, Hoa85]. Objects are concurrent and interact solely by method
calls and futures, and remote access to object fields are forbidden. By creating unique references for method calls,
the label construct of Creol [JO07] resembles futures, as callers may postpone reading result values. Verification
systems capturing Creol labels can be found in [AD12, DJOO05]. However, a label reference is local to the caller,
and cannot be shared with other objects. A reasoning system for futures has been presented in [dBCJ07], using a
combination of global and local invariants. Futures are treated as visible objects rather than reflected by events
in histories. In contrast to our work, global reasoning is obtained by means of global invariants, and not by com-
positional rules. Thus the environment of a class must be known at verification time. SCOOP [Mey93, MBMO08§]
and Cameo [BP09] are two concurrency models for Eiffel [Mey97] based on the concepts of design-by-contract.
Compared with our work, these two approaches are not using histories.

A reasoning system for asynchronous methods in ABS without futures is presented in [DDJO12]. We here
define a five-event semantics reflected actions on shared futures and object creation. The semantics gives a clean
separation of the activities of the different objects, which leads to disjointness of local histories. Thus, object
behavior can be specified in terms of the observable interaction of the current object only. This is essential for
obtaining a simple reasoning system. In related approaches, e.g., [AD12, DJOO05], events are visible to more
than one object. The local histories must then be updated with the activity of other objects, resulting in more
complex reasoning systems. Based on the five-event semantics, we present a compositional reasoning system for
distributed, concurrent objects with asynchronous method calls. A class invariant defines a relation between the
inner state and the observable communication of instances, and can be verified independently for each class. The
class invariant can be instantiated for each object of the class, resulting in a history invariant over the observable
behavior of the object. Compositional reasoning is ensured as history invariants may be combined to form global
system specifications. The composition rule is similar to [DDJO12], which is inspired by previous approaches
[Sou84a, Sou84b]. This work is an extension of our former paper [DDO12b]. Here we analyze a larger case study
using futures, extend the language and semantics, including object creation, branching and looping constructs.
Also, soundness proofs for class reasoning and in particular object composition are provided.

7. Conclusion

In this paper we have considered concurrent objects communicating by means of futures and a notion of non-
blocking methods calls. This concurrency model is different from that found in mainstream languages such
as Java. We find it interesting since it is based on high-level synchronization primitives, rather than locks and
signaling, and it allows the caller to control the waiting time by means of different ways of calling a method,
suspending, blocking, or non-blocking. In addition it directly supports distribution, autonomy, message-based
communication, and object-orientation. Thus the class mechanism is devoted to programming of concurrent and
autonomous objects, whereas internal data structures are programmed by the use of data types. This concurrency
model has recently been the theme of several EU projects, including Credo, Hats, Envisage, and Upscale. Tool
support for this concurrency model have been investigated in several ways, including compilation of the ABS
language to more low-level languages including Java, Erlang, and Scala. The concurrency model gives rise to a
clean, compositional semantics. Compositionality is a key property for scalability, allowing program units to be
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developed, tested, and understood, independently. The concurrency model may be relevant for Java, extended
with asynchronous methods, and restricted so that remote access, notification, and explicit locking, are avoided.

The focus of this paper is program reasoning, and the concurrency model is chosen due to advantages with
respect to program reasoning, while supporting true concurrency of objects. Compositional reasoning is facilitated
by expressing object properties in terms of observable interaction between the object and its environment, recorded
on communication histories. Object generation is reflected in the history by means of object creation events.
A method call cycle with multiple future readings is reflected by four kinds of events, giving rise to disjoint
communication alphabets for different objects. Specifications in terms of history invariants may then be derived
independently for each object and composed in order to derive properties for concurrent object systems. At the
class level, invariants define relationships between class attributes and the observable communication of class
instances. The presented reasoning system is proved sound with respect to the given operational semantics. This
system is easy to apply in the sense that class reasoning is similar to standard sequential reasoning, but with the
addition of effects on the local history for statements involving futures. In particular, reasoning inside classes
is not affected by the complexity of concurrency and synchronization; and one may express assumptions about
inputs from the environment when convenient.

The main result of this paper is soundness of the rule for composition objects running in parallel. A minor
result is that sound composition requires the query rule to have a condition related to the invariant, not found
in earlier papers. We consider here global history invariants that are continuously satisfied, in the sense that any
reachable global configuration of an object system must satisfy the invariant. The condition on the query rule
would not be needed with a weaker notion of global history invariants stating that the global invariant holds as
long as all objects are live (not blocked). Verification-wise the condition on the query rule, is somewhat similar
to a query statement releasing the processor, as for instance the await future statement of the ABS language.
Semantically, a blocking query has the advantage that it does not change the state, whereas a non-blocking query
gives a state satisfying the local invariant. Thus the combination of the query and processor release mechanisms
will not add significant verification complexity, and is also attractive from a programming perspective.

In order to focus on the future mechanism, this paper considers a core language with shared futures. The report
version [DDO12a] considers a richer language, including constructs for inter-object process control and processor
release. The verification system is suitable for an implementation within the KeY framework. With support for
(semi-)automatic verification, such an implementation will be valuable when developing larger case studies. It is
also natural to investigate how our reasoning system would benefit from extending it with rely/guarantee style
reasoning [dRABH*01]. Assumptions about callee behavior may, for instance, be used to express properties of
return values. More sophisticated techniques may also be used, e.g., [DO98, JO04] adapts rely/guarantee style
reasoning to history invariants. However, such techniques requires more complex composition rules.
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Abstract. We present KeY-ABS, a tool for deductive verification of
concurrent and distributed programs written in ABS. KeY-ABS allows
to verify data dependent and history-based functional properties of ABS
models. In this paper we give a glimpse of system workflow, tool archi-
tecture, and the usage of KeY-ABS. In addition, we briefly present the
syntax, semantics and calculus of KeY-ABS Dynamic Logic (ABSDL).
The system is available for download.

1 Introduction

KeY-ABS is a deductive verification system for the concurrent modelling lan-
guage ABS [1,10]. It is based on the KeY theorem prover [2]. KeY-ABS provides
an interactive theorem proving environment and allows one to prove properties
of object-oriented and concurrent ABS models. The concurrency model of ABS
has been carefully engineered to admit a proof system that is modular and per-
mits to reduce correctness of concurrent programs to reasoning about sequential
ones [3,5]. The deductive component of KeY-ABS is an axiomatization of the
operational semantics of ABS in the form of a sequent calculus for first-order
dynamic logic for ABS (ABSDL) . The rules of the calculus that axiomatize
program formulae define a symbolic execution engine for ABS. The system pro-
vides heuristics and proof strategies that automate large parts of proof construc-
tion. For example, first-order reasoning, arithmetic simplification, symbolic state
simplification, and symbolic execution of loop- and recursive-free programs are
performed mostly automatically. The remaining user input typically consists of
universal and existential quantifier instantiations.

ABS is a rich language with Haskell-like (first-order) datatypes, Java-like
objects and thread-based as well as actor-based concurrency. In contrast to model
checking, KeY-ABS allows to verify complex functional properties of systems
with unbounded size [6]. In this paper we concentrate on the design of the KeY-
ABS prover and its usage. KeY-ABS itself consists of around 11,000 lines of
Java code (KeY-ABS + reused parts of KeY: ca. 100,000 lines in total). The
rule base consists of around 10,000 lines written in KeY’s taclet rule description
language [2]. At http://www.envisage-project.eu/?page id=1558 the KeY-ABS
tool can be downloaded.

* This work was done in the context of the EU project FP7-610582 Envisage: Engi-
neering Virtualized Services (http://www.envisage-project.eu)
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Fig. 1. Verification workflow of KeY-ABS

2 The Design of KeY-ABS

2.1 System Workflow

The input files to KeY-ABS comprise (i) an .abs file containing ABS programs
and (ii) a .key file containing the class invariants, functions, predicates and
specific proof rules required for this particular verification case. Given these input
files, KeY-ABS opens a proof obligation selection dialogue that lets one choose a
target method implementation. From the selection the proof obligation generator
creates an ABSDL formula. By clicking on the Start button the verifier will try
to automatically prove the generated formula. A positive outcome shows that the
target method preserves the specified class invariants. In the case that a subgoal
cannot be proved automatically, the user is able to interact with the verifier to
choose proof strategies and proof rules manually. The reason for a formula to be
unprovable might very well be that the target method implementation does not
preserve one of the class invariants, that the specified invariants are too weak/too
strong or that additional proof rules are required. The workflow of KeY-ABS is
illustrated in Fig. 1.



2.2 The Concurrency Model of ABS

In ABS [1,10] two different kinds of concurrency are supported depending on
whether two objects belong to the same or to different concurrent object groups
(COGsS). The affinity of an object to a COG is determined at creation time. The
creator decides whether the object should be assigned to a new COG or to the
COG of its creator. Within a COG several threads might exist, but only one of
these threads (and hence one object) can be active at any time. Another thread
can only take over when the current active thread explicitly releases control. In
other words, ABS realizes cooperative scheduling within a COG. All interleaving
points occur syntactically explicit in an ABS program in the form of an await
or suspend statement by which the current thread releases control.

While one COG represents a single processor with task switching and shared
memory, two different COGs run actually in parallel and are separated by a net-
work. As a consequence, objects within the same COG may communicate either
by asynchronous or by synchronous method invocation, while objects living on
different COGs must communicate with asynchronous method invocation and
message passing. Any asynchronous method invocation creates a so called future
as its immediate result. Futures are a handle for the result value once it becomes
available. Attempting to access an unavailable result blocks the current thread
and its COG until the result value is available. To avoid this, retrieval of futures
is usually guarded with an await that, instead of blocking, releases control in
case of an unavailable result. Futures are first-class citizens and can be assigned
to local variables, object fields, and passed as method arguments.

2.3 Verification Approach for ABS Programs

Object fields are private and may only be accessed by the object they belong to
(this is a stronger notion of privacy than in Java where other instances of the
same class can access private fields). Hence, aliasing does not pose any problem
for the verification of ABS.

To make verification of ABS programs modular, we KeY-ABS follows the
monitor [8] approach. We define invariants for each ABS class to reason locally
about classes. Each class invariant is required to hold after initialization in all
class instances, before any process release point, and upon termination of each
method call. Consequently, whenever a process is released, either by termination
of a method execution or by a release point, the thread that gains execution
control can rely on the class invariant to hold.

To write meaningful invariants of concurrent systems, it must be possible to
refer to previous communication events. The observable behavior of a system can
be described by communication histories over observable events [9]. Since mes-
sage passing in ABS is asynchronous, in KeY-ABS we consider separate events for
method invocation, for reacting upon a method call, for resolving a future, and
for fetching the value of a future. Each event can only be observed by one object,
namely the object that generates it. Assume an object o calls a method on object
o' and generates a future identity fr associated to the method call. An invocation
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Fig.2: History events and when they occur on objects o, o’ and o”

message is sent from o to o/ when the method is invoked. This is reflected by
the invocation event generated by o and illustrated by the sequence diagram in
Fig. 2. An invocation reaction event is generated by o’ once the method starts
execution. When the method terminates, the object o’ generates the completion
event. This event reflects that the associated future is resolved, i.e., it contains
the called method’s result. The completion reaction event is generated by the
caller o when fetching the value of the resolved future. Since future identities
may be passed to a third object o, that object may also fetch the future value,
reflected by another completion reaction event, generated by o” in Fig. 2.

2.4 Syntax and Semantics of the KeY-ABS Logic

Specification and verification of ABS models is done in ABS dynamic logic (AB-
SDL). ABSDL is a typed first-order logic plus a box modality: For an ABS
program S and ABSDL formulae P and @, the formula P — [S]Q expresses:
If the execution of a program S starts in a state where the assertion P holds
and the program terminates normally, then the assertion ) holds in the final
state. Hence, [-] acts as a partial correctness modality operator. Verification of
an ABSDL formula proceeds by symbolic execution of S, where state modifica-
tions are handled by the update mechanism [2]. An elementary update has the
form U = {loc := val}, where loc is a location expression and val is its new
value term. Updates can only be applied to formulae or terms. Semantically, the
validity of U¢ in state s is defined as the validity of ¢ in state s’, which is state
s where the values of loc are modified according to update U. There are oper-
ations for sequential as well as parallel composition of updates. Typically, loop-
and recursion-free sequences of program statements can be turned into updates
fully automatical. Given an ABS method m with body mb and a class invariant
I, the ABSDL formula I — [mb]I expresses that the method m preserves the
class invariant.



In ABSDL we express properties of a system in terms of histories. This
is realized by a dedicated, global program variable history, which contains the
object local histories as a sequence of events. The history events themselves are
elements of datatype HistoryLabel, which defines for each event type a constructor
function. For instance, a completion event is represented as compEuv(o, fr,m,e)
where o is the callee, fr the corresponding future, m the method name, and e the
return result of the method execution. In addition to the history formalisation as
a sequence of events, there are a number of built-in functions and predicates that
allow to express common properties concerning histories. For example, function
getFuture(e) returns the future identity contained in the event e, and predicate
isInvocationFEv(e) returns true if event e is an invocation event.

The type system of KeY-ABS reflects the ABS type system. Besides History-
Label, the type system of ABSDL contains, for example, the sequence type Seq,
the root reference type any, the super type ABSAnylnterface of all ABS objects,
the future type Future, and the type null, which is a subtype of all reference types.
Users can define their own functions, predicates and types, which are used to
represent the interfaces and abstract data types of a given ABS program.

2.5 Rule Formalisation

The user can interleave the automated proof search implemented in KeY-ABS
with interactive rule application. For the latter, the KeY-ABS prover has a graph-
ical user interface that is built upon the idea of direct manipulation. To apply a
rule, the user first selects a focus of application by highlighting a (sub-)formula
or a (sub-)term in the goal sequent. The prover then offers a choice of rules
applicable at this focus. Rule schema variable instantiations are mostly inferred
by matching. Fig. 3 shows an example of proof rule selection in KeY-ABS. The
user is about to apply the await Exp rule that executes an await statement.

Another way to apply rules and provide instantiations is by drag and drop.
The user simply drags an equation onto a term, and the system will try to rewrite
the term with the equation. If the user drags a term onto a quantifier the system
will try to instantiate the quantifier with this term.

The interaction style is closely related to the way rules are formalised in KeY-
ABS. All rules are defined as taclets [2]. Here is a (slightly simplified) example:

\find ([{method(source - m,return < (var : r, fut : u)) : {return exp; }}|9)
\replacewith ({history := seqConcat(history, compEv(this,u, m,exp)))}d)
\heuristics (simplify prog)

The rule symbolically executes a return statement inside a method invocation.
It applies the update mechanism to the variable history, which is extended with
a completion event capturing the termination and return value of the method
execution. The £ind clause specifies the potential application focus. The taclet
will be offered to the user on selecting a matching focus. The action clause
replacewith modifies the formula in focus. The heuristics clause provides
priority information to the parameterized automated proof search strategy. The
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taclet language is quickly mastered and makes the rule base easy to maintain
and extend. A full account of the taclet language is given in [2].

2.6 KeY-ABS Architecture

Fig. 4 depicts the principle architecture of the KeY-ABS system. KeY-ABS is
based on the KeY 2.0 platform—a verification system for Java. To be able to
reuse most parts of the system, we had to generalize various subsystems and to
abstract away from their Java specifics. For instance, the rule

application logic of KeY made sev- 5

eral assumptions which are valid for SPEEE“‘“‘“

Java but not for other programming Proof Obligation
Generator

languages. Likewise, the specification ABS Model
framework of KeY, even though it pro- 6ul
vided general interfaces for contracts

and invariants, made implicit assump-

tions that were insufficient for our [———
KeY ABS
Rulebase

communication histories and needed
to be factored out. After refactoring | KoV 2.0 Piatiorm

the KeY system provides core subsys-

tems (rule engine, proof construction, Fig. 4: The architecture of KeY-ABS
search strategies, specification language, proof management etc.) that are inde-




pendent of the specific program logic or target language. These are then extended
and adapted by the ABS and Java backends.

The proof obligation generator needs to parse the source code of the ABS
model and the specification. For the source code we use the parser as provided
by the ABS toolkit [13] with no changes. The resulting abstract syntax tree is
then converted into KeY’s internal representation. The specification parser is an
extension of the parser for ABSDL logic formulas and is an adapted version of the
parser for JavaDL [2]. The rule base for ABSDL reuses the language-independent
theories of the KeY tool, such as arithmetic, sequences and first-order logic. The
rules for symbolic execution have been written from scratch for ABS as well as
the formalisation of the history datatype.

3 The Usage of KeY-ABS

The ABS language was designed around a concurrency model whose analysis
stays manageable. The limitations of the ABS concurrency model, specifically
the fact that scheduling points are syntactically explicit, makes it possible to
define a compositional specification and verification method. This is essential
for being able to scale verification to non-trivial programs, because it is possible
to specify and verify each ABS method separately, without the need for a global
invariant. KeY-ABS follows the Design-by-Contract paradigm with an emphasis
on specification of class invariants for ABS programs.

class RWController implements RWinterface {
Set<CallerI> readers = EmptySet; CallerI writer = null;

Unit openR(CallerI caller) {
await writer == null;
readers = insertElement (readers, caller);}

Unit closeR(CallerI caller) {
readers = remove (readers, caller);}

Unit openW(CallerI caller) {
await writer == null;

writer = caller; readers = insertElement (readers, caller);}

Unit closeW(CallerI caller) {
await writer == caller;
writer = null; readers = remove (readers, caller);}

String read(CallerI caller, Int key){...}

Unit write(CallerI caller, Int key, String value){...}

Fig.5: The controller class of the RW example in ABS

A history-based class invariant in ABSDL can relate the state of an object
to the local history of the system. A simple banking system is verified in [3] by



KeY-ABS, where an invariant ensures that the value of the account balance (a
class attribute) always coincides with the value returned by the most recent call
to a deposit or withdraw method (captured in the history). Here we use a more
ambitious case study to illustrate this style of class invariant. In Fig. 5 an ABS
implementation of the classic reader-writer problem [4] is shown. The RWCon-
troller class provides read and write operations to clients and four methods to
synchronize reading and writing activities: openR, closeR, openW and closeW.

The class attribute readers contains a set of clients currently with read access
and writer contains the client with write access. The set of readers is extended
by execution of openR or openW, and is reduced by closeR or closeW. The writer
is added by execution of openW and removed by closeW. Two class invariants
of the reader-writer example are (slightly simplified) shown in Fig. 6, in which
the invariants isReader and isWriter express that the value of class attributes
readers and writer are always equal to the set of relevant callers extracted from
the current history. The keyword invariants opens a section where invariants
can be specified. Its parameters declare program variables that can be used to
refer to the history (historySV), the heap (heapSV, implicit by attribute access),
and the current object (self, similar as Java’s this).

The functions currentReaders(h) and currentWriter(h) are defined induc-
tively over the history h to capture a set of existing callers to the correspond-
ing methods. The statistics of verifying these two invariants are in Fig. 7. For
each of the six methods of the RWController class we show it satisfies isReader
and isWriter. For instance, the proof of invariant isReader requires 3884 proof
steps for method openR and the corresponding proof tree contains 12 branches.
Verification of this case study was automatic except for a few instantiations of
quantifiers and the rule application on inductive functions.!

\invariants (Seq historySV, Heap heapSV, ABSAnyInterface self) {
isReader : RW.RWController {
RW.RWController::self.readers
= currentReaders (historySvV)
bi

isWriter : RW.RWController {
insertElement (EmptySet, RW.CallerI::self.writer)
= currentWriter (historySV)
bi
}

Fig.6: Class invariants of the RW example

! The complete model of the reader-writer example with all formal specifications and
proofs is available at
https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din /rw.



invariants\methods| openR | closeR | openW | closeW read write
isReader 3884 — 12|1147 — 7| 2836 — 9 {3904 — 12]5459 — 26/3572 — 35
isWriter 2735 -9 | 739 — 5 (3891 — 12|3818 — 12|5056 — 29(4058 — 32

Fig.7: Verification Result of RW example: # nodes — # branches

A history-based class invariant in ABSDL can also express temporal or struc-
tural properties of the history, for example, that an event evy occurs in the history
before an event ewvs is generated. To formalize this kind of class invariant, quan-
tifiers and indices of sequences are used to locate the events at certain positions
of the history. Recently, we applied the KeY-ABS system to a case study of an
ABS model of a Network-on-Chip (NoC) packet switching platform [11], called
ASPIN (Asynchronous Scalable Packet Switching Integrated Network) [12]. We
proved that ASPIN drops no packets. The ABS model, the specifications and the
proof rules can be found in [6]. Both styles of class invariants mentioned above
were used. The KeY-ABS verification approach to the NoC case study deals with
an unbounded number of objects and is valid for generic NoC models for any m
x n mesh in the ASPIN chip as well as any number of sent packets.

The global history of the whole system is formed by the composition of the
local history of each instance of the class. A global invariant can be obtained
as a conjunction of the class invariants verified by KeY-ABS for all objects in
the system, adding wellformedness of the global history [7]. This allows to prove
global safety properties of the system using local rules and symbolic execution,
such as absence of packet loss. In contrast to model checking this allows us
to deal effectively with unbounded target systems without suffering from state
explosion.

4 Conclusion

We presented the KeY-ABS formal verification tool for the concurrent mod-
elling language ABS. ABS is a rich, fully executable language with unbounded
data structures and Java-like control structures as well as objects. It offers
thread-based as well as actor-based concurrency with the main limitation be-
ing that scheduling points are made syntactically explicit in the code (“cooper-
ative scheduling”). KeY-ABS implements a compositional proof system [4,5] for
ABS. Its architecture is based on the state-of-art Java verification tool KeY and
KeY-ABS reuses some of KeY’s infrastructure.

KeY-ABS is able to verify global, functional properties of considerable com-
plexity for unbounded systems. At the same time, the degree of automation is
high. Therefore, KeY-ABS is a good alternative for the verification of unbounded,
concurrent systems where model checking is not expressive or scalable enough.
In the future we plan to use KeY-ABS for verification of concurrent algorithms
with unbounded input.
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Abstract. We present a case study on scalable formal verification of
distributed systems that involves a formal model of a Network-on-Chip
(NoC) packet switching platform. We provide an executable model of a
generic m X n mesh chip with unbounded number of packets, the for-
mal specification of certain safety properties, and formal proofs that the
model fulfills these properties. The modeling has been done in ABS, a
language that is intended to permit scalable verification of detailed, pre-
cisely modeled, executable, concurrent systems. Our paper shows that
this is indeed possible and so advances the state-of-art verification of
NoC systems. It also demonstrates that deductive verification is a viable
alternative to model checking for the verification of unbounded concur-
rent systems that can effectively deal with state explosion.

1 Introduction

This paper presents a case study on scalable formal verification of the behavior
of distributed systems. We create a formal, executable model of a Network-on-
Chip (NoC) [27] packet switching platform called ASPIN (Asynchronous Scalable
Packet Switching Integrated Network) [32]. This is a practically relevant system
whose correctness is of great importance for the network infrastructures where
it is deployed.

We model the ASPIN router architecture in the formal, executable, con-
current modeling language ABS [21,23]. We use ABS for a number of rea-
sons: (i) it combines functional, imperative, and object-oriented programming
styles, allowing intuitive, modular, high-level modeling of concepts, domain and
data; (ii) ABS models are fully executable and model system behavior pre-
cisely [2]; (ili) ABS can model synchronous as well as asynchronous commu-
nication; (iv) ABS has been developed to permit scalable formal verification:

* Supported by the EU project FP7-610582 Envisage: Engineering Virtualized Ser-
vices (http://www.envisage-project.eu) and FP7-612985 UpScale: From In-
herent Concurrency to Massive Parallelism through Type-based Optimizations
(http://www.upscale-project.eu).



there is a program logic [18] as well as a compositional proof system [16] that
permits to prove global system properties by reasoning about object-local invari-
ants; (v) ABS comes with an IDE and a range of analysis as well as productivity
tools [34], specifically, there is a formal verification tool called KeY-ABS [7].

The main contributions of this paper are as follows: (i) a formal model of a
generic m x n mesh ASPIN chip in ABS with unbounded number of packets,
as well as a packet routing algorithm; (ii) the formal specification of a number
of safety properties which together ensure that no packets are lost; (iii) formal
proofs, done with KeY-ABS, that the ABS model of ASPIN fulfills these safety
properties.?

ABS has been developed with the explicit aim to permit scalable verification
of detailed, precisely modeled, executable, concurrent systems. Our paper shows
that this claim is indeed justified. In addition it advances the state-of-the-art with
the first successful verification of a generic NoC model that has an unbounded
number of nodes and packets. This has been achieved with manageable effort and
thus shows that deductive verification is a viable alternative to model checking
for the verification of concurrent systems that can effectively deal with state
explosion.

The paper is organized as follows: Sect. 2 gives a brief introduction into the
modeling language ABS, Sect. 3 details our formal specification approach to
system behavior, Sect. 4 provides some formal background on deductive verifi-
cation with expressive program logics, and Sect. 5 presents the ASPIN NoC case
study. Sect. 6 explains how we achieved the formal specification and verification
of the case study and gives details about the exact properties proved as well as
the necessary effort. In Sect. 7 we sketch possible directions for future work and
Sect. 8 discusses related work and concludes.

2 The ABS Modeling Language

ABS [21,23] is a formal behavioral specification language with a Java-like syn-
tax. It combines functional and imperative programming styles to develop ab-
stract executable models. ABS targets the modeling of concurrent, distributed,
and object-oriented systems. It has a formal syntax and semantics and has a
clean integration of concurrency and object orientation based on concurrent ob-
ject groups (COGs) [23,29]. ABS permits synchronous as well as asynchronous
communication [24] akin to Actors [1] and Erlang processes [4]. ABS offers a
wide variety of complementary modeling alternatives in a concurrent and object-
oriented framework that integrates algebraic datatypes, functional programming
and imperative programming. Compared to object-oriented programming lan-
guages, ABS abstracts from low-level implementation choices such as imperative
data structures, and compared to design-oriented languages like UML diagrams,
it models data-sensitive control flow and it is executable.

3 The complete model with all formal specifications and proofs is available at
https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/noc.



Syntactic categories. Definitions.

T in GroundType T:=B|D|I|D(T)
A in Type Az=N|T|N(A)
z in Variable Dd ::= data D[(A)] = [Cons);
e in Expression  Cons := Co[(A)]
v in Value Fu=def A fn[(A))(AT) = ¢
br in Branch ex=a|v| Col(e)] | fn(e) | case e {br}
p in Pattern v = Co[(T)] | null
br:=p= ¢
pu=_|z|v]| Co[(D)]

Fig. 1. Syntax for the functional layer of ABS. Terms € and T denote possibly empty
lists over the corresponding syntactic categories, and square brackets [] optional ele-
ments.

In addition, ABS also provides explicit and implicit time-dependent behavior
[6], the modeling of deployment variability [25] and the modeling of variability
in software product line engineering [9]. However, these functionalities of the
language are not used in this paper and will not be further discussed. The rest
of this section focuses on the syntax of ABS which contains a functional layer and
an imperative layer. The details of the sequential execution of several threads
inside a COG is not used in the verification techniques showcased in this paper
and therefore we focus on single-object COGs (i.e., concurrent objects).

2.1 The Functional Layer of ABS

The functional layer of ABS is used to model computations on the internal data
of the imperative layer. It allows modelers to abstract from implementation de-
tails of imperative data structures at an early stage in the software design and
thus allows data manipulation without committing to a low-level implementation
choice. The functional layer combines a simple language for parametric algebraic
data types (ADTs) and a pure first-order functional language. ABS includes a
library with four predefined basic types (Bool, Int, String, and Unit), and para-
metric datatypes, (such as lists, sets, and maps). The predefined datatypes come
with arithmetic and comparison operators, and the parametric datatypes have
built-in standard functions. The type Unit is used as a return type for methods
without explicit return value. All other types and functions are user-defined.
The formal syntax of the functional language is given in Fig. 1. The ground
types T consist of basic types B as well as names D for datatypes and I for
interfaces. In general, a type A may also contain type variables N (i.e., uninter-
preted type names [28]). In datatype declarations Dd, a datatype D has a set
of constructors Cons, each of which has a name Co and a list of types A for
their arguments. Function declarations F have a return type A, a function name
fn, a list of parameters Z of types A, and a function body e. Both datatypes
and functions may be polymorphic and have a bracketed list of type parameters
(e.g., Set<Bool>). The layered type system allows functions in the functional
layer to be defined over types A which are parametrized by type variables but



Syntactic categories. Definitions.

s in Stmt P:=1F CL{[T 7;] s}

e in Expr IF ::= interface T { [Sg] }

b in BoolExpr CL ::=class C [(T 7)] [implements ] { [T =;] M}
g in Guard Sg:u=T m ([T 7))

M:=Sg {[T ;] s}
su=us;s|skip|x=rhs|ifb {s}[else{s}]|while b{s}
| await g | suspend | return e
rhs:=e|cm | new C (€)
cm = elm(e) | z.get
gu=bla?|gAyg

Fig. 2. Syntax for the imperative layer of ABS.

only applied to ground types T in the imperative layer; e.g., the head of a list is
defined for List<A> but applied to ground types such as List<Int>.

Ezpressions e include variables z, values v, constructor expressions Co(€),
function expressions fn(€), and case expressions case e {br}. Values v are ex-
pressions that have reached a normal form: constructors applied to values Co(7)
or null. Case expressions match a value against a list of branches p = e, where
p is a pattern. Patterns are composed of the following elements: (1) wild cards _
which match anything, (2) variables  match anything if they are free or match
against the existing value of x if they are bound, (3) values v which are compared
literally, and (4) constructor patterns Co(p) which match Co and then recur-
sively match the elements p. The branches are evaluated in the listed order, free
variables in p are bound in the expression e.

2.2 The Imperative Layer of ABS

The imperative layer of ABS addresses concurrency, communication, and syn-
chronization in the system design, and defines interfaces, classes, and methods in
an object-oriented language with a Java-like syntax. In ABS, concurrent objects
(single object COGs) are active in the sense that their run method, if defined,
starts automatically upon creation.

Statements are standard for sequential composition si;ss, and for skip, if,
while, and return constructs. Cooperative scheduling in ABS is achieved by
explicitly suspending the execution of the active process. The statement suspend
unconditionally suspends the execution of the active process and moves this
process to the queue. The statement await g conditionally suspends execution:
the guard g controls processor release and consists of Boolean conditions b and
return tests x? (explained in the next paragraph). Just like expressions e, the
evaluation of guards g is side-effect free. However, if g evaluates to false, the
processor is released and the process suspended. When the execution thread is
idle, an enabled task may be selected from the pool of suspended tasks by means
of a default scheduling policy. In addition to expressions e, the right hand side
of an assignment z=rhs includes object group creation new C(€), method calls
olm(e), and future dereferencing z.get. Method calls and future dereferencing
are explained in the next paragraph.



Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments of the form
f=olm(e) to future variables f of type Fut(T), where T corresponds to the
return type of the called method m. Here, o is an object expression, m a method
name, and € are expressions providing actual parameter values for the method
invocation. (Local calls are written this!m(e).) After calling f=olm(e), the future
variable f refers to the return value of the call, and the caller may proceed
without blocking. Two operations on future variables control synchronization in
ABS. First, the guard await f? suspends the active process unless a return to
the call associated with f has arrived, allowing other processes in the object
to execute. Second, the return value is retrieved by the expression f.get, which
blocks all erecution in the object until the return value is available. Futures
are first-class citizens of ABS and can be passed around as method parameters.
The read-only variable destiny() refers to the future associated with the current
process [13]. The statement sequence x=o!m(e);v=x.get contains no suspension
statement and, therefore, encodes commonly used blocking calls, abbreviated
v=o0.m(e) (often referred to as synchronous calls). If the return value of a call
is of no interest, the call may occur directly as a statement olm(e) with no
associated future variable. This corresponds to asynchronous message passing.

The syntax of the imperative layer of ABS is given in Fig. 2. A program
P consists of lists of interface and class declarations followed by a main block
{T =; s}, which is similar to a method body. An interface IF has a name I and
method signatures Sg. A class CL has a name C, interfaces I (specifying types
for its instances), class parameters and state variables x of type T, and methods
M (The attributes of the class are both its parameters and state variables).
A method signature Sg declares the return type T of a method with name
m and formal parameters T of types T. M defines a method with signature
Sg, local variable declarations T of types T, and a statement s. Statements
may access attributes, locally defined variables (including the read-only variables
this for self-reference and destiny() explained above), and the method’s formal
parameters. There are no type variables at the imperative layer of ABS.

3 Observable Behavior

The observable behavior of a system can be described by communication histo-
ries over observable events [22]. Since message passing in ABS is asynchronous,
we consider separate events for method invocation, reacting upon a method call,
resolving a future, and for fetching the value of a future. Each event can only be
observed by one object, namely the generating object. Assume an object o calls
a method m on object o’ with input values € and where fr denotes the identity
of the associated future. An invocation message is sent from o to o’ when the
method is invoked. This is reflected by the invocation event invEv(o, o', fr,m,€)
generated by o and illustrated by the sequence diagram in Fig. 3. An invoca-
tion reaction event invREv(o,0, fr,m,€) is generated by o’ once the method
starts execution. When the method terminates, the object o' generates the fu-



elinvREv(o,0’, fr,m,€)

futEu(o, fr,m, e) B
fetREv(0", fr,e)

invEv(o, 0, fr,m,€) o\

fetREv(o, fr,e)

Fig. 3. History events and when they occur

ture event futEv(o', fr,m,e). This event reflects that fr is resolved with return
value e. The fetching event fetREuv(o, fr,e) is generated by o when fetching the
value of the resolved future. References fr to futures bind all four event types
together and allow to filter out those events from an event history that relate to
the same method invocation. Since future identities may be passed to another
object o, that object may also fetch the future value, reflected by the event
fetREu(o”, fr,e), generated by o” in Fig. 3.

For a method call with future fr, the ordering of events is described by the
regular expression

invEv(o, o', fr,m,€) - inuREv(0,0', fr,m,€) - futBv(o’, fr,m, e)[-fetREv(_, fr, e)]*

for some fixed o, o', m, €, e, and where “” denotes concatenation of events,
“” denotes arbitrary values. Thus the result value may be read several times,
each time with the same value, namely that given in the preceding future event.
A communication history is wellformed if the order of communication events
follows the pattern defined above, the identities of the generated future is fresh,
and the communicating objects are non-null.

Invariants Class invariants express a relation between the internal state and
observable communication of class instances. They are specified by a predicate
over the class attributes and the local history. A class invariant must hold after
initialization, it must be maintained by all methods, and it must hold at all
processor release points (i.e., await, suspend).

A global invariant can be obtained as a conjunction of the class invariants
for all objects in the system, adding wellformedness of the global history [19].
This is made more precise in Sect. 6.2 below.



4 Deductive Verification

A formal proof is a sequence of reasoning steps designed to convince the reader
about the truth of some formulae, i.e., a theorem. In order to do this the proof
must lead without gaps from axioms to the theorem by applying proof rules.

KeY-ABS is a deductive verification system for ABS programs based on the
KeY theorem prover [5]. As a program logic it uses first-order dynamic logic for
ABS (ABSDL) [7,16]. For an ABS program S and ABSDL formulae P and @,
the formula P — [S]Q expresses: If the execution of a program S starts in a
state where the assertion P holds and the program terminates normally, then
the assertion @ holds in the final state. Hence, [-] acts as a partial correctness
modality operator. Given an ABS method m with body mb and a class invari-
ant I, the ABSDL formula I — [mb]] expresses that the method m preserves
the class invariant. We use a Gentzen-style sequent calculus to prove ABSDL
formulae. Within a sequent we represent P — [S]Q as

I PHSQ, 4,

where I and A stand for (possibly empty) sets of formulae. A sequent calculus
as realized in ABSDL essentially simulates a symbolic interpreter for ABS. The
assignment rule for a local program variable is :

I'+ {v := e}[rest]¢p, A
I't [v=e;rest]p, A

where v is a local program variable and e is a pure (side effect-free) expression.
This rule rewrites the formula by moving the assignment from the program into a
so-called update {v := e}, which captures state changes. The symbolic execution
continues with the remaining program rest. Updates [5] can be viewed as explicit
substitutions that accumulate in front of the modality during symbolic program
execution. Updates can only be applied to formulae or terms. Once the program
to be verified has been completely executed and the modality is empty, the
accumulated updates are applied to the formula after the modality, resulting
in a pure first-order formula. Below we show the proof rule for asynchronous
method invocations:

' {U} (o # null Awt(h)), A
'+ {U}(futurelsFresh(u, h) —
{fr ;= u|| h:= h- invEv(this, o, u, m,€) }[rest]p), A
I'E{U}[fr = o'm(€); rest]p, A

asyncCall

This proof rule has two premisses and splits the proof into two branches. The
first premiss on top ensures that the callee is non-null and the current history h
is wellformed. The second branch introduces a constant u which represents the
generated future as the placeholder for the method result. The left side of the
implication ensures that u is fresh in h and updates the history by appending
the invocation event for the asynchronous method call. We refer to [16] for the
other ABSDL rules as well as soundness and completeness proofs of the ABSDL
calculus.



type Pos = Pair<Int, Int>; // (x,y) coordinates
type Packet = Pair<Int, Pos>; // (id, destination)
type Buffer = Int;
data Direction = N | W | S | E | NONE;
// north, west, south, east, the direction for not moving
data Port = P(Bool inState , Bool outState, Router rld, Buffer buff);
// (input port state, output port state, neighbor router id, buffer size)
type Ports = Map<Direction, Port>;

Fig. 4. ADTs for the ASPIN model in ABS

5 Network-on-Chip Case Study

Network-on-Chip (NoC) [27] is a packet switching platform for single chip sys-
tems which scales well to an arbitrary number of resources (e.g., CPU, memory,
etc.). The NoC architecture is an m X n mesh of switches and resources which
are placed on the slots formed by the switches. The NoC architecture essentially
is the on-chip communication infrastructure. ASPIN (Asynchronous Scalable
Packet Switching Integrated Network) [32] is an example of a NoC with routers
and processors. ASPIN has physically distributed routers in each core. Each
router is connected to four other neighboring routers and each core is locally con-
nected to one router. ASPIN routers are split into five separate modules (north,
south, east, west, and local) with ports that have input and output channels
and buffers. ASPIN uses the storage strategy of input buffering, and each input
channel is provided with an independent FIFO buffer. Packets arriving from dif-
ferent neighboring routers (and from the local core) are stored in the respective
FIFO buffer. Communication between routers is established using a four-phase
handshake protocol. The protocol uses request and acknowledgment messages
between neighboring routers to transfer a packet. ASPIN uses the distributed
X-first algorithm to route packets from input channels to output channels. Using
this algorithm, packets move along the X (horizontal) direction in the grid first,
and afterwards along the Y (vertical) direction to reach their destination. The
X-first algorithm is claimed to be deadlock-free [32]. In this section we model
the functionality and routing algorithm of ASPIN in ABS. As a starting point
we use the ASPIN model by Sharifi et al. [30,31]. In Sect. 6 we will formally
verify our model in ABSDL.

We model each router as an object that communicates with other routers
through asynchronous method calls. The abstract data types used in our model
are given in Fig. 4. We abstract away from the local communication to cores, so
each router has four ports and each port has an input and output channel, the
identifier rld of the neighbor router and a buffer. Packets are modeled as pairs
that contain the packet identifier and the final destination coordinate.

The ABS model of a router is given in Fig. 5. The method setPorts initializes
all the ports in a router and connects it with the corresponding neighbor routers.
Packets are transferred using a protocol expressed in our model with two methods
redirectPk and getPk. The internal method redirectPk is called when a router



interface Router{
Unit setPorts(Router e, Router w, Router n, Router s);
Unit getPk(Packet pk, Direction srcPort);}

class Routerlmp(Pos address, Int buffSize) implements Router {
Ports ports = EmptyMap;
Set<Packet> receivedPks = EmptySet; // received packages

Unit setPorts(Router e, Router w, Router n, Router s){
ports = map[Pair(N, P(True, True, n, 0)), Pair(S, P(True, True, s, 0)),
Pair(E, P(True, True, e, 0)), Pair(W, P(True, True, w, 0))];}

Unit getPk(Packet pk, Direction srcPort){
if (addressPk(pk) != address) {
await buff(lookup(ports,srcPort)) < buffSize;
ports = put(ports,srcPort,increaseBuff(lookup(ports,srcPort)));
this!redirectPk(pk,srcPort);}
else { // record that packet was successfully received
receivedPks = insertElement(receivedPks, pk); } }

Unit redirectPk(Packet pk, Direction srcPort){

Direction direc = xFirstRouting(addressPk(pk), address);
await (inState(lookup(ports,srcPort)) == True)

&& (outState(lookup(ports,direc)) == True);
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), False));
ports = put(ports, direc, outSet(lookup(ports, direc), False));
Router r = rld(lookup(ports, direc));
Fut<Unit> f = rlgetPk(pk, opposite(direc)); await f?;
ports = put(ports, srcPort, decreaseBuff(lookup(ports, srcPort)));
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), True));
ports = put(ports, direc, outSet(lookup(ports, direc), True));} }

Fig.5. A model of an ASPIN router using ABS

wants to redirect a packet to a neighbor router. The X-first routing algorithm
in Fig. 6 decides which port direc (and as a consequence which neighbor router)
to choose. The parameter srcPort determines in which input buffer the packet is
temporarily and locally stored. As part of the communication protocol, the input
channel of srcPort and the output channel of direc are blocked until the neighbor
router confirms that it has gotten the packet, using f = rlgetPk(...); await ?
statements to simulate request and acknowledgment messages (here r is the Id
of the neighbor router). The method getPk checks if the final destination of the
packet is the current router, if so, it stores the packet, otherwise it temporarily
stores the packet in the srcPort buffer and redirects it. The model uses standard
library functions for maps and sets (e.g, put, lookup, etc.) and observers as well
as other functions over the ADTs (e.g., addressPk, inState, decreaseBuff, etc.).
Fig. 7 depicts a scenario with a 2 x 2 ASPIN chip. The sequence diagram shows
how the different methods in the different routers are distributively called when
a packet is sent from router R0O0O to router R11.

Simulation. The behavior of the ASPIN model in ABS can be analyzed using
simulations. The operational semantics of ABS [23,25] has been specified in
rewriting logic which allows ABS models to be analyzed using rewriting tools.



def Direction xFirstRouting(Pos destination, Pos current) =
case x(current) < x(destination) {

True => E;
False => case x(current) > x(destination) {
True => W,
False => case y(current) < y(destination) {
True => S;
False => case y(current) > y(destination) {

True => N;
False => NONE; }; }; };

Fig. 6. X-first routing algorithm in ABS

A simulation tool for ABS based on Maude [10] is part of the ABS tool set [34].
Given an initial configuration of a 4 x 4 mesh, we have executed test cases where:
(1) a router is the destination of its own generated packet, (2) successful arrival
of packets between two neighboring routers which send packets to each other,
and (3) many packets sent through the same port at the same time.

6 Formal Specification and Verification of the Case Study

In this section we formalize and verify global safety properties about our ABS
NoC model in ABSDL using the KeY-ABS verification tool. This excludes any
possibility of error at the level of the ABS model. Central to our verification
effort are communication histories that abstractly capture the system state at
any point in time [11]. Specifically, partial correctness properties are specified
by finite initial segments of communication histories of the system under veri-
fication. A history invariant is a predicate over communication histories which
holds for all finite sequences in the (prefix-closed) set of possible histories, thus
expressing safety properties [3]. Our verification approach uses local reasoning
about RouterImp objects and establishes a system invariant over the global
history from invariants over the local histories of each object.

6.1 Local Reasoning

Object-oriented programming supports modular design by providing classes as
the basic modular unit. Our four event semantics (described in Sect. 3) keeps the
local histories of different objects disjoint, so it is possible to reason locally about
each object. For ABS programs, the class invariants must hold after initialization
of all class instances, must be maintained by all methods and they must hold
at all process release points so that they can serve as a method contracts. We
present the class invariants for Routerlmp in Lemma 1 and 2 and we show the
proof obligations verified by KeY-ABS that result from the reasoning of our
model against the class invariants. Fig. 8 illustrates the explanations.

Lemma 1. Whenever a router R terminates an execution of the getPk method,
then R must either have sent an internal invocation to redirect the packet or
have stored the packet in its receivedPks set.

10



env ROO R10 R11

R00!getPk(Pair(0,Pair(1,1)),W)

this!redirectPk(Pair(0,Pair(1,1)),W)

R1([getPk(Pair(0,Pair(1,1)),W)

this!redirectPk(Pair(0,Pair(1,1)),W)

await f? == True

R1fl!getPk(Pair(0,Pair(1,1)),N)
».

Fig. 7. A sequence diagram for a 2 x 2 ASPIN chip sending a packet to router R11

We formalize this lemma as an ABSDL formula (slightly beautified):

Vi1, u.0 < iy < len(h) A futEu(this, u, getPk, ) = at(h,i1)
=
Fig, pk .0 < is < i1 A invREv(_, this, u, getPk, (pk, _)) = at(h,i2) A
((dest(pk) # address(this) =
Fig .o < i3 < i1 A invEv(this, this, _, redirectPk, (pk, _)) = at(h,i3)) V
(dest(pk) = address(this) = pk € receivedPks))

where “” denotes a value that is of no interest. The function len(s) returns the
length of the sequence s, the function at(s, ) returns the element located at the
index 7 of the sequence s, the function dest(pk) returns the destination address
of the packet pk, and address(r) returns the address of the router r.

This formula expresses that for every future event evy of getPk with future
identifier u found in history h we can find by pattern matching with « in the
preceding history a corresponding invocation reaction event evs that contains
the sent packet pk. If this router is the destination of pk, then pk must be in its
receivedPks set, otherwise an invocation event of redirectPk containing pk must
be found in the history between events ev; and evs.

Remark 1. In the heap model of KeY-ABS, any value stored in the heap can be
potentially modified while a process is released. Therefore, to prove the above

11



this next

invEv (this, this,u,redirectPk, (pk,s thislredirectPk(pk;s)
invR Ev(this,this,u,redirect Pk, (pk,s rextlzetPk(pk.d)
invBv (this,next, fr,get Pk, (pk,d)) > inuR Ev (this,next, fr,getPk, (pk,d))

await f? == True futEv(next,fr,getPk,_)

futEv(this,u,redirectPk, ) | H---

Fig. 8. Communication history between a router and its neighboring router next where
the package is sent to

property we need a somewhat stronger invariant expressing that the address of a
router stored in the heap is rigid (cannot be modified by any other process). Due
to a current technical limitation, we proved the invariant for a slightly simplified
version of the model where the router address is passed as a parameter of getPk.
This technical modification does obviously not affect the overall behavior of the
model and will be lifted in future work.

Lemma 2. Whenever a router R terminates an execution of redirectPk, the
input channel of srcPort and the output channel of direc are released.

Again, we formalize this lemma as an ABSDL formula:

Y . futEv(this, u, redirectPk, ) = at(h,len(h) — 1)
=
iy, o, pk,srcP,dirP .0 < iy < is <len(h) —1 A
(invREv(this, this, u, redirectPk, (pk, srcP)) = at(h,i1) A
invEv(this, _, _, getPk, (pk, opposite(dirP))) = at(h,iz)) A
(inState(lookup(ports,srcP)) A outState(lookup(ports, dirP)))

This formula expresses that whenever the last event in the history h is a future
event of redirectPk method, by pattern matching with the same future and packet
in the previous history, we can find the corresponding invocation reaction event
and the invocation event. In these two events we filter out the source port srcP
and the direction port dirP used in the latest run of redirectPk. The input
channel of srcP and the output channel of dirP must be released in the current
state. This invariant captures the properties of the current state and is prefix-
closed. With KeY-ABS we proved that the Routerlmp class of our model satisfies
this invariant.

The statistics of verifying these two invariants is given below. For each of the
three methods of the Routerlmp class we show it satisfies both invariants.
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‘# nodes — # branches‘setPorts‘ getPk ‘redirecth‘

Lemma. 1 1638-12 |11540-108| 27077-200
Lemma. 2 214-1 1845-11 4634-34

6.2 System Specification

The global history of the system is composed of the local histories of each in-
stance of each class. However, communication between asynchronous concurrent
objects is performed by asynchronous method calls, so messages may in general
be delayed in the network. The observable behavior of a system includes the
possibility that the order of messages received by the callee is different from the
order of messages sent by the caller. The necessary assumptions about message
ordering in our setting are captured by a global notion of wellformed history.

Lemma 3. The global history H of a system S modeled with ABS and derived
from its operational semantics, is wellformed, i.e., the predicate wf(H) holds.

The formal definition of wf and a proof of the lemma are in [17], an informal
definition is given in Sect. 3 above (see also Fig. 3).

Let I1pis(h) be the conjunction of Ige;px (this, h) and Ireqirect pi (this, h), which
are the class invariants defined in Lemma 1 and 2 where h is the local history of
this. The local histories represent the activity of each concurrent object. We for-
mulate a system invariant by the conjunction of the instantiated class invariants
of all Routerlmp objects r:

I(H) 2 wt(H,newy,(H)) A I.(H/r)

(r:Routerlmp)enewqy, (H)

where H is the global history of the system and I,.(H/r) is the object invariant of
r instantiated from the class invariant Its(h). The local history of r is obtained
by the projection H/r from the global history. The function new.,(H) returns
the set of Routerlmp objects generated within the system execution captured
by H. Each wellformed interleaving of the local histories represents a possible
global history. History wellformedness wf(H, new,,(H)) ensures proper ordering
of those events that belong to the same method invocation. The composition
rule was proved sound in [16]. As a consequence, we obtain:

Theorem 1. Whenever a router R releases a pair of input and output channels
used for redirecting a receiving packet, the next router of R must either have
sent an internal invocation to redirect the packet or have stored the packet in its
receivedPks set. Hence, the network does not drop any packets.

Effort. The modelling of the NoC case study in ABS took ca. two person weeks.
Formal specification and verification was mainly done by the first author of
this paper who at the time was not experienced with the verification tool KeY-
ABS. The effort for formal specification was ca. two person weeks and for formal
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verification ca. one person month, but this included training to use the tool
effectively. For an experienced user of KeY-ABS, we estimate that these figures
would be three person days and one person week, respectively.

7 Future Work

Deadlock Analysis. In addition to history-based invariants, it is conceivable to
prove other properties, such as deadlock-freedom. Deadlocks may occur in a sys-
tem, for example, when a shared buffer between processes is full and one process
can decrease the buffer size only if the other process increases the buffer size. This
situation is prevented in the ABS model by disallowing self-calls before decreas-
ing the size of the buffer (the method invocation of get Pk within redirect Pk in
our model is an external call). It is possible to argue informally that our ABS
model of NoC is indeed deadlock-free, but a formal proof with KeY-ABS is fu-
ture work. The main obstacle is that deadlocks are a global property and one
would need to find a way to encode sufficient conditions for deadlock-freedom
into the local histories. There are deadlock analyzers for ABS [20], but these,
like other approaches to deadlock analysis of concurrent systems, work only for
a fixed number of objects.

Extensions of the Model. The ASPIN chip model presented in this paper can eas-
ily be extended with time (e.g, delays and deadline annotations) and scheduling
(e.g., FIFO, EDF, user-defined, etc.) using Real-Time ABS [6]. The extension
with time would allow us to run simulations and obtain results about the per-
formance of the model. Adding scheduling to the model would allow us to, for
example, guarantee the ordering of the sent packets (using FIFO scheduling)
or to express priority of packets. We can also easily change the routing algo-
rithm in Fig. 6 without any need to alter the Routerlmp class in Fig. 5. It is
possible to compare the performance of different routing algorithms by means
of simulations.

Runtime Assertion Checking. Another extension to the model could be runtime
assertion checking (RAC) [18], for example, to ensure that packets make progress
towards their final destination. For this one would use the distance function in
Fig. 9 and simply include the assertion into the model, where addr is the address
of the current router and prevAddr is the address of the previous neighbor router
from where the packet was redirected. RAC is already supported by the ABS
tool set and can be used for this case study, but to keep the paper focussed we
decided not to report the results here.

8 Related Work and Conclusion

Previous work on formal modeling of NoC includes [8,12, 30, 31]. The papers
[30, 31], which were a starting point for our work, present a formal model of
NoC in the actor-based modeling language Rebeca [26,33]. In [30], the authors
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def Int distance(Pos destination, Pos current) =
abs(x(destination) — x(current)) + abs(y(destination) — y(current));

assert (distance(addressPk(pk),addr)==distance(addressPk(pk),prevAddr)—1);

Fig. 9. A function to calculate the distance between the current position and the final
destination of a packet for the X-first routing algorithm

model the functional and timed behavior of ASPIN (with the X-first routing
algorithm). To analyze their model, they used the model checker of Rebeca,
Afra [26], to guarantee deadlock-freedom and successful packet sending for spe-
cific chip configurations. They also measure the maximum end-to-end latency
of packets. In [31] the authors compare the performance of different routing al-
gorithms. The ASPIN model presented in this paper does not capture timing
behavior and uses the X-first routing algorithm, but timing behavior can eas-
ily be added and other routing algorithms can be plugged into the model as
explained in Sect. 7. Compared to the Rebeca model, our ABS model of the
ASPIN chip is deadlock-free and more compact. It is decoupled from the rout-
ing algorithm and easier to understand than the Rebeca model, because ABS
permits intuitive, object-oriented modeling of the involved concepts, as well as
high-level concepts for modeling concurrency. Our verification approach deals
with an unbounded number of objects and is valid for generic NoC models for
any m X n mesh in the ASPIN chip as well as any number of sent packets. This
is possible, because we use deductive verification in the expressive program logic
ABSDL with the verification tool KeY-ABS [7,16] and formal specification of
observable behavior [14,15]. This allowed us to prove global safety properties of
the system using local rules and symbolic execution. In contrast to model check-
ing this allows us to deal effectively with unbounded target systems without
encountering state explosion.
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Abstract We present a framework for statically detect-
ing deadlocks in a concurrent object-oriented language
with asynchronous method calls and cooperative scheduling
of method activations. Since this language features recur-
sion and dynamic resource creation, deadlock detection is
extremely complex and state-of-the-art solutions either give
imprecise answers or do not scale. In order to augment pre-
cision and scalability, we propose a modular framework that
allows several techniques to be combined. The basic com-
ponent of the framework is a front-end inference algorithm
that extracts abstract behavioral descriptions of methods,
called contracts, which retain resource dependency informa-
tion. This component is integrated with a number of possible
different back-ends that analyze contracts and derive dead-
lock information. As a proof-of-concept, we discuss two such
back-ends: (1) an evaluator that computes a fixpoint seman-
tics and (2) an evaluator using abstract model checking.

Keywords Type inference - Deadlock analysis -
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groups

1 Introduction

Modern systems are designed to support a high degree of
parallelism by letting as many system components as possi-
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ble operate concurrently. When such systems also exhibit a
high degree of resource and data sharing, then deadlocks rep-
resent an insidious and recurring threat. In particular, dead-
locks arise as a consequence of exclusive resource access
and circular wait for accessing resources. A standard exam-
ple is when two processes are exclusively holding a different
resource and are requesting access to the resource held by
the other. That is, the correct termination of each of the two
process activities depends on the termination of the other.
The presence of a circular dependency makes termination
impossible.

Deadlocks may be particularly hard to detect in systems
with unbounded (mutual) recursion and dynamic resource
creation. A paradigm case is an adaptive system that cre-
ates an unbounded number of processes such as server
applications. In these systems, the interaction protocols are
extremely complex and state-of-the-art solutions either give
imprecise answers or do not scale—see Sect. 8, and for
instance, Naik et al. [31] and the references therein.

In order to augment precision and scalability, we pro-
pose a modular framework that allows several techniques
to be combined. We meet scalability requirement by design-
ing a front-end inference system that automatically extracts
abstract behavioral descriptions pertinent to deadlock analy-
sis, called contracts, from code. The inference system is mod-
ular because it (partially) supports separate inference of mod-
ules. To meet precision of contracts’ analysis, as a proof-of-
concept, we define and implement two different techniques:
(1) an evaluator that computes a fixpoint semantics and (2)
an evaluator using abstract model checking.

Our framework targets core ABS [22], which is an
abstract, executable, object-oriented modeling language with
a formal semantics, targeting distributed systems. In
core ABS, method invocations are asynchronous: the caller
continues after the invocation and the called code runs on
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a different task. Tasks are cooperatively scheduled, that is,
there is a notion of group of objects, called cog, and there
is at most one active task at each time per cog. The active
task explicitly returns the control in order to let other tasks
progress. The synchronization between the caller and the
called methods is performed when the result is strictly neces-
sary [4,23,40]. Technically, the decoupling of method invo-
cation and the returned value is realized using future vari-
ables (see [9] and the references in there), which are pointers
to values that may be not available yet. Clearly, the access to
values of future variables may require waiting for the value
to be returned. We discuss the syntax and the semantics of
core ABS, in Sect. 2.

Because of the presence of explicit synchronization oper-
ations, the analysis of deadlocks in core ABS is more fine-
grained than in thread-based languages (such as Java).
However, as usual with (concurrent) programming lan-
guages, analyses are hard and time-consuming because most
part of the code is irrelevant for the properties one intends to
derive. For this reason, in Sect. 4, we design an inference sys-
tem that automatically extracts contracts from core ABS
code. These contracts are similar to those ranging from lan-
guages for session types [13] to process contracts [28] and to
calculi of processes as Milner’s CCS or pi-calculus [29,30].
The inference system mostly collects method behaviors and
uses constraints to enforce consistencies among behaviors.
Then, a standard semiunification technique is used for solv-
ing the set of generated constraints.

Since our inference system addresses a language with
asynchronous method invocations, itis possible that a method
triggers behaviors that will last after its lifetime (and there-
fore will contribute to future deadlocks). In order to support
amore precise analysis, we split contracts of methods in syn-
chronized and unsynchronized contracts, with the intended
meaning that the formers collect the invocations that are
explicitly synchronized in the method body and the latter
ones collect the other invocations.

The current release of the inference system does not cover
the full range of features of core ABS. In Sect. 3, we discuss
the restrictions of core ABS and the techniques that may be
used to remove these restrictions.

Our contracts feature recursion and resource creation;
therefore, their underlying models contain infinite states and
their analysis cannot be exhaustive. We propose two tech-
niques for analyzing contracts (and to show the modularity of
our framework). The first one, which is discussed in Sect. 5,
is a fixpoint technique on models with a limited capacity
of name creation. This entails fixpoint existence and finite-
ness of models. While we lose precision, our technique is
sound (in some cases, this technique may signal false posi-
tives). The second technique, which is detailed in Sect. 6, is
an abstract model checking that evaluates the contract pro-
gram upto some point, which is possible to determine by
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analyzing the recursive patterns of the program. This tech-
nique is precise when the recursions are linear, while it is
over-approximating in general.

‘We have prototyped an implementation of our framework,
called the DF4ABS tool, and in Sect. 7, we assess the pre-
cision and performance of the prototype. In particular, we
have applied it to an industrial case study that is based on the
Fredhopper Access Server (FAS) developed by SDL Fred-
hopper.! It is worth to recall that, because of the modularity
of DF4ABS, the current analyses techniques may be inte-
grated and/or replaced by other ones. We discuss this idea in
Sect. 9.

1.1 Origin of the material

The basic ideas of this article have appeared in conference
proceedings. In particular, the contract language and (a sim-
plified form of) the inference system have been introduced
in [14,16], while the fixpoint analysis technique has been
explored in [14], and an introduction to the abstract model-
checking technique can be found in [17], while the details are
in [18]. This article is a thoroughly revised and enhanced ver-
sion of [14] that presents the whole framework in a uniform
setting and includes the full proofs of all the results. A more
detailed comparison with other related work is postponed to
Sect. 8.

2 The language core ABS

The syntax and the semantics (of the concurrent object level)
of core ABS are defined in the following two subsections;
the third subsection is devoted to the discussion of examples,
and the last one to the definition of deadlock. In this contri-
bution, we overlook the functional level of core ABS that
defines data types and functions because their analysis can
be performed with techniques that may (easily) complement
those discussed in this paper (such as data-flow analysis).
Details of core ABS, its semantics and its standard type
system can be also found in [22].

2.1 Syntax

Figure 1 displays core ABS syntax, where an overlined ele-
ment corresponds to any finite sequence of such element. The
elements of the sequence are separated by commas, except
for C, which has no separator. For example, 7 means a (pos-
sibly empty) sequence 71, ..., T,. When we write T x ; we
mean a sequence 71 x1; ---; T, x,; when the sequence is
not empty; we mean the empty sequence otherwise.

A program P is a list of interface and class declarations
(resp. I and C) followed by a main function {(Tx;s) A

! http://sdl.com/products/fredhopper.
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v | x | this | arithmetic-and-bool-exp
m=null | primitive values

Pu=1C{Tx;s}

T:=D | Fut<T> | I

I ::= interface I {S ;}

S =T n(T x)

C ::= class C(T z) [implements I| {T 2’; M }
M:=8{Tz; s}

s

z

e

v

Fig. 1 Language core ABS

type T is the name of either a primitive type D such as Int,
Bool, String, or a future type Fut<T>, or an interface
name TI.

A class declaration class C(T x) {T’x’ ; M} has a
name C and declares its fields 7 x, T’ x’ and its methods
M. The fields T x will be initialized when the object is cre-
ated; the fields 77 x” will be initialized by the main function
of the class (or by the other methods).

A statement s may be either one of the standard opera-
tions of an imperative language or one of the operations for
scheduling. This operation is await x? (the other one is
get, see below), which suspends method’s execution until
the argument x, is resolved. This means that awa it requires
the value of x to be resolved before resuming method’s exe-
cution.

An expression z may have side effects (may change the
state of the system) and is either an object creation new C(e)
in the same group of the creator or an object creation new
cog C(e) in a new group. In core ABS, (runtime) objects
are partitioned in groups, called cogs, which own a lock for
regulating the executions of threads. Every thread acquires its
own cog lock in order to be evaluated and releases it upon ter-
mination or suspension. Clearly, threads running on different
cogs may be evaluated in parallel, while threads running on
the same cog do compete for the lock and interleave their eval-
uation. The two operations new C(e) and new cog C(e)
allow one to add an object to a previously created cog or to
create new singleton cogs, respectively.

An expression z may also be either a (synchronous)
method call e.m(e) or an asynchronous method call e ! m(e).
Synchronous method invocations suspend the execution of
the caller, without releasing the lock of the correspond-
ing cog; asynchronous method invocations do not suspend
caller’s execution. Expressions z also include the operation
e.get that suspends method’s execution until the value of
e is computed. The type of e is a future type that is asso-
ciated with a method invocation. The difference between
awalt x? and e.get is that the former releases cog’s lock
when the value of x is still unavailable; the latter does not
release cog’s lock (thus being the potential cause of a dead-
lock).

skip | =2 | ife{s}else {s} | returne | s; s | await e?
e | em(€) | em(@ | new C(€) | newcogC (e) | e.get

program
type

interface

method signature

class

method definition
statement

expression with side effects
expression

value

A pure expression e is either a value, or a variable x, or
the reserved identifier this. Valuesinclude the null object
and primitive type values, such as true and 1.

In the whole paper, we assume that sequences of field dec-
larations T’ x’, method declarations M and parameter decla-
rations 7 x do not contain duplicate names. It is also assumed
that every class and interface name in a program has a unique
definition.

2.2 Semantics

core ABS semantics is defined as a transition relation
between configurations, noted cn and defined in Fig. 2.
Configurations are sets of elements—therefore, we iden-
tify configurations that are equal upto associativity and
commutativity—and are denoted by the juxtaposition of the
elements cn cn; the empty configuration is denoted by €. The
transition relation uses three infinite sets of names: object
names, ranged over by o, 0/, . . ., cog names, ranged over by
¢, ¢, ..., and future names, ranged over by f, f’, . ... Object
names are partitioned according to the class and the cog they
belong. We assume there are infinitely many object names per
class, and the function fresh(C) returns a new object name of
class c. Given an object name o, the function class(o) returns
its class. The function fresh( ) returns either a fresh cog name
or a fresh future name; the context will disambiguate between
the twos.

Runtime values are either values v in Fig. 1 or object and
future names or an undefined value, which is denoted by L.

Runtime statements extend normal statements with
cont(f) thatis used to model explicit continuations in syn-
chronous invocations. With an abuse of notation, we range
over runtime values with v, v/, ... and over runtime state-
ments with s, s’, . . .. We finally use a and [, possibly indexed,
to range over maps from fields to runtime values and local
variables to runtime values, respectively. The map/ also binds
the special name destiny to a future value.

The elements of configurations are

— objects ob(o, a, p,q) where o is an object name; a
returns the values of object’s fields, p is either idle, rep-
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en == €| fut(f,val) | ob(o,a,p,q) | invoc(o, f,m,T) | cog(c, act) | cn cn act ==o| ¢

p = {l|s}|idle val := v | L
g==c¢€|{l|s}|qq an=[-,z—uv,- -]
s u=cont(f)|... vae=ol| f]|...

Fig. 2 Runtime syntax of core ABS

resenting inactivity, or is the active process {l | s}, where
[ returns the values of local identifiers and s is the state-
ment to evaluate; ¢ is a set of processes to evaluate.

— future binders fut( f, v) where v, called the reply value
may be also | meaning that the value has still not com-
puted.

— cog binders cog(c, o) where o is the active object; it may
be ¢ meaning that the cog ¢ has no active object.

— method invocations invoc(o, f, m, ).

The following auxiliary functions are used in the semantic
rules (we assume a fixed core ABS program):

— dom(/) and dom(a) return the domain of / and a, respec-
tively.

— I[x — wv] is the function such that (/[x +— v])(x) = v
and (I[x — v])(y) = I(y), when y # x. Similarly for
alx — v].

— [ell@+1) returns the value of e by computing the arith-
metic and Boolean expressions and retrieving the value
of the identifiers that is stored either in a or in /. Since a
and/ are assumed to have disjoint domains, we denote the
union map with a +1. [[e]l44) returns the tuple of values
of e. When e is a future name, the function [-l(44) is
the identity. Namely [ flla+1) = f-

— C.mreturns the term (T x){T’ z; s} that contains the argu-
ments and the body of the method m in the class C.

— bind(o, f,m, v, C) = {[destiny > f, X > v,Z+— L] |
s[0/tn1isl), where C.m = (T x){T’ z; s}.

— 1init(C, o) returns the process

{@[destiny > f1]1]s[/this])

where {T x; s} is the main function of the class C. The
special name destiny is initialized to a fresh (future) name

fi.
— atts(C, v, ¢) returns the map [cog +— ¢, X — V,x’ >
1], where the class C is defined as

classC(T x){T'x" ; M}

and where cog is a special field storing the cog name of
the object.

The transition relation rules are collected in Figs. 3 and 4.
They define transitions of objects 0b(o, a, p, q) according to
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the shape of the statement in p. We focus on rules concerning
the concurrent part of core ABS, since the other ones are
standard. Rules (AwAIT- TRUE) and (AWAIT- FALSE) model the
awalt e? operation: If the (future) value of e has been com-
puted then await terminates, otherwise the active process
becomes idle. In this case, if the object owns the control of the
cog, then it may release such control—rule (RELEASE- COG).
Otherwise, when the cog has no active process, the object gets
the control of the cog and activates one of its processes—rule
(AcTIVATE). Rule (READ- FUT) permits the retrieval of the value
returned by a method; the object does not release the control
of the cog until this value has been computed.

The two types of object creation are modeled by (NEw-
OBIECT) and (NEW- CoG- OBJECT). The first one creates the new
object in the same cog. The new object is idle because the cog
has already an active object. The second one creates the object
in a new cog and makes it active by scheduling the process
corresponding to the main function of the class. The special
field cog is initialized accordingly; the other object’s fields
are initialized by evaluating the arguments of the operation—
see definition of atts.

Rule (Async-CaLL) defines asynchronous method invo-
cation x = e!m(e). This rule creates a fresh future name
that is assigned to the identifier x. The evaluation of the
called method is transferred to a different process—see rule
(BIND- MTD). Therefore, the caller can progress without wait-
ing for callee’s termination. Rule (CoG- SYNc- CALL) defines
synchronous method invocation on an object in the same
cog (because of the premise a’(cog) = ¢ and the element
cog(c, o) in the configuration). The control is passed to the
called object that executes the body of the called method fol-
lowed by a special statement cont(f’), where f is a fresh
future name. When the evaluation of the body terminates,
the caller process is scheduled again using the name f'—see
rule (CoG- SYNC- RETURN- SCHED). Rules (SELF- SYNC- CALL) and
(REM- SYNC- CaLL) deal with synchronous method invocations
of the same object and of objects in different cogs, respec-
tively. The former is similar to (CoG- SYNc- CaLL) except that
there is no control on cogs. The latter one implements the syn-
chronous invocation through an asynchronous one followed
by an explicit synchronization operation.

It is worth to observe that the rules (ACTIVATE), (COG- SYNC-
CALL) and (SELF- SYNC- CaLL) are different from the corre-
sponding ones in [22]. In fact, in [22], rule (ACTIVATE) uses an
unspecified select predicate that activates one task from the
queue of processes to evaluate. According to the rules (Coc-
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(SP) (AsSIGN-LOCAL) (AsSIGN-FIELD)
. r €dom(l) v=[ef(ayy x€dom(a)\dom(l) v=[e]ayn
A A R (S N b0, 0, {1 & = &55T,0)
U S ob(o,a {le ] [sha) > ob(o,ale ], {U['s},q)
(COND-TRUE) (CoOND-FALSE)
true = [e] (441 false = [e](a+1)
ob(o,a,{l | if e then {s1} else {s2};s},q) ob(o,a,{l | if e then {s1} else {s2};s},q)
— ob(o,a,{l| s1;s},q) — ob(o,a,{l | s2;s},q)
(AWAIT-TRUE) (AWAIT-FALSE)
f=lelary v#L f=lel@r
ob(o,a, {l | await e ?; s}, q) fut(f,v) ob(o,a, {l | await e ?;s}, q) fut(f, L)
— ob(o,a,{l| s}, q) fut(f,v) — ob(o, a,idle,q U {l | await e ?; s}) fut(f, L)
S— (o po

D o0 a0, a, e, qU{TTsT) caglee]  9blo,a, {110 = e-goti ], q) Jul(],0)
e @) 090D T b0y, {1 5ha) cogle,0) > oblo,a, {1 2= vis},a) fui(],v)

(NEW-OBJECT) (NEW-CoG-OBJECT)
o/ = fresh(C) p = init(C, o) ¢’ =fresh() o =fresh(C) p = init(C,0’)
a’ = atts(C, [[E]](a+l)7 C) a = atts(C, [[EII (a+1)> C/)
ob(o,a,{l | © = new C(€); s}, q) cog(c,0) ob(o,a,{l | © = new cog C(€); s}, q)
— 0b(0,a,{l | = 0';s},q) cog(c,0) — ob(o,a,{l | z = 0;s},q)
ob(d',a’,idle,{p}) ob(o’,a’,p, &) cog(c,o")

Fig. 3 Semantics of core ABS(1)

(AsyNc-CALL) (BIND-MTD)
o = [elgen 7= [liarn f="fresh() {115} = bind(o, f.m. 5, class(o))
ob(o,a,{l |z =e!m(e); s}, q) ob(o, a, p, q) invoc(o, f,m, V)
— ob(o,a,{l | z = f;s},q) invoc(o, f,m, D) fut(f, L) — ob(o,a,p,qUA{l | s})
(CoG-SyNC-CALL)
o =lela+ry T=I[el(atsy [ = fresh() (COG-SYNC-RETURN-SCHED)
c=ad(cog) f' = Il(destiny) c=a’(cog) [ =1U(destiny)
{l''| ¢’} = bind(d, f,m, v, class(0)) ob(o,a, {l'] cont f},q) cog(c,o)
ob(o,a,{l| z = e.m(e); s}, q) ob(o,a’,idle, ¢’ U{l’ | s})
ob(o’,a’,idle, q’) cog(c,o0) — ob(o, a,idle, q) cog(c,0")
— ob(o,a,idle,qU {l | await f?;x = f.get;s}) fut(f, L) ob(o',a’, {l' | s},q")

ob(o’,a’,{l" | s;cont f'},q") cog(c,o’)

(SELF-SYNC-CALL)

, . _ _ (RETURN)
J = l(destiny) o= [el(atry 7= [€l(atr) _ — I(desti
f=fresh() {l'|s’} = bind(o, f,m,,class(0)) Ob(:, o {[[le]% (ﬁ;:lzlrnfe; S}Sq(;S;:tlE]% T

b(7 7{l‘ = '(7); }7)
— ob(o,a,{l' | §; con?c()(‘)’)a}, q U?l | :w:ii f‘??7 :rqz f.get; s}) fut(f, L) = ob(0,a, {L | s}, q) ful(f,v)

(REM-SYNC-CALL) (SELF-SYNC-RETURN-SCHED)

o =[e](ayry f =fresh() a(cog) # a'(cog) F = I'(destiny) (CONTEXTI)
ob(o,a,{l| x = e.m(€); s}, q) ob(o,a’,p,q’) ob(0,a, {1 [ cont (), qU{l [ s]) cn — cn
— ob(o,a,{l| f =e'm(e);z = f.get;s},q) BN ob(o, a, I |7s} ) cnen’” — en! en
ob(o’,a,p,q") » @y »q

Fig. 4 Semantics of core ABS(2)

Sync- CaLL) and (SELF- SYNC- CALL) in that paper, the activated ob(start, g, {[destiny > far, X = L] |5}, @)

process might be a caller of a synchronous invocation, which cog(start, start)

has a get operation. To avoid potential deadlock of a wrong

select implementation, we have prefixed the gets in (Cog- ~ Where start and start are special cog and object names,
SYNC- CALL) and (SELF- SYNC- CALL) with await operations. ~ respectively, and fq is a fresh future name. As usual, let

The initial configuration of a core ABS program with ~ —> be the reflexive and transitive closure of —>.

main function {7 : X ; s} is A configuration cn is sound if
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1. different elements cog(c, 0) and cog(c’, 0’) in cn are such
that ¢ # ¢’ and o # ¢ implies 0 # 0,

2. ifob(o,a, p,q)andob(o’,d’, p’, q’) are different objects
in cn such that a(cog) = a’(cog), then either p = idle or
p' = idle.

We notice that the initial configurations of core ABS pro-
grams are sound. The following statement guarantees that
the property “there is at most one active object per cog” is an
invariance of the transition relation.

Proposition 1 Ifcn is sound and cn—>cn/, then cn’ is sound
as well.

As an example of core ABS semantics, in Fig. 7, we
have detailed the transitions of the program in Example 2.
The non-interested reader may safely skip it.

2.3 Samples of concurrent programs in core ABS

The core ABS code of two concurrent programs are dis-
cussed. These codes will be analyzed in the following sec-
tions.

Example 1 Figure 5 collects three different implementa-
tions of the factorial function in a class Math. The function
fact_g is the standard definition of factorial: The recur-
siveinvocation this! fact_g(n-1) isfollowedbyaget
operation that retrieves the value returned by the invocation.

class Math {
Int fact_g(Int n){
Fut<Int> x ;
Int m ;
if (n==0) { return 1; }
else { x = this!fact_g(n-1); m = x.get;
return n*m; }

}
Int fact_ag(Int n){
Fut<Int> x ;
Int m ;
if (n==0) { return 1; }
else { x = this!fact_ag(n-1);
await x?; m = x.get;
return n*m; }
¥

Int fact_nc(Int n){

Fut<Int> x ;

Int m ;

Math z ;

if (n==0) { return 1 ; }

else { z = new cog Math();
x = z!fact_nc(n-1); m =
return n*m; }

x.get;

Yet, get does not allow the task to release the cog lock; there-
fore, the task evaluating this!fact_g(n-1) is fated to
be delayed forever because its object (and, therefore, the cor-
responding cog) is the same as that of the caller. The func-
tion fact_ag solves this problem by permitting the caller
to release the lock with an explicit await operation, before
getting the actual value with x.get. An alternative solu-
tion is defined by the function fact_nc, whose code is
similar to that of fact_g, except for that fact_nc invokes
z!fact_nc(n-1) recursively, where z is an object in a
new cog. This means the task of z! fact_nc (n-1) may
start without waiting for the termination of the caller.

Programs that are particularly hard to verify are those
that may manifest misbehaviors according to the scheduler
choices. The following example discusses one case.

Example 2 The class CpxSched of Fig. 6 defines three

methods. Method m1 asynchronously invokes m2 on its own

argument y, passing to it the field x as argument. Then, it

asynchronously invokes m2 on the field x, passing its same

argument y. Method m2 invokes m3 on the argument z and

blocks waiting for the result. Method m3 simply returns.
Next, consider the following main function:

{Ix; Ty; Iz;
Fut<Fut<Unit>> w ;
x = new CpxSched(null) ;
= new CpxSched(x) ;
new cog CpxSched(null) ;
= ylml(z); }

£ N K
I

The initial configuration is
ob(start, e, {l | s}, D)cog(start, start)

where | = [destiny — fyqri,x — L,y —» L,z —

interface I { Fut<Unit> mi1(I y); Unit m2(I z);
Unit m3() ; }

class CpxSched (I u) implements I {
Fut<Unit> m1(I y) {
Fut<Unit> h;
Fut<Unit> g ;

h = y!m2(u);
g = ulm2(y);
return g;

}

Unit m2(I z) {
Fut<Unit> h ;
h =2z'm3Q);
h.get;

¥

Unit m3(0){

}

Fig. 5 Class Math
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Fig. 6 Class CpxSched
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ob(start, e, {l | s}, @) cog(start, start)
—2  (NEW-OBJECT) and (ASSIGN-LOCAL)

ob(start, e, {l[x — o] |y = new C(x);s''}, &) cog(start, start) ob(o, anu1, idle, &)

ob(start, e, {l[x — o0,y +— 0’| |z = new cog C(null);s’’'}, &) cog(start, start) ob(o, anui,idle, &) ob(0’, ao, idle, &)

_)2

(
[
—2  (NEW-OBJECT) and (ASSIGN-LOCAL)
[
(NEW-C0G-OBJECT) and (ASSIGN-LOCAL)
[

ob(start,e, {l[x — o0,y +— o',z +— 0| |w = ym1(2);}, &) cog(start, start) ob(o, anua,idle, &) ob(o’, ao,idle, &)

ob(o’’, [cog — ¢, x — null],idle, &) cog(c, 0’’)
—  (AsyNc-CALL)

ob(start, e, {l[x — o,y — o',z — o] |w = f;}, &) cog(start, start) ob(o, anu1,idle, &) 0b(o’, a,,idle, &)
ob(o’’, [cog — ¢, x — null],idle, &) cog(c, 0’’) invoc(o’, f,ml, 0"’ fut(f, L)

—  (BIND-MTD)

ob(start, e, {l[x — o,y — o',z +— o] |w = f;}, &) cog(start, start) ob(o, anu1,idle, &) 0b(0’, a,,idle, {lo | S0 })

ob(0", [cog — ¢, x — null],idle, &)

cog(c, o) fut(f, L)

—1 (ACTIVATE) and twice (ASyNC-CALL) and (RETURN)
ob(start,e, {l[x — o0,y — o',z +— 0| |w = 1;}, &) cog(start, start) ob(o, anu1,idle, &) 0b(0’, a,,idle, &)
ob(o”, [cog — ¢, x — null],idle, &) cog(c, o’’) fut(f, f'") fut(f’, L) fut(f”’,L) (%)

invoc(o”, f',m2, 0) tnvoc(o, f'/,m2,0"")
—2  twice (BIND-MTD)

ob(start, e, {l[x — o,y — o',z 0] |w = f;}, &) cog(start, start) ob(o, anm1,idle, {lo|so}) 0b(0’, as,idle, &)
ob(0”, [cog — ¢, x — null],idle, {lo" | so1}) cog(c, o) fut(f, f"') fut(f’, L) fut(f"', L)

.+

twice (ACTIVATE) and twice (ASYNC-CALL)

ob(start, e, {l[x — o0,y +— 0,z +— 0", w s f]|idle}, @) cog(start, o) 0b(0, anmi, {lo[h— f'"/]|h.get;s,}, @)
0b(0', ae,idle, @) ob(o”, [cog — ¢, x > null],{lon[h— f"""]|h.get;s) .}, @) cog(c,o”) fut(f, ') fut(f’, L)

—2  twice (BIND-MTD)

Jut(f”, L) invoc(o”, ' ,u3,€) fut(f', L) fut(f"", L) invoc(o, *"',m3,e) fut(f", 1) fut(f"", )

ob(start, e, {l[x — o0,y +— 0,z +— o', w f]|idle}, @) cog(start, o) 0b(o, anu1, {lo[h — f'"/]|h.get;s,},{l, |skip;})
ob(0’, ao,idle, &) 0b(0”, [cog — ¢,x — null], {lo[h— f""]|h.get;sl,.},{l/, |skip;}) cog(c,0’”)
Jut(fs f77) fut(f, L) fut(f”, L) fut(f', L) fut(f"', L) fut(f", L) fut(f"", L)

Fig. 7 Reduction of Example 2

1, w +— L] and s is the statement of the main function. The
sequence of transitions of this configuration is illustrated in
Fig. 7, where

/ " "

s’ s”, s”" are the obvious sub-statements of the main
function

l, = [destiny — f”,z+ 0", u+> L, h+> 1]

ly = [destiny — f,y+> 0", g+ L, h+> 1]

Iy = [destiny — f',z+> o,ut+> L, h+> 1]

Il = [destiny — "]

U, = [destiny — f"]

any11 = [cog — start, x = null]

ap, = [cog — start, x > 0]

So! = h= y!'m2 (this.x); g= this.x!m2(y);
return g;

So = S = h= z!m3(); h.get;

We notice that the last configuration of Fig. 7 is stuck, i.e., it
cannot progress anymore. In fact, it is a deadlock according
the forthcoming Definition 1.

2.4 Deadlocks

The definition below identifies deadlocked configurations by
detecting chains of dependencies between tasks that cannot
progress. To ease the reading, we write

- plf.get]® whenever p = {l|s} and 5 is x = y.get;s’
and [ylla+n = f;

— plawait f] whenever p = {I|s}andsisawait e?; s’
and [ellu+) = [

— p.f whenever p = {l|s} and /(destiny) = f.

Definition 1 A configuration cn is deadlocked if there are

0b(007 ao, pPo, 610), ey Ob(on—l, An—1, Pn—1, Qn—l) €cn
and
piepiUq, with0<i<n-—1

such that (let + be computed modulo n in the following)

1. pi = pol fo.get]® and if p.[ f;.get]® then p| = p;;
2. if p[ fi.get]® or pilawait f;]% then fur(f;, L) € cn
and

— either p; [fi+1.get]“*! and p; , =
and f; = [;+1(destiny);

—or p;,lawait fi41]%*! and p; | =
and f; = [;4+1(destiny);

— or pj . = pi+1 = idle and a; +1(cog) = a;i2(cog)
and p;+2[f,-+2.get]“i+2 (in this case p;4 is idle, by
soundness).

{liv1lsiz1)

{liv1lsiz1)

A configuration cn is deadlock-free if, for every cn— *cn/,
cn’ isnotdeadlocked. A core ABS program is deadlock-free
if its initial configuration is deadlock-free.
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According to Definition 1, a configuration is deadlocked
when there is a circular dependency between processes. The
processes involved in such circularities are performing a get
or await synchronization or they are idle and will never grab
the lock because another active process in the same cog will
not return. We notice that, by Definition 1, at least one active
process is blocked on a get synchronization. We also notice
that the objects in Definition 1 may be not pairwise differ-
ent (see Example 1 below). The following examples should
make the definition clearer; the reader is recommended to
instantiate the definition every time.

1. (Self deadlock)

ob(oy, a1, {l1|x1 = ej.get; 51}, q1)
ob(03, ay, idle, gy U {l2]s2})
Sut(fo, L),

where [[e1]l(4;41,) = lo(destiny) = f> and a;(cog) =
az(cog). In this case, the object o1 keeps the control of
its own cog while waiting for the result of a process in
07. This process cannot be scheduled because the corre-
sponding cog is not released. A similar situation can be
obtained with one object:

ob(o1, ar, {l11x1 = e1.get; s1}, q1 U {l2]s2})
Sut(fr, 1),

where [[e1]l(4+1,) = l2(destiny) = f>. In this case, the
objects of the Definition 1 are

ob(o1, a1, p1,q1) ob(o1, a1, p2, g2 U {l2]s2})

where p| = p1 = {li|x1 = ej.get;s1}, p5 = {2]s2}
and g1 = g2 U {l2]s2}.

2. (get-await deadlock)

ob(o1, ar, {l1|x1 = e1.get; s1}, q1)
ob(02, az, {lz|lawait ey?; 52}, q2)
ob(o3, az, idle, g3 U {I3]s3})

where [3(destiny) = [e2llay+1,, l2(destiny) =
Le1Tay+1,. @1(cog) = az(cog) and aj(cog) # ax(cog).
In this case, the objects o1 and o0, have different cogs.
However, o0, cannot progress because it is waiting for a
result of a process that cannot be scheduled (because it
has the same cog of 01).

3. (get-idle deadlock)

ob(oy, ay, {li|x; = ej.get; s1}, q1)
ob(03, az, idle, g1 U {l2|s2})
ob(03, a3, {l3|x3 = e3.get; 53}, q3)
ob(o4, ay, idle, g4 U {l4|s4})
ob(os, as, {Is|xs = es.get; ss}, g5)

Jut(fr, L), fur(fz, L), fur(fs, L)
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where f, = lh(destiny) = le1lla;+1,, 4 = la(destiny)
= llesllaz+i5- f1 = lLi(destiny) = [lesllas+is and
az(cog) = az(cog) and as(cog) = as(cog).

A deadlocked configuration has at least one object that is
stuck (the one performing the get instruction). This means
that the configuration may progress, but future configurations
will still have one object stuck.

Proposition 2 [f cn is deadlocked and cn—cn/, then cn’ is
deadlocked as well.

Definition 1 is about runtime entities that have no static
counterpart. Therefore, we consider a notion weaker than
deadlocked configuration. This last notion will be used in the
appendices to demonstrate the correctness of the inference
system in Sect. 4.

Definition 2 A configuration cn has
1. A dependency (c, c') if
ob(o, a,{l|x = e.get;s},q),obd,a’,p',q") ecn

with [ellq+1) = f and a(cog) = c and a’(cog) = ¢’ and

(a) either fur(f, 1) € cn, I'(destiny) = f and {/'|s'} €
p'Uq’;

(b) or invoc(o’, f,m, D) € cn.

2. A dependency (c, ) if
ob(o,a, p,q),obd,a,p',q") ecn

and {/lawait e?;s} € pUgq and [[e]l(u4+1) = f and

(a) either fur(f, L) € cn, I'(destiny) = f and {/'|s'} €
P'Yqs
(b) or invoc(o’, f, m, V) € cn.

Given a set A of dependencies, let the get-closure of A,
noted A9°t, be the least set such that

1. AC A9°t;

2. if (c,¢) € A9t and (¢, ") € A9®E then (c,c”) €
A9et where (¢, ¢”)" denotes either the pair (¢’, ¢”') or
the pair (¢/, ¢”)".

A configuration contains a circularity if the get-closure
of its set of dependencies has a pair (c, ¢).

Proposition 3 If a configuration is deadlocked, then it has
a circularity. The converse is false.
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Proof The statement is a straightforward consequence of the
definition of deadlocked configuration. To show that the con-
verse is false, consider the configuration

ob(o1, a1, {l1|x1 = e1.get; s1}, q1)
0b(07, ay, idle, go U {lr|lawait e;?; s3})
ob(03, a3, {I3|return ez}, q3) cn

where [3(destiny) = [le1lla,+1,> l1(destiny) = [e2llay+i,
¢y = ax(cog) = az(cog) and c¢; = aj(cog) # co. This
configuration has the dependencies

{(c1, €2), (c2, c)™}

whose get-closure contains the circularity (c1, ¢1). How-
ever, the configuration is not deadlocked. O

Example 3 The final configuration of Fig. 7 is deadlocked
according to Definition 1. In particular, there are two objects
o and o” running on different cogs whose active processes
have a get-synchronization on the result of process in
the other object: o is performing a get on a future f”’
which is I/, (destiny), and o” is performing a get on
a future f”” which is [/ (destiny) and fur(f"”, L) and
Sur(f”", 1). We notice that if in the configuration (x), we
choose to evaluate invoc(o”, f’, m2, 0) when the evaluation
of invoc(o, f”,m2, o) has been completed (or conversely)
then no deadlock is manifested.

3 Restrictions of core ABS in the current release
of the contract inference system

The contract inference system we describe in the next sec-
tion has been prototyped. To verify its feasibility, the current
release of the prototype addresses a subset of core ABS
features. These restrictions permit to ease the initial devel-
opment of the inference system and do not jeopardize its
extension to the full language. Below we discuss the restric-
tions and, for each of them, either we explain the rea-
sons why they will be retained in the next release(s) or we
detail the techniques that will be used to remove them (it
is also worth to notice that, notwithstanding the following
restrictions, it is still possible to verify large commercial
cases, such as a core component of FAS discussed in this

paper).
3.1 Returns

core ABS syntax admits return statements with
continuations—see Fig. 1—that, according to the semantics,
are executed after the return value has been delivered to the
caller. These continuations can be hardly controlled by pro-
grammers and usually cause unpredictable behaviors, in par-
ticular, as regards deadlocks. To increase the precision of our

analysis we assume that core ABS programs have empty
continuations of return statements. We observe that this
constraint has an exception at run-time: in order to define the
semantics of synchronous method invocation, rules (CoG-
SyNc- CALL) and (SELF- SYNC- CALL) append a cont f contin-
uation to statements in order to let the right caller be sched-
uled. Clearly this is the core ABS definition of synchronous
invocation and it does not cause any misbehavior.

3.2 Fields assignments

Assignments in core ABS (as usual in object-oriented lan-
guages) may update the fields of objects that are accessed
concurrently by other threads, thus could lead to indeter-
minate behavior. In order to simplify the analysis, we con-
strain field assignments as follows. If the field is not of future
type, then we keep field’s record structure unchanging. For
instance, if a field contains an object of cog a, then that field
may be only updated with objects belonging to a (and this cor-
respondence must hold recursively with respect to the fields
of objects referenced by a). When the field is of a primitive
type (Int, Bool, etc.), this constraint is equivalent to the
standard type-correctness. It is possible to be more liberal as
regards fields assignments. In [19], an initial study for cover-
ing full-fledged field assignments was undertaken using so-
called union types (that is, by extending the syntax of future
records with a + operator, as for contracts, see below) and
collecting all records in the inference rule of the field assign-
ment (and the conditional). When the field is of future type,
then we disallow assignments. In fact, assignments to such
fields allow a programmer to define unexpected behaviors.
Consider, for example, the following class Foo implement-
ing I_Foo:

class Foo() {

Fut<T> x ;

Unit foo_m () {
Fut<T> local ;
I_Foo y = new cog Foo() ;
I_Foo z = new cog Foo() ;
local = y!foo_n(this) ;
x = z!foo_n(this) ;
await local? ;
await x?

}

T foo_n(I_Foo x){ . . . }

If the main function is

{ I_Foo x ;
Fut<Unit> u ;
Fut<Unit> v ;
X = new cog Foo() ;
u = x!foo_m() ;

v = x!foo_m() ; }
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then the two invocations in lines 18 and 19 run in paral-
lel. Each invocation of foo_m invokes foo_n twice that
apparently terminate when foo_m returns (with the two
final await statements). However, this may be not the case
because the invocation of foo_n line 8 is stored in a field:
Consider that the first invocation of foo_m (line 18) starts
executing, sets the field x with its own future f, and then,
with the await statement in line 9, the second invocation
of foo_m (line 19) starts. That second invocation replaces
the content of the field x with its own future f’: at that
point, the second invocation (line 19) will synchronize with
f' before terminating, then the first invocation (line 18) will
resume and also synchronized with f’ before terminating.
Hence, even after both invocations (lines 18 and 19) are
finished, the invocation of foo_n in line 8 may still be
running. It is not too difficult to trace such residual behav-
iors in the inference system [for instance, by grabbing them
using a function like unsync(I")]. However, this extension
will entangle the inference system and for this reason we
decided to deal with generic field assignments in a next
release.

It is worth to recall that these restrictions does not apply
to local variables of methods, as they can only be accessed
by the method in which they are declared. Actually, the
foregoing inference algorithm tracks changes of local vari-
ables.

3.3 Interfaces

In core ABS, objects are typed with interfaces, which may
have several implementations. As a consequence, when a
method is invoked, it is in general not possible to stati-
cally determine which method will be executed at runtime
(dynamic dispatch). This is problematic for our technique
because it breaks the association of a unique abstract behav-
ior with a method invocation. In the current inference system,
this issue is avoided by constraining codes to have interfaces
implemented by at most one class. This restriction will be
relaxed by admitting that methods have multiple contracts,
one for every possible implementation. In turn, method invo-
cations are defined as the union of the possible contracts a
method has.

3.4 Synchronization on Booleans

In addition to synchronization on method invocations,
core ABS permits synchronizations on Booleans, with
the statement await e. When e is False, the execu-
tion of the method is suspended, and when it becomes
True, the await terminates and the execution of the
method may proceed. It is possible that the expression
e refers to a field of an object that can be modified by
another method. In this case, the await becomes syn-
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chronized with any method that may set the field to true.
This subtle synchronization pattern is difficult to infer, and
for this reason, we have restricted the current release of
DF4ABS.

Nevertheless, the current release of DF4ABS adopts a
naive solution for await statements on Booleans, namely
let programmers annotate them with the dependencies they
create. For example, consider the annotated code:

class ClientJob(...) {
Schedules schedules = EmptySet;
ConnectionThread thread;

Unit executedob() {
thread = ...;
thread!command (ListSchedule) ;
[thread] await schedules != EmptySet;

The statement await compels the task to wait for
schedules to be set to something different from the empty
set. Since schedules is a field of the object, any concur-
rent thread (on that object) may update it. In the above case,
the object that will modify the Boolean guard is stored in the
variable thread. Thus, the annotation [thread] in the
await statement. The current inference system of DF4ABS
is extended with rules dealing with awa i t on Boolean guard
and, of course, the correctness of the result depends on the
correctness of the await annotations. A data-flow analysis
of Boolean guards in await statements may produce a set
of cog dependencies that can be used in the inference rule
of the corresponding statement. While this is an interesting
issue, it will not be our primary concern in the near future.

3.5 Recursive object structures

In core ABS, like in any other object-oriented language,
it is possible to define circular object structures, such as an
object storing a pointer to itself in one of its fields. Cur-
rently, the contract inference system cannot deal with recur-
sive structures, because the semi-unification process asso-
ciates each object with a finite tree structure. In this way,
it is not possible to capture circular definitions, such as the
recursive ones. Note that this restriction still allows recursive
definition of classes. We will investigate whether it is pos-
sible to extend the semi-unification process by associating
regular terms [7] to objects in the semi-unification process.
These regular terms might be derived during the inference
by extending the core ABS code with annotations, as done
for letting synchronizations on Booleans.
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3.6 Discussion

The above restrictions do not severely restrict both program-
ming and the precision of our analysis. As we said, despite
these limitations, we were able to apply our tool to the
industrial-sized case study FAS from SDL Fredhopper and
detect that it was deadlock-free. It is also worth to observe that
most of our restrictions can be removed with a simple exten-
sion of the current implementation. The restriction that may
be challenging to remove is the one about recursive object
structures, which requires the extension of semi-unification
to such structures. We finally observe that other deadlock
analysis tools have restrictions similar to those discussed in
this section. For instance, DECO does not allow futures to be
passed around (i.e., futures cannot be returned or put in an
object’s field) and constraints interfaces to be implemented
by at most one class [12]. Therefore, while DECO supports
the analysis in the presence of field updates, our tool supports
futures to be returned.

4 Contracts and the contract inference system

The deadlock detection framework we present in this paper
relies on abstract descriptions, called contracts, which are
extracted from programs by an inference system. The syn-
tax of these descriptions, which is defined in Fig. 8, uses
record names X, Y, Z, ..., and future names f, f', ....
Future records r, which encode the values of expressions in
contracts, may be one of the following:

— a dummy value _ that models primitive types,

— arecord name X that represents a placeholder for a value
and can be instantiated by substitutions,

— [cog:c, x:T] that defines an object with its cog name ¢ and
the values for fields and parameters of the object,

— and ¢ ~» 1, which specifies that accessing r requires
control of the cog ¢ (and that the control is to be released
once the method has been evaluated). The future record
¢ ~» 1 is associated with method invocations: c is the
cog of the object on which the method is invoked. The
name c in [cog:c, x:r] and ¢ ~~» r will be called root of
the future record.

ra=_1] X | [cogic,T:T] | ¢~

5]

| Cmr(T) = r'.(c,c')" | csc | ¢+ | ¢
xu=r1 | f

i= (r,¢) | (r,0)"

N

Fig. 8 Syntax of future records and contracts

=0 | 0.(c,¢') | 0(c, )" | Cmr(T) =1’ | Cmr(T) > | Cmr(T) = ' (e, ¢')

Contracts c collect the method invocations and the depen-
dencies inside statements. In addition to 0, 0.(c,c¢’) and
0.(c, )" that, respectively, represent the empty behavior,
the dependencies due to a get and an await operation,
we have basic contracts that deal with method invocations.
There are several possibilities:

— cmr(r) — 1’ (resp. Clmr(r) — r’) specifies that the
method m of class ¢ is going to be invoked synchronously
(resp. asynchronously) on an object r, with arguments T,
and an object r’ will be returned;

— Cmr(r) — 1r’.(c, ¢’) indicates that the current method
execution requires the termination of method C!m run-
ning on an object of cog ¢’ in order to release the object
of the cog c. This is the contract of an asynchronous
method invocation followed by a get operation on the
same future name.

— Clmr(T) — r'.(c, ) indicates that the current method
execution requires the termination of method C.mrunning
on an object of cog ¢’ in order to progress. This is the
contract of an asynchronous method invocation followed
by an awai t operation and, possibly but not necessarily,
by a get operation. In fact, a get operation on the same
future name does not add any dependency, since it is
guaranteed to succeed because of the preceding await.

The composite contracts ¢ § ¢’ and ¢ + ¢’ define the
abstract behavior of sequential compositions and condition-
als, respectively. The contract ¢ || ¢’ requires a separate dis-
cussion because it models parallelism, which is not explicit
in core ABS syntax. We will discuss this issue later on.

Example 4 As an example of contracts, let us discuss the
terms:

(a) C.m[cog:cy, x:[cog:c2]]() — [cog:c/l, x:[cog:ca]]§
C.m[cog:c3, x:[cog:c4]]() — [cog:cg, x:[cog:call;
(b) Clm[cog:cy, x:[cog:c2]]() — [cog:c’l, x:[cog:ca]].
(c,c1) 8
Clm[cog:c3, x:[cog:c4]1() — [cog:cg, x:[cog:ca]].
(c, c3)".

The contract (a) defines a sequence of two synchronous invo-
cations of method m of class c. We notice that the cog names

future record

contract

extended future record

future reference values
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¢} and ¢} are free: This indicates that c.m returns an object
of anew cog. As we will see below, a core ABS expression
with this contractis x.m () ; y.m() ;.

The contract (b) defines an asynchronous invocation of
c.m followed by a get statement and an asynchronous one
followed by an await. The cog c is one of the callers. A
core ABS expression retaining this contract is u = x!m
() ; w=u.get ; v = y!lm() ; await v? ;.

The inference of contracts uses two additional syntactic
categories: x of future record values and z of typing values.
The former one extends future records with future names,
which are used to carry out the alias analysis. In particular,
every local variable of methods and every object field and
parameter of future type is associated with a future name.
Assignments between these terms, such as x = y, amounts
to copying future names instead of the corresponding values
(x and y become aliases). The category z collects the typing
values of future names, which are either (r, ), for unsyn-
chronized futures or (t, O)‘/, for synchronized ones (see the
comments below).

The abstract behavior of methods is defined by method
contracts 1(8) {{c,c’)} r’, where r is the future record of
the receiver of the method, $ are the future records of the
arguments, (c, ¢’) is the abstract behavior of the body, where
c s called synchronized contract and ¢’ is called unsynchro-
nized contract, and 1’ is the future record of the returned
object.

Let us explain why method contracts use pairs of con-
tracts. In core ABS, invocations in method bodies are of two
types: (i) synchronized, that is, the asynchronous invocation
has a subsequent await or get operation in the method
body and (ii) unsynchronized, the asynchronous invocation
has no corresponding await or get in the same method
body (Synchronous invocations can be regarded as asynchro-
nous invocations followed by a get).

For example, let

x = u'm() ;
await x? ;
y = vim() ;

be the main function of a program (the declarations are omit-
ted). In this statement, the invocation u !'m () is synchronized
before the execution of v!m (), which is unsynchronized.
core ABS semantics tells us that the body of u!m() is
performed before the body of v!m (). However, while this
ordering holds for the synchronized part of m, it may not
hold for the unsynchronized part. In particular, the unsyn-
chronized part of u!m () may run in parallel with the body
of v!m (). For this reason, in this case, our inference system
returns the pair

(Cim[cog:c'1() = _.(c,cH",Cim[cog:c"1() = _)
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where ¢, ¢’ and ¢” being the cog of the caller, u and v,
respectively. Letting C!m [cog:¢']() — _ = (e, c),) and
C!m[cog:c”]1() = _ = {(cy,C,), one has (see Sects. 3, 6)

(Clm[cog:c'1() — _.(c,)"yClm[cog:c"]1() — _)
= (cu-(c, )5, || (cy 5 )

that adds the dependency (c, ¢’)” to the synchronized con-
tract of u!m() and makes the parallel (the || operator) of
the unsynchronized contract of u!m() and the contract
of v!im(). Of course, in alternative to separating synchro-
nized and unsynchronized contracts, one might collect all the
dependencies in a unique contract. This will imply that the
dependencies in different configurations will be gathered in
the same set, thus significantly reducing the precision of the
analyses in Sects. 5 and 6.

The above discussion also highlights the need of contracts
¢ || <’. Inparticular, this operator models parallel behaviors,
which is not a first class operator in core ABS, while it is
central in the semantics (the objects in the configurations).
We illustrate the point with a statement similar to the above
one, where we have swapped the second and third instruction

x = ulm() ;
y = vim() ;
await x? ;

According to core ABS semantics, it is possible that the
bodies of u!m () and of v!m () run in parallel by interleav-
ing their executions. In fact, in this case, our inference system
returns the pair of contracts (we keep the same notations as
before)

( Clm [cog:c"1() = _.(c, )" || C'm [cog:c"1() — _,
Clm [cog:c"1() — _ )

which turns out to be equivalent to
Clml [cog:c'1() — _.(c, )" || Clm2 [cog:c’1() — _

(see Sects. 5, 6).

The subterm r($) of the method contract is called header;
' is called returned future record. We assume that cog and
record names in the header occur linearly. Cog and record
names in the header bind the cog and record names in ¢ and
in r’. The header and the returned future record, written
r(8) — 1, are called contract signature. In a method con-
tract r(8) {{c,c’)} 1/, cog and record names occurring in
cor ¢’ or r’ may be not bound by header. These free names
correspond tonew cog instructions and will be replaced by
fresh cog names during the analysis.

4.1 Inference of contracts
Contracts are extracted from core ABS programs by means

of an inference algorithm. Figures 9 and 11 illustrate the set
of rules. The following auxiliary operators are used:
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expressions and addresses

(T-VAR) (T-Furt) (T-FIELD) (T-VALUE)
I'z) =x I'fy== z ¢ dom(I") I'(this.z) =r I'tece: f T'k. f:(c,c)v]
I'kFex:x I'k.fiz I'kFex:r I'kee:r

(T-VAL) (T-PURE)

e primitive value or arithmetic-and-bool-exp I'kFee:r

IkFe.e:_ I'ee:r,0 > true | I
expressions with side effects
(T-GET) (T-GET-TICK)
T'btex:f Thkof:(r,c) X,c¢ fresh I =TI[f — (r,0)"] I'tex:f Tref:(r,e)” X, ¢ fresh

I'tezget: X, c.(c,c’) || unsync(I’) > r=c’ ~ X | I

(T-NEWCo0G)
I'k.e:T

fields(C) =T = param(C) =T’ z’

X, ¢’ fresh

I' k. new cog C(€) : [cog:c’,z: X, x":r],0 > true | "

(T-AINVK)

I'tezget: X,0>r1=c"~X|TI

(T-NEW)
I'k.e:T
fields(C) =T z param(C) =T’ x' X fresh

I'' ¢ new C(€) : [cog:c,x: X, a’:r],0 > true | [

I'kc.e:r I'H.e:s
class(types(e)) =C fields(C) U param(C) =T z X,X,c, f fresh

I'icem@): f,0 > [cog:ic’,z:X]=rACn=rE) = X | ['[f— (¢’ ~ X, Cm r(s) = X)]

(T-SINVK)
I'ke.e:r I'k.e:s L .
fields(C) U param(C) =T x X, X fresh
'k en(e) : X,Cmr(s) = X || unsync(I') > [cogic’,z:X|=rACn=21(® — X |

class(types(e)) = C

Fig. 9 Contract inference for expressions and expressions with side effects

— fields(C) and param(C), respectively, return the sequence
of fields and parameters and their types of a class C.
Sometimes we write fields(C) = T x, Fut<T’>x' to
separate fields with a non-future type by those with future
types. Similarly for parameters;

— types(e) returns the type of an expression e, which is
either an interface (when e is an object) or a data type;

— class(I) returns the unique (see the restriction Interfaces
in Sect. 3) class implementing /; and

- mname(M ) returns the sequence of method names in the
sequence M of method declarations.

The inference algorithm uses constraints ¢/, which are
defined by the following syntax

U:i=true |c=d |r=1 | @) >s<1T)—> %

| UANU

where true is the constraint that is always true; r = 1’
is a classic unification constraint between terms; r(r) —
s < 1 (') — & is a semi-unification constraint; the con-
straint I/ A U’ is the conjunction of ¢/ and U’. We use semi-
unification constraints [20] to deal with method invocations:
basically, in r(r) — s < r'(f/) — &/, the left hand side of

the constraint corresponds to the method’s formal parameter,
r being the record of this, T being the records of the para-
meters and r’ being the record of the returned value, while the
right hand side corresponds to the actual parameters of the
call, and the actual returned value. The meaning of this con-
straint is that the actual parameters and returned value must
match the specification given by the formal parameters, like
in a standard unification: The necessity of semi-unification
appears when we call several times the same method. Indeed,
there, unification would require that the actual parameters
of the different calls must all have the same records, while
with semi-unification all method calls are managed indepen-
dently.

The judgments of the inference algorithm have a typ-
ing context I" mapping variables to extended future records,
future names to future name values and methods to their sig-
natures. They have the following form:

— I' . e : x for pure expressions e and I" . f : z for
future names f, where c is the cog name of the object
executing the expression and x and z are their inferred
values.

— I'kez:r,e > U | I’ for expressions with side effects
z, where ¢, and x are as for pure expressions e, cis the
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contract for z created by the inference rules, U is the
generated constraint, and I'" is the environment I” with
updates of variables and future names. We use the same
judgment for pure expressions; in this case ¢ = 0, U =
trueand I'' =T

— for statements s: I" . s : ¢ > U | I"’ where c, cand U
are as before, and "’ is the environment obtained after the
execution of the statement. The environment may change
because of variable updates.

Since I is a function, we use the standard predicates x €
dom(I") or x ¢ dom(I"). Moreover, given a function I", we
define I'[x — x] to be the following function

X ify=x
Flx = =] = I'(y) otherwise
We also let I'|(y, ... x,) be the function

I'(y) if ye{xyg,..
undefined otherwise

oy X
Iixy, ) () = n}

Moreover, provided that dom(I") N dom(I"") = @, the envi-
ronment I" + I"’ be defined as follows

, def | I'(x) if x € dom(J")
I+ = 0 by i x e dom(I™)

Finally, we Writ_e I'(this.x) = xwhenever I'(this) =
[cog:c, x : x, x : X'] and we let

Fut(l') = {x | I'(x) is a future name}

unsyne(I L ey || -l e,
where {cy,...,c,} = {c | thereare f,r : I'(f) =
(r, ).

The inference rules for expressions and future names are
reported in Fig. 9. They are straightforward, except for (T-
VALUE) that performs the dereference of variables and return
the future record stored in the future name of the variable.
(T- Purg) lifts the judgment of a pure expression to a judg-
ment similar to those for expressions with side effects. This
expedient allows us to simplify rules for statements.

Figure 9 also reports inference rules for expressions with
side effects. Rule (T- GET) deals with the x.get synchroniza-
tion primitive and returns the contract c.(c, ¢’) || unsync(I"),
where cis stored in the future name of x and (c, ¢’) repre-
sents a dependency between the cog of the object executing
the expression and the root of the expression. The constraint
r = ¢ ~ X is used to extract the root ¢’ of r. The con-
tract ¢ may have two shapes: either (1) ¢ = Clmr(s) — 1’
or (2) ¢ = 0. The subterm unsync(I") lets us collect all
the contracts in I" that are stored in future names that are
not checkmarked. In fact, these contracts correspond to pre-
vious asynchronous invocations without any corresponding
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synchronization (get or await operation) in the body. The
evaluations of these invocations may interleave with the eval-
uation of the expression x.get. For this reason, the intended
meaning of unsync(I") is that the dependencies generated by
the invocations must be collected together with those gen-
erated by c.(c, ¢’). We also observe that the rule updates
the environment by checkmarking the value of the future
name of x and by replacing the contract with 0 (because the
synchronization has been already performed). This allows
subsequent get (and await) operations on the same future
name not to modify the contract (in fact, in this case, they
are operationally equivalent to the skip statement)—see
(T- GET- TICK).

Rule (T- NEwCoG) returns a record with a new cog name.
This is in contrast with (T- NEw), where the cog of the returned
record is the same of the object executing the expression.”

Rule (T- AINvk) derives contracts for asynchronous invo-
cations. Since the dependencies created by these invocations
influence the dependencies of the synchronized contract only
if a subsequent get or await operation is performed, the
rule stores the invocation into a fresh future name of the envi-
ronment and returns the contract 0. This models core ABS
semantics that lets asynchronous invocations be synchro-
nized by explicitly getting or awaiting on the corresponding
future variable, see rules (T- GET) and (T- Awart). The future
name storing the invocation is returned by the judgment. On
the contrary, in rule (T- SINvK), which deals with synchro-
nous invocations, the judgment returns a contract that is the
invocation (because the corresponding dependencies must be
added to the current ones) in parallel with the unsynchronized
asynchronous invocations stored in I".

The inference rules for statements are collected in Fig. 10.
The first three rules define the inference of contracts for
assignment. There are two types of assignments: those updat-
ing fields and parameters of the this object and the other
ones. For every type, we need to address the cases of updates
with values that are expressions (with side effects) (rules (T-
FIELD- RECORD) and (T- VAR- RECORD)), or future names (rule
(T- VAR- FUTURE)). Rules for fields and parameters updates
enforce that their future records are unchanging, as discussed
in Sect. 3. Rule (T- VAR- FUTURE) defines the management

2 It is worth to recall that, in core ABS, the creation of an object,
either withanew or withanew cog, amounts to executing the method
init of the corresponding class, whenever defined (the new performs
a synchronous invocation, the new cog performs an asynchronous
one). In turn, the termination of init triggers the execution of the
method run, if present. The method run is asynchronously invoked
when init is absent. Since init may be regarded as a method in
core ABS, the inference system in our tool explicitly introduces a
synchronous invocation to init in case of new and an asynchronous
one in case of new cog. However, for simplicity, we overlook this
(simple) issue in the rules (T- NEW) and (T- NEWCOG), acting as if
init and run are always absent.
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statements

(T-FIELD-RECORD)

I
T-SKIP @ ¢ dom(I')

I' . skip: 0 > true| I

I'(this.z) =r
Fkez:viep> U T

(T-VAR-RECORD)
I'z)=r
Fkez:diep> U|T

I'ex=z:cD>UAr=T|T"

I'tex=z:ic>U|T[z—1]

(T-VAR-FUTURE) (T-AwAIT)
I'(x)=f I'kez:flie>U| T I'k.e:f I'te f:(r,c) X, ¢ fresh I'="I[f— (r,0)]
'tez=z:ice> U|[z— f] I't. await e? i c.(c, ) || unsync(I”) > r = ¢’ ~ X | I

(T-AwAIT-TICK)
I'kFee: f

't f:(r,c)”

X, ¢’ fresh

I'kcawait e?: 0> r=c ~ X|I

(T-1Ir)
', e:Bool I'besiicr D UL T I'besoice D> Uz | I
U= N\ Tiz) = FQ(:E)) A < N\ (i) = Fz(F2(5”))) I'" =T1 + I2l(y | fgruru(r)}
xze€dom(I) x EFut(I")
Ik.ife{s1}else {sa}:c1+co > UL AU AU|T’
(T-SEQ) (T-RETURN)
I'besiicr D UL T I'nbesaice > Uz | I I'kF.e:r I'(destiny) =1’

I'kesiys2:e1302 D> UL AUz | T

Fig. 10 Contract inference for statements

(T-METHOD)
fields(C) U param(C) = Ty = Fut<T}> o’

I'kereturne: 0> r=r1"|T

r’ :T—&-y’:f’—&-w:W—l—w’:f”+f:(?,0)+f’:(?,9) —Lf”iW,O)

I" + this :

[cogic, z: X, x:f] + " +destiny : Zb.s:c > U|T"

T, Ty, Ty are not future types

C,I'FTm (T y,Fut<T’> y"){T; w; Fut<T}> w’; s} :

(T-CLASS)

[cog : c,x: X, " X"|(Y, W){(S, unsync(I"'))} Z
>UAN[cog:c,x: X, z": X'|(Y,Y') = Z=Cn

c,I'-M:TpU

I'F class ¢(T =) {T" «’;

(T-PROGRAM)
rec:scu

F+z: X +2:f + f:(X',0) Fstart s:c > U| T

M} : C.mname(M) — C > U

T are not future types

X, X', f fresh
r

FT1C {T x; Fut<T’> x’; s} :

Fig. 11 Contract rules of method and class declarations and programs

of aliases: Future variables are always updated with future
names and never with future names’ values.

Rules (T- Awarr) and (T- AwAITTICK) deal with the await
synchronization when applied to a simple future lookup x 2.
They are similar to the rules (T- GET) and (T- GET- TICK).

Rule (T- Ir) defines contracts for conditionals. In this case,
we collect the contracts ¢; and ¢, of the two branches, with
the intended meaning that the dependencies defined by ¢ and
¢ are always kept separated. As regards the environments,
the rule constraints the two environments /"] and I> produced
by typing of the two branches to be the same on variables in
dom(I") and on the values of future names bound to variables
in Fut(I"). However, the two branches may have different

S, {ey unsync(I")) > U AU

unsynchronized invocations that are not bound to any vari-
able. The environment It + I2|(f | f¢rFue(r))) allows us
to collect all them.

Rule (T- SEQ) defines the sequential composition of con-
tracts. Rule (RETURN) constrains the record of destiny,
which is an identifier introduced by (T- METHOD), shown in
Fig. 11, for storing the return record.

The rules for method and class declarations are defined
in Fig. 11. Rule (T- METHOD) derives the method contract of
T m (T x){T’ u; s} by typing s in an environment extended
with this, destiny [that will be set by return state-
ments, see (T- RETURN)], the arguments x, and the local vari-
ables u. In order to deal with alias analysis of future vari-
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ables, we separate fields, parameters, arguments and local
variables with future types from the other ones. In par-
ticular, we associate future names with the former ones
and bind future names to record variables. As discussed
above, the abstract behavior of the method body is a pair
of contracts, which is (¢, unsync(I""")) for (T- MetHoD). This
term unsync(I""") collects all the contracts in I'” that are
stored in future names that are not checkmarked. In fact,
these contracts correspond to asynchronous invocations with-
out any synchronization (get or await operation) in the
body. These invocations will be evaluated after the ter-
mination of the body—they are the unsynchronized con-
tract.

The rule (T-Crass) yields an abstract class table that
associates a method contract with every method name. It
is this abstract class table that is used by our analyzers in
Sects. 5 and 6. The rule (T- PRoGrRAM) derives the contract of a
core ABS program by typing the main function in the same
way as it was a body of a method.

The contract class tables of the classes in a program
derived by the rule (T- Crass) will be noted cCT. We will
address the contract of m of class C by CCT(C.m). In the fol-
lowing, we assume that every core ABS program is a triple
(cT, {T x ; s}, CCT), where CT is the class table, {T x ; s}is
the main function, and CCT is its contract class table. By rule
(PROGRAM), analyzing (the deadlock freedom of) a program
amounts to verifying the contract of the main function with a
record for this which associates a special cog name called
start with the cog field (start is intended to be the cog name
of the object start).

Example 5 The methods of Math in Fig. 5 have the fol-
lowing contracts, once the constraints are solved (we always
simplify ¢ § 0 into ¢):

— fact_g has contract

[cog:c](L) {{0 +Math! fact_g [cog:c]()
— _.(c,0),0)}

The name c in the header refers to the cog name asso-
ciated with this in the code and binds the occur-

— method m1 has contract
[cog:c,x : [cog:c’,x : X]]([cog:c”’,x : Y]) {(0yc)} ¢/ ~~ _.
where

— method m2 has contract

rences of ¢ in the body. The contract body has a
recursive invocation to fact_g, which is performed
on an object in the same cog ¢ and followed by a
get operation. This operation introduces a dependency
(c,c). We observe that if we replace the statement
Fut<Int> x = this!fact_g(n-1) in fact_g
with Math z = new Math() ; Fut<Int> x =
z ! fact_g(n-1),weobtainthe same contract as above
because the new object is in the same cog as this.
— fact_ag has contract

[cog:c](L) {{0 +Math! fact_ag [cog:c]( )

- _.(c,0)",0)} _.

In this case, the presence of an await statement in the
method body produces a dependency (c, ¢)”. The subse-
quent get operation does not introduce any dependency
because the future name has a check-marked value in the
environment. In fact, in this case, the success of get is
guaranteed, provided the success of the await synchro-
nization.
— fact_nc has contract

[cog:c]()) {{0 +Math! fact_nc [cog:c'1()
— _.(c,c),0)) _.

This method contract differs from the previous ones in
that the receiver of the recursive invocation is a free name
(i.e., it is not bound by c in the header). This because the
recursive invocation is performed on an object of a new
cog (which is therefore different from c). As a conse-
quence, the dependency added by the get relates the
cog c of this with the new cog ¢'.

Example 6 Figure 12 displays the contracts of the methods
of class CpxSched in Fig. 6.

According to the contract of the main function, the two
invocations of m2 are the second arguments of | operators.
This will give rise, in the analysis of contracts, to the union
of the corresponding cog relations.

© = CpxSched!m2 [cog:c”’,x : Y]([cog:¢/,x : X]) — ¢/’ ~» _|| CpxSched !m2 [cog:¢/, x : X]([cog:c’',x: Y]) = ¢/ ~> _

[cog:c,x : X]([cog:c’,x : Y]) {(CpxSched !'m3 [cog:c’,x : Y](-) = _.(c,¢),0)} _.

— method m3 has contract

[cog:c,x = X]() {(0,0)} .

Fig. 12 Contracts of CpxSched
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‘We notice that the inference system of contracts discussed
in this section is modular because, when programs are orga-
nized in different modules, it partially supports the separate
contract inference of modules with a well-founded ordering
relation (for example, if there are two modules, classes in the
second module use definitions or methods in the first one, but
not conversely). In this case, if a module B includes a module
A, then a patch to a class of B amounts to inferring contracts
for B only. On the contrary, a patch to a class of A may also
require a new contract inference of B.

4.2 Correctness results

In our system, the ill-typed programs are those manifesting a
failure of the semiunification process, which does not address
misbehaviors. In particular, a program may be well-typed and
still manifest a deadlock. In fact, in systems with behavioral
types, one usually demonstrates that

1. in a well-typed program, every configuration cn has a
behavioral type, let us call it bt (cn);

2. if cn — cn’, then there is a relationship between bt (cn)
and bt (cn');

3. the relationship in 2 preserves a given property (in our
case, deadlock freedom).

Item 1, in the context of the inference system of this sec-
tion, means that the program has a contract class table. Its
proof needs a contract system for configurations, which we
have defined in “Appendix 1”. The theorem corresponding
to this item is Theorem 3.

Item 2 requires the definition of a relation between con-
tracts, called later-stage relation in “Appendix 1”. This later-
stage relation is a syntactic relationship between contracts
whose basic law is that a method invocation is larger than the
instantiation of its method contract (the other laws, except
0 < cand ¢; < ¢ + ¢, are congruence laws).

The statement that relates the later-stage relationship to
core ABS reduction is Theorem 4. It is worth to observe
that all the theoretical development upto this point are use-
less if the later-stage relation conveyed no relevant property.
This is the purpose of item 3, which requires the definition
of contract models and the proof that deadlock freedom is
preserved by the models of contracts in later-stage relation.
The reader can find the proofs of these statements in the
“Appendices 2 and 3” (they correspond to the two analysis
techniques that we study).

5 The fixpoint analysis of contracts

The first algorithm we define to analyze contracts uses the
standard Knaster—Tarski fixpoint technique. We first give an

informal introduction of the notion used in the analysis and
start to formally define our algorithm in Sect. 5.1 (a simpli-
fied version of the algorithm may be found in [16], see also
Sect. 8).

Based on a contract class table and a main contract (both
produced by the inference system in Sect. 4), our fixpoint
algorithm generates models that encode the dependencies
between cogs that may occur during the program’s execu-
tion. These models, called lams (an acronym for deadL.ock
Analysis Models [17,18]), are sets of relations between cog
names, each relation representing a possible configuration of
program’s execution. Consider for instance the main func-
tion:

I x ; Iy ; Fut<Unit> f ;
x = new cog C() ;

y = new cog C() ;

f = x!'m() ;

await f£? ;

£f=yim() ;

await f? ;

In this case, the configurations of the program may be rep-
resented by two relations: one containing a dependency
between the cog name start and the cog name of x and the
other containing a dependency between start and the cog
name of y. This would be represented by the following lam
(where ¢, and cy, respectively, being the cog names of x and

»):
[(Cv C)C)w] ’ [(c7 Cy)w]

(in order to ease the parsing of the formula, we are represent-
ing relations with the notation [ - ], and we have removed
the outermost curly brackets). Our algorithm, being a fix-
point analysis, returns the lam of a program by computing a
sequence of approximants. In particular, the algorithm per-
forms the following steps:

1. compute a new approximant of the lam of every method
using the abstract class table and the previously computed
lams;

2. reiterate step 1 till a fixed approximant—say n (if a fix-
point is found before, go to 4);

3. when the n-th approximant is computed then saturate,
i.e., compute the next approximants by reusing the same
cog names (then a fixpoint is eventually found);

4. replace the method invocations in the main contract with
the corresponding values; and

5. analyze the result of 4 by looking for a circular depen-
dency in one of the relations of the computed lam (in such
case, a possible deadlock is detected).
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The critical issue of our algorithm is the creation of fresh
cog names at each step 1, because of free names in method
contracts (that correspond to new cogs created during
method’s execution). For example, consider the contract of
Math. fact_nc that has been derived in Sect. 4

Math.fact_nc [cog:c](_)
{{0 + Math! fact_nc [cog:c'1(L) = _.(c,c),0)}_

According to our definitions, the cog name ¢’ is free.
In this case, our fixpoint algorithm will produce the fol-
lowing sequence of lams when computing the model of
Math.fact_nc[cog:col(L):

([21,0)
([(co,c1)1,0)
([(co,c1), (c1,€2)],0)

approximant 0 :
approximant 1 :
approximant 2 :

([(co,c1), (c1,€2), ... (cn=1,cn)1,0)

approximant n :

While every lam in the above sequence is strictly larger than
the previous one, an upper bound element cannot be obtained
by iterating the process. Technically, the lam model is not a
complete partial order (the ascending chains of lams may
have infinite length and no upper bound).

In order to circumvent this issue and to get a decision
on deadlock freedom in a finite number of steps, we use a
saturation argument. If the n-th approximant is not a fixpoint,
then the (n + 1)-th approximant is computed by reusing the
same cog names used by the n-th approximant (no additional
cog name is created anymore). Similarly for the (n + 2)-
th approximant till a fixpoint is reached (by straightforward
cardinality arguments, the fixpoint does exist, in this case).
This fixpoint is called the saturated state.

For example, for Math.fact_nc[cog:co](_), the n-th
approximant returns the pairs of lams

([(co,c1), ..., (cn=1,¢n)],0).

Saturating at this stage yields the lam

([(co,c1), ..., (cn=1,¢n), (c1,¢1)1,0)

that contains a circular dependency—the pair (cy, c1)—
revealing a potential deadlock in the corresponding program.
Actually, in this case, this circularity is a false positive that
is introduced by the (over)approximation: The original code
never manifests a deadlock.

Note finally that a lam is the result of the analysis of one
contract. Hence, to match the structures that are generated
during the type inference, our analysis uses three extensions
of lams: (1) a pair of lams (L, L'} for analyzing pairs of con-
tracts (¢, €’); (2) parameterized pair of lams Ac.(L, L") for
analyzing methods: Here, ¢ are the cog names in the header
of the method (the this object and the formal parameters),
and (£, L) is the result of the analysis of the contract pair
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typing the method; and (3) lam tables (..., Ac;.(Li, £7), .. )
that maps each method in the program to its current approx-
imant. We observe that Ac.(L, L) is (£, L") whenever C is
empty.

5.1 Lams and lam operations

The following definition formally introduce the notion of
lam.

Definition 3 A relation on cog names is a set of pairs
either of the form (cy, ¢3) or of the form (c1, c2)", gener-
ically represented as (c1, c2)!"). We denote such relation by
[ (cigs ci)™, .o, (cipys i)™ T

A lam, ranged over L, L', .. ., is a set of relations on cog
names. Let O be the lam [ @] and let cog_names(L) be the
cog names occurring in L.

The pre-order relation between lam, pair of lams and para-
meterized pair of lam, noted € is defined below. This pre-
order is central to prove that our algorithm indeed computes
a fixpoint.

Definition 4 Let £ and £’ be lams and « be an injective
function between cog names. We note £ €, L’ iff for every
L e Lthereis L' € £ withk(L) C L'. Let

— ALy L)) € Ac.(L2y L}) iff k is the identity on ¢ and
(5195/1) Cr <£2,£/2>-

Let also € be the relation

— L & L' iff there is k such that £ €, L';
— MC(L1, L)) € Ac.(Lay L)) iff there is « such that
WCAL1y L)) € AEALay Lh).

The set of lams with the & relation is a pre-order
with a bottom element, which is either 0 or Ac.(0,0) or
(...,Ac;i.{0,0),...) according to the domain we are con-
sidering. In Fig. 13, we define a number of basic operations
on the lam model that are used in the semantics of contracts.

The relevant property for the following theoretical devel-
opment is the one below. We say that an operation is
monotone if, whenever it is applied to arguments in the pre-
order relation &, it returns values in the same pre-order rela-
tion €. The proof is straightforward and therefore omitted.

Proposition 4 The operations of extension, parallel,
sequence and plus are monotone with respect to €. Addi-

tionally, if L € L/, then L[¢' /7] € L€ /Z).
5.2 The finite approximants of abstract method behaviors

As explained above, the lam model of a core ABS program
is obtained by means of a fixpoint technique plus a saturation
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[extension]

[parallel]
[extension (on pairs of lams)]

[parallel (on pairs of lams)] (L1,

[sequence (on pairs of lams)]

[plus (on pairs of lams)]

(L1, L7) +

Fig. 13 Lam operations

e x1 e

[[cog:c,z1:r1, - -

Fig. 14 Extraction process

(-~ ) df T~ x)<Z def ([cog:c’, z1:xt, -+

(C o N camr) =

Fig. 15 Cog mapping process

applied to its contract class table. In particular, the lam model
of the class table is a lam table that maps each method C.m
of the program to ACcm.(Lcms LG ,) Where ¢ = [1, 8],
with r(8) being the header of the method contract of C.m.
The definition of [r, ] is given in Fig. 14 (we recall that
names in headers occur linearly). The definition of the cog
mapping process is given in Fig. 15. The following definition
presents the algorithm used to compute the next approximant
of a contract class table.

Definition 5 Let CCT be a contrac/t class table of the form
,Cm— rem(Bcm) {{cc. me Cc. m)} H"c me e

1. the approximant 0 is defined as
(~ B )‘-(|—1‘C.m7 $C_m-])<0’0>7 .. ) 5

2. let £ = (..., Alrcm Scml-(Loms Lo, - ) be the n-
th approximant; the n + 1-th approximant is defined as
( cATem, Sem ] (L8 me LE 1) ..)where( Cme L)
= cen(Q)e § o p(L)e with ¢ being the cog of rc  and
the function ¢(£), being defined by structural induction
in Fig. 16.

Itis worth to notice that there are two rules for synchronous
invocations in Fig. 16: (L- SINnvK) dealing with synchronous
invocations on the same cog name of the caller—the index ¢
of the transformation, (L- RSINVK) dealing with synchronous
invocations on different cog names.

Let

(. AT Lo L), ) - ( o

and let

e (0,0)), )

L£3) I (L2,

<£1a£ > <£2,£ > =

(L2, £5) =

anra]l € oefra] - [ra]

!
@] A [eogic,z1ir, -

La(e, ) E{LU{(e,e)¥Y | L e L}
Ll|L

YILUL |LeLand L' € L'}

(LyL)ade, e E (La(e,e)H, L)

£y) @ ((cou L)L uLy),0)

» if £2=0

(L1 L1]1£5)
(L1 U (L2][£7), £1]1£5)

otherwise

<£1U£2,E1U£'>

[c~ 1] & . [T] [T, 5] o [T][%]

def

/
Tpirp]) = C (7 ~py) o (T vpy)

Yo Ay

(. o WBem Loy L6, )
e — 1 ;1
(. ‘e )\CC,m~<£C,m ,ﬁc’m ), .o .),

(. . Am'(EC,mzyﬁé_mz), N .)’ o

be the sequence obtained by the algorithm of Defini-
tion 5 (this is the standard Knaster—Tarski technique). This
sequence is non-decreasing (according to &) because it is
defined as a composition of monotone operators, see Propo-
sition 5. Because of the creation of new cog names at each
iteration, the fixpoint of the above sequence may not exist. We
have already discussed the example of Math.fact_nc. In
order to let our analysis terminate, after a given approximant,
we run the Knaster—Tarski technique using a different seman-
tics for the operations (L- SINVK), (L- RSINVK), (L- AINVK) and
(L- GAINVK) (these are the rules where cog names may be cre-
ated). In particular, when these operations are used at approx-
imants larger than n, the renaming of free variables is dis-

allowed. That is, the substitutions [b]/D,n /bp ) in Fig. 16 are
removed. It is straightforward to verify that these operations
are still monotone. It is also straightforward to demonstrate
by a simple cardinality argument the existence of fixpoints
in the lam domain by running the Knaster—Tarski technique
with this different semantics. This method is called a satura-
tion technique at n.
For example, if we compute the third approximant of

Math.fact_nc —
[cog:c]1(){{0 +Math! fact_nc [cog:c'](_)
— _.(c,c),0)}_
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1. let ben = (cog_names(Len) U cog-names(Lg ,)) \ Ccn- These are the free cog names that are replaced by fresh cog names

at every transformation step;

2. the transformation cen(-- - Ao a-(Le,my £ )y -

)¢ is defined inductively as follows:

— {0,0)&(c1, c2)l] (L-GAZERO)
if com = (c1,c2)l;
Loy L& (e O P /i) A 1y ) ) (L-SINvK)
if ccn =D t’(s') — ¢/, 1’ = [cog:c, T:r'], and CCT(D)(n) = rp,a(Sp,n) {(Coms Chn)} Thn
and by, , are fresh cog names;
= (A (Lony Lf )&(c, ) )b n/bD DE A~ D_)(s’ ~ ) (L-RSINVK)
/

if ccm =D 1’ (87) — 1’/
and b}, , are fresh cog names;

, 1/ = [cog:c!

{0y LU L)

'], and ¢ 7é ¢ and ¢CT(D)(n) = 1p,0(80,a) {(C0,n9 Chn)} T om

(L-AINVK)

if ccn = Dln 1/ (3’) — '/ and ccT(D)(n) = rp,n(30,2) {(Cony Chn)} r{)’n

and (L, L477) =

= (O @a(Lony Ly a)&(c1, c2) [m/bT])(”/ A~ )

if ccm = Dln v’ (8") — 1’ (01702)

(% EED,D)
and CCT(D)(n) = 1p,n(8,2) {{Cb,ny©p o)} 15, and by, are fresh cog names;

(Nepa-(Lp,ny E[’,’n)[bé.n/m})(ﬂ ~ ern)(Sl ~ 555) and by, are fresh cog names;

(L-GAINVK)

= n( A m(Lemy Lon)s e §CEn(- s A m(Lemy Lom)s e (L-SEQ)
if con = €G g § T w5
= el A (Lomy Lon) s e + n( e ACcm(Lomy Lon) e (L-PLus)
if com = €4 g + T
— el A Loy Loa)s e | lal AT (Lomy L)y )e (L-PAR)
ifacn =aly || odn
Fig. 16 Lam transformation of CCT
we get the sequence 5.3 Deadlock analysis of lams
¢.(0,0) Definition 7 Let L be a relation on cog names (pairs in L
c.{[(c,c0)]1,0) are either of the form (cy, ¢») or of the form (cy, ¢)". L con-
c.{[(c, co), (co,c1)],0) tains a circularity if L9 has a pair (c, ¢) (see Definition 2).
c.{[(c,co), (co, 1), (c1,¢2)],0) Similarly, (£, L'} (or A¢.{L, L)) has a circularity if there is
Y, Loy ) y
] . ) ) L € £ U L' that contains a circularity.
and, if we saturate a this point, we obfain A core ABS program with an abstract class table satu-
rated at n is deadlock-free if its abstract semantics (L, L)
A e, o) (co. co) (co, e1); (e, €)1 50) cadloclree ’
. does not contain a circularity.
Ae.{ [ (c, co)(co, co), (co, 1), (c1,¢2)],0)  fixpoint

Definition 6 Let (CT, {T x ; s}, CCT) be a core ABS pro-

( A Loy L 1T, ) be the fix-

point (unique upto renaming of cog names) obtained by

the saturation technique at n. The abstract class table at

n, written ACT[,], is a map that takes C.m and returns
— +h

Aeem Lo L0 ).

gram and let

Let (cT, {T x ; s}, CCT) be a core ABS program and
IMigane (T x ; s} (coc) >U|T .

The abstract semantics saturated at n of (CT, {T x ; s},
CCT) is (@(ACT[n])start) S (C/(ACT[n])start)~

As an example, in Fig. 17, we compute the abstract seman-
tics saturated at 2 of the class Math in Fig. 5.

@ Springer

The fixpoints for Math.fact_g and Math. fact_ag
are found at the third iteration. According to the above
definition of deadlock freedom, Math.fact_g yields a
deadlock, while Math . fact_ag is deadlock-free because
{(c, c)"}9®" does not contain any circularity. As discussed
before, there exists no fixpoint for Math. fact_nc. If we
decide to stop at the approximant 2 and saturate, we get

}\.C.( [(Cs C/), (C/9 C/)r (C/, CN)] ’())7

which contains a circularity that is a false positive.

Note that saturation might even start at the approxi-
mant 0 (where every method is Ac.(0,0)). In this case, for
Math.fact_g and Math.fact_ag, we get the same
answer and the same pair of lams as the above third approx-
imant. For Math. fact_nc we get

A [(c, e, (c,¢)T,0),
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method approx. 0 approx. 1 approx.2 saturation

Math.fact_g  Ac.(0,0) Ac([(c,¢)],0)  Xe([(e,e)],0)

Math.fact_ag Ac.(0,0)  Ac.([(c,¢)"],0) Xe.([(c,e)*],0)

Math.fact_nc )\C.<0, 0> )\C( [(C, C,)] ’0> AC< [(C, Cl)a (Clvc”)] ?O> )\C( [(C, d): (6/761)5 (Clzc”)] ?O>

Fig. 17 Abstract class table computation for class Math

method approx. 0 approx. 1

approx.2

e, ', ¢’ 0, [,
Xe, ¢/ ([(c,¢)],0)
Ac.(0, 0)

CpxSched .ml
CpxSched .m2
CpxSched .m3

Xe, ¢, ¢’ .(0,0)
e, ¢’ (0, 0)
Ac.(0, 0)

Fig. 18 Abstract class table computation for class CpxSched

contract pairs

C“), (C”,Cl)]>

e, c, ¢’ (0, |:(c’,c”)7 (c”,c/)] )
Ae, e ([(e,¢)],0)

ep x= ¢ | (epyep)e | ep&le, ) | eptep | epsep | epllep
contract pairs contexts (f € {+,3,||})
D[ == [I | D&, | D[lfep | cpiD]]
€lle »= @hep)e | (epy3D[Ne | (Clesep)er | (epy€lle)er | €lleal(c, ) | €lletep | epte]e
reduction relation
(RED-SINVK) (RED-RSINVK)
Cm=s(5){(c,c’)}s’ T = [cog:c, T:r"] Cm=s(3){(c,c')}s’ r = [cog:c’, T:r""] c#c

cog-names({(cyc’)) \ cog-names(s,s) =z

w are fresh (c, C/>[’LT)/EHT’?/$,§] = (cyc""")

cog-names((c, c’)) \ cog-names(s,s) =z

@ are fresh (e, e )[@/Z][ /5 8 = (s ")

ClCmr(F) = t']lc — €[y )c]e

(RED-AINVK)
Cm=s(s){(c,c’)}s’ r = [cog:c’, T:r"]
cog-names({cyc’)) \ cog-names(s,s) = z

@ are fresh (e, c)[D/3][F2 /s &) = (5 ")

elen (@ — '] — (e, eV &(c, e

(RED-GAINVK)

Ccm = s(5){(c, ')} r = [cog:c’, T:r"]
cog-names({c, c’)) lcog_nizmes(ss,g) =z
@ are fresh  (ey e )[B/Z1[ /5,8 = (s ")

CCmr(T) = r'le — €[{c"yc")er]e

Fig. 19 Contract reduction rules

which contains a circularity.

In general, in techniques like the one we have presented, it
is possible to augment the precision of the analysis by delay-
ing the saturation. However, assuming that pairwise differ-
ent method contracts have disjoint free cog names (which
is a reasonable assumption), we have not found any sample
core ABS code where saturating at 1 gives a better preci-
sion than saturating at 0. While this issue is left open, the
current version of our tool DF4ABS allows one to specify
the saturation point; the default saturation point is 0.

The computation of the abstract class table for class
CpxSched does not need any saturation, all methods are non-
recursive and encounter their fixpoint by iteration 2 (see
Fig. 18). The abstract class table shows a circularity for
method m1, manifesting the presence of a deadlock.

C[C!m Ir(f) N T’.(C”,C”’)M]c N C[(:r:”,(R”l>cf&(C”,C”/)[w]]c

The correctness of the fixpoint analysis of contracts dis-
cussed in this section is demonstrated in “Appendix 2”.

We remark that this technique is as modular as the infer-
ence system: Once the contracts of a module have been
computed, one may run the fixpoint analysis and attach
the corresponding abstract values to the code. Analyz-
ing a program reduces to computing the lam of the main
function.

6 The model-checking analysis of contracts
The second analysis technique for the contracts of Sect. 4

consists of computing contract models by expanding their
invocations. We therefore begin this section by introduc-
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ing a semantics of contracts that is alternative to the one of
Sect. 5.

6.1 Operational semantics of contracts

The operational semantics of a contract is defined as a reduc-
tion relation between terms that are contract pairs cp, whose
syntax is defined in Fig. 19. These contract pairs highlight (in
the operational semantics) the fact that every contract actu-
ally represents two collections of relations on cog names:
those corresponding to the present states and those corre-
sponding to future states. We have discussed this dichotomy
in Sect. 4.

InFig. 19, we have also defined the contract pair contexts,
noted €[ ], which are indexed contract pairs with a hole. The
index c indicates that the hole is immediately enclosed by
<'9 >c

The reduction relation that defines the evaluation of con-
tract pairs (cpy, cp})c—> (CP2, CP5 ). is defined in Fig. 19.
There are four reduction rules: (RED- SINVK) for synchronous
invocation on the same cog name of the caller (which is stored
in the index of the enclosing pair), (RED- RSINVK) for syn-
chronous invocations on different cog name, (RED- AINVK)
for asynchronous invocations, and (REp- GAINVK) for asyn-
chronous invocations with synchronizations. We observe that
every evaluation step amounts to expanding method invoca-
tions by replacing free cog names in method contracts with
fresh names and without modifying the syntax tree of contract
pairs.

To illustrate the operational semantics of contracts, we
discuss three examples:

1. Let
F.f = [cog: c](x : [cog: '],y :[cog: "]
((F.glcog: /1(x : [cog: ") = ).(c, ) +0.(c", )y 0)
I

and
F.g = [cog : c](x : [cog : 'D{(0.(c, ¢') + 0.(c", €)40)}_

Then

(FIf[cog : c](x : [cog : ],y : [cog : "]) = _gO)start
—((0y (F.g[cog : '1(x : [cog : ¢"]) = _).(c, ") +0.(c’, ¢"))cy O)start
— ({09 (0.(c', ") +0.(c", ')y 0)r &(c, ) + 0.(c", ")) 9 O)start

The contract pair in the final state does not contain method
invocations. This is because the above main function is
not recursive. Additionally, the evaluation of F.f [cog :
cl(x : [cog : '],y : [cog : ¢"']) has not created names.
This is because names in the bodies of F. £ and F . g are
bound.

2. Let

F.h = [cog : c](L){{0y (F-hlcog : 1) — )N10.(c, )
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Then

(Flh[cog : c1(L) = _s O)start

—> ((0y (F.h[cog : 1) = )0.(c, ¢))cy O)start

—> ({05 (0 (F.h[cog : ¢"1() = D0.(c", ")) [10.(c, €)) ey O)start

where, in this case, the contract pairs grow in the num-
ber of dependencies as the evaluation progresses. This
growth is due to the presence of a free name in the def-
inition of F . h that, as said, corresponds to generating a
fresh name at every recursive invocation.

3. Let

F.1 = [cog : c](){{0.(c, ¢’) 3 (0.(c,c) || F!1[cog : c]()
= )y 0)}_

Then

(F!1[cog : c]() = _y O)start
— ((0,0.(c, ) 5 (0.(c, ¢) || F11[cog : c]() = _))ey O)start
—> {{040.(c, ¢’) 3 (0.(c, N |l

(0,0.(c", ") 3(0.(c", ") || F11[cog : "1() = ))e))es O)start

o
9
o
9

In this case, the contract pairs grow in the number of “§”-
terms, which become larger and larger as the evaluation
progresses.

It is clear that, in the presence of recursion and of free
cog names in method contracts, a technique that analyses
contracts by expanding method invocations is fated to fail
because the system contains infinite states. However, it is
possible to stop the expansions at suitable points without
losing any relevant information about dependencies. In this
section, we highlight the technique we have developed in [18]
that has been prototyped for core ABS in DF4ABS.

6.2 Linear recursive contract class tables

Since contract pairs models may contain infinite states,
instead of resorting to a saturation technique, which intro-
duces inaccuracies, we exploit a generalization of permuta-
tion theory that let us decide when stopping the evaluation
with the guarantee that if no circular dependency has been
found upto that moment, then it will not appear afterward.
That stage corresponds to the order of an associated permu-
tation. It turns out that this technique is suited for so-called
linear recursive contract class tables.

Definition 8 A contract class table is linear recursive if
(mutual) recursive invocations in bodies of methods have
at most one recursive invocation.

It is worth to observe that a core ABS program may be
linear recursive, while the corresponding contract class table
is not. For example, consider the following method foo of
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Foo.foo = [cog : c|(_, x :

¢’ = Foolfoo [cog : c](-,x :

Fig. 20 Method contract of Foo . foo

class Foo that prints integers by invoking a printer service
and awaits for the termination of the printer task and for its
own termination:

Void foo(Int n, Print x){
Fut<Void> u, v ;

if (n == 0) return() ;
else { u = this!foo(n-1, x) ;
v = xX!print(n) ;

await v? ;
await u? ;
return() ;

While foo has only one recursive invocation, its contract
written in Fig. 20 is not. That is, the contract of Foo. foo
displays two recursive invocations because, in correspon-
dence of the await v? instruction, we need to collect all
the effects produced by the previous unsynchronized asyn-
chronous invocations [see rule (T- Awarr)].3

6.3 Mutations and flashbacks

The idea of our technique is to consider the patterns of cog
names in the formal parameters and the (at most unique)
recursive invocation of method contracts and to study the
changes. For example, the above method contracts of F.h
and F.1 transform the pattern of cog names in the formal
parameters, written (c) into the pattern of recursive invoca-
tion (¢’). We write this transformation as

(©) ~ ().

In general, the transformations we consider are called muta-
tions.

Definition 9 A mutation is a transformation of tuples of

(cog) names, written
(-xla ""xn) ~ (xi’ "'7x;/1)

where x1, ..
in{xg,...

., X, are pairwise different and xlf may not occur
s xn}-

3 It is possible to define sufficient conditions on core ABS programs
that entail linear recursive contract class tables. For example, two such
conditions are that, in (mutual) recursive methods, recursive invocations
are either (1) synchronous or (2) asynchronous followed by a get or
await synchronization on the future value, without any other get or
await synchronization or synchronous invocation in between.

[cog = P{ (0 +
where ¢ = Printlprint [cog : ¢/](-) — -
[cog : c']) — -

((q:.(c, )l ) se’ (e c)"’),O) [

Applying a mutation (xi,...,x,) ~ (x[,...,x;) to
a tuple of cog names (that may contain duplications)

(c1,...,cn) gives atuple (¢}, ..., c,) where
/o s ! .

- ¢ =cjifx; = xj;

— ¢} is afresh name if x; & {x1,...,x,};

- = c;. if they are both fresh and x; = x}.

We write (c1, ..., ¢y) = mut (€], ..., ¢,) when(c], ..., c})
is obtained by applying a mutation (which is kept implicit)
to(ct,...,Cn).

For example, given the mutation

(x, ¥, z,u) ~ (v, x,7,2) (1
we obtain the following sequence of tuples:

(Ca C/a C/,7 C/,/) _)mut (C/5 C,C1, Cl)
—mut (¢, ¢/, 2, ¢2)
—mt (¢, ¢, ¢3,¢3)

— mut ik @)

When a mutation (xq, ..., X;) ~ (x{, R x,;) is such that
{x1,..., x4} = {x], ..., x,}, then the mutation is a permuta-
tion [6]. In this case, the permutation theory guarantees that,
by repeatedly applying the same permutation to a tuple of
names, at some point, one obtains the initial tuple. This point,
which is known as the order of the permutation, allows one
to define the following algorithm for linear recursive method
contracts whose mutation is a permutation:

1. compute the order of the permutation associated with the
recursive method contract and
2. correspondingly unfold the term to evaluate.

It is clear that, when method contract bodies have no free cog
names, further unfoldings of the recursive method contract
cannot add new dependencies. Therefore, the evaluation, as
far as dependencies are concerned, may stop.

When a mutation is not a permutation, as in the exam-
ple above, it is not possible to get again an old tuple by
applying the mutation because of the presence of fresh
names. However, it is possible to demonstrate that a tuple
is equal to an old one upfo a suitable map, called flash-
back.
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Fig. 21 Reduction for contract

of method Math. fact_nc
—

—

Fig. 22 Flattening and
evaluation of resulting contract
of method Math. fact_nc

(Math!fact_nc [cog : ¢]() = —y O)start
((040 + Math!fact_nc[cog : ¢'](2) = —.(c,¢"))cy O)start
({0, 0 + (04 0 + Math!fact_nc[cog : ¢''](-) = -.(c', ")) er (¢, ")) ey O)start

([{{040 4+ (0, 0 + Math!fact_nc[cog : c¢"’](-) = _.(c', ")) er-(c; ")) ey O)start])®
= ({{0,0+ (0, 0+ ([(',¢") ], 0)).(c, ")), 0))°

= (0+0+ [(¢/,¢")]&(c, ), 0)
= ([(c¢',¢"), (e,¢)],0)

Definition 10 A tuple of cog names (cy, ..
lent to (¢}, ..., cp), written (cy, ..., ) ~ (¢}, ..
there is an injection 1 called flashback such that:

., Cp) 1s equiva-
iy
.o, if

Lo(cth.noicp) = @(c)), ... 1(cy))
2. 1 is the identity on “old names”, that is, if clf €
{c1,...,ca} theni(c)) = .

For example, in the sequence of transitions (2), there is a
flashback from the last tuple to the second one and there is
[and there will be, by applying the mutation (1)] no tuple that
is equivalent to the initial tuple.

It is possible to generalize the result about permutation
orders:

Theorem 1 (Giachino and Laneve [18]) Let (x1, ..., x,) ~>
(x],...,Xx,) be a mutation and let
(c15 -5 Cn) ~mut (CrH—la .oy C2n) —mut (C2n+1: ..y C3p) ~mut e

be a sequence of applications of the mutation. Then, there
are 0 < h < k such that

(Chns1s - s Cht)n) = (Chnt s - - -5 ClhDn)

The value k is called order of the mutation.

For example, the order of the mutation (1) is 3.
6.4 Evaluation of the main contract pair

The generalization of permutation theory in Theorem 1
allows us to define the notion of order of the contract of the
main function in a linear recursive contract class table. This
order is the length of the evaluation of the contract obtained

1. by unfolding every recursive function as many times as
twice its 0rdering,4

2. by iteratively applying 1 to every invocation of recursive
function that has been produced during the unfolding.

4 The interested reader may find in [18] the technical reason for unfold-
ing recursive methods as many times as twice the length of the order of
the corresponding mutation.
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In order to state the theorem of the correctness of our
analysis technique, we need to define the lam of a contract
pair. The following functions will do the job.

Let [-] be a map taking a contract pair and returning a
pair of lams that is defined by

[C.mr(r) — '] = (0,0)

[Cmr(r) — '] = (0,0)

[Cmr@) — r'.(c, M) = ([ (c, H™T,0)
[{cp,cp’)cl = ([epl, [epT)

and it is homomorphic with respect to the operations +, ¢, ||
(whose definition on pairs of lams is in Fig. 13).
Let t be terms of the following syntax

tu= L | (tyt)

and let (£)” = £ and ((t,t')* = (t)°, (t/)".

Theorem 2 (Giachino and Laneve [18]) Let (cpy,cp)) be
a main function contract and let

(epi, CIp/l )start—> {CP2s Cp’z)start —>(CP3, Cp/3>start—> T

be its evaluation. Then, there is a k, which is the order of
(Cp1sCP))stare  Such that if a circularity occurs in
([{ecPrans @p;{Jrh)start]])b, for every h, then it also occurs in

([{cPrs @Jp;()start]])b-

Example 7 The reduction of the contract of method
Math.fact_nc is as in Fig. 21. The theory of mutations
provide us with an order for this evaluation. In particular,
the mutation associated with Math. fact_nc is ¢ ~ ¢/, with
order 1, such that after one step, we can encounter a flash-
back to a previous state of the mutation. Therefore, we need
to reduce our contract for a number of steps corresponding
to twice the ordering of Math. fact_nc: After two steps, we
find the flashback associating the last generated pair (¢’, ¢”’)
with the one produced in the previous step (c, ¢’), by mapping
¢’ tocandc” toc.

The flattening and the evaluation of the resulting con-
tract are shown in Fig. 22 and produce the pair of lams
([(, "), (c, c")]40) which does not present any deadlock.
Thus, differently from the fixpoint analysis for the same
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example, with this operational analysis, we get a precise
answer instead of a false positive (see Fig. 17; Sect. 5.3).

The correctness of the technique based on mutations is
demonstrated in “Appendix 3”.

7 The DF4ABS tool and its application to the case study

core ABS (actually full ABS [22]) comes with a suite [39]
that offers a compilation framework, a set of tools to ana-
lyze the code, an Eclipse IDE plugin and Emacs mode for
the language. We extended this suite with an implementation
of our deadlock analysis framework (at the time of writing,
the suite has only the fixpoint analyzer, the full framework is
available at http://df4abs.nws.cs.unibo.it). The DF4ABS tool
is built upon the abstract syntax tree (AST) of the core ABS
type checker, which allows us to exploit the type information
stored in every node of the tree. This simplifies the imple-
mentation of several contract inference rules.
The are four main modules that comprise DF4ABS:

1. Contract and Constraint Generation. This is performed
in three steps: (1) The tool first parses the classes of the
program and generates a map between interfaces and
classes, required for the contract inference of method
calls; (2) then, it parses again all classes of the program
to generate the initial environment I that maps methods
to the corresponding method signatures; and (3) it finally
parses the AST and, at each node, it applies the contract
inference rules in Figs. 9, 10, and 11.

2. Constraint Solving is done by a generic semi-unification
solver implemented in Java, following the algorithm
defined in [20]. When the solver terminates (and no error
is found), it produces a substitution that satisfies the input
constraints. Applying this substitution to the generated
contracts produces the abstract class table and the con-
tract of the main function of the program.

3. Fixpoint Analysis uses dynamic structures to store lams of
every method contract (because lams become larger and
larger as the analysis progresses). At each iteration of the
analysis, a number of fresh cog names are created and
the states are updated according to what is prescribed by
the contract. At each iteration, the tool checks whether
a fixpoint has been reached. Saturation starts when the
number of iterations reaches a maximum value (that may
be customized by the user). In this case, since the preci-
sion of the algorithm degrades, the tool signals that the
answer may be imprecise. To detect whether a relation
in the fixpoint lam contains a circular dependency, we
run Tarjan algorithm [35] for connected components of
graphs and we stop the algorithm when a circularity is
found.

4. Abstract model checking algorithm for deciding the
circularity-freedom problem in linear recursive contract
class tables performs the following steps. (i) Find (linear)
recursive methods: By parsing the contract class table,
we create a graph where nodes are function names, and
for every invocation of D.n in the body of C.m, there
is an edge from C.m to D.n. Then, a standard depth
first search associates with every node a path of (mutual)
recursive invocations (the paths starting and ending at that
node, if any). The contract class table is linear recursive if
every node has at most one associated path. (ii) Compu-
tation of the orders: Given the list of recursive methods,
we compute the corresponding mutations. (iii) Evalua-
tion process: The contract pair corresponding to the main
function is evaluated till every recursive function invo-
cation has been unfolded upto twice the corresponding
order. (iv) Detection of circularities: This is performed
with the same algorithm of the fixpoint analysis.

As regards the computational complexity, the contract
inference system is polynomial time with respect to the length
of the program in most of the cases [20]. The fixpoint analy-
sis is exponential in the number of cog names in a contract
class table (because lams may double the size at every itera-
tion). However, this exponential effect actually bites in prac-
tice. The abstract model checking is linear with respect to the
length of the program as far as steps (i) and (ii) are concerned.
Step (iv) is linear with respect to the size of the final lam. The
critical step is (iii), which may be exponential with respect to
the length of the program. Below, there is an overestimation
of the computational complexity. Let

Omax be the largest order of a recursive method contract
(without loss of generality, we assume there is no
mutual recursion).

Mmae be the maximal number of function invocations in a
body or in the contract of the main function.

An upper bound to the length of the evaluation till the satu-
rated state is

Z (2 X opax X mmax)la
0o<i<t

where ¢ is the number of methods in the program. Let k4«
be the maximal number of dependency pairs in a body. Then,
the size of the saturated state is O (kpmax X (Omax X Mmax)®),
which is also the computational complexity of the abstract
model checking.

7.1 Assessments

We tested DF4ABS on a number of medium-size programs
written for benchmarking purposes by core ABS program-
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Table 1 Assessments of

DFA4ARS Program Lines DF4ABS/fixpoint DF4ABS/model-check DECO
Result  Time Result  Time Result  Time
PingPong 61 v 0.311 v 0.046 v 1.30
MultiPingPong 88 D 0.209 D 0.109 D 1.43
BoundedBuffer 103 v 0.126 v 0.353 v 1.26
PeerToPeer 185 v 0.320 v 6.070 v 1.63
FAS Module 2,645 v 31.88 v 39.78 v 4.38

mers and on an industrial case study based on the Fredhopper
Access Server (FAS)’ developed by SDL Fredhopper [34],
which provides search and merchandising IT services to e-
Commerce companies.

The leftmost two columns of Table 1 reports the experi-
ments: For every program, we display the number of lines,
whether the analysis has reported a deadlock (D) or not (v'),
the time in seconds required for the analysis. Concerning
time, we only report the time of the analysis of DF4ABS
(and not the one taken by the inference) when they run on a
QuadCore 2.4 GHz and Gentoo (Kernel 3.4.9).

The rightmost column of Table 1 reports the results of
another tool that has also been developed for the deadlock
analysis of core ABS programs: DECO [12]. This tech-
nique integrates a point-to analysis with an analysis return-
ing (an over-approximation of) program points that may
be running in parallel. As highlighted by the above table,
the three tools return the results as regards deadlock analy-
sis, but are different as regards performance. In particular,
the fixpoint and model-checking analysis of DF4ABS are
comparable on small-/mid-size programs, and DECO appears
less efficient (except for PeerToPeer, where our model-
checking analysis is quite slow because of the number of
dependencies produced by the underlying algorithm). On the
FAS module,ourtwo analysis are again comparable, while
DECO has a better performance (DECO worst case complexity
is cubic in the size of the input).

Few remarks about the precision of the techniques fol-
low. DF4ABS/model-check is the most powerful tool we
are aware of for linear recursive contract class table. For
instance, it correctly detects the deadlock freedom of the
method Math.fact_nc (previously defined in Fig. 5)
while DF4ABS/fixpoint signals a false positive. Similarly,
DECO signals a false positive deadlock for the following pro-
gram, whereas DF4ABS/model-check returns its deadlock
freedom.

3 Actually, the FAS module has been written in ABS [34], and so, we
had to adapt it in order to conform with core ABS restrictions (see
Sect. 3). This adaptation just consisted of purely syntactic changes and
only took half-day work (see also the comments in [14]).
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class C implements C {
Unit m(C c){ C w ;
new cog C() ;
w!m(this) ;
cin(this) ;
}
Unit n(C a){ Fut<Unit> x ;
ata() ;
xX.get ;
}
Unit g(){ }

w =

X =

}
{ Ca; Cb;
Fut<Unit> x ;

a = new cog C() ;
b = new cog C() ;
x = a'm(b) ;

However, DF4ABS/model-check is not defined on nonlin-
ear recursive contract class tables. Nonlinear recursive con-
tract class tables can easily be defined, as shown with the
following two contracts:

cm = [cog: c] O {(0,(Cm[cog : c]) — _).(c, c)
+ Cln[cog : ¢"1([cog : c]) — _)} — _

c.n = [cog : c] ([cog : ')
{{(Cm[cog : c]O) = _).(c,c),0)} — _

Here, DF4ABS/model-check fails to analyze C.m, while
DF4ABS/fixpoint and DECO successfully recognize as dead-
lock-free.® We conclude this section with a remark about the
proportion between programs with linear recursive contract
class tables and those with nonlinear ones. While this pro-
portion is hard to assess, our preliminary analyses strengthen
the claim that nonlinear recursive programs are rare. We
have parsed the three case studies developed in the European
project HATS [34]. The case studies are the FAS module, a
Trading System (TS) modeling a supermarket handling sales
and a Virtual Office of the Future (VOF) where office workers

6 In [18], we have defined a source-to-source transformation taking
nonlinear recursive contract class tables and returning linear recursive
ones. This transformation introduces fake cog dependencies that returns
a false positive when applying DF4ABS/model-check on the example
above.
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are enabled to perform their office tasks seamlessly indepen-
dent of their current location. FAS has 2,645 code-lines, TS
has 1,238 code-lines, and VOF has 429 code-lines. In none
of them we found a nonlinear recursion in the corresponding
contract class table, TS and VOF have, respectively, 2 and
3 linear recursive method contracts (there are recursions in
functions on data type values that have nothing to do with
locks and control). This substantiates the usefulness of our
technique in these programs; the analysis of a wider range of
programs is matter of future work.

8 Related works

A preliminary theoretical study was undertaken in [16],
where (i) the considered language is a functional subset
of core ABS; (ii) contracts are not inferred, they are pro-
vided by the programmer and type-checked; (iii) the dead-
lock analysis is less precise because it is not iterated as in
this contribution, but stops at the first approximant; and (iv),
more importantly, method contracts are not pairs of lams,
which led it to discard dependencies (thereby causing the
analysis, in some cases, to erroneously yield false negatives).
This system has been improved in [14] by modeling method
contracts as pairs of lams, thus supporting a more precise fix-
point technique. The contract inference system of [14] has
been extended in this contribution with the management of
aliases of futures and with the dichotomy of present contract
and future contract in the inference rules of statements.

The proposals in the literature that statically analyze dead-
locks are largely based on (behavioral) types. In [1,2,11,36],
a type system is defined that computes a partial order of the
locks in a program and a subject reduction theorem demon-
strates that tasks follow this order. Similarly to these tech-
niques, the tool Java PathFinder Visseretal. [37] com-
putes a tree of lock orders for every method and searches for
mismatches between such orderings. On the contrary, our
technique does not compute any ordering of locks during the
inference of contracts, thus being more flexible: A compu-
tation may acquire two locks in different order at different
stages, being correct in our case, but incorrect with the other
techniques. The Extended Static Checking for Java [10] is an
automatic tool for contract-based programming: Annotation
is used to specify loop invariants, pre- and post-conditions,
and to catch deadlocks. The tool warns the programmer if
the annotations cannot be validated. This techniques requires
that annotations are explicitly provided by the programmer,
while they are inferred in DF4ABS.

A well-known deadlock analyzer is TYPICAL, a tool that
has been developed for pi-calculus by Kobayashi [21,25-27].
TYPICAL uses a clever technique for deriving inter-channel
dependency information and is able to deal with several
recursive behaviors and the creation of new channels with-

out committing to any pre-defined order of channel names.
Nevertheless, since TYPICAL is based on an inference sys-
tem, there are recursive behaviors that escape its accuracy.
For instance, it returns false positives when recursion cre-
ate networks with arbitrary numbers of nodes. To illustrate
the issue, we consider the following deadlock-free program
computing factorial

class Math implements Math {
Int fact(Int n, Int r){

Math vy ;
Fut<Int> v ;
if (n == 0) return r ;

else { y = new cog Math() ;
v = yl!fact(n-1, n*r) ;
w = v.get ;
return w ;

Math x ; Fut<Int> fut ; Int r ;
X = new cog Math();

fut = x!fact(6,1);

r = fut.get ;

that is a variation of the method Math . fact_ng in Fig. 5.
This code is deadlock-free according to DF4ABS/model-
check; however, its implementation in pi-calculus7 is not
deadlock-free according to TYPICAL. The extension of TYP-
ICAL with a technique similar to the one in Sect. 6, but cov-
ering the whole range of lam programs, has been recently
defined in [15].

Type-based deadlock analysis has also been studied
in [33]. In this contribution, types define objects’ states and
can express acceptability of messages. The exchange of mes-
sages modifies the state of the objects. In this context, a dead-
lock is avoided by setting an ordering on types. With respect
to our technique, Puntigam and Peter [33] uses a deadlock
prevention approach, rather than detection, and no inference
system for types is provided.

In [32], the author proposes two approaches for a type- and
effect-based deadlock analysis for a concurrent extension of
ML. The first approach, like our ones, uses a type and effect

7 The pi-calculus factorial program is
*factorial?(n, (r,s)).

if n=0 then r?m. s!m else new t in

(r?m. t!(m*n)) | factorial! (n-1, (t,s))

In this code, factorial returns the value (on the channel s)
by delegating this task to the recursive invocation, if any. In par-
ticular, the initial invocation of factorial, which is r!1l |
factorial! (n, (r,s) ), performs asynchronization between r ! 1
and the input r?m in the continuation of factorial? (n, (r,s)).
In turn, this may delegate the computation of the factorial to a sub-
sequent synchronization on a new channel t. TYPICAL signals a
deadlock on the two inputs r?m because it fails in connecting the
output t ! (m*n) with them.
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inference algorithm, followed by an analysis to verify dead-
lock freedom. However, their analysis approximates infinite
behaviors with a chaotic behavior that non-deterministically
acquires and releases locks, thus becoming imprecise. For
instance, the previous example should be considered a poten-
tial deadlock in their approach. The second approach is an
initial result on a technique for reducing deadlock analysis
to data race analysis.

Model-theoretical techniques for deadlock analysis have
also been investigated. In [3], circular dependencies among
processes are detected as erroneous configurations, but
dynamic creation of names is not treated. Similarly in [8]
(see the Sect. 3.6 below).

Works that specifically tackle the problem of deadlocks
for languages with the same concurrency model as that
of core ABS are the following: West et al. [38] defines
an approach for deadlock prevention (as opposed to our
deadlock detection) in SCOOP, an Eiffel-based concur-
rent language. Different from our approach, they annotate
classes with the used processors (the analogue of cogs in
core ABS), while this information is inferred by our tech-
nique. Moreover, each method exposes preconditions rep-
resenting required lock ordering of processors (processors
obeys an order in which to take locks), and this informa-
tion must be provided by the programmer. de Boer et al. [§]
studied a Petri net- based analysis, reducing deadlock detec-
tion to a reachability problem in Petri nets. This technique
is more precise, in that it is thread based and not just object
based. Since the model is finite, this contribution does not
address the feature of object creation and it is not clear how
to scale the technique. We plan to extend our analysis in order
to consider finer-grained thread dependencies instead of just
object dependencies. Kerfoot et al. [24] offer a design pattern
methodology for CoJava to obtain deadlock-free programs.
Colava, a Java dialect where data-races and data-based dead-
locks are avoided by the type system, prevents threads from
sharing mutable data. Deadlocks are excluded by a program-
ming style based on ownership types and promise (i.e., future)
objects. The main differences with our technique are the
following: (i) the needed information must be provided by
the programmer, (if) deadlock freedom is obtained through
ordering and timeouts and (iii) no guarantee of deadlock free-
dom is provided by the system.

The relations with the work by Flores-Montoya et al. [12]
have been largely discussed in Sect. 7. Here, we remark that,
as regards the design, DECO is a monolithic code written in
Prolog. On the contrary, DF4ABS is a highly modular Java
code. Every module may be replaced by another; for instance,
one may rewrite the inference system for another language
and plug it easily in the tool, or one may use a different/refined
contract analysis algorithm, in particular, one used in DECO
(see Sect. 9).
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9 Conclusions

We have developed a framework for detecting deadlocks
in core ABS programs. The technique uses (1) an infer-
ence algorithm to extract abstract descriptions of methods,
called contracts, (2) an evaluator of contracts, which com-
putes an over-approximated fixpoint semantics and (3) a
model-checking algorithm that evaluates contracts by unfold-
ing method invocations.

This study can be extended in several directions. As
regards the prototype, the next release will provide indica-
tions about how deadlocks have been produced by pointing
out the elements in the code that generated the detected cir-
cular dependencies. This way, the programmer will be able
to check whether or not the detected circularities are actual
deadlocks, fix the problem in case it is a verified deadlock,
or be assured that the program is deadlock-free.

DF4ABS, being modular, may be integrated with other
analysis techniques. In fact, in collaboration with Kobayashi
[15], we have recently defined a variant of the model-
checking algorithm that has no linearity restriction. For the
same reason, another direction of research is to analyze con-
tracts with the point-to analysis technique of DECO [12]. We
expect that such analyzer will be simpler than DECO because,
after all, contracts are simpler than core ABS programs.

Another direction of research is the application of our
inference system to other languages featuring asynchronous
method invocation, possibly after removing or adapting or
adding rules. One such language that we are currently study-
ing is ASP [5]. While we think that our framework and its
underlying theory are robust enough to support these appli-
cations, we observe that a necessary condition for demon-
strating the results of correctness of the framework is that
the language has a formal semantics.

Appendix 1: Properties of Sect. 4

The initial configuration of awell-typed core ABS program
is

ob(start, ¢, {[destiny — fgqrt, X > L] s}, @)

cog(start, start)

where the activity {[destiny > fsqre, ¥ — L]|s} corre-
sponds to the activation of the main function. A computation
is a sequence of reductions starting at the initial configura-
tion according to the operational semantics. We show in this
appendix that such computations keep configurations well-
typed; in particular, we show that the sequence of contracts
corresponding to the configurations of the computations is in
the later-stage relationship (see Fig. 27).
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9.1 Runtime contracts

In order to type the configurations, we use a runtime type
system. To this aim we extend the syntax of contracts in Fig. 8
and define extended futures F, extended contracts that, with
an abuse of notation, we still denote ¢ and runtime contracts
k as follows:

Fiu=f]1y
cu=asinFig 8| f | f.(c.,c) | flc, Y | (¢, )¢

k:=0] (c, q:); | [Cmr®@) — ]y | k|l k

As regards F, they are introduced for distinguishing two
kind of future names: (1) f that has been used in the contract
inference system as a static time representation of a future,
but is now used as its runtime representation; (2) 15 now
replacing f in its role of static time future (it is typically
used to reference a future that is not created yet).

As regards ¢ and k, the extensions are motivated by the
fact that, at runtime, the information about contracts is scat-
tered in all the configuration. However, when we plug all the
parts to type the whole configuration, we can merge the dif-
ferent information to get a runtime contract k’ such that every
contract ¢ € k’ does not contain any reference to futures any-
more. This merging is done using a set of rewriting rules =
defined in Fig. 23 that let one replace the occurrences of run-
time futures in runtime contracts k with the corresponding
contract of the future. We write f € names(k) whenever f
occurs in k not as an index. The substitution k[C/ f1replaces
the occurrences of f in contracts ¢” of k (by definition of our
configurations, in these cases, f can never occur as index in
k). It is easy to demonstrate that the merging process always

f € names(k)
Kl e, )5 = k[(®:e) /]

Fig. 23 Definition of =

(TR-FUTURE-TICK)
A(f) = (¢~ 1,2)” Al wval: T

(TR-FUTURE)

Alf) = (e~ r,c)

terminates and is confluent for non-recursive contracts, and
in the following, we let (k) be the normal form of k with
respect to =:

Definition 11 A runtime contract k is non-recursive if:

— all futures f € names(k) are declared once in k
— all futures f € names(k) are not recursive, i.e., for all
(c, a:/); € k, we have f ¢ names({c, q:/);})

9.2 Typing runtime configurations

The typing rules for the runtime configuration are given in
Figs. 24, 25 and 26. Except for few rules (in particular, those
in Fig. 24 which type the runtime objects of a configuration),
all the typing rules have a corresponding one in the contract
inference system defined in Sect. 4. Additionally, the typ-
ing judgments are identical to the corresponding one in the
inference system, with three minor differences:

(i) The typing environment, which now contains a refer-
ence to the contract class table and mappings object
names to pairs (C, r), is called A;

(ii) the typing rules do not collect constraints;

(iii) the rt_unsync(-) function on environments A is similar
to unsync(-) in Sect. 4, except that it now grabs all 17
and all futures f that was created by the current thread
f. More precisely,

def
rt_unsync(A, f) = ci - llea | fill -1l fm
where {ci,...,c,} = {c' | Jp,r: AGy) = (r,c)}
and {f1,.... fu} ={f" | A(f) =@, )}

f € names(k)
k[|[C'm r(F) — r]; = k[Cmr(T) — /4]

(TR-INvVOC)
A(f) = (c~1',0)
=T

AFRT A(0) = [cog : ¢, TT]

Abg fut(f,val) : 0

(TR-OBJECT)
A(o) = [cog : ¢, TT] A I—%’O val: T
AFR°p:k AFR°p:k

Abp fut(f,L): 0

A bR invoc(o, f,m,v) : [Clm [cog : ¢, ToT)(8) — 1] ¢

(TR-PROCESS)
AFR% val: x

A(f) = (e~ =, I
Aldestiny — f,z—x F5° s:c | A"

A g ob(o,[cog — c;x — wal],p,P) : k||k

(TR-IDLE)
AFE° idle: 0

Fig. 24 Typing rules for runtime configurations

AR {destiny — f, x> wal| s} : (¢, rt_unsync(A”, f))§

(TR-PARALLEL)
Al—chlz]kl A'—chgiﬂ{g

A '_R cni cn2 :]kl H Ikg
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runtime expressions

(TR-OBJ) (TR-FuT) (TR-VAR) (TR-FIELD) (TR-~VALUE)
Ao) = (C, 1) A(F) =z Az) = x z gdom(4)  Aozx) =r AFS%e: F o AR F:(r,c)lY]
AF3%o:r AFR° F iz ARz ix ArgPa:r AFg%e:r

(TR-VAL) (TR-PURE)

e primitive value or arithmetic-and-bool-exp

AFge:r

AFRCe:

expressions with side-effects

(TR-GET)
ARy AFE% 1 (¢ ~ 1 0)
Aldestiny] = f A" = Ay — (r,0)]

AFZ° zget i1/, e.(c, ¢’) || ri_unsync(4’, f)| A

(TR-GET-TICK)
AR a: F ARG F (¢~ 1, e)”

AFZ°e:r,0]A

(TR-GET-RUNTIME)
AFgCa: f ARG fi(cd ~1 )
Aldestiny] = f’ A = A[f — (r,0)Y]
AR wget i1/, fu(c, ) || rtcunsync(A’, f') | A

(TR-NEwCoG)
AFgPe:r

param(C) =T = fields(C) =T’ a’ ¢’ fresh

AFE°zget:r’,0|A

(TR-NEW)
ArFR°e:T

param(C) =T z

A +%° new cog C(€) : [cog:c’, T, 2/:1'],0| A

fields(C) =T o’

A% new C(€) : [cogic, TT, 2":7],0| A

(TR-AINVK)
A3 e [cog:c, T
A(Cm) =1’ (") {{c, ') Jr"’

class(types(e)) = C
¢’ = cog_names(r’’") \ cog-names(z’,s’)

fields(C), param(C) =T z
&y fresh s = o B[S/, ]

Ar3%e:s

AFS% em(e) 15,0 Ay — (¢’ ~ s, Clm r(8) — 57')]

(TR-SINVK)
AFE° e [cog:c’, T
Acm) = Dlese)}" T

class(types(e)) =C 1
¢’ = cog_names(z’") \ cog_names(r’,s’)

fields(C), param(C) =T z
Cresh 5" =t [/z][F:5/x 5]

Ar3°e:s

AF%%em(e) :s”,Cmr(s) — s” || rt—unsync(AQ) | A

Fig. 25 Runtime typing rules for expressions

Finally, few remarks about the auxiliary functions:

— init(C, 0) is supposed to return the init activity of the
class c. However, we have assumed that these activity is
always empty, see Footnote 2. Therefore, the correspond-
ing contract will be (0, 0).

— atts(C, v, o, c¢) returns a substitution provided that v have
records T and o and c are object and cog identifiers,
respectively.

— bind(o, f,m, V', C) returns the activity corresponding to
the method C.m with the parameters v’ provided that f
has type ¢ ~» r and v’ have the types r’.

Theorem 3 Let P = I C {T x; s} be a core ABS program
andletI’ = P : CCT, (c, ') >U. Letalso o be a substitution
satisfying U and

A =o(I" +CCT) + start : [cog : start] + fare
(start ~ _, 0)
Then
A bR ob(start, g, {l | s}, ?) cog(start, start) :
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/\\ start
o (s ) fy
where | = [destiny — fstare, X — L].

Proof By (TR- CONFIGURATION) and (TR- OBJECT) we are
reduced to prove:

A B (destiny > fuar, X > L|s}: o (e, )

3

To this aim, let X be the variables used in the inference rule
of (T- PROGRAM).

To demonstrate (3) we use (TR- PrRociss). Therefore, we
need to prove:

Aldestiny = fyare, x > o (X)) R s 1o () | A

with rt_unsync(A’) = o (c). This proof is done by a stan-
dard induction on s, using a derivation tree identical to the one
used for the inference (with the minor exception of replacing
the f's used in the inference with corresponding 1¢s). This is
omitted because straightforward. O
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statements

(TR-VAR-RECORD)

(TR-FIELD-RECORD)

AFE% o ix ARGz x| A x & dom(A) A(this.z) =r AFR% zire| A
ARz =z:¢c| Az x] AR z=z:c|A’
(TR-AWAIT)
(TR-VAR-FUTURE) AER% iy AFE%15:(¢) ~ 1)
ArE°x: F Aldestiny] = f A" = Al (¢! ~ 1,0)]

ARGz =f:0|Alz — f]
(TR-AWAIT-RUNTIME)
AbRx: f
Aldestiny] = f’

ARG fi(d ~r,e)
A= Alf (¢ ~ 1, O)J]

ARG await 2?1 f.(c, ') || rtcunsync(A’, f1) | A

(TR-IF)
AFEOe:Bool AF;O s1 @1 | Ar
z € dom(A) = Ai(z) = Azx(x)
T € Fut(A) = A (Al(a;)) = AQ(AQ(.TL‘))

A= A; + (Az \ (dom(A) U {Az(z) | = € Fut(Az)}))

A4 avait 27 : c.(c, )" || rtounsync(4’, f)| A’

(TR-AWAIT-TICK)
Ar3° o F ARG F (¢ ~r,c)”
AFE? await z?7: 0| A

AF;—%O 82:®2|A2

(TR-SEQ)
AI—%’O s1:¢1 | A

(TR-SK1P) Ay l_%,o 99 : Ca ‘ A

AFE%if e {s1}else {s2}:c1 +az|A’
(TR-RETURN)
AFge:r
A(destiny) = f

A(f) = (e~ 1,0)

AF3° returne: 0] A

Fig. 26 Runtime typing rules for statements

Definition 12 A runtime contract k is well formed if it is non-
recursive and if futures and method calls in k are placed as
described by the typing rules: i.e., in a sequence ¢ § ... §
cy, they are present in all ¢;, iy < i < i} with ¢;, being
when the method is called, and c;, being when the method
is synchronized with. Formally, for all {c, ¢’ )? € k, we can
derive @ - ¢ : ¢’ with the following rules:

¢ =0ve =f

0+0:0 ,
ckHf:f

OFCnr(f) =1 :0
¢ =Chmr(F) =
¢ =0ve' =c
¢ Feole, ) 1o

c=Cmr(F) = r
¢ =0ve =c ¢ =o0ve =f

'+ fole, ) o

’
c kFec:c

" 12

¢’ Feae ¢ Fer:e

7T

! "
c kFer:e

’ !’ 1"
c Fecrges:c ¢ Fec130:c

" ! " ’ 1" ! ’ 1
c Fea:e ¢y, Fe:e Cy ey

77

¢ Fer:e

c’Fei4ca:e cylles kel c c) || cy
Lemmal If A& cn: kis a valid statement, then k is well
formed.

Proof The result is given by the way rf_unsync(-) is used in
the typing rules. O

In the following theorem, we use the so-called later-stage
relation ™ that has been defined in Fig. 27 on runtime con-
tracts.

AR skip: 0] A

c,0
A"R’ 81;82:C13C2‘A2

(TR-CoONT)
A(f) ==
AFE? cont(f):0]A

We observe that the later-stage relation uses a substitution
process that also performs a pattern matching operation—
therefore, it is partial because the pattern matching may fail.
In particular, [$/1] (1) extracts the cog names and terms s’ in
s that corresponds to occurrences of cog names and record
variables in r and (2) returns the corresponding substitution.

Theorem 4 (Subject reduction) Let A Fg cn : kand cn —
cn'. Then, there exist A', K/, and an injective renaming of
cog names 1 such that

— A'Fgroen’ X and
-1k > K.

Proof The proofis a case analysis on the reduction rule used
incn — cn’, and we assume that the evaluation of an expres-
sion [[e]l, always terminates. We focus on the most interest-
ing cases. We remark that the injective renaming : is used to
identify fresh cog names that are created by the static analy-
sis with fresh cog names that are created by the operational
semantics. In fact, the renaming is not the identity only in the
case of cog creation (second case below).

— Skip Statement.

(SKIP)
ob(o,a,{l | skip; s}, q) — ob(o,a,{l | s}, q)

@ Springer
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the substitution process

/1% e
r/x1 € [/x)
[[cog:c’, Ty, ’x":rél}/[cogzc,xl T, Tt rn]} o [C//c} [T1/74] [r%/rn}
[~ o] E () /]

the later-stage relation is the least congruence with respect to runtime contracts that contains the rules

LS-BIND

LS-GLOBAL
ki > X} ko D> kb

A(C-m) = I'this (m) {<(Ev C/>} ri/;his
= [cog : ¢, TT

_c= n({e,c’)) \ fr(renis, Tenis, Tinss)
c’ mfn(r}nﬂ’ 1’)) =9

ki || ke B ki || X5

LS-AINVK

I € fn((e,

[Clm Tp(rp) — T }f > (c,c ) [ /C][KP’EP’ P/rtms,rtms,rthls]

(&, )5 [CmTp(Te) = 7/ 1] B> (e,

LS-SINVK
1" € fu((e,c))

<))

) Il [Clm rp () — mplyr

rp = [cog : ¢, TT]

(
(Cmz(E) =" [ c)sc/,")F B ((f

LS-RSINVK
f" € fnle,c))

= [cog : ', TT]

e, )" o) s, e”)f |l [Clmrp () — gl 4

c #c

(Cmx@E) =1 [[e)sc’,c”)f & ((f (e, ¢

) le)se’,e) % Il [Chmrp(Fp) — 3l

LS-DEPNULL ) )

(e,e)§ 140,005, & (e[0/ 1,0/ £/1)§ I (0,05,
LS-Fur LS- EMPTY LS-DELETE LS-PLus
f>o0 0(cc) >0 Oselc c1 e > ooy

Fig. 27 Later-stage relation

By (TR- OBIECT), (TR- PROCESS), (TR- SEQ) and (TR- SKIP),
there exists A” and csuch that A” F%° skip;s : 0
¢ | A" Itis easy to see that A” H%° s : ¢| A”. Moreover,
by (LS- DELETE), we have 0§ ¢ >cog(0) € Which proves
that k > k'

— Object creation.

(NEW- OBJECT)
o' = fresh(C) p =init(C,0’) a’ = atts(C, [€ll(a+1, ¢)
ob(o,a,{l | x =new C(e); s}, q) cog(c, 0)
— ob(o,a,{l| x =0;s},q) cog(c,0) ob(d,a,idle, {p})

By (TR- OBiEcT) and (TR- PROCESS), there exists A” that
extends A such that A” +3? new C(@) : r, 0 | A”. Let
A" = Alo' — r]. The theorem follows by the assump-
tion that p is empty (see Footnote 2).

— Cog creation.

(NEW- COG- OBJECT)
¢’ = fresh() o' = fresh(C) p = init(C, o)
a’ = atts(C, [ell @+, ¢)

ob(o,a,{l | x = new cog C(e); s}, q)
— ob(o,a,{l | x =0';5},q) ob(d,d', p,@) cog(c’,0)

By (TR- OBiEcT) and (TR- PROCESS), there exists A” that
extends A such that A” F%° new C(e) : [cog

@ Springer

¢’,x7r], 0| A” for some ¢” and records T. Let A’ =
Alo' — [cog : ¢/, x 1], = cog]l and 1(c") = (/,
where 1 is an injective renaming on cog names. The the-
orem follows by the assumption that p is empty (see
Footnote 2).

Asynchronous calls.

(ASYNC- CALL)

o =[eltn v=IMellwuty f ="fresh()

ob(o,a,{l | x =e!m(e); s}, q)
— ob(o,a,{l | x = f;s},q) invoc(o', f,m,v) fut(f, L)

By (TR- OBiEct) and (TR- PROCESS), there exist T, A/l,
cand k” such that (let f/ = [(destiny))

- k = (¢, rt_unsync(AY, f)) cogj(0)||1k”
AR Uik (withl = [y o))

AR q: ]k/f

Aly = 1l F3% x = elm(e);s : ¢ | A]

Let A} = A[y + r]: by either (TR- VAR- RECORD) or (TR-
FIELD- RECORD) and (TR- AINVK), there existr = ¢’ ~ 1’
(where ¢’ is the cog of the record of ¢), 1 r and Ty such
that Ay F3% elm(@) 17,0 | Aty = (v, ¢ )]

By construction of the type system (in particular, the
rules (TR- GET)* and (TR- AwAIT)*), there exists a term
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t such that ¢ = t[@yf/lf] and such that A([f +—
@ O] F% x = fis ¢ t[f/lf]|A’2 (with A, £
AL\ gMf = @ Y] and [V] = Viff AjGy)
is checked). By construction of the rf_unsync function,
there existaterm " such that rz_unsync(A}) = t'[Cy / f]

and rf_unsync(A}) = t’[f/lf].

Finally, if we note A’ £ A[f — (r, f')], we can type
the invocation message with [clf] 7 (as ¢’ is the cog of
the record of this in ¢’), we have

— Argen’ Gl [ L D ey K
— the rule (LS- AINVK) gives us that
=R R A I T P
Method instantiations.

(BIND- MTD)
{{ | s} = bind(o, f,m, v, class(0))
ob(o,a, p,q) invoc(o, f,m,v) — ob(o,a, p,qU{l|s})

By assumption and rules (TR- PARALLEL) and (R- INVOC)
we have A(0) = (C,r), A(f) = (¢ ~ 1/,0),
¢ = cog(r) and k = [Cmr(T) = ']y || kK with
A kg invoc(o, f,m, ) : [Clmr(T) — 1]y and A kg
ob(o,a, p,q) : k. Let X be the formal parameters of m
in C. The auxiliary function bind(o, f, m, v, C) returns
a process {[destiny — f,X — v] | s}. It is possi-
ble to demonstrate that A F3? {/[destiny > f,X >
v]|s} : (q:m,Q;n)g, where A(C.m) = $(8){(co, c) s’
and ¢ = co[¢/¢][F'T/s, 5] and ¢’ € s'\(s U §)
with ¢fresh and ¢, = c[¢/#]1[F T/, 5]. By rules
(TR- PrROCESS) and (TR- OBJECT), it follows that A Fpg
ob(o,a, p,q U {bind(o, f,m,v,C)}) : K|{cn, q:;n){.
Moreover, by applying the rule (LS- BIND), we have that
[Cmr(T) — 1]y & (cn, q:;n)g which implies with the
rule (LS- GLosAL) that k > K.

Getting the value of a future.

(READ- FuT)
f=lel@+n v#L
ob(o,a,{l | x = e.get; s}, q) fut(f,v) —
ob(o,a,{l | x =v;s},q) fut(f, v)

By assumption and rules (TR- PARALLEL), (TR- OBJECT) and
(TR- FUTURE- TICK), there exists A”, ¢, k” such that (let
f' =1 [destiny])

- A I—%Og(o)’o {l[[x =e.get;s}:
(¢, ri_unsync(A”, f’))g;g(o)

- A l_;CJg(U)’O q: ]k//

Abg fut(f,v):0

k = (e, rt_unsync(A", f). oo |

- lellact = f-

4

k”, and

Moreover, as fut(f, v) is typable and contains a value,
we know that ¢ = 0§ ¢’ (e.get has contract 0). With
the rule (TR- PURE), have that A l—;og(o)’” {llx = v;s}:
(c, rt_unsync(A”, f/)>£(/)g(o)’
the result.

— Remote synchronous call. Similar to the cases of asyn-
chronous call with a get-synchronization. The result fol-
lows, in particular, from rule (LS- RSINVK) of Fig. 27.

— Cog-local synchronous call. Similar to case of asynchro-
nous call. The result follows, in particular, from rules
(LS- SsvpLENULL) of Fig. 27 and from the Definition of
Cmr(r) — s.

— Local Assignment.

and with k' = k, we have

(ASSIGN- LOCAL)
x edom(l) v = [ell@+n
ob(o,a,{l | x =e;s},q)
— ob(o,a,{l[x — v]|s},q)

By assumption and rules (TR- OBJECT), (TR- PROCESS), (TR-
SEQ), (TR- VAR- RECORD) and (TR- PURE), there exists A”,
¢, k” such that (we note A; for A[y: x] and f for [
[destiny])

— ARSI = ¢; 5 -
(05 e, ri_unsync(A”, f))gog(u)
- A l_;Og(o)’O q: ]k//

- k = {c, rt_unsync(A”, f)>£og(o) || k", and
- [[e]]aol = .

We have

A l_;og(o),o {l[x = [ell@snlls}:
f

"
(c, rt_unsync(A ,f))cog(o)

which gives us the result with
k' = (c, rt_unsync(A”, f))?cpar]k’. O

Appendix 2: Properties of Sect. 5

In this section, we will prove that the statements given in
Sect. 5 are correct, i.e., that the fixpoint analysis does detect
deadlocks. To prove that statement, we first need to define the
dependencies generated by the runtime contract of a running
program. Then, our proof works in three steps: (1) First, we
show that our analysis (performed at static time) contains
all the dependencies of the runtime contract of the program;
(2) second, the dependencies in a program at runtime are
contained in the dependencies of its runtime contract; and
(3) finally, when cn (typed with k) reduces to cn’ (typed with
k'), we prove that the dependencies of k’ are contained in k.
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Basically, we prove that the following diagram holds:

P > Cny > Chp,

| I\ I\

| /AR Y

| AR /AR

I / \ 1 \

\4 ¥ N ¥ N
(e, e’ ki1 Ay kn An

)
<£7El> =) <£19£,1) =) ) <£"7£1L>

Hence, the analysis (£, L) contains all the dependencies
A; that the program can have at runtime, and thus, if the
program has a deadlock, the analysis would have a circularity.

In the following, we introduce how we compute the depen-
dencies of a runtime contract. This computation is difficult in
general, but in case the runtime contract is as we constructed
it in the subject-reduction theorem, then the definition is very
simple. First, let say that a contract ¢ that does not contain
any future is closed. It is clear that we can compute ¢(ACT[;])
when cis closed.

Proposition 5 Let A - cn : k be a typing derivation con-
structed as in the proof of Theorem 4. Then, k is well formed
and (k) = (e, ¢)$2" where ¢ and c’ are closed.

Proof The first property is already stated in Lemma 1. The
second property comes from the fact that when we create a
new future f (in the Asynchronous calls case for instance),
we map itin A’ to its father process, which will then reference
f because of the rt_unsync(-) function. Hence, if we consider
the relation of which future references which other future in
k, we get a dependency graph in the shape of a directed tree,
where the root is fyq. So, (k) reduces to a simple pair of
contract of the form (c, ¢’ )Sft:;;ft where ¢ and ¢’ are closed.
O

In the following, we will suppose that all runtime contracts
k come from a type derivation constructed as in Theorem 4.

Definition 13 The semantics of a closed runtime pair (unique
upto remaining of cog names) for the saturation at i, noted
[{c, c’)'}]],,, is defined as [{c, c’)j}]}n = (c(ACT[))e) §
(€' (ACT[n))¢). We extend that definition for any runtime con-
tract with [k], = [(k)]..

Now we can compute the dependencies of a runtime
contract, and we can prove our first property: The analy-
sis performed at static time contains all the dependencies
of the initial runtime contract of the program (note that
0 (€)(ACT[)) 50 (') (ACT},) is the analysis performed at sta-
tic time, and o ({(c, ¢’ )?gr)ﬂn is the set of dependencies of
the initial runtime contract of the program):

Proposition 6 Let P = I C {T x; s} be a core ABS pro-
gramandlet ' + P : CCT, (c, c’) > U. Let also o be a sub-
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stitution satisfying U. Then, we have that [o ({c, ¢’ )}Z‘Ztﬁ )Nn €
o ((B) (ACT[n]) 50 (C/) (ACT[n]).

Proof The result is direct with an induction on ¢ and ¢’, and
with the fact that 4, § and || are monotone with respect to €.
O

‘We now prove the second property: All the dependencies
of a program at a given time is included in the dependencies
generated from its contract.

Proposition 7 Let suppose A &g cn : k and let A be the set
of dependencies of cn. Then, with [k], = (L, L), we have
ACL

Proof By Definition 2, if cn has a dependency (c, ¢’), then
there exist cn; = ob(o, a, {{|x = e.get; s}, q) € cn, cny =
fut(f, L) € cnand cn3 = ob(o’,d’, p’, q’) € cn such that
[ella+i) = ' (destiny) = f,{l' | s’} € p’ Uq  and a(cog) =
¢ and a’(cog) = . By runtime typing rules (TR- OBIECT),
(TR- PROCESS), (TR- SEQ) and (TR- GET- RUNTIME), the contract
of cny is

(f-(c, ) gy, @)oo

s/1(destiny) [ qu

we indeed know that the dependency in the contract is
toward ¢’ because of (TR-INvoc) or (TR- Process). Hence,
k = (f.(c, c/);cs,cgf(‘;eﬁj;—j.’;y) | K. It follows, with the
lam transformation rule (L- GAINVK), that (¢, ¢/) isin £. O

Proposition 8 Given two runtime contracts k and k' with
k > k', we have that [K'], € [Kk],.

Proof We refer to the rules (LS-*) of the later-stage rela-
tion defined in Fig. 27 and to the lam transformation rules
(L- *) defined in Fig. 16. The result is clear for the rules (LS-
GLOBAL), (LS- FuT), (LS- EMPTY), (LS- DELETE) and (LS- PLUS).
The result for the rule (LS-BmD) is a consequence of (L-
AINVK). The result for the rule (LS- AINVK) is a consequence
of the definition of =. The result for the rule (LS- SINVK)
is a consequence of the definition of = and (L- SInvk). The
result for the rule (LS- RSINVK) is a consequence of the def-
inition of = and (L- RSINVK). Finally, the result for the rule
(LS- DEPNULL) is a consequence of the definition of =. O

We can finally conclude by putting all these results
together.

Theorem 5 [fa program P has a deadlock at runtime, then
its abstract semantics saturated at n contains a circle.

Proof This property is a direct consequence of Proposi-
tions 6, 7 and 8. O
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Appendix 3: Properties of Sect. 6

The next theorem states the correctness of our model-
checking technique.

Below we write [[cnll] = ([{CDys CD,)starc D)’ if A Fg
cn @ (cpy,cp)) and n is the order of (cpy, €p))start-

Theorem 6 Let (CT,{T x ; s}, CCT) be a core ABS pro-
gram and cn be a configuration of its operational semantics.

1. Ifcn has acircularity, then a circularity occursin [[cnll[n);

2. ifen — cn’ and [[en' Q) has a circularity, then a circu-
larity is already present in [[cnll[n);

3. let1 be an injective renaming of cog names; [cn]lj,) has
a circularity if and only if [[1 (cn)1l|n) has a circularity.

Proof To demonstrate item 1, let

Tenlling = ([{€Pps P stard -

We prove that every dependencies occurring in cn is also
contained in one state of ([[(q:pn,qp;)stm]])b. By Defin-
ition 2, if cn has a dependency (c, ¢’), then it contains
cn” = ob(o, a, {l|x = e.get;s},q) fut(f, L), where f =
[ella+i), a(cog) = c and there is 0b(0’, @', {I'ls'}, q’) € cn
such that a’(cog) = ¢’ and I’(destiny) = f. By the typing
rules, the contractof cn’ is f.(c, ¢’)3cs, where, by typing rule
(T- CONFIGURATIONS), fis actually replaced by aClmr(s) — $
produced by a concurrent invoc configuration, or by the con-
tract pair (cp, c,,) corresponding to the method body.

Asaconsequence [[cn” [l = ([€[{c”&(c, )y e]er 1)’

Let [ob(o',a’, {l'ls"}, ¢"Nmy =
with [[e]l(a+1) = I'(destiny), then

([[Q:/H@m, @;n)c]c”]])b,

lob(o',a’, {I'ls"}, q") cn'Tim
= ([C€[{c"&(c, )y € Vel | € [CmyTh)erTer D).

In general, if k dependencies occur in a state cn, then
there is cn” C cn that collects all the tasks manifesting the
dependencies.

[en i)
= (T€1[(c] &1, €Dy ey Ty 1| €Ly s Vet T DD
I I eI &Lk )y Ve Loy
I Cliemes oy ) ey 1oy 1D

By definition of || composition in Sect. 5, the initial state
contains all the above pairs (c;, cl’.).

Let us prove the item 2. We show that the transition
cn—>cn’ does not produce new dependencies. That is, the
set of dependencies in the states of [cn']l, is equal to or
smaller than the set of dependencies in the states of [cn]l[,).

By Theorem 4, if A g cn: k, then A’ Fg cn’ : K,
with k > k’. We refer to the rules (LS- *) of the later-stage
relation defined in Fig. 27 and to the contract reduction rules

(RED- *) defined in Fig. 19. The result is clear for the rules (LS-
GLOBAL), (LS- FuT), (LS- EMPTY), (LS- DELETE) and (LS- PLUS).
The result for the rule (LS- BIND) is a consequence of (RED-
AINVK). The result for the rule (LS- AINVK) is a consequence
of the definition of =. The result for the rule (LS- SINVK) is
a consequence of the definition of = and (Rep- SINvk). The
result for the rule (LS- RSINVK) is a consequence of the defin-
ition of = and (RED- RSINVK). Finally, the result for the rule
(LS- DEPNULL) is a consequence of the definition of =.

Item 3 is obvious because circularities are preserved by
injective renamings of cog names. O
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