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(ii) supplement behavioral interfaces with quality of services descriptions that address virtualized resources
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Chapter 1

Introduction

According to the Envisage Description of Work, the Deliverable 2.2.1 contains the initial outcome towards
the following two goals:

(i) develop a formal language for modeling Service Level Agreement (SLA) documents,

(ii) supplement behavioral interfaces with quality of services descriptions that address virtualized resources
and deployment models.

SLAs define the contractual relationship between a cloud service customer and a provider. SLAs have
a global nature, include legal requirements under different jurisdictions, have no standardisation of their
format nor terminology, and do not abide by any precise definition. They are just a legal contract agreed
upon by two parties. In order to be able to evaluate cloud services with respect to a SLA within Envisage,
we need to have a way to specify SLA requirements in a formal way.

In Chapter [2] we present a formalisation of SLA, by means of the definition of suitable metrics which
arise from case studies and industrial experience. SLA’s metrics are formalized in terms of functions that
depend on the resources allocated to a service and on the time windows. Some of the metrics identified in
Chapterhave an intrinsic dynamic component which is not foreseeable to be verified statically (e.g. requests
per minute) because they do not depend solely on the code but also on external intervention (e.g. the final
service consumer) or on events in the environment (e.g. failures). Other metrics, on the contrary, can be
measured by analysing the code (e.g. response time or resource capacity).

The scientific work on this task T2.2 addresses the statically verifiable metrics. We propose extensions
of the behavioural interfaces studied in T2.1 (c.f. Deliverable 2.1) with information about response time and
resource consumption, and we develop techniques for formally assessing the relationships between interfaces
and virtualized services’ software.

In Chapter [3] we define behavioural interfaces for the time analysis by following a design by contract
methodology [17] for SLA-aware virtualized services. The methodology incorporates SLA requirements in
the interfaces at the application level to ensure the QoS expectations of clients. In particular, the presented
interface language specifies services, including their service contracts in form of response time guarantees —
thus enabling the measurement of the Response Time metric (see Chapter . The target language is an
extension of ABS that associates deadlines with method calls by means of clauses given in a style akin to
JML [10] and Fresco [20] In Chapter |3| we discuss how to apply deductive verification techniques to ensure
that all local deadlines are met during the execution of a virtualized service. At this stage the technique is
restricted to sequential computation and synchronous method calls.

In Chapter[d we define behavioural interfaces for the analysis of resources. Such interfaces take the form of
behavioural types, which highlight the relevant operations affecting resource usage, such as creations, releases
and concurrency. In Chapter [4] we address resources that are virtual machines; these resources are also called
Deployment Components in Deliverables of tasks T1.2 and T1.3. A type system allows us to formalize the
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association of behavioural types with programs and a translation function is used to derive inputs for a cost
analysis tool that is being developed by TUD — the CoFloCo tool [II] — or by a tool developed at UCM — the
PUBS tool [3]. The proof technique for demonstrating the correctness of the proposed approach for resource
analysis is similar to the one developed in [12] for deadlock analysis. In [12], reported in Chapter 4 of
Deliverable 2.1, we undertake a preliminary study of a type-based technique for analysing the deployment of
resources in ABS. In particular, the language of [12] supported the creation of resources and their migration
from one virtual machine to another. However, the migration resources is not of primary relevance in a cloud
computing environment, where resources, once created and allocated to a virtual machine, do not move.
Rather, in cloud computing, a full-fledged operation of release of resource is much more relevant and useful.
As a consequence of this remark, in Chapter 4] we deliver a revision of the types and the technique in [12].
It is also with to observe that the behavioural types defined in Chapter [4] can be integrated in the ABS
programs in a similar way as done in Chapter using clauses given in a JML style [I0]. That is, in principle,
the two techniques of Chapters[3|and [4 may be combined in order to support both time and resource analyses
at the same time.

The techniques developed in this Deliverable target extensions of ABS with operations for modelling time
and resources. The definition of these extensions is part of WP1 and is discussed in Deliverable of T1.2.

1.1 List of Papers Comprising Deliverable D2.2.1

This section lists all the papers that this deliverable comprises, indicates where they were published, and
explains how each paper is related to the main text of this deliverable. The full papers are made available in
the appendix of this deliverable and on the Envisage web site at the url http://www.envisage-project.eu/
(select “Dissemination”). Direct links are also provided for each paper listed below.

Paper 1: Meeting Deadlines, Elastically This paper presents a formal approach to modelling and ver-
ifying programs with response time guarantee, which is a non-functional property of virtualised services. We
extends JML-like interfaces with response time annotations to model services written in a sequential object-
oriented language. A Hoare-style proof system is developed to reason about the response time guarantees of
services.

The paper was written by Einar Broch Johnsen, Ka I Pun, Martin Steffen, S. Lizeth Tapia Tarifa, and
Ingrid Chieh Yu. The paper is accepted and will appear in the book “From Action Systems to Distributed
Systems: the Refinement Approach”.

Download the paper at http://www.ifi.uio.no/ “violet/papers/kaisa.pdf.

Paper 2: Static analysis of cloud elasticity This paper proposes a static analysis technique that
computes upper bounds of virtual machine usages in a ABS-like language with explicit acquire and release
operations of virtual machines. In particular, the language admits delegation of virtual machine releasing
operations (by passing them as arguments of invocations). The technique is modular and consists of (7)
a type system associating programs with behavioural types that records relevant information for resource
usage (creations, releases, and concurrent operations), (ii) a translation function that takes behavioral types
and returns cost equations, and (74) an automatic solver for the the cost equations.

The paper was written by Abel Garcia, Cosimo Laneve and Michael Lienhardt.

Download the paper at http://www.cs.unibo.it/"laneve/papers/VM.pdf.
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Chapter 2

Formalisation of SLA metrics

2.1 QoS Metrics Catalog

In the “Cloud Service Level Agreement Standardisation Guidelines” document [I3], cloud services are eval-
uated according to different Service Level Objectives, which are often associated with metrics. Metrics are
defined measurement methods and measurement scales, and are used to set the boundaries and margins of
errors that apply to the behaviour of the cloud service. Metrics may also be used at runtime for service
monitoring, balancing, or remediation, as well as at static time to evaluate the code. The analysis of the
metrics related to the code will be the focus of this chapter. In particular, we discuss metrics related to
performance, such as availability, response time, and capacity.

Availability. Availability is the property of being accessible and usable upon demand and can be evaluated
with respect to the following objectives. For every property, we give an informal description and we define
whether the associated metric verification can be done statically (by means of behavioural interfaces) or
dynamically (by means of runtime monitoring).

Associated metric

Property Description verification

refers to the time in a defined period the service
Level of uptime was available, over the total possible available | runtime monitoring
time, expressed as a percentage

refers to the number of requests processed by the
service without an error over the total number | runtime monitoring
of submitted requests, expressed as a percentage

Percentage of successful
requests

refers to the number of service provisioning re-
quests completed within a defined time period
over the total number of service provisioning re-
quests, expressed as a percentage

Percentage of timely
service provisioning
requests

runtime monitoring

Response Time. Response time is the time interval between a cloud service customer event and a cloud
service provider response event, and can be evaluated with respect to the following properties.
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Property

Description

Associated metric

verification

Average response time

refers to the statistical mean over a set of cloud
service response time observations for a particu-
lar form of request.

static via behavioural
interfaces

Maximum
time

response

refers to the maximum response time target for
a given particular form of request.

static via behavioural
interfaces

Capacity. Capacity is the maximum amount of some property of a cloud service and can be evaluated
with respect to the following properties.

Property

Description

Associated metric

verification

Number of simultaneous
connections

refers to the maximum number of separate con-
nections to the cloud service at one time.

runtime monitoring

Number of simultaneous

refers to a target for the maximum number of
separate cloud service customer users that can

runtime monitoring

cloud service users . . .
be using the cloud service at one time.

refers to the maximum amount of a given re-
source available to an instance of the cloud ser-
vice for a particular cloud service customer. Ex-
ample resources include data storage, memory,
number of CPU cores.

refers to the minimum number of specified re-
quests that can be processed by the cloud ser-
vice in a stated time period. (e.g. requests per
minute).

static via behavioural
interfaces

Maximum resource ca-
pacity

Service Throughput runtime monitoring

Next we identify the metrics that we want to formalize and to verify. Some of these metrics will be verified
statically, by applying one of the techniques described in Chapters[3]and [4] directly on the code. Other metrics
are not verifiable by inspecting the code, but monitoring it with ad-hoc code — this information has been
already added in the foregoing tables. Samples of the metrics are given below:

Statically verifiable metrics: — Awerage response time is used to specify facts such as “Service takes
180 secs. to serve a request”. A static analysis, as the one defined in Chapter [3| evaluates the
time needed by every possible execution path and return the maximum value.

— Consumed Resources is used to specify facts such as “A service uses 4 virtual machines”, and can
be used to compute an upper bound of the total amount of resources needed by a service. The
static analysis defined Chapter [4] allows one to estimate these upper bounds.

— Service data size is used to specify facts such as “The service transmits data which are 3 times the
size of the input data” which can be used to estimate the total bandwidth needed by the service.
This information can be returned by a static analysis computing the sizes of data manipulated by
a program.

Dynamically verifiable metrics:  — Service rate is used to specify facts such as “The service processes
2000 service requests in a day”. This is used to evaluate the conformance with respect to the
Service Throughput.

— Mean time between failures is used to specify facts such as “Service is unavailable every 300 days”,
which is used for evaluating the Level of Uptime.

— Recovery time is used to specify facts such as “Once the service is unavailable it takes 24 hours to
make it available again”.
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— Awvdailability for varying time regimes is used to specify facts such as “Service availability is 99%
from 9:00 to 12:00 and 60% at night and during week-ends”, which is used for evaluating the Level
of Uptime.

— Percentage of conversations completed within defined performance level is used to specify facts
such as “A conversation is completed 99% times within 3 min., 0.15% within 1 hour, 0,05% within
3 hours”, which is used for evaluating the Percentage of Timely Service Provisioning Requests.

2.2 Formalisation of metrics

A way for formalizing SLA metrics is to define service metric functions that aggregates a set of measurements
taken for a service over all its allocated resources and with respect to a time window. These functions are
either input to a monitoring platform that observes the deployment environment and reacts to changes or
statically verified by means of techniques as those developed in Chapters [3] and [4 Let us discuss the two
possibilities by means of two examples.

Let service availablity (s, T), where s is the service name and 7 is a time period, be

actual service capacity

a(s, ) = . -
contracted service capacity
Intuitively, a(s,7) gives the actual capability of s over a time period 7 compared to the contracted SLA.
The violation of a SLA is detected by periodically checking «(s,7) by means of a monitoring platform. For
example, assume that the contracted SLA constrains a query service to complete 10 queries per second and
take a monitoring window 7 = 5 minutes. This means that the expected contracted SLA is 10 x 60 x5 = 3000.
Suppose we measure the service s during the monitoring window 7 and we find a value of 2900. Then
a(s, ) = % = 0.966. If an acceptable violation (tolerance) range of 3% was negotiated with the customer,
this means that s is under-capacity because a(s,7) < 1—0.03. The definition of such service metrics is being
investigated by FRH and will be used in the FRH case study (c.f. WP4) and reported in Deliverable D2.3.
The second example of a formal metric is defined in the context of the ATB model (See Section
and is the best case delivery time of a data update to a mobile device. If a user has an average bandwidth of
B Mbit /s since a document D arrives into the cloud, the best case delivery time would be tgestcase = |D|/B,
assuming that the cloud processing time is 0. However, assuming that a user has given permission to the
search application to consume up to 20% of the mobile device capacity, the best case time becomes ¢ gegstcase =
|D|/(20% * B). The average bandwidth is a measure that can be statically estimated by annotating the code
with the size of data. Then, a behavioural interface can be extracted from the code with techniques similar
to the one defined in Section |4l and by analysing such behavioural interfaces against the Service data size
metric defined in Section one can estimate the average (and the maximum) bandwidth needed for the

user code.

2.3 Examples from the case studies

2.3.1 ATB model

The ATB model is an end-to-end model from cloud service to the mobile handset, developed in WPA4.
Figure illustrates one of the most relevant metric used for evaluating the model: the freshness of index
data on the mobile device. This metric provides time-related guarantees to mobile users on the interval
between the moment in which a document has appeared in the cloud (C1 in Figure to the moment in
which it has been indexed and made available on the mobile device (CN in Figure .

The evaluation of the time from a data update (C1) to updated on-device results (CN) is related to some
of the performance metrics of Section In particular, this evaluation depends on the waiting times in the
server (Response Time), the number of requests a server can receive (Service Throughput), and the
time to transfer the data to the devices depending on the amount of data in the response and the bandwidth



Envisage Deliverable D2.2.1 Formalization of Service Contracts and SLAs (Initial Report)

[01. PROCESS

[CZ. INDEX

C4. REQUEST/RECEIVE

i
m

‘[ C3. DISTRIBUTE

MOBILE APP BACKEND

Freshness Metric: Time bound from
Document Processing in Cloud (C1)

- to Document Searchable on Handset (CN)
—
— 4

Figure 2.1: High-Level SLA

available (Maximum Resource Capacity). It is worth to remark that the evaluation of the time from a
data update (C1) to updated on-device results (CN) must take into account the varying wireless bandwidth
the user has on his mobile device (see the tpestcase metric defined in Section . Additionally, given that
the cloud processing (C1) and indexing (C2) takes time, and the update might wait in a queue (either
constrained by cloud or mobile device network capacity) before being distributed from the cloud towards
mobile device (C3), there is likely to be additional and significant wait time since one will only send index
updates with more than a single document. When the index arrives on the device (C4), there might be
additional steps, e.g. merging index update (containing new document D with previous indices), before D
is finally searchable (CN).

2.3.2 ENG model

One of the functionalities of the ENG case study developed in WP4 is the scheduler of the ETICS Resource
Planning Module (RPM). This module has to schedule the execution of builds (e.g. of ant-based projects)
on a set of virtual machines provided by a hybrid cloud infrastructure. In turn, each build project consists
of a chain of complex tasks (e.g. javac, jar) that have to be scheduled in a predetermined given order. Each
build is assigned a priority, deferral time, and window. The data type of a build project is the following

module Build;

data Project = NullProject | Project(
String projectName, // parameters to configure the build
List<Param> parameters, // list of targets defined by this project
List<Target> targets, // default target to execute if no target is specified
Target defaultTarget,
List<Property> requirements,
Int priority,
Int queue,
List<Param> resourceRequirements,
Time deferralTime,
Duration deferralWindow

)

To cope with large sets of builds, that contain thousands of tasks, resource requirements and dependencies,
the RPM scheduler is designed as a concurrent system consisting of several schedulers each of which is given
a set of builds to schedule.

Given a number of tasks np, and being D, the amount of data required by each scheduler s, then the
following requirement must be verified by RPM: D, < np?. That is, the amount of data required by each
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RPM module must be kept below the square of the number of tasks being scheduled. The verification of this
requirement will be undertaken by runtime monitoring systems and is related to capacity in Section [2.1]

2.3.3 FRH Model

The Fredhopper Cloud Services offer search and targeting facilities on a large product database to e-commerce
companies (c.f. the FRH case study in WP4). These services are exposed at endpoints that are typically
implemented to accept connections over HT'TP. For example, one of the services offered by these endpoints
is the Fredhopper Query API, which allows users to query over their product catalog via full text searchlﬂ
and faceted navigationﬂ

A customer of FRH uses the Query API owns a single HI'TP endpoint for searching the catalog and other
operations. The Query API delivered to the customer is implemented by means of a number of resources
(virtual machines) that are managed by a load balancer. In the present modeling, each resource is launched
to serve one instance of Query API. That is, the sharing of resources among customers is disallowed.

When a customer signs an SLA contract with FRH, there is a clause in the contract that describes the
Performance properties of the Query API. The usual metrics in the document are:

Service availability «(s,7) detailed in Section measures the capacity and the availability of a service
at FRH.

Query per Second (QPS) that defines the number of completed queries per second for a customer. An
agreement is a bound on the expected QPS and forms the basis of many decisions (technical or legal)
thereafter. The agreement is used by the operations team to set up an environment for the customer
that includes the necessary resources described above. The agreement is additionally used by the
support team to manage communications with the customer during the lifetime of the service for the
customer. QPS is an instance of the Service Throughput of Section [2.1

Query API proctime is the duration from when Query API receives a query request until the time when
the result is completely written to the response or a failure is reported. This is an instance of the
Response Time. The FRH proctime is determined based on the size of the data managed by the
Fredhopper Query service. FRH always ensures a response from Query API. The following code defines
the behavioural interface of Query API:

interface QueryService {
@ ensures reply == True ; // the service always replies
@ within const x length(data) ; // within a time proportional to the input data

// Service definitions

"http://en.wikipedia.org/wiki/Full_text_search
Zhttp://en.wikipedia.org/wiki/Faceted_navigation
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Chapter 3

Behavioral Interfaces and Time

3.1 Overview

In this chapter, we address the formal verification of service contracts for virtualized services. We consider
a simple setting with an interface language which specifies services, including their service contracts in the
form of response time guarantees, and a simple object-oriented language, called pABS, for realizing these
services. pABS is a restricted version of ABS to specify resource-aware virtualized services [7} [16, 15]. To
support non-functional behavior, the language is based on a real-time semantics and associates deadlines with
method calls. Virtualization is captured by associating execution capacities to dynamically created objects.
Thus, the time required to execute a method activation depends not only on the actual parameters to the
method call, but also on the execution capacity of the called object. This execution capacity reflects the
processing power of virtual machine instances, which are created from within the service itself. We show in
this chapter how to apply deductive verification techniques to ensure that all local deadlines are met during
the execution of a virtualized service.

As an initial step, the work described in this chapter is restricted to sequential computation and syn-
chronous method calls. We discuss at the end of the chapter about how to extend the work to a concurrent
setting for ABS which is based on concurrent objects and asynchronous method calls.

3.2 Behavioral Interfaces with Response Time

To integrate service contracts and configuration parameters in service models, we aim at a design by contract
methodology [17] for SLA-aware virtualized services. The methodology incorporates SLA requirements in
the interfaces at the application-level to ensure the QoS expectations of clients. We consider an object-
oriented setting with service-level interfaces given in a style akin to JML [I0] and Fresco [20]: requires- and
ensures-clauses express each method’s functional pre- and postconditions. In addition, we further extend the
interfaces with response time annotations by introducing a within-clause associated with the method, which
summarises response time guarantees. The specification of methods in interfaces is illustrated in Figure [3.1]

Semantics

The semantics of pABS is stack-based, and is of the form: stack — stack’ where a task stack is either f e ¢
or idle, and both f and ¢ are stack frames. The semantics is rather standard, and is given by a set of
operational rules. We show here two of the most illustrative rules in Figure [3.2

Objects are created with a given capacity, which expresses the processing cycles available to the object
per time interval when executing its methods. The capacity of an object is the output of the evaluation
of the expression e (cf. Rule R-NEW-OBJECT). Time passes when a statement job(e) is executed on top
of the task stack, where job(e) captures an execution requiring e processing cycles. A job abstracts from
actual computations but may depend on state variables. The effect of executing this statement on an object

11
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interface Service {
@ requires ¢(z);
@ ensures ) (return);
@ within 5;
Int method(Int x);

class Server () {
@ requires x > 0;
© within 4;
Int method(Int x) { job(8); return x; }

ks

// Main block:

{ Service y = new Server() with 2,
Int z = y.method(5);
print("Final result: "); printIn(z);

Figure 3.1: Behavioral interface with response time.

(R-NEw-OBJECT)
fresh(o) els=r
classOf (o) = C  capacity(o) =r
{o]z = new C() with e;sr} o g
— {olxr =o0;sr} eq

(R-JoB)
¢ =d6{ol|sr}eq, %/) elo=1"
capacity(this) =r r >0
{oljob(e); sr} e q — ¢’

Figure 3.2: Structural operational semantics

with capacity r, is that the local deadline of every task on the stack decreases by r’'/r, where 7’ is the value
resulting from evaluating e. The auxiliary function § in Rule R-JOB specifies how time advances in the
system. It ensures the local deadline of all the subsequent tasks on the stack is updated.

A Proof System for Response Time Guarantees

Annotating non-functional properties in the interfaces, like response time on which we focus in this chapter,
allows our approach to support the notion of design-by-contract compositionality for such properties. This
together with Hoare-reasoning enables to compositionally verify virtualized services with respect to response
time. We show the rule for reasoning about method definitions in yABS:

(METHOD)
{¢ A deadline > e} sr {¢ A deadline > 0}

@requires ¢; @ensures ©»; @within e; T m (T 7) {1’ 2/;sr}

It is is formalized using a Hoare triple {¢} sr {1} with a standard partial correctness semantics: if the
execution of sr starts in a state satisfying the precondition ¢ and the execution terminates, the result will
be a state satisfying the postcondition . sr is a sequence of statements followed by a return-statement.

The premise of Rule METHOD assumes that the execution of sr starts in a state where the requires-
clause ¢ is satisfied and that the expected response time (deadline) is larger than expression e, where e is the
specified response time guarantee from the within-clause. When the execution of sr terminates, the result
will satisfy the ensures-clause 1) and the expected response time remains non-negative.

3.3 Conclusive Remarks

In this chapter, we discuss some initial ideas about applying program verification techniques to models of
virtualized services. In particular, we focus on response time aspects of service contracts by summarising this
type of non-functional properties of services in behavioral interfaces. This is formalized in gABS, which is a

12
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simple object-oriented language. We develop a proof system for the deductive verification of timing properties
to a setting of virtualized programs. The extension of service interfaces with response time guarantees, as
described earlier in this chapter, allows a compositional design-by-contract approach to service contracts
for virtualized systems. The details of behavioral interfaces with response time are further discussed in
Appendix [A]

As mentioned in the beginning of the chapter, the work is a preliminary step towards the development of
formal verification of service contracts for virtualized services. A natural extension of the current work is to
alleviate restrictions of sequential computations and synchronous method calls so as to support concurrency
and asynchronous method calls. One complication of this extension is to calculate the response time of
method calls, which in general includes the execution time of methods, and the waiting time for the execution
in a concurrent setting. A worst-case cost analysis 2] [I] provides upper bounds on resource consumption
of methods, including execution time as well as the length of a task queue, which provides an estimation
of the maximum response time for methods. Furthermore, incorporating the worst-case cost analysis into
the proof system allows replacing the job-statements used in the current work with code which reflects the
actual computations. The extension to concurrency enables us to build concurrency models of ABS, which
can be reasoned about with the automated deductive verification tool KeY-ABS that will be delivered as part
of WP3.

Another interesting challenge, which remains to be investigated, is how to incorporate the global re-
quirements which we find in many service-level agreements into a compositional proof system, such as the
maximum number of end users.

13



Chapter 4

Behavioral Interfaces and Resources

4.1 Overview

In this chapter we propose a static analysis technique that computes upper bounds of virtual machine usages
in a concurrent language with explicit creation and release operations of virtual machines. This language,
which is consistent with ABS, features the delegation to other (ad-hoc or third party) code of the releasing of
virtual machines (by passing them as arguments of invocations). Our technique is modular and consists of
(i) a type system associating programs with behavioural types that records relevant information for resource
usage (creations, releases, and concurrent operations), (ii) a translation function that takes behavioral types
and return cost equations, and (#7) an automatic solver for the the cost equations.

Our technique may be also applied to estimate (heap) memory consumptions in ABS as well as other
(object-oriented) programming languages.

4.2 Behavioural types with resource usages

The analysis of resource usage in a program is of great interest because an accurate assessment could reduce
allocation costs and energy consumption. These two criteria are even more important today, in modern
architectures like cloud computing or mobile devices, where resources, such as virtual machines, have hourly
or monthly rates. In facts, cloud computing introduces the concept of elasticity, namely the possibility for
virtual machines to scale according to the software needs. In order to support elasticity, cloud providers,
including Amazon, Google, and Microsoft Azure, (1) have pricing models that allow one to hire on demand
virtual machine instances and paying them for the time they are in use, and (2) have APIs that include
instructions for requesting and releasing virtual machine instances.

While it is relatively easy to estimate worst-case costs for sample codes, extrapolating this information
for fully real-life complex programs could be cumbersome and highly error-sensitive. While it is relatively
easy to estimate worst-case costs for sample codes, extrapolating this information for fully real-life complex
programs could be cumbersome and highly error-sensitive. The first attempts about the analysis of resource
usages dates back to Wegbreit’s pioneering work in 1975 [19], which develops a technique for deriving closed-
form expressions out of programs. The evaluation of these expressions would return upper-bound costs that
are parametrised by programs’ inputs.

Wegbreit’s contribution has two limitations: it addresses a simple functional languages and it does not
formalize the connection between the language and the closed-form expressions. A number of techniques
have been developed afterwards to cope with more expressive languages (see for instance [4, 09]) and to make
the connection between programs and closed-form expressions precise (see for instance [18, [14]).

To the best of our knowledge, current cost analysis techniques always address (concurrent) languages
featuring only addition of resources. When removal of resources is considered, it is used in a very constrained
way [6]. On the other hand, cloud computing elasticity requests powerful acquire operations as well as release
ones. Let us consider the following problem: given a pool of virtual machine instances and a program that
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acquires and releases these instances, what is the minimal cardinality of the pool guaranteeing the execution
of the program without interruptions caused by lack of virtual machines? Under the assumption that one
can acquire a virtual machine that has been previously released. A solution to this problem is useful both for
cloud providers and for cloud customers. For the formers, it represents the possibility to estimate in advance
the resources to allocate to a specific service. For the latter ones, it represents the possibility to pay ezactly
for the resources that are needed.

It is worth to notice that, without a full-fledged release operation, the cost of a concurrent program may
be modelled by simply aggregating the sets of operations that can occur in parallel, as in [5]. By full-fledged
release operation we mean that it is possible to delegate other (ad-hoc or third party) methods to release
resources (by passing them as arguments of invocations). For example, consider the following method

Int double release(VM x, VM y) {
release x; release vy;
return O ;

that takes two machines and simply releases them. The cost of this method depends on the machines in
input:

— it may be -2 when x and y are different and active;
— it may be -1 when x and y are equal and active — consider the invocation double_release(x,x);

— it may be 0 when the two machines have been already released.

In this case, one might over-approximate the cost of double_release to 0. However this leads to disregard
releases and makes the analysis (too) imprecise.

In order to compute the cost of methods like double_release in a precise way, we associate methods with
abstract descriptions that also carry the information about the state of the parameters and their identities.
These descriptions are called behavioural types and are formally connected to the programs by means of a
typing system. For example, the behavioural type of double_release is

i double release a3, 7v) {
| B [aw Ba, B — 08,y — B]; // release B, if B is active
| 7 [~ Ba,B s 0L,y Ov]; // release vy, if v is active

|} — {87}

where types ¥ and 4" carry an environment recording state of the names and their identity.

We therefore analyse behavioural type descriptions by translating them in codes that are adequate for
powerful off-the-shelf solvers that are developed at TUD — the CoFloCo tool [II] — or at UCM — the PUBS
tool [3]. As discussed in [§], in order to compute tight upper bounds, we have two functions per method:
a function computing the peak cost — i.e. the worst case cost for the method to complete — and a function
computing the net cost — i.e. the cost of the method after its completion. In fact, the functions that we
associate to a method are much more than two. The point is that, if a method has two arguments — see
double_release — and it is invoked with the two arguments equal then its cost cannot be computed by a
function taking two arguments, but it must be computed by a function with only one argument. This means
that, for every method and every partition of its arguments, we define two cost functions: one for the peak
cost and the other for the net cost. For example, in case of double_release, the output of our translation
is

double _releasepeax (a1, an, a3) =0 (a1 = 1]
double_releasepcak (o, oo, az) =0 [ag # L]
double _releasepcak (o, o, a3) = CREL(cr2) [an # 1]
double_releasepcak (o, o, a3) = CREL(cv2) + CREL(ax3) [ag # L]
double _releasenet (o, ag, a3) =0 [ag = L]
double _releasenct (o, oo, a3) = double_releasepeax (a1, a2, a3) [0 = 0]
double _releasenet (1, ag, ag) = CREL(v2) + CREL(ax3) [an = T]
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where the function CREL is defined as follows:

0 ot her W ise

It is worth to observe that we use the metaphor of cloud computing and virtual machines. Actually our
technique addresses every type of resources that retain operations of acquire (or creation) and release, such
as heap usages in concurrent object-oriented languages.
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Glossary

ABS Abstract Behavioural Specification language. An executable class-based, concurrent, object-oriented
modelling language based on Creol, created for the HATS project.

#ABS A subset of ABS, which is an object-oriented sequential lanugage with synchronous method calls.
It formalises service level agreements and service contracts.

Behavioural Interface The intended behaviour of programs such as functional behaviour and resource
consumption can be expressed in the behavioural interface. Formal specifications of program behaviour is
useful for precise documentation, for the generation of test cases and test oracles, for debugging, and for
formal program verification.

Behavioural Type Abstract specification of a program’s behaviour at runtime, used to perform specific
analyses on the program, like resource consumption analysis.

Cost of a program The amount of resources necessary for the (proper) execution of a program.

Elasticity Is the ability of a software component of dynamically acquiring and releasing resources, aiming
to minimize the difference between the resources reserved and the resources actually in use.

Full-fledged release The capacity of any software component to release a known resource independently
of whether this resource was acquired locally or by another part.

Peak Cost Is the (worst case) number of resources acquired at the same time during an execution.

PUBS Practical Upper Bounds Solver. A tool that automatically calculates (an upper bound of) the cost
of a program from a given set of equations describing the costs of its components.

Net Cost Is the (worst case) number of locally acquired resources that remain unreleased after the execu-
tion.
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1 Introduction

A cloud consists of virtual computers that are accessed remotely for data storage
and processing. The cloud is emerging as an economically interesting model for
enterprises of all sizes, due to an undeniable added value and compelling business
drivers [11]. One such driver is elasticity: businesses pay for computing resources
when needed, instead of provisioning in advance with huge upfront investments.
New resources such as processing power or memory can be added to a virtual
computer on the fly, or an additional virtual computer can be provided to the
client application. Going beyond shared storage, the main potential in cloud
computing lies in its scalable virtualized framework for data processing. If a
service uses cloud-based processing, its capacity can be automatically adjusted
when new users arrive. Another driver is agility: new services can be deployed on
the market quickly and flexibly at limited cost. This allows a service to handle
its users in a flexible manner without requiring initial investments in hardware
before the service can be launched.

Today, software is often designed while completely ignoring deployment or
based on very specific assumptions, e.g., the size of data structures, the amount
of random access memory, and the number of processors. For the software de-
veloper, cloud computing brings new challenges and opportunities [21]:

— Empowering the Designer. The elasticity of software executed in the
cloud gives designers far reaching control over the execution environment’s
resource parameters, e.g., the number and kind of processors, the amount
of memory and storage capacity, and the bandwidth. In principle, these
parameters can even be adjusted at runtime. The owner of a cloud service
can not only deploy and run software, but also control trade-offs between
the incurred cost and the delivered quality-of-service.

— Deployment Aspects at Design Time. The impact of cloud computing
on software design goes beyond scalability. Deployment decisions are tradi-
tionally made at the end of a software development process: the developers
first design the functionality of a service, then the required resources are
determined, and finally a service level agreement regulates the provisioning
of these resources. In cloud computing, this can have severe consequences:

* This work was done in the context of the EU project FP7-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu)



a program which does not scale usually requires extensive design changes
when scalability was not considered a priori.

To realize cloud computing’s potential, software must be designed for scalabil-
ity. This leads to a new software engineering challenge: how can the validation
of deployment decisions be pushed up to the modeling phase of the software
development chain without convoluting the design with deployment details?

The EU project Envisage addresses this challenge by extending a design by
contract approach to service-level agreements for resource-aware virtualized ser-
vices. The functionality is represented in a client layer. A provisioning layer
makes resources available to the client layer and determines how much memory,
processing power, and bandwidth can be used. A service level agreement (SLA)
is a legal document that clarifies what resources the provisioning layer should
make available to the client service, what they will cost, and the penalties for
breach of agreement. A typical SLA covers two different aspects: (i) the mutual
legal obligations and consequences in case of a breach of contract, which we call
the legal contract; (ii) the technical parameters and cost figures of the offered
services, which we call the service contract.

This paper discusses some initial ideas about applying program verification
techniques to models of virtualized services. We consider response time aspects
of service contracts and extend JML-like interfaces with response time annota-
tions. This is formalized using pABS; pABS is a restricted version of ABS [25],
an executable object-oriented modeling language used in the Envisage project
to specify resource-aware virtualized services [4,26,27]. In particular, the work
discussed in this paper is restricted to sequential computation and synchronous
method calls whereas ABS is based on concurrent objects and asynchronous
method calls. In future work, we hope to alleviate these restrictions.

Paper organization. Section 2 introduces service interfaces with response-
time annotations; Sect. 3 introduces the syntax of 4 ABS, the modeling language
considered in this paper; Sect. 4 demonstrates the approach on an example;
Sect. 5 develops a Hoare-style proof system for nABS; Sect. 6 discusses related
work; and Sect. 7 concludes the paper.

2 Service-Level Interfaces

Service level agreements express non-functional properties of services (service
contracts), and their associated penalties (legal contracts). Examples are high
water marks (e.g., number of users), system availability, and service response
time. Our focus is on service contract aspects of client-level SLAs, and on how
these can be integrated in models of virtualized services. Such an integration
allows a formal understanding of service contracts and of their relationship to
the performance metrics and configuration parameters of the deployed services.
Today, client-level SLAs do not allow the potential resource usage of a ser-
vice to be determined or adapted when unforeseen changes to resources occur.
This is because user-level SLAs are not explicitly related to actual performance
metrics and configuration parameters of the services. The integration of service



type Photo = Rat; // size of the file

interface PhotoService {
Q@requires V p:Photo - p € film && p < 4000;
Qensures reply == True;
@within 4xlength(film) + 10;
Bool request(List<Photo> film);

}

Fig. 1. A photo printing shop in uABS.

contracts and configuration parameters in service models enables the design of
resource-aware services which embody application-specific resource management
strategies [21].

The term design by contract was coined by Bertrand Meyer referring to the
contractual obligations that arise when objects invoke methods [33]: only if a
caller can ensure that certain behavioral conditions hold before the method is
activated (the precondition), it is ensured that the method results in a spec-
ified state when it completes (the postcondition). Design by contract enables
software to be organized as encapsulated services with interfaces specifying the
contract between the service and its clients. Clients can “program to interfaces”;
they can use a service without knowing its implementation. We aim at a design
by contract methodology for SLA-aware virtualized services, which incorporates
SLA requirements in the interfaces at the application-level to ensure the QoS
expectations of clients.

We consider an object-oriented setting with service-level interfaces given in
a style akin to JML [10] and Fresco [46]; requires- and ensures-clauses express
each method’s functional pre- and postconditions. In addition, a response time
guarantee is expressed in a within-clause associated with the method. The spec-
ification of methods in interfaces is illustrated in Figure 1.

3 A Kernel Language for Virtualized Computing

The pABS language supports modeling the deployment of objects on virtual
machines with different processing capacities, simplifying ABS [4,25,27]: concep-
tually, each object in pABS has a dedicated processor with a given processing
capacity. In contrast to ABS, execution in yABS is sequential and the communi-
cation between named objects is synchronous, which means that a method call
blocks the caller until the callee finishes its execution. Objects are dynamically
created instances of classes, and share a common thread of execution where at
most one task is active and the others are waiting to be executed on the task
stack. pABS is strongly typed: for well-typed programs, invoked methods are
understood by the called object. ©ABS includes the types Capacity, Cost, and
Duration which all extend Rat with an element infinite: Capacity captures the
processing capacity of virtual machines per time interval, Cost the processing
cost of executions, and Duration time intervals.



Syntactic categories Definitions

C,I,m in Names P = IF CL {T x; sr}
sin Stat'ement T ::= C | I | Capacity | Cost | Duration | Bool | Rat
« in Variables IF ::= interface I { Sg}
k m Capacity Sg ::= Spec T m (TT)
¢in Cost . Spec ::= @requires ¢; | @ensures ¢; | @within ¢;
d in Duration = —
b in Bool CL == classC (I'z) { M }
i in Rat M = Sg{Tw;sr}
sr ::= s;return e | return e
s = s;8 | x = rhs|job(e) | if e {s} else{s}
rhs == e | new C(€) with e | e.m(T)
e ::= this | capacity | deadline |z | v | e op e

Fig. 2. nABS syntax for the object level. Terms € and T denote possibly empty lists
over the corresponding syntactic categories.

Figure 2 presents the syntax of pABS. A program P consists of interface and
class definitions, and a main block {T x; sr}. Interfaces IF have a name I and
method signatures Sg. Classes CL have a name C', optional formal parameters
T %, and methods M. A method signature Sg has a list of specifications Spec,
a return type 7', a method name m, and formal parameters T of types T. In
specifications (see Sect. 2), assertions ¢ express properties of local variables in
an assertion language extending the expressions e with logical variables and
operators in a standard way; a reserved variable reply captures the method’s
return value. A method M has a signature Sg, a list of local variable declarations
7 of types T, and statements sr. Statements may access local variables and the
formal parameters of the class and the method.

Statements are standard, except job(e) which captures an execution requiring
e processing cycles. A job abstracts from actual computations but may depend
on state variables. Right-hand sides rhs include expressions e, object creation
new C (€) with e and synchronous method calls e.m(Z). Objects are created with
a given capacity, which expresses the processing cycles available to the object per
time interval when executing its methods. Method calls in pABS are blocking.
Expressions e include operations over declared variables z and values v. Among
values, b has type Bool, i has type Rat (e.g., 5/7), k has type Capacity, ¢ has
type Cost, and d has type Duration. Among binary operators op on expressions,
note that division ¢/k has type Duration. Expressions also includes the following
reserved read-only variables: this refers to the object identifier, capacity refers
to the processing speed (amount of resources per time interval) of the object,
and deadline refers to the local deadline of the current method. (We assume
that all programs are well-typed and include further functional expressions and
data types when needed in the example.)

Time. nABS has a dense time model, captured by the type Duration. The
language is not based on a (global) clock, instead each method activation has
an associated local counter deadline, which decreases when time passes. Time
passes when a statement job(e) is executed on top of the task stack. The effect of
executing this statement on an object with capacity k, is that the local deadline
of every task on the stack decreases by c¢/k, where c is the value resulting from
evaluating e. The initial value of the deadline counter stems from the service




[ FastEditimp
@...; Photo retouch(Photo p)

\
<<can realize>>
\
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<<interface>> \

PhotoService N .
@requires V p:Photo, p € film && p < 4000; < <<interface>>
@ensures reply == True; . FastEdit _
@within 4xlength(film) + 10; @requires p < 4000 && capacity>=250;

Bool request(List<Photo> film) @ergsu.res reply == p + p/10;
A @within 2;
7 Photo retouch(Photo p)

! <<uses>>

o <<interface>>
<<can realize>>
1

FastPrint
,‘ <<uses>> @requires p < 5000 && capacity>=300;
L @within 2;
PhotoSerylceImp Unit print(Photo p)
@...; Bool request(List<Photo> film) ﬂ
@...; Photo retouch(Photo p) L7
@...; Unit print(Photo p) <<can realize>>
= ,

[ FastPrintimp
@...; Unit print(Photo p)

Fig. 3. A class diagram for a photo printing shop

contract; thus, a local counter which becomes negative represents a breach of
the local service contract. For brevity, we omit the formal semantics.

4 Example: A Photo Printing Shop

Let us consider a photo shop service which retouches and prints photos. It is
cheaper for the photo shop service to retouch and print photos locally, but it
can only deal with low resolution photos in time. For larger photos, the photo
shop service relies on using a faster and more expensive laboratory in order to
guarantee that all processing deadlines are met successfully.

In this example, a film is represented as a list of photos and, for simplicity, a
photo by the size of the corresponding file. As shown in the class diagram of Fig-
ure 3, an interface PhotoService provides a single method request which handles
customer requests to the photo shop service. The interface is implemented by a
class PhotoServicelmp, which has methods retouch for retouching and print for
printing a photo, in addition to the request method of the interface. For faster
processing, two interfaces FastEdit and FastPrint, which also provide the meth-
ods retouch and print, may be used by PhotoServicelmp. The sequence diagram
in Figure 4 shows how a photo is first retouched, then printed. The tasks of re-
touching and printing are done locally if possible, otherwise they are forwarded
to and executed by objects with higher capacities.

The pABS model of the example (Figure 5) follows the design by contract
approach and provides a contract for every method declaration in an interface
and method definition in a class. These specifications are intended to guarantee
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Fig. 4. A sequence diagram for a photo printing shop

v
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that a request to a PhotoService object will not break the specified contract.
Looking closer at the contract for request, we see that the response time of a
request(film) call depends on the length of the film and assumes that the size of
every photo contained in the film is smaller than 4000. The implementation of
the request method is as follows: Take the first photo in the film (by applying
the function head(film)) and check if this photo is low resolution compared to
the capacity of the PhotoService object, represented by a size smaller than 500
and a capacity of at least 100, respectively. In this case, the retouch can be
done locally, otherwise retouch is done by an auxiliary FastEdit object. A similar
procedure applies to printing the retouched photos. Thus, photos of small sizes
are retouched and printed locally, while photos with bigger sizes are sent to be
retouched and printed externally. The implementations of the different methods
are abstractly captured using job statements.

5 Proof System

The proof system for pABS is formalized as Hoare triples [5,22] {¢} s {¢} with
a standard partial correctness semantics: if the execution of s starts in a state
satisfying the precondition ¢ and the execution terminates, the result will be a
state satisfying the postcondition . In this paper, we are particularly interested
in assertions about the deadline variables of method activations.

The reasoning rules for pABS are presented in Figure 6. Reasoning about
sequential composition, conditional, and assignment is standard, and captured



type Photo = Rat; // size of the file

interface FastEdit {
@requires p < 4000 && capacity>=250; @ensures reply == p + p/10; @within 2;
Photo retouch(Photo p);}

class FastEditlmp {
@requires p < 4000 && capacity>=200; @ensures reply == p + p/10; @within 2;
Photo retouch(Photo p) {job(200); return (p + p/10)}}

interface FastPrint {
Orequires p < 5000 && capacity>=300; @within 2;
Unit print(Photo p);}

class FastPrintlmp {
Orequires p < 5000 && capacity>=250; @within 2
Unit print(Photo p) {job(250);return unit}}

interface PhotoService {
@requires V p:Photo, p € film && p < 4000;
Q@ensures reply == True; @within 4xlength(film) + 10;
Bool request(List<Photo> film);}

class PhotoServicelmp(FastEdit edit,FastPrint print) {
@requires V p:Photo, p € film && p < 4000;
@ensures reply == True; @within 4xlength(film)+1;
Bool request(List<Photo> film) {

Photo p = 0;
if (film != Nil){
p = head(film);

if (p < 500 && capacity>=100){ p = this.retouch(p);}
else{p = edit.retouch(p);}
if ( p < 600 && capacity>=100){this.print(p);}
else{print.print(p);}
this.request(tail(film));}

else{ job(1);}

return (deadline >=0) }

@requires p < 500 && capacity>=100; @ensures reply == p + p/20; @within 1;
Photo retouch(Photo p) {job(100); return (p + p/20)}

@requires p < 600 && capacity()>=100; @within 1;
Unit print(Photo p) { job(100); return unit}}

Fig.5. A photo printing shop in uABS

by the rules CoMP, COND, and ASSICGN, respectively. Time passes when job(e)
is executed; job(e) has a duration e/cap on an object with capacity cap. The
assertion in Rule JOB ensures that this duration is included in the response
time after executing job(e). The subsumption rule allows to strengthen the pre-
condition and weaken the postcondition. For method definitions, the premise
of Rule METHOD assumes that the execution of sr starts in a state where the
requires-clause ¢ is satisfied and that the expected response time (deadline) is
larger than expression e, where e is the specified response time guarantee from
the within-clause. When the execution of sr terminates, the result will satisfy
the ensures-clause ¢ and the expected response time remains non-negative. For
method invocations in Rule CALL, the specification of the method is updated



(METHOD)
{¢ N deadline > e} sr {¢ A deadline > 0}

Q@requires ¢; Q@ensures v; @within e;
T m (T ) {T7 2'; sr}

(RETURN)
{¢} s;reply = e {¢}
{¢} s;return e {1}

(Cowmp) (Conb) (SUBSUMPTION)
{o}si{y'} {o nbysi{y} {¢'} s {v'}
{o}s2{v} {o A —b}sa{y} P=¢ Y =1

{¢}s1; s2{9} {¢} if b {s1} else {s2} {¢} {o} s {¢}
(AsSIGN) (JoB)

{plx— €]} v =€ {¢} {¢|deadline — deadline — (e/cap)]} job(e) {4}

(NEw) (CaLL)
fresh(e,, B) T = typeOf(e)
, fresh(e) ¢’ = ¢l — «a, deadline — deadline — B3]
¢ =9lz = ql ¢ = requires(T, m)[fp — €|
T = typeOf(x)

. ¢1 = ensures(T,m)[fp — €, reply — a]
¢’ = implements(C, T, e) o T .
{7 = = new C(2) with ¢ (4] @2 = within(T, m)[fp — €, deadline — f]

{¢' A p1 A g2} = em(e) {4}

Fig. 6. Proof system for pABS

by substituting the formal parameters fp by the input expressions €. The log-
ical variables for the return value of the method (reply) and of the expected
response time are renamed with fresh variables o and 3, respectively. To avoid
name clashes between scopes, we assume renaming of of other variables as nec-
essary. Object creation (in Rule NEW) is handled similarly to assignment. The
precondition ensures that the newly created object of a class C' with capacity e
correctly implements interface T', where T is the type of z. (Note that the class
instance may or may not implement an interface, depending on its capacity.)
If a method has a return value, expression e in the return statement will be
assigned to the logical variable reply in Rule RETURN, and can be handled by
the standard assignment axiom in Rule ASSIGN.

We show in Equation 3 the skeleton of the proof for the method request in
Figure 5 by using the proof system presented in Figure 6. Let sr refers to the
method body of request and s is sr without the return statement. In addition,

1 = reply == True, Y1 = ¥ A deadline > 0, (1)
¢ =Vp : Photo, p € film A p <4000, and e =4xlength(film)+ 10

We further assume that
o = reply == deadline > 0 A deadline > 0 (2)

be the postcondition of the assignment reply = deadline > 0.



By Rule METHOD, the assertions ¢ and deadline > e serve as the precondi-
tion of the whole method body sr, where ¢ and e are defined in the requires-
and within-clauses in the definition of the method request in Figure 5. The post-
condition of the method body consists of v, which is specified in ensures-clause
as reply == True, and the expression deadline > 0. Rule RETURN converts
the return statement into a statement where the expression deadline > 0 is
assigned to the logical variable reply. Then, by the assignment axiom ASSIGN,
and with the postcondition 9 assumed in Equation 2, the precondition 3 is
the postcondition with the logical variable reply substituted with the expression
deadline > 0, and thus ¥3 = True A deadline > 0. By using Rule SUBSUMPTION,
the postcondition 15 is weakened to the given postcondition ;. By Rule Comp,
the assertion 13 is also the postcondition of the statement s.

{13} reply = deadline > 0 {2} 1Yo = 1
{¢ A deadline > e} s {13} {3} reply = deadline > 0 {11}
{¢ A deadline > e} s;reply = deadline > 0 {¢1} (3)
{¢ A deadline > e} s;return(deadline > 0) {¢1}

@requires ¢; @ensures ); Owithin ¢;
Bool request(List(Photo) film){sr}

For brevity, the rest of the proof is omitted in the paper, which can be
completed by repeatedly applying the corresponding rules from the above proof
system.

6 Related Work

The work presented in this paper is related to the ABS modeling language and
its extension to virtualized computing on the cloud in the Envisage project. The
ABS [25] language and its extensions with time [9], deployment component and
resource-awareness [27] provide a formal basis for modeling virtualized comput-
ing. ABS has been used in two larger case studies addressing resource manage-
ment in the cloud by combining simulation techniques and cost analysis, but
not by means of deductive verification techniques; a model of the Montage case
study [13] is presented in [26] and compared to results from specialized simula-
tion tools and a large ABS model of the Fredhopper Replication Server has been
calibrated using COSTABS [3] (a cost analysis tool for ABS) and compared to
measurements on the deployed system in [4,12]. Related techniques for modeling
deployment may be found in an extension of VDM++ for embedded real-time
systems [45]. In this extension, static architectures are explicitly modeled us-
ing CPUs and buses. The approach uses fixed resources targeting the embedded
domain. Whereas ABS has been designed to support compositional verification
based on traces [14], neither ABS nor VDM++ supports deductive verification
of non-functional properties today.



Assertional proof systems addressing timed properties, and in particular up-
per bounds on execution times of systems, have been developed, the earliest
example perhaps being [41]. Another early example to reason about real-time is
Nielson’s extension of classical Hoare-style reasoning to verify timed properties
of a given program’s execution [36,37]. Soundness and (relative) completeness
for of the proof rules of a simple while-language are shown. Shaw [40] presents
Hoare logic rules to reason about the passage of time, in particular to obtain up-
per and lower bounds on the execution times of sequential, but also of concurrent
programs.

Hooman employs assertional reasoning and Hoare logic [23] to reason about
concurrent programs, covering different communication and synchronization pat-
terns, including shared-variable concurrency and message passing using asyn-
chronous channels. The logic introduces a dense time domain (i.e., the non-
negative reals, including co) and assumes conceptually, for the purpose of reason-
ing, a single, global clock. The language for which the proof system is developed,
is a small calculus, focussing on time and concurrency, where a delay-statement
can be used to let time pass. This is comparable to the job-expression in our
paper, but directly associates a duration with the job. In contrast, we associate
a cost with the job, and the duration depends on the execution capacity of the
deployed object. Timed reasoning using Dijkstra’s weakest-precondition formula-
tion of Hoare logic can be found in [19]. Another classical assertional formalism,
Lamport’s temporal logic of actions TLA [1,32], has likewise been extended with
the ability to reason about time [31]. Similar to the presentation here, the log-
ical systems are generally given by a set of derivation rules, given in a classical
pre-/post-condition style. Thus, the approaches, in the style of Hoare-reasoning,
are compositional in that timing information for composed programs, includ-
ing procedure calls, is derived from that of more basic statements. While being
structural in allowing syntax-directed reasoning, these formalisms do not explore
a notion of timed interfaces as part of the programming calculus. Thus they do
not support the notion of design-by-contract compositionality for non-functional
properties that has been suggested in this paper.

Besides the theoretical development of proof systems for real-time proper-
ties, corresponding reasoning support has also been implemented within theorem
provers and proof-assistants, for instance for PVS in [15] (using the duration cal-
culus), and HOL [18]. An interesting approach for compositional reasoning about
timed system is developed in [16]. As its logical foundation, the methodology
uses TRIO [17], a general-purpose specification language based on first-order
linear temporal logic. In addition, TRIO supports object-oriented structuring
mechanisms such as classes and interfaces, inheritance, and encapsulation. To
reason about open systems, i.e., to support modular or compositional reasoning,
the methodology is based on a rely/guarantee formalization and corresponding
proof rules are implemented within PVS. Similarly, a rely /guarantee approach for
compositional verification in linear-time temporal logics is developed in [28,44].
A further compositional approach for the verification of real-time systems is
reported in [24], but without making use of a rely/guarantee framework.

10



Refinement-based frameworks are another successful design methodology for
complex system, orthogonal to compositional approaches. Aiming at a correct-
by-construction methodology, their formal underpinning often rests on various
refinement calculi [6, 34, 35]. Refinement-based frameworks have also been de-
veloped for timed systems. In particular, Kaisa Sere and her co-authors [8] ex-
tended the well-known formal modeling, verification, and refinement framework
Event-B [2] with a notion of time, resulting in a formal transformational de-
sign approach where the proof-obligations resulting from the timing part in the
refinement steps are captured by timed automata and verified by the Uppaal
tool [7].

The Java modeling language JML [10] is a well-known interface specifica-
tion language for Java which was used as the basis for the interface specifica-
tion of service contracts in our paper. Extensions of JML have been proposed
to capture timed properties and to support component-based reasoning about
temporal properties [29,30]. These extensions have been used to modularly ver-
ify so-called performance correctness [42,43]). For this purpose, JML’s interface
specification language is extended with a special duration-clause, to express
timing constraints. The JML-based treatment of time is abstract insofar as it
formalizes the temporal behavior of programs in terms of abstract “JVM cycles”.
Targeting specifically safety critical systems programmed in SCJ (Safety-critical
Java), SafeJML [20] re-interprets the duration-clause to mean the worst-case ex-
ecution time of methods concretely in terms of absolute time units. For a specific
hardware implementation for the JVM for real-time applications, [39] presents
a different WCET analysis [38] for Java. The approach does not use full-fledged
logical reasoning or theorem proving, but is a static analysis based on integer
linear programming and works at the byte-code level. We are not aware of work
relating real-time proof systems to virtualized software, as addressed in this

paper.

7 Concluding Remarks

Cloud computing provides an elastic but metered execution environment for
virtualized services. Services pay for the resources they lease on the cloud, and
new resources can be elastically added as required to offer the service to a varying
number of end users at an appropriate service quality. In order to make use of
the elasticity of the cloud, the services need to be scalable. A service which does
not scale well may require a complete redesign of its business code. A virtualized
service is able to adapt to the elasticity provided by the cloud. We believe that the
deployment strategy of virtualized services and the assessment of their scalability
should form an integral part of the service design phase, and not be assessed a
posteriori after the development of the business code as it is done today. The
design of virtualized services provides new challenges for software engineering
and formal methods.

Virtualization empowers the designer by providing far-reaching control over
the resource parameters of the execution environment. By incorporating a re-
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source management strategy which fully exploits the elasticity of the cloud into
the service, resource-aware virtualized services are able to balance the service
contracts that they offer to their end users, to the metered cost of deploying
the services. For resource-aware virtualized services, the integration of resource
management policies in the design of the service at an early development stage
seems even more important.

In this paper, we pursue a line of research addressing the formal verification
of service contracts for virtualized services. We have considered a very simple
setting with an interface language which specifies services, including their service
contracts in the form of response time guarantees, and a simple object-oriented
language for realizing these services. To support non-functional behavior, the lan-
guage is based on a real-time semantics and associates deadlines with method
calls. Virtualization is captured by the fact that objects are dynamically cre-
ated with associated execution capacities. Thus, the time required to execute a
method activation depends not only on the actual parameters to the method call,
but also on the execution capacity of the called object. This execution capac-
ity reflects the processing power of virtual machine instances, which are created
from within the service itself. The objective of the proof system proposed in
this paper is to apply deductive verification techniques to ensure that all local
deadlines are met during the execution of a virtualized service. This proof sys-
tem builds on previous work for real-time systems, and recasts the deductive
verification of timing properties to a setting of virtualized programs. The ex-
tension of service interfaces with response-time guarantees, as proposed in this
paper, allows a compositional design-by-contract approach to service contracts
for virtualized systems.

Several challenges to the proposed approach are left for future work, in par-
ticular the extension to concurrency and asynchronous method calls, but also
the incorporation of code which reflects the actual computations (replacing the
job-statements of this paper). In this case, the abstraction to job-statements
could be done by incorporating a worst-case cost analysis [3] into the proof sys-
tem. Another interesting challenge, which remains to be investigated, is how to
incorporate the global requirements which we find in many service-level agree-
ments into a compositional proof system, such as the maximum number of end
users.
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Abstract

We propose a static analysis technique that computes upper bounds
of virtual machine usages in a concurrent language with explicit acquire
and release operations of virtual machines. In our language it is possible
to delegate other (ad-hoc or third party) codes to release virtual machines
(by passing them as arguments of invocations). Our technique is modular
and consists of (i) a type system associating programs with behavioural
types that records relevant informations for resource usage (creations,
releases, and concurrent operations), (i) a translation function that takes
behavioral types and return cost equations, and (#i7) an automatic off-the-
shelf solver for the the cost equations.

We have experimentally evaluated our technique using a cost analysis
solver and we report some results. The technique in this paper may be
also applied to estimate (heap) memory consumptions in object-oriented
languages.

1 Introduction

The analysis of resource usage in a program is of great interest because an accu-
rate assessment could reduce energy consumption and allocation costs. These
two criteria are even more important today, in modern architectures like mobile
devices or cloud computing, where resources, such as virtual machines, have
hourly or monthly rates. In facts, cloud computing introduces the concept of
elasticity, namely the possibility for virtual machines to scale according to the
software needs. In order to support elasticity, cloud providers, including Ama-
zon, Google, and Microsoft Azure, (1) have pricing models that allow one to
hire on demand virtual machine instances and paying them for the time they are
in use, and (2) have APIs that include instructions for requesting and releasing
virtual machine instances.

While it is relatively easy to estimate worst-case costs for sample codes,
extrapolating this information for fully real-life complex programs could be

*Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized Ser-
vices.



cumbersome and highly error-sensitive. The first attempts about the analy-
sis of resource usages dates back to Wegbreit’s pioneering work in 1975 [20],
which develops a technique for deriving closed-form expressions out of pro-
grams. The evaluation of these expressions would return upper-bound costs
that are parametrised by programs’ inputs.

Wegbreit’s contribution has two limitations: it addresses a simple functional
languages and it does not formalize the connection between the language and
the closed-form expressions. A number of techniques have been developed af-
terwards to cope with more expressive languages (see for instance [3, 9]) and
to make the connection between programs and closed-form expressions precise
(see for instance [19, 13]). We postpone the discussion of the related work in
the literature in Section 8.

To the best of our knowledge, current cost analysis techniques always address
(concurrent) languages featuring only addition of resources. When removal of
resources is considered, it is used in a very constrained way [4]. On the other
hand, cloud computing elasticity requests powerful acquire operations as well
as release ones. Let us consider the following problem: given a pool of virtual
machine instances and a program that acquires and releases these instances,
what is the minimal cardinality of the pool guaranteeing the execution of the
program without interruptions caused by lack of virtual machines? Under the
assumption that one can acquire a virtual machine that has been previously
released. A solution to this problem is useful both for cloud providers and for
cloud customers. For the formers, it represents the possibility to estimate in
advance the resources to allocate to a specific service. For the latter ones, it
represents the possibility to pay exactly for the resources that are needed.

It is worth to notice that, without a full-fledged release operation, the cost
of a concurrent program may be modeled by simply aggregating the sets of
operations that can occur in parallel, as in [5]. By full-fledged release operation
we mean that it is possible to delegate other (ad-hoc or third party) methods to
release resources (by passing them as arguments of invocations). For example,
consider the following method

Int double_release(VM x, VM y) {
release x; release y;
return O ;

}

that takes two machines and simply releases them. The cost of this method
depends on the machines in input:

— it may be -2 when x and y are different and active;

— it may be -1 when x and y are equal and active — consider the invocation
double_release(x,x);

— it may be 0 when the two machines have been already released.

In this case, one might over-approximate the cost of double_release to O.
However this leads to disregard releases and makes the analysis (too) imprecise.



In order to compute the cost of methods like double_release in a precise
way, in Section 4 we associate methods with abstract descriptions that also carry
informations about parameter states and their identities. These descriptions are
called behavioural types and are formally connected to the programs by means
of a typing system.

In Section 5 we therefore analyse behavioural type descriptions by translating
them in codes that are adequate for a powerful off-the-shelf solver — the CoFloCo
solver [10]. As discussed in [7], in order to compute tight upper bounds, we have
two functions per method: a function computing the peak cost — i.e. the worst
case cost for the method to complete — and a function computing the net cost
— i.e. the cost of the method after its completion. In facts, the functions that
we associate to a method are much more than two. The point is that, if a
method has two arguments — see double_release — and it is invoked with the
two arguments equal then its cost cannot be computed by function taking two
arguments, but it must be computed by a function with one argument only.
This means that, for every method and every partition of its arguments, we
define two cost functions: one for the peak cost and the other for the net cost.

In Section 7 we have we report the results of some of our experimental
evaluation. In particular, we compute the cost of double_release and two
implementation of the factorial functions by means of CoFloCo.

Our technique target a simple concurrent language with explicit operations
of creation and release of resources. The language is defined in Section 2 and we
discuss restriction that ease the development of our technique in Section 3. We
discuss how these restriction can be removed and outline our correctness proof
in Section 6. We deliver concluding remarks in Section 9.

In this paper we use the metaphor of cloud computing and virtual machines.
We observe that our technique actually addresses every type of resources that
retain operations of acquire (or creation) and release, such as heap usages in
concurrent object-oriented languages.

2 The language vml

The syntax and the semantics of vml are defined in the following two subsections;
the third subsection discusses a number of examples.

Syntax. A vml program is a sequence of method definitions T m(T x){ F y ; s},
ranged over by M, plus a main body {F z ; s'}. In vml we distinguish between
simple types T which are either integers Int or virtual machines vm, and types F,
which also include future types Fut<int>. These future types let asynchronous
method invocations be typed (see below). The notation T = denotes any finite
sequence of variable declaration T x. The elements of the sequence are separated
by commas. When we write T" x ; we mean a sequence T7 1 ; -+ ; Tp T ;
when the sequence is not empty; we mean the empty sequence otherwise.

The syntax of statements s, expressions with side-effects z and expressions
e of vml is defined by the following grammar:




=z | ife{s}else{s} | returne | s; s | release(e)
e | elm(e) | e.get | new vm
this | se | nse

I8
[Tt

A (pure) expression e is either an integer constant p, or a variable z, or
the reserved identifier this, or the standard arithmetic, relational and boolean
operations. Since our analysis will be parametric with respect to the inputs,
we will parse expressions in a careful way. In particular we split them into size
erpressions se, which are expressions in presburger arithmetics, and non-size
expressions nse, which are the other type of expressions. The syntax of size and
non-size expressions is the following:

nse p | z | nse <nse | nseandnse | nseornse | nse+nse | nse— nse
nse X nse | nse/nse

ve | ve<wve | seandse | seor se

p | z | vetve | pxwve

integer constants

se
ve

p

An expression z may change the state of the system. In particular, it may be
an asynchronous method invocation that does not suspend caller’s execution:
when the value computed by the invocation is needed then the caller performs a
get operation. Operations get are not blocking: if the value needed by a process
is not available then an awaiting process is scheduled and executed. Expressions
z also include new vm that creates a new virtual machine. Operations taking
place on different virtual machines may execute in parallel, while operations in
the same virtual machine interleave their evaluation.

A statement s may be either one of the standard operations of an imperative
language or the release operation. The operation release(x) marks the virtual
machine z for disposal. Method invocations performed by a released machine,
as well as, creations and releases of machines, always return erroneous values.

In the whole paper, we assume that sequences of declarations 7 x and
method declarations M do not contain duplicate names. We also assume that
that return statements have no continuation.

Semantics. vml semantics is defined as a transition relation between config-
urations, noted cn and defined below

en = e | fut(f,v) | vm(o,a,p,q) | invoc(o, f,m,T) | cn cn
p == {l|s} | idle

g == €| {lls} | aq

v u= integer constants | o | f | L | T | err

Il uw= [ ,z—uv,--]

Configurations are sets of elements — therefore we identify configurations that
are equal up-to associativity and commutativity — and are denoted by the jux-
taposition of the elements cn cn; the empty configuration is denoted by €. The
transition relation uses two infinite sets of names: vm names, ranged over by o,
o', --+ and future names, ranged over by f, f’, ---. We assume there are in-

finitely many vin names and future names. The function fresh() returns either



a fresh vm name or a fresh future name; the context will disambiguate between
the twos. We also use [ to range over maps from variables to values. The map
[ also binds the special name destiny to a future value.

Runtime values v are either integers or vin and future names, or two distinct
special values denoting a machine alive (T) or dead (L), or an erroneous value
err.

The elements of configurations are

— wirtual machines vm(o, a,p,q) where o is a vin name; a is either T or L
according to the machine is alive or dead, p is either {I | £}, representing a
terminated statement, or is the active process {l | s}, where [ returns the
values of local variables and s is the continuation; ¢ is a set of processes
to evaluate.

— future binders fut(f,v). When the value v is L then the value of f has
still to be computed.

— method invocations invoc(o, f,m,D).

The following auxiliary functions are used in the semantic rules (we assume a
fixed vml program):

— dom(!) returns the domain of .

— [z +— v] is the function such that ({[z — v])(z) = v and (I{[x — v])(y) =
l(y), when y # x.

— [e]; returns the value of e, possibly retrieving the values of the variables
that are stored either in [. Operations in vml are also defined on the value
err: when one of the arguments is err, every operation returns err. [€];
returns the tuple of values of e When e is a future name, the function
[-]i is the identity. Namely [f]; = f.

~ bind(o, f,m,v) = {[destiny — f,Z > 7] | ${°/¢nis}}, where T (T x){T" z;
belongs to the program.

The transition relation rules are collected in Figure 1. They define transitions
of virtual machines vm(o, a,p, ¢) according to the shape of the statement in p.
We focus on rules concerning the method invocations and the management of
virtual machines in vml, since the other ones are standard.

(New-VM) creates a virtual machine and makes it active. If the virtual ma-
chine executing new vm has been already released, then the operation returns
an error — rule (New-VM-Err). A virtual machine is disposed by means of the
operation release(z): this amounts to update its state a to L.

Rule (Async-Cawr) defines asynchronous method invocation = e'm(€). This
rule creates a fresh future name that is assigned to the identifier . The evalua-
tion of the called method is then transferred to the callee virtual machine — rule
(Binp-MTp) — and the caller progresses without waiting for callee’s termination.
If the caller has been already disposed then the invocation returns err — rule



(AssIGN) (READ-FUT)

xz € dom(l) v =[e]; f=1leli v#L1
vm(o,a,{lJx =¢;s},q) vm(o,a,{ITx = e.get;s}, q) fut(f,v)
— vm(o,a, {l[x — v] | s}, q) — vm(o,a,{l| z = v;s},q) ful(f,v)
(AsyNc-CALL) (BIND-MTD)
o =[eli =[] f=tresh() {1 ] 5} = bind(o, f,n,7)
—vm(o, T, {l| == f;s},q) invoc(o’, f,m, V) fut(f, L) —vm(o, T,p,qU{l | s})
(CoND-TRUE) (COND-FALSE)
lel: #0 le]l: =0 or [e];=err
m(o,a,{l|if e then {s1} else {s2};s},q) vm(o,a,{l | if e then {s1} else {s2};s},q)
— vm(o,a,{l| s1;s},q) — vm(o,a,{l | s2;5},q)
(RELEASE-VM) (RELEASE-VM-SELF)
o' =[e]y o#o o= [els
vm(o, T,{l [ release(e); s}, q) vm(d’,a’,p’,q") vm(o, a, {l | release(e); s}, q)
— vm(o, T,{l | s},q) vm(o’,L,p’,q") — vm(o, L, {l| s},q)
(NEW-VM) (RETURN)
o' = fresh(VM) v=[e]; f=I(destiny)
vm(o, T,{l [ = new vm; s}, q) vm(o, a,{l | return e}, q) fut(f, 1)
—om(o, T,{l |z =0';s},q) vm(c’, T,{2le}, @) — vm(o,a,{l| €}, q) fullf,v)
(ACTIVATE) <AC; ILAT[Z]SET)
vmlo.a V1300 1D o a U Ta = e.gets s}, qU T T 1) Jull], 1)

— vmlo,a,{L| s}, q) — vm(o,a,{l| s},qU{l' | z = e.get; s}) fut(f, L)

(AsyNc-CALL-ERR)
f = fresh()
vm(o, L, {{ [z =e'm(e); s}, q)
—vm(o, L {l|z = f;s},q) fut(f, err)

(NEW-VM-ERR)
vm(o, L, {l | x = new vm; s}, q)
— vm(o, L, {l[z — err]; s}, q)

(RELEASE-BoT)
vm(o, L, {l | release(e); s}, q)
—wvm(o, L,{l]s},q)

(BIND-MTD-ERR) (BIND-PARTIAL) (CONTEXT)
vm(o, L, p, q) tnvoc(o, f,m, ) fut(f, L) invoc(err, f,m,v) fut(f,L) cn — en’
— vm(o, L, p,q) fut(f,err) — fut(f,err) cnen” — en” en”

Figure 1: Semantics of vml.

(Async-CaLi-Err) The invocation binds err to the future name when either the
caller has been released — rule (Async-CaLr-Err) — or the callee machine has been
disposed — rule (Bino-MTp-Err). Rule (Reap-Fur) allows the caller to retrieve the
value returned by the callee.

The initial configuration of a vml program with main function {F x ; s} is

ob(start, T,{[destiny — fstart] | s}, D)

where start is a special virtual machine and fg4+ is a fresh future name. As
usual, let —* be the reflexive and transitive closure of —.

Examples. In order to illustrate the features of vml we discuss few examples.
For every example we also examine the type of output we expect from our cost
analysis. We begin with two methods computing the factorial function:



Int fact(Int n){
Fut<Int> x ; Int m ;
if (n==0) { return 1 ; }
else { x = this!fact(n-1) ; m = x.get ; return m*n ; }
}
Int costly_fact(Int n){
Fut<Int> x ; Int m ; VM z ;
if (n==0) { return 1 ; }
else { z = new VM; x = z!fact(n-1) ; m = x.get ; release z; return m*n; }

}

The method fact is the standard definition of factorial with the recursive in-
vocation fact(n-1) always performed on the same machine. That is, to com-
pute fact(n) one needs one virtual machine. On the contrary, the method
costly_fact performs the recursive invocation on a new virtual machine z.
The caller waits for its result, let it be m, then it releases the machine z and
delivers the value m*n. Notice that every vm creation occurs before any release
operation. As a consequence, costly_fact will create as many virtual ma-
chines as the argument n. That is, in order to be executed, costly_fact needs
n virtual machines (in addition to the one where the method is performed).

The analysis of costly_fact has been easy because the release operation
carries a locally created virtual machine. Yet, in vml, release may also apply
to method arguments and this is the major source of difficulties for the analysis.
Consider for instance the following code:

Int first_method() {
VM x ; Fut<Int> f ; Fut<Int> g ;
X = new vm;
f = x'unknown_method(this) ; f.get ;
g = x!second_method() ; g.get ;
release x ;
return 0 ; }

A rough analysis might indicate that first_method creates a virtual machine,
invokes two methods on that machine, and then releases it. However, this anal-
ysis is wrong when unknown method releases its argument(s). For instance, if
unknown method releases the argument this, the invocation of second method
and the statement release x will not be executed. In order to let the cost
analysis be compositional, we record the effects of methods on virtual machines
in the arguments and we compute the cost analysis accordingly. One might
argue that compositionality might be achieved, in this case, by admitting an
over- or under-approximate output instead of recording method’s effects on ar-
guments. Actually these approximations are not reasonable if one does not
consider releases on the arguments:

— an over-approximation might return very imprecise results. Consider, for
instance the case when the invocation x!unknown method(this) releases
the two arguments x and this. The over-approximation will compute the
cost of second_method, even if it will never be called. This means that the



analysis might output a very large cost because second_method creates a
large number of virtual machines.

— an under-approximation might return erroneous results, as it will consider
that release x will be executed (corresponding to a -1 cost) while we
actually have a null cost.

3 Problems, solutions and restrictions

In this section, we present the two new important concepts linked to resource
removal, their properties, and which restrictions we put on input programs
to keep our analysis from being too complex (indeed, most of the restriction
presented here can be relaxed by increasing the complexity of our analysis; this
will be discussed in Section 9).

Method’s effects. As discussed in the foregoing example first_method, in
order to augment the precision of the cost analysis and to avoid erroneous out-
puts, our analysis records the effects that a method has on its interface. To
keep the formalism as simple as possible, we restrict these effects to be a set
of virtual machines in method’s interface, which is noted R in Section 4. This
simplicity — R is a set — has a price: the virtual machines in the interface of a
method that will be released in every execution path is always the same. That
is, a method as

Int ugly_release(VM x1, ... , VM xp) {
VM x ; Fut<Int> f ;
x = new vm ; f = x!release_all(xy, ..., X,) ; release x ; f.get ;

return 0; }

cannot be handled by our analysis (release all(xy, ..., x,) disposes the
virtual machines x1, ..., x,). In facts, since release x is performed be-
fore the synchronisation with release_all — statement f.get — the method
release_all can be stopped at any point of its execution, thus making the
set of released virtual machines non-determinate. In order to ban methods like
ugly_release, we constrain definitions as follows:

1. every method invocation is synchronized within caller’s body. In this way
every effect of a method is computed before its termination.

2. it is not possible to release a machine that is executing a method.
Virtual machines’ identity. Removals of virtual machines may have side

effects on other machines. The following method double_release illustrates
the point:

Int double_release(VM x, VM y) {
release x; release y;
return O ;
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This method takes two machines and simply releases them. This means that,
when the virtual machines in input are active and different, the cost of double release
is =2. In fact, this is the case of the following method user1:

Int user1() { Int user2() {
VM x ; VM y ; Fut<Int> f ; VM x ; Fut<Int> f ;
X = new vm ; y = new vm; VM x = new vm ;
f = this!double_release(x, y); f = this!double_release(x, x) ;
f.get ; return O ; } f.get ; return O ; }

An easy computation returns a (net) cost of 0 for userl. However, the cost of
double release is not always -2. For example, consider the user2 above. This
method creates one virtual machine (cost +1) and invokes double release with
a duplicated argument: in this case the cost of double release is -1, not -2,
(and the cost of user2 is 0). Said more explicitly, the cost of a method depends
on the identity of its arguments, not only on their states (alive or dead).

It is also worth to notice that the identity of arguments has impact on
method’s effects. Consider the following code snippet:

VM x = new vm; VM y = new vm;
x!double_release(x,y);

This code creates two new virtual machines and releases them by invoking
double_release. The awkward point is that the callee machine coincides with
the first argument. Therefore double_release will fail to release the second
argument y.

In order to comply with these issue we annotate every operation that may
have side effects with identity sharing informations, noted © in Section 4 — and
generate a different cost function for every ©. For instance, we have two (net)
cost functions for the double_release method:

1. one where we consider x and y to be different: here its cost will be -2
when the two machines are alive,

2. one where se consider the two parameters to be equal: here its cost will
be -1 when the two machines are alive.

In addition, in order to avoid the problematic issue of the code above, we forbid
the callee machine to have the same identity of the (other) arguments of the
invocation.

Release of carrier’s machine. To simplify our analysis, we admit releases
of the this machine — the carrier — to be the last statement (before return).
While this restriction may be easily dropped, it avoids duplications of rules in
Figure 3 to deal with the fact that the virtual machine this could be dead. In
any case, we notice that this constraint does not affect the expressive power of
the language.



4 The behavioral type system of vml

Our analysis uses abstract descriptions, called behavioural types, which are in-
termediate codes highlighting the features of vml programs that are relevant
for the analysis of resources in Section 5. These types support compositional
reasonings and are associated to programs by means of a type system.

The syntax of behavioural types uses vm names «, 3, v, ---, and future
names f, f', ---. Sets of vin names will be ranged over by S, 8, R, ---, and
sets of future names will be ranged over by F, F/, ---. The syntactic rules are

the following

o = _ | « basic value

t == a| 0| L | T vm value

se u= integer constant | z | (¢ <L) | (¢<T) | seop se size expression
op = + | — | =] < | > AV linear operation
r,s == o | se typing value

z == (0,0,60,R) | © future value

x uw= _|Ft | f| =z extended value

a = 0| va®] | a[0] | vf:maE) | f/[O,R] atom

c == abl | asc | c+c | (se){c} behavioural type

Behavioural types express creations of virtual machines (va) and their re-
moval (a*), method invocations (vf :m a(%)) and corresponding retrieval of
the value (f¥[0,R]) and the conditionals (respectively (se){c} + (—se){c’} or
¢+ ', according to the boolean guard is a size expressions that depends on the
arguments of a method or not). Behavioural types also carry vm name environ-
ments ©, ©’, ... These environments map vm names to extended values Ft,
which are called vm states in the following. This feature is new in behavioural
types and, as discussed in Section 3, it is needed during the analysis to manage
the identity of methods’ arguments. We will provide additional examples in the
rest of the paper to explain vim name environments and their use.

In order to have a more precise type of continuations, the leaves of be-
havioural types are labelled with environments, ranged over by I', I, - - - . Envi-
ronments are maps from method names m to terms a(T) : o, R, from variables to
extended values x, from future names to future values, and from vm names to
v states. These environments are used in the typing proofs and are dropped
in the final types (method types and the main statement type).

The type system uses judgments of the following form:

—I' '+ e : x for pure expressions e, I' = f : z for future names f, and
I' F ma(T) : o,R for methods.

— I'kg 2z : x,e> I for expressions with side effects z, where x is the value,
¢ is the behavioural type for z and I is the environment I' with updates
of variables and future names.

— I'kg s : @, in this case the updated environments are inside the behavioural
type I, in correspondence of every branch of its.

10



Since IT' is a function, we use the standard predicates z € dom(I') or z ¢

dom(T"). Moreover we define

def [ x ify==x def | T'(y) ifreX
Ple = xd(y) = { I'(y) otherwise Tlx(z) = { undefined otherwise

The following operation and notations are going to be used:

— vm values t are partially ordered by the relation < defined by 9 < T
and 9 < 1. In the following we will use the partial operation t M t’
returning, whenever it exists, the greatest lower bound between t and t’.
For example T M L = 9, but 0 M « is not defined.

— the update of a vm name environment © with respect to f and T’ (we
remind that © is defined on vm names only), written © N\ T', returns a
vm name environment defined as follows:

def a€dom(0),0(a)= a)=F't’
ONT ™ fa s (F\ (])(6 et Ol =Fr)=r

— the multihole contexts C[ | defined by the following syntax:

Cll == [I [ ascl] [ clI+C[] [ (se){C[]}
and, whenever ¢ = Cla; > Tq]---[a, > T',], then ¢[z — x] is defined as
Cla; > Tz = x]] - [a, > Ty [z — x]].

The type systems for expressions, expressions with side effects and state-

ments are reported in Figures 2 and 3. It is worth to notice that the type system

(T-VaRr) (T-Op) T-UNIT
z € dom(T") ;T;PR_IMITIVE) I'keq:ser T'kes:ses T'ke:se
T'tz:I'(z) PP I'F ey op’ ez : seq op sea T'ke:_
(T-OP-UNIT) (T-PURE)
T'kei:- or I'kex:_ or ope€{*/} 'ke:x
I'Fejopea:_ I'ke:x,opT

(T-METHOD-SIG)
I'(m) = «(F) : 0,R B C fu(a, T, 0)
o is a vin renaming such that o ¢ fv(a,T) implies o(0) fresh
I'tmo(a)(o(T)): o(0),0(R)

Figure 2: Typing rules for expressions

for expressions is not standard because (size) expressions containing method’s
arguments are typed with the expressions themselves. This is crucial in the cost
analysis of Section 5. As regards the rules for statements, we discuss (T-INvokE),
(T-GeT), (T-RELEASE), and (T-New) because the other ones are straightforward.

11



(T-INVOKE)

F'ke:a 're:s TI'FnaE):o,R [Fthis:d
I'a)#FL and ((I'(a) # @T and a # /) implies R = @)
RN ({0} U8 € dom() and I(f) = (o', 8,0,R)} )= &
fresh T/ =T[8— ({f} UF)t]Pehl(B)=Ft
I'Fs e!m(é) : f7 l/f: m a(@) > F/[f = (LD7 a, F'Su‘fv(a,§)7R)]

(T-INVOKE-BOT)

T'Fe:a I'(a) =FL (T-NEW)
f fresh [ fresh
I'kgem(e): f,0oT'[f — ] I'tsnewvm: 3, vB[l|s] > T8 — &T]
(T-GET)
T'ktzx:f 't f:(o,e,0,R)
e =eNT R = fu(0) \ (R Y dgm(@)) (T-GET-DONE)
I’ =T[8 — @ L]PB — /()P [f — o] TFz:f TkFf:o0
I'ts z.get : o, fV[©,R]> T T'tsz.get:o,0pT
(T-RELEASE) (T-ASSIGN-VAR)
'Fz:a I(z) =x IF'ksz:x,c
I' ks release(x) : o/[l"|su{a}] >Ta— 21] Iksz=2z:clz—x']
(T-Ir) (T-Ir-ND)
I'ke:se I'bss1:cC1 I'Fsso:co T'ke:_ I'kgsy:ch I'kgso:co
IPhsif e {s1} else {sa}:(se){c1}+ (—se){ca} Phsif e {s1}else {sa2}:c1+co
(T-RETURN)
(T-SEQ) I'kFe:o I'F destiny : o
Thss1:Clai>T]--[an > Th] I ks s2:c) o€suU{} ifandonlyif o=0o
[bs s1582:Clag ] [an § )] I' s return e : 0> I'[destiny — 0]

Figure 3: Type rules for expressions with side effects and statements.

Rule (T-Invoks) types method invocations e!lm(€) by means of a new future
name f that is associated to the method name, the vm name of the callee and
the arguments. The relevant point is the value of f in the updated environment.
This value contains the returned value, the vimn name of the callee, a vin name
environment and the set of vin names that the method is going to remove. The
vim name environment records the state of vim names when the method is invoked
and it will be used when the method is synchronized to update the environment
of the synchronisation (see rule (T-Ger)) with the changes performed by methods
in parallel. It is important to observe that the environment returned by the
judgment is updated with informations about vm names released by the method:
every such name will contain f in its state. Next we discuss the constraints in
the second line and third line of the premise of (T-Invoke). Assuming that the
callee has not been already released (I'(«) # FL), there are two cases:

(i) either T'(o) = @T or « is the caller object, namely the callee is alive

12



because it has been created by the caller or it is the caller itself,

(i) or I'(«) # @T. This case has two subclases, namely either (7i.a) the callee
is being released by a parallel method or (éi.b) it is an argument of the
caller method — see rule (T-MgTHOD).

While in (¢) we admit that the invoked method releases v names, in case (i)
we forbid any release because the nondeterminism of the execution makes the
analysis too much imprecise (in our view). In facts, as discussed in Section 3,
in case (ii.a), we cannot determine what subset of R will be actually released
(because of the parallel method releasing «). In case (7i.b), being « an argument
of the method, it may retain any state when the method is invoked and, for
reasons similar to (7i.a), it is not possible to determine at static time the exact
subset of R that will be released. It is worth to notice that the constraint R = @
of case (4i) enforces a programming style that reduces uncertainty and provides
a more precise cost analysis. The constraint in the third line of the premise
of (T-Invoke) applies the same constraint of the callee to the other invocations
in parallel and to the object executing elm(€): it is not possible to remove a vin
name that is a callee of a parallel method.

Rule (T-Ger) defines the synchronisation with a method invocation that cor-
responds to a future f. Let (0,,®,R) be the value of f in the environment.
Since R defines the resources of the caller that are released, we record in the
returned environment I that these resources are no more available. I also
records the state of the returned v name, if it is a virtual machine that has
been created by the method of f. This state is the same of the callee v
name (which may have been updated since the invocation), namely the value of
(© N T')(a). As regards the behavioural type f¥ [0 \{ I',R] of x.get, it carries
two arguments (7) the vin name environment of the invocation updated with
the invocation of parallel methods and (i) the vin names to be released. These
two arguments will let us disable the removal of names in the cost analysis when
these names are removed by methods in parallel. In this case, the removal is
computed in the caller method (and therefore it counts -1, instead of -1 in
every method in parallel) — see definition of translate in case of £ [© \{ T',R]
in Section 5.

Rule (T-reLease) models the removal of a vm name «. Notice that the be-
havioural type is not just ', which should correspond to a -1 in the cost
analysis. Rather, it is a “conditional” removal because the name may be re-
moved by some method in parallel, or even may have been already removed
when the method has been invoked. This is the reason for the presence of the
vm name environment [['|su(a}]. We also observe that this rule applies only
when the caller has not been already released.

For reasons similar to the rules discussed above, (T-New) adds an environ-
ment I'|s to the type v expressing a new resource. In facts, this environment
will make the cost increase by 1 provided the caller method has not been already
released — see definition of translate in case of v3[['|g] in Section 5.

The type system of vml is completed with the rules for method declarations
and programs:
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(T-METHOD)
I'(m) = afz, Bl :o,R S = {a];UB
T[this — a][destiny — o][T — Z|[Z — B]la — @a][B — @P] s s: Clar>T1] - [an >Th]
i,j€L..n, yESUfu(o)
(rin =1;) R=(SUfu(0)) N {y|T1(7) = L}
I'FTon(Int z,Vm 2){F y; s} :naz,B) {Clar> 2] - [an>2]}: 0, R

(T-PROGRAM)
I'FM:C  Thgart s:Clai>T1] - [an > Ty
I'M{Fzx;s}:C, Clai>d]---[an> 2]

Without loss of generality, rule (T-Meruop) assumes that formal parameters
of methods are ordered: those of Int type occur before those of vm type. We
observe that the environment typing the method body binds integer parameters
to their same name, while the other ones are bound to fresh vin names (this
lets us to have a more precise cost analysis in Section 5). We also observe that
the returned value © may be either _ or a vim name in S or a fresh vm name.
In this last case, the premise (I';(y) = I'j(v))"I€Lm 7E8Uf(0) guarantees that
every branch in the returned behavioural type creates a new vm name and, by
rule (T-Rerurn), the chosen vm name must be always the same.

We display behavioural types at work by typing codes of Section 2 and 3.
Actually, the following types do not abstract a lot from codes’ details because
the programs of the previous sections have been designed for highlighting the
issues of our technique.

The behavioural types of fact and costly_fact are the following ones

costly_fact a(n) {
fact a(m) { (n==0){ 0 }
(n==0){ 0 } + (@>0){ vBla— Ba]s
+ (>0){ vy :facta(n —1)3 vz : costly fact S(n—1)3
yY [a— @al§ } ¥ [a— Ga, B 2T
Y-, {3 BY [a— @a,B 2T]5 }
oLy

and it is worth to highlight that the type of costly_fact records the order
between the recursive invocation and the release of the machine.
The behavioural types of double_release and userl are the following ones

userl a( ){

vBla— al 5 vyla— Gals

v f : double_free a(f3,7) ¢

o @a, B 2T,y @T]3
Peopd b

double_release a(fB, v) {
B [ Ba, B — DB,v — 7] 3
7 @a, B> DL,y — 29]3
Y-, 48, 7}

It is worth to notice that the releases ¥ and +¥ in double_release are
conditioned by the values of § and v when the method is invoked. In facts,
in case of userl these values are @T and this will mean that the cost of
o @a,B+ 2T,y @T] will be -2.
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5 The analysis of behavioural types

The behavioural types returned by system in Section 4 are used to compute
the resource elasticity of a vml program. This computation is performed by an
off-the-shelf solver — the CoFloCo solver [10] — and, in this section, we discuss
the translation of a behavioural type program into a set of recurrence relations
that fed the solver.

Basically, our translation maps method types into functions from parameters
to cost, where

e method invocations are translated into function calls,
e virtual machine creations are translated into a +1 cost,
e virtual machine releases are translated into a -1 cost,

There are two function calls for every method invocation: one returns the maxi-
mal number of resources needed to execute a method m, called peak cost of m and
noted mpeak, and the other returns the number of resources the method m creates
without releasing, called net cost of m and noted my,.t. These functions are used
to define the cost of sequential execution and parallel execution of methods. For
example, omitting arguments of methods, the cost of the sequential composition
of two methods m and m’ is the maximal value between mpeak, Mpet + m;mak, and
Mpet + M) ; While the cost of the parallel execution of m and m’ is the maximal
value between mpeax + mgcak, Mpet + m;)cak’ Mpet + mgcak, and mpet + m) o -

There are two difficulties that entangle our translation that pertain to method
invocations: the management of arguments’ identities and of argument’s values.

Argument’s identities. Consider the code

Int free() { release(this) ; return(0) ; }

Int m(VM x, VM y) {
Fut<Int> f ; £ = x!free() ;
release y ; f.get ; return(0) ;

}

The behavioural types of these methods are

free a( ){ a'[a— 2T] } ,{a}
ma(B,7){v f:free 5() 577 (0] 5 [V (O} - {87}
where

O =a— Za,f— {free}s,v— Oy

O =aw— Ba,f+— {free}f,y— FL

We notice that, in the type of m, there is not enough information to determine
whether v will have a cost equal to -1 or 0. In facts, while in typing rules
of methods the arguments are assumed to be pairwise different — see rule (T-
MEeTHOD) —, it is not the case for invocations. For instance, if m is invoked with
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two arguments that are equal — 3 = ~ — then 7 is going to be released by
the invocation free() and therefore it counts 0. To solve this problem of
arguments’ identity, we refine even more the translation of method, which now
depends on an equivalence relation telling which of the vim names in parameter
are actually equal or not. Hence, in general, our method m will be translated
{1}1.{2} {1}.{2}

peak net
the invocations where x # y, and mié’i}(w) and mr{]elt’z}(ac), which correspond

to the invocations where x = y. (The equivalence relation in the superscript
never mention this, which is also an argument, because we assume that this
is always different from the other arguments, see below.)

The following function EqRel computes the equivalence relation correspond-
ing to a specific method call; EqRel takes a tuple of vim names and returns an
equivalence relation on indices of the tuple:

in four cost functions: m (z,y) and m (z,y), which correspond to

EqRel(aq, - ,an) = 'U {{jlaj=a}}

Let EqRel(aq, -+ ,ap)(B1,- -, Bn) be the tuple (B;,,- -+, Bi.), where i1, g
are canonical representatives of the sets in EqRel(aq, - ,ay,) (we take the
vm name with the least index in every set). We observe that, by definition,
EqRel(aq, -, ) (a1, -+ ,ap) is a tuple of pairwise different vim names (in
Q1,0 Q).

We will always assume that {1} € EqRel(ai,---,q,). Since a; always
represents the this object, this constraint enforces that the other arguments of
invocations are always different from this (see the discussion in the paragraph
about virtual machines identity in Section 3).

Argument’s values. Consider the code

Int m(VM x) {
Fut<Int> f ; Fut<Int> g ; VMy ; VM z ; Int u ;

y = new vm ; z = new vm ;
f = x!free() ; g = y!'foo(x, 2z) ;
u=g.get ; u=f~f.get ; return 0 ;

}

where free is as above and foo is unspecified (we assume that foo does not
release any machine). The behavioural types of m is

ma(B){ vy[0,] 5 vV [Oy];v f: free f() § vg: fooy(B,7) 3 g“[92];f“[9{%

where

0, = [aw B, f— If]

O, = [a— 2o, 08,7y~ OT]
0, = [a—Ga, = {f}1B,7y— 2T,y — oT]
91 [CE!—)@O[,ﬂO—){f}ﬁ/)H—)QT,’}/II—)@T]
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The arguments of the invocation of foo are 8 and 7’ and, in order to compute
its cost, it is necessary to instantiate these arguments with actual vm values.
This instantiation is straightforward for 4’: there is no concurrent future re-
leasing it, so its state is T. However, this is not the case for 5’: as specified
in O, its vin state is tagged with a nonempty set of futures because free is
concurrently releasing it. Hence, we need to translate this state into a simple
one (L, T, or 9). In facts, the value of the first argument of foo may be 9 if 8
was originally either T or 0, or it may be L if 5 was already released. To deal
with this case, we introduce an operator on v values 5 | whose meaning is the
one just described:

51 {a iff=TorB=0
1 else

Since it is not possible to know the value of 5 during the translation, we use
£ | in the syntax of our cost expressions. This term will be evaluated during
the solving process.

To conclude, the translation of vm states into v values (extended with
a ), written Ft |}, is defined as follows:

t ifF=0g
F‘tUdﬁf 0 ifF#gandt=T
- 1l ifF#@andt=_1
@

J} fFAgandt=a

and we write (Fity, -+ ,Fpty,) | for (Fity 4, ,Futn ).

The translation function. The translation function, called translate, is
structured in three parts that respectively correspond to simple atoms, full
behavioral types, and method types and full programs. translate carries five
arguments:

1. A is the equivalence relation on formal parameters identifying those that
are equal. We assume that A(z) returns the unique representative of the
equivalence class of x. Therefore we can use A also as a substitution
operation.

2. ¥ is the translation environment which stores temporary information
about futures that are active (unsynchronized);

3. « is the vimn name of the virtual machine of the current behaviour type;

4. (se){e} is sequence of costs of the current execution branch: the size ex-
pression se stores all the conditions corresponding to the current execution
branch, while € is the sequence of (over-approximated) costs that branch
takes during its execution.

5. the behavioural type that is translated; it may be either a, ¢ or C.
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The auxiliary functions below let us reduce the number of cases of the defi-
nition of translate:

« =
1 otherwise

This function is used when a virtual machine is created. It returns 1 or 0
according to the virtual machine that is executing the code can be alive
(o # L) or not, respectively.

-1 a=T

0 otherwise

CREL(a) = {

This function is used when a virtual machine is released (in correspondence
of atoms 3¥'). The release is effectively computed — value -1 — only when
the virtual machine that is executing the code is alive (o« = T).

The translate function also uses the merge operation, noted ©[A], that
takes a vm name environment © and an equivalence relation on vm names
A and returns a substitution. We remind that vm name environments have
been introduced in Section 4 to manage identities of arguments in method calls.
Take, for instance, the atom f¥[©,R] within a behavioural type that binds
f to fooa(B,7). Assume to evaluate this behavioural type for mﬁcak where
A = {B,~}. That is, the two arguments are actually identical. What are the
values of § and v for evaluating fooﬁeak and foo2,? Well, we have

net *

1. to select the representative between § and ~y: it will be A(S) (which is
equal to A(%);

2. to take a value that is smaller than ©(8) and ©(y) (but greater than any
other value that is smaller);

3. to substitute S and  with the result of 2.

For example, let © = [a — P, B — B,y — 7] and A(B) = A(y) = 5. We
expect that a value for the item 2 above is @ and the substitution of the item
3is {@8,26/5 ,}. Formally, the operation returning the value for 2 is noted ®”
below (it applies to vm values and vm states) and the operation returning the
substitution of item 3 is the merge operation.

1 ift=_lLort =L

t @t = al if(t=v] andt' # L)or (¢t # Landt' =v)
a ift=~vyandt =+

Fit] @* Fote = (F1 UF2)(t1 @ t9)

O8] 5 [0 @{0(9) | § € dom(©) and () = A}
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We notice that the definition of ®“ is not necessary for vin values as 0 or
T because we merge vim names whose image by © can only be either Fj3 or
FB ] or FL. As a notational remark, we observe that the substitution ©[A] is
noted as a map [ay - Fit1, -+, - Fpt,] instead of the standard notation
{Fiti,o+ Fntn /) . 4.} These two notations are clearly equivalent: we prefer
the former one because it will let us to write ©[A](«) or even O[A](aq, -+ , @)
with the obvious meanings.

Every preliminary notion is in place for defining translate. We begin with
the translation of atoms.

translate(A, ¥, a, (se){€e},a) =

(T, (se){E;e}) when a =0
(W, (se){€; e;e+ CNEW(t) }) when a = v3[0)]
and O[A](a) =Ft
(¥, (se){ € e;e+ CREL(t) }) when a = 8¥[©)]
and O[A](B) = Ft
(¥[f = m A(B)(5e, AB))]: (se){Eese + }) when a = (vf = n B(3e, B))
(W f, (se){ (& €)o; (& )0’ + X cam),0[a)(y)=rt.F2o CREL(t) }  when a = f¥[O,R]
where

¥(f) =n 5(se, B)

EqRel(B,B) == B

0 = {Tpeax (56 O[A](E(5, ) U)/ 5}
o' = {The (58, OIAIE(8, B)) W)/ 5}

In the definition of translate we always highlight the last expression in the
sequence of costs of the current execution branch (the fourth input). This is
because the cost of the parsed atom applies to it, except for the case of f¥'[O,R].
In this last case, let (se){€; e} be the expression. Since the atom expresses the
synchronisation of f, ;e will have occurrences of f. In this case, the function
translate has to compute two values: the maximum number of resources used
by (the method corresponding to) f during its execution — the peak cost used in
the substitution o — and the resources used upon the termination of (the method
corresponding to) f — the net cost used in the substitution ¢’. In particular,
this last value has to be decreased by the number of the resources released by
the method. This the purpose of the addend . . A ) oa](y)=Ft,r2o CREL(t)
that remove machines that are going to be removed by parallel methods (the
constraint F # &) because the other ones have been already counted both in the
peak cost and in the net cost. We observe that the instances of the method mpeax
and mpe; that are invoked are those corresponding to the equivalence relation of
the tuple (3, 3).

The definition of translate for behavioural type is given below. It follows
straightforwardly by composing the definitions of the atoms. We also observe
that, in this case, the sequences of costs are sets.
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translate(A, ¥, a, (se){e},c) =
{(s¢/){€'}} when c =ap> @ and translate(A, ¥, q, (se){e},a) = (¥, (s¢/){e'})
c” when ¢ = a 3¢’ and translate(A, VU, q, (se){e},a) = (¥, {(se){e }})
and translate(A, ¥, o, (se/){e’ },c’) = (¥",C0")
c'uc” when ¢ = ¢1 + ¢2 and translate(A, ¥, a, (se){e},c1) = (¥, C7)
and translate(A, ¥, o, (se){e},c2) = (¥”,C")

c’ when ¢ = (s¢’){c’} and translate(A, ¥, a, (seA se’){e},c') = (¥',C)

The translation of method types and behavioural type programs is given
below. Let P be the set of partitions of 1..n. Then

translate(m oy (T, az,...,a,) {Cc} 0, R) = U translate(Z,m oy (T, as,...,a,) {Cc}: 0, R)
=ep
where translate(Z,m a1 (T, e,...,ay) {€}: 0, R) is defined as follows. Let

A:{{Oéil,...,aim}‘{il,...,im}GE}

and
n
translate(A, &, aq, (true){0},c) = U(sei){ €1,i3---3€hyi )
i=1
Then
translate(E,m a; (T, a2,...,a,) {c}:0, R) =

mgeak(E,E[al,ag,...,ak]) =0 [an = 1]
Woeak (T; Elar, o, ..o o)) = e11 [ser Ao # 1]
mgeak(f,E[al,ag, coag]) =ep [se1 Aag # 1]
Mpeai (T, Ela1, az, ... ax]) = e1,2 [se2 N1 # 1]
mieak(fr E[a17a27 s 7ak]) = €hp,n [Sen Nai # J_]
mzct(ivz[alzoﬂvﬂ-vak]):0_ [al :J-]
miet(f, Elan, a2, ... ap]) = 05, (T, Elat, ..., an]) a1 = 0]
m (T, Elar, a2, ..., o)) = eny 1 [se1 ANy =T
mset(ny[alonv---aak]):enn,n [sen/\al :T]

Let (C; ... €y, ¢) be a behavioural type program and let translate(d, &, «, (true){0},¢c) =
UjLy (sej){e1 ;- sen;.5 }- Then

translate(Cy) --- translate(C,)

main() = e11 [se1]
translate(C; ... Cp, ¢) = main() = ep, 1 [se1]

main() = e1,2 [se2]

main() = ep,, m [sem]

20



We show the output of translate when applied to the behavioural types of
double_release, userl, and user2 that we have described in Section 4 (well,
the behavioural type of user2 has not been shown: it is left as an exercise).
Since double_release has two arguments, we generate two sets of equations,
as discussed above. On the contrary, methods userl and user2 carry one
argument and therefore there is one set of equations only. In order to ease
the reading, we omit the equivalence classes of arguments that label function
names: the reader may grasp them from the number of arguments. For the same
reason, we represent a partition {{1}, {2}, {3}} corresponding to vim names as,
ag and ag by [a1,az, as] and {{1},{2,3}} by [a1, as] (we write the canonical
representatives). For simplicity we do not add the partition to the name of the
method.

translate([a1, ag, as], double_release a1(az, a3) { Ciouble_release | : -, {@2,a3}) =
double_releasepear (a1, a2, a3) =0 [an = 1]
double_releasepcak (a1, a2, a3) =0 [ar # 1]
double_releasepeak (a1, a2, a3) = CREL(a2) [ar # 1]
double_releasepeax (a1, a2, a3) = CREL(a2) + CREL(cx3) [an # 1]
double_releasenet (a1, a2, a3) =0 [an = 1]
double_releasenet (a1, a2, a3) = double_releasepeak (a1, a2, a3) [ar = ]
double_releasenct (a1, a2, a3) = CREL(a2) + CREL(a3) [ar =T]
translate([a1, az], double_release ai(a2) { Caoubiereiease | : - {Q2}) =
double_releasepeax (a1, az) =0 [an = 1]
double_releasepear (a1, a2) =0 a1 # 1]
double_releasepeak (a1, a2) = CNEW(a2) a1 # 1]
double_releasepeak (a1, a2) = CREL(a2) + CREL(L) [ar # 1]
double_releasenet (a1, a2) =0 [ar = 1]
double_releasenet (a1, a2) = double_releasepcak (a1, a2) [ar = ]
double_releasenct (a1, a2) = CREL(a2) + CREL(.L) [a1 =T]
translate([a1],userl ai() {Cuser1 }: -, {}) =
userlpeak(ar) =0 [an = 1]
userlpeak(ar) =0 [on # 1]
userlpeak (o) = CNEW(ar1) lan # 1]
userlpeak (1) = CNEW(a) + CNEW(1) [an # 1]
userlpeak (1) = CNEW(a1) + CNEW(av1) + double_releasepcak (a1, T, T) a1 # L]
userlpeak (o) = CNEW(cvr) + CNEW(av1) + double_releasenect (a1, T, T) lan # 1]
userlpet(a1) =0 [ = 1]
userlnet(a1) = userlpear(on) [ar = 9]
userlnet (1) = CNEW(avp) + CNEW(av1 ) + double_releasenect (a1, T, T) [a1 =T]

translate([o], user2 a1 () {Cuser2 } : =, {}) =
user2peak(a1) =0 [ar = 1]
useercak(al) =0 [al # L}
user2peak(0r1) = CNEW(ar1) [ # 1]
user2peak (1) = CNEW(a1) + double_releasepeai (a1, T) a1 # L]
user2peak (1) = CNEW(a1) + double_releasenet (a1, T) a1 # 1]
user2net(a1) =0 [on = 1]
usernet (1) = userpeak (o) [on = 9]
user2net (1) = CNEW(a1) + double_releasenet (a1, T) [ar =T]
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6 Outline of the proof of correctness

The proof of correctness of our technique is long even if almost standard (see [11]
for a similar proof). In this section we overview it by highlighting the main
difficulties.

The first part of the proof addresses the correctness of the type system in
Section 4. As usual with type systems, the correctness is represented by a
subject reduction theorem expressing that if a configuration cn of the opera-
tional semantics is well typed and cn — cn’ then cn is well-typed as well. It
is worth to observe that we cannot hope to demonstrate a statement guaran-
teeing type-preservation (the types of cn and cn’ are equal) because our types
are “behavioural”. However, it is critical for the correctness of the cost analysis
that there is a relation between the type of c¢n, let it be ¢, and the type of ¢n/,
let it be ¢’

Therefore, a subject reduction for the type system of Section 4 requires

1. the extension of the typing to configurations;

2. the definition of an evaluation relation ~» between behavioural types.

Once 1 and 2 above have been defined, it is possible to demonstrate (let ~~*
be the reflexive and transitive closure of ~):

Theorem 6.1 (Subject Reduction). Let cn be a configuration of a vml program
and let © be its behavioural type. If cn — cn’ then there is ¢’ typing cn’ such
that © ~* ¢’.

The proof of this theorem is by case on the reduction rule applied and it
is usually not complex because the relation ~» mimics the vml transitions in
Section 2.

The second part of the proofs relies on the definition of the notion of direct
cost of a behavioural type (of a configuration), which is the number of virtual
machines occurring in the type. We also observe that the number of alive virtual
machines in a configuration is identical to the direct cost of the corresponding
a behavioural type. Then it is also necessary to define

3. the extension of the function translate to compute the recurrence rela-
tions for behavioural types of configurations. These recurrence relations
let us compute the peak cost of a behavioural type (of a configuration).

The proofs of the following two properties are preliminary to the correctness
of our technique:

Lemma 6.2 (Basic Cost Inclusion). The direct cost of a behavioural type of a
configuration is less or equal to its peak cost.

22



Lemma 6.3 (Reduction Cost Inclusion). If ¢ ~ ¢’ then the peak cost of ' is
less or equal to the peak cost of c.

It is important to observe that the proofs of Lemmas 6.2 and 6.3 are given
using the (theoretical) solution of recurrence relations in [2]. This lets us to cir-
cumvent possible errors in implementations of the theory, such as CoFloCo [10]
or PUBS [2]. Given the basic cost and reduction cost inclusions, we can demon-
strate the correctness theorem for our technique.

Theorem 6.4 (Correctness). Let M {F z ; s'} be a well-typed program and let

C, ¢ be its behavioural type. Let alson be a solution of the function translate(C, c).
Then n is an upper bound of the number of virtual machines used during the
execution of cn.

The proof outline is as follows. Since the cost of the initial configuration cn
is the direct cost of ¢ then, by Lemma 6.2, this value is less or equal to the peak
cost of ¢. Let n be a solution of this cost. The argument proceeds by induction
on the number of reduction steps:

e for the base case, when the program doesn’t reduce, it turns out that
n>1;

e for the inductive case, let ¢cn — cn’. By applying Theorem 6.1 and
Lemma 6.3, one derives that n is bigger than the peak cost of the be-
havioural type of ¢n’. Thus, by Lemma 6.2, we have that n is larger than
the number of alive virtual machines in cn’.

7 Integration with a cost analysis tool and ex-
periments

In this section we discuss technical details about the translation of the recur-
rence relations in Section 5 into the cost analysis tool we use — the CoFloCo
analyser [10] — and we examine the outputs obtained for the running examples
of this paper. It is worth to notice that instead of targeting CoFloCo , we might
also target the PUBS analyser [2], which also has similar recurrence relations for
input.

In order to comply with usual input formats of tools, we need to define
encodings for v values and for the functions CNEW and CREL. We therefore
define

— T is modelled by 1, 9 is modelled by 2, L is modelled by 3, and a by «. As
regards « |, it is modelled by the conditional value [a = 3]3+[1 < o < 2]2;

— the auxiliary functions CNEW and CREL are translated in recurrence rela-
tions as follows:
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eq(CNEW(A), 0, [1, [A =3D).
eq(CNEW(A), 1, [1, [A < 3]).

eq(CREL(A), -1, [1, [A = 1]).
eq(CREL(A), 0, [1, [A > 11).

We begin our experiments with the translation of double_release when
used by userl. In this case, the arguments of double_release are all different,
therefore we use double_releasepeax (i1, a2, a3) and double_releasenet (a1, a2, a3).
We write these functions in CoFloCo as doubleReleasel123_peak(A,B,C) and
doubleReleasel123_net(A,B,C). The input for the cost analyzer is shown in
Figure 4 and, in order to evaluate it, we need to specify a so-called entry point.

eq(doubleRelease123_peak(A,B,C), 0, [1, [A = 3]).
eq(doubleReleasel123_peak(A,B,C), 0, [1, [A < 3]).
eq(doubleReleasel123_peak(A,B,C), 0, [crel(B)], [A < 3]).
eq(doubleRelease123_peak(A,B,C), 0, [crel(B), crel(C)], [A < 31).

eq(doubleRelease123_net(A,B,C), 0, [1, [A = 3]).
eq(doubleRelease123_net(A,B,C), 0, [doubleReleasel23_peak(4,B,C)], [A = 2]).
eq(doubleRelease123_net(A,B,C), 0, [crel(B), crel(C)], [A = 1]).

eq(userl_peak(A), O, [1, [A = 3]).

eq(userl_peak(A), 0, [1, [A < 3]).

eq(userl_peak(A), O, [cnew(A)], [A < 3]).

eq(userl_peak(A), 0, [cnew(A),cnew(A)], [A < 3]).

eq(userl_peak(A), O, [cnew(A),cnew(A),doubleReleasel23_peak(A, 1, 1)1, [A < 31).
eq(userl_peak(A), O, [cnew(A),cnew(A),doubleReleasel23_net(A, 1, 1)], [A < 3]).

eq(userl_net(A), 0, [1, [A = 3]).
eq(userl_net(A), 0, [userl_peak(A)], [A = 2]).
eq(userl_net(A), 0, [cnew(A),cnew(A),doubleReleasel23_net(A, 1, 1)1, [A = 1]).

Figure 4: Cost equations of double_release and userl in CoFloCo format

This entry point has the following format:
entry (METHOD_NAME (LIST_OF_ARGUMENTS):[CONDITIONS]) .

where the first argument always represents the state of the carrier virtual ma-
chine. The following table report the output of CoFloCo with respect to the
entry point. We observe that the computed cost is exactly what we anticipated

Entry Point \ Cost
entry(userl_net(1):[1). | O
entry(userl_peak(1):[1). | 2

Table 1: Costs of programs double release and userl
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in Section 4.

Figure 5 describes the program of double_release when used by user2.
In this case, the arguments of double_release are equal, therefore we use
double_releasepeax (a1, a2) and double_releasenet (a1, a2). We write these func-
tions in CoFloCo as doubleReleasel2_peak(A,B) and doubleReleasel2_net(4,B).

eq(doubleReleasel2_peak(A,B),
eq(doubleReleasel2_peak(A,B),
eq(doubleReleasel2_peak(A,B),
eq(doubleReleasel2_peak(A,B),

o, [1, [a=3D.

0, [0, [A< 3.

0, [crel(B)], [A < 3]).

0, [crel(B), crel(3)], [A < 31).
eq(doubleReleasel2_net(A,B), 0, [1, [A = 3]).
eq(doubleReleasel2_net(A,B), 0, [doubleReleasel2_peak(A,B)], [A = 2]).
eq(doubleReleasel2_net(A,B), 0, [crel(B), crel(3)], [A = 1]).

eq(user2_peak(A), O, [1, [A = 3]).

eq(user2_peak(A), [1, [A < 3]).

eq(user2_peak(4), [cnew(A)], [A < 31).

eq(user2_peak(A), [cnew(A) ,doubleReleasel2_peak(A, 1)1, [A < 31).
eq(user2_peak(A), [cnew(A) ,doubleReleasel2_net(A, 1)1, [A < 3]).

(0]
0
(0]
(0]

eq(user2_net(4), 0, [1, [A = 3]).
eq(user2_net(A), O, [user2_peak(A)], [A = 2]).
eq(user2_net(A4), 0, [cnew(A),doubleReleasel2 net(A, 1)1, [A = 11).

Figure 5: Cost equations of double_release and user?2 in CoFloCo format

The table below shows the output of the cost analyzer for the given equa-
tions, where, again, we consider only the case when the first argument is alive,
that is, it is equal to 1. As before, the cost is exactly what we informally

Entry Point ‘ Cost

entry(user2_net(1):[1). |0
entry(user2_peak(1):[1). | 1

Table 2: Costs of programs double release and user?2

computed in Section 4.

We conclude this section by discussing the cost of the two factorial programs
fact and cheap_fact discussed in Section 2. The list of cost equations generated
by translate is given in Figure 6 below.

We notice that Figure 6 has a couple of equations commented out. These
equations are not allowed as input in CoFloCo because they lead to mutually
recursive chains, which are banned by the analyser. Yet, in this case, the ex-
clusion of these equations does not affect the result because we assume that the
virtual machine executing either fact or costly_fact is always alive. Table 3
shows the output of CoFloCo.

As in the previous examples the net cost is equal to 0 in both cases, bacause
every created virtual machine is released before the end of the program. In
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eq(fact_peak(4,B), [1, [A=3]).
eq(fact_peak(A,B), 1, B =00.
[, B >01).

eq(fact_peak(A,B),
eq(fact_peak(A,B),

[fact_peak(1,B)], [B > 01).

0
0
eq(fact_peak(A,B), O
0
0, [fact_net(1,B)], [B > 01).

eq(fact_net(A,B), 0, [1, [A = 3]).

// eq(fact_net(A,B), 0, [fact_peak(A,B)], [A = 2]).
eq(fact_net(A,B), O, [1, [A =1, B=20]).
eq(fact_net(A,B), 0, [fact_net(1, B-1)], [A =1, B > 0]).

eq(costly_fact_peak(A,B), [1, [A=3D.
eq(costly_fact_peak(A,B), [1, [B =01).
eq(costly_fact_peak(A,B), [1, [B > 01).

[cnew(A)], [B > 01).

[cnew(A), costly_fact_peak(l, B-1)], [B > 0]).

[cnew(A), costly_fact_net(1, B-1)], [B > 0]).

[cnew(A), costly_fact_net(l, B-1), crel(1)],
[B >0]).

eq(costly_fact_peak(A,B),
eq(costly_fact_peak(A,B),

0
0
0
eq(costly_fact_peak(A,B), O
0
0
eq(costly_fact_peak(A,B), O

eq(costly_fact_net(A,B), 0, [1, [A = 3]).
// eq(costly_fact_net(A,B), 0, [costly_fact_peak(A,B)], [A = 2]).
eq(costly_fact_net(A,B), O, [1, [A =1, B=20]).
eq(costly_fact_net(A,B), O, [cnew(A), costly_fact_net(l, B-1), crel(1)],
[A =1, B>0]).

Figure 6: Cost equations of fact and costly_fact in CoFloCo format

Entry Point ‘ Cost
entry(fact_net(1,B):[B>=0]). 0
entry(fact_peak(1,B): [B>=0]). 0

entry(costly_fact_net(1,B):[B>=0]). | O
entry(costly_fact_peak(1,B):[B>=0]). | max([B,1])

Table 3: Costs of programms fact and cheap_fact

the case of the peak cost, for method fact the number of virtual machines will
depend on the depth of the recursion, in this case, given by parameter B. On
the other hand, method cheap_fact creates at each step a virtual machine and
releases it before the recursive call. This management of virtual machines gives
a peak cost equal to 1 because it supports the reuse of the released virtual

machines.

8 Related Work

After the pioneering work by Wegbreit in 1975 [20] that developed a technique
for deriving upper-bounds costs of functional programs, a number of techniques
for the cost analysis have been developed. These techniques may be divided
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into two categories.

The first category, that we call classical techniques, addresses cost analysis
in three steps: (i) extracting relevant informations out of the original programs,
e.g. abstracting data structures to their size and assigning a cost to eevery
program expression, (i7) converting the abstract program into recurrence rela-
tions, and (44) solving the cost equations with an automatic tool. Very powerful
classical technique tools are [2, 12, 3, 9, 10] that produce very accurate upper
bounds expressions for various kinds of programs of different complexity. We
refer to [10] for a comparison among some of these techniques. The main draw-
back of these techniques is the lack of compositionality: it is difficult to scale
the analysis to large programs and the translation from the original program to
the recurrence relations is always unclear.

The second category, that we call amortized techniques, uses the technique
based on type systems and amortized analysis developed for functional programs
by Hofmann [15]. This approach is highly compositional because of the use of
types, and more suitable for formal verification because the connection between
the original program and the cost equations can be demonstrated by a standard
subject-reduction theorem [15, 19, 16, 17, 13]. We follow this technique in the
present work.

A common feature of classical and amortized techniques is that they an-
alyze cumulative resources, that is resources that do not decrease during the
execution of the programs. This is the case, for example, for execution time,
number of operations, memory (without an explicit free operation), etc. As
we discussed, this assumption eases the analysis because it permits to compute
over-approximated cost. On the contrary, the presence of explicit or implicit
release operation entangles the analysis, as already discussed in [6] where a
memory cost analysis is proposed for languages with garbage collection. It is
worth to say that the scenario of [6] is not difficult because, by definition of
garbage collection, released memories are always inactive. The impact of the
release operation in the cost analysis is thoroughly discussed in [7] by means of
the notions of peak cost and net cost. As discussed in Section 5, the first refers
to the worst case cost for an operation to complete, while the second refers
to the cost of an operation after completion. For cumulative analysis the two
notions coincide; however, in non-cumulative analysis (in presence of a release
operation) they are different and the net cost is key for computing tight upper
bounds.

Recently Albert et al. in [4] have analysed the cost of a language with ex-
plicit releases. However, the release operation they consider is used in a very
restrictive way: releases can only be performed over locally acquired resources.
This constraint ensures having no partially negative costs when analyzing block
sequences thus maintaining the restriction of non-negative cost models.

Most cost analysis techniques usually address sequential program. Only few
works also address concurrent programs [1, 5, 14]. In this cases, to reduce the
imprecision of the analysis caused by the nondeterminism, the authors of [1, 5]
use a clever technique for determining parallel codes, called may-happen-in-
parallel [8]. However no one of these contributions consider a concurrent lan-
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guage with a powerful release operation that allows one disable the resources
taken in input. In facts, without this operation, one can model the cost by
simply aggregating the sets of operations that can occur in parallel, as in [5],
and all the theoretical development is much easier.

9 Conclusion

This paper presents the first (to the best of our knowledge) static analysis
technique that computes upper bound of virtual machines usages in concurrent
programs that may create and, more importantly, may release such machines.
Our analysis consists of a type system that extracts relevant informations about
resource usages in programs, called behavioural types; an automatic translation
that transforms these types into cost expressions; the application of solvers, like
CoFloCo [10], on these expressions that compute upper bounds of the usage of
virtual machines in the original program. A relevant property of our technique
is its modularity. For the sake of simplicity, we have applied the technique to a
small language. However, by either extending or changing the type system, the
analysis can be applied to many other languages with primitives for creating
and releasing resources. In addition, by changing the translation algorithm, it
is possible to target other solvers that may compute better upper bounds.

For the future, we consider three lines of work. First, we will complete the
technical development of this paper by delivering full proofs of correctness of
our technique. Second, we intend to alleviate the restrictions introduced in
Section 3 on the programs we can analyse. This may be pursued by retaining
more expressive notations for the effect of a method, i.e. by considering R as a
set of sets instead of a simple set. Such a notation is more suited for modelling
nondeterministic behaviours and it might be made even more expressive by
tagging all the different effects in R with a condition specifying when such effect
is yielded. Third, we intend to implement our analysis targeting a programming
language with a formal model as ABS [18].
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