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Executive Summary:
Modeling of Deployment (Initial Report)

This document summarises deliverable D1.3.1 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This is the first deliverable of Task T1.3 “Modeling of Deployment”. This task works in strict collaboration
with Task T1.2 “Modeling of Resources”. In fact, deployment can be seen as the problem of allocating to
computing entities the resources they need to properly run. Due to the tight connection with the activities
developed within T1.2, this deliverable can be considered as a joint contribution with the deliverable D1.2.1
which contains the description of the notion of deployment component, used in ABS to characterize containers
that provide objects with resources like CPU, time, bandwidth, etc.

Besides an introductory chapter, this deliverable includes three main contributions organized in three
independent chapters. Chapter 2 focuses on static aspects of deployment addressing the following question:
how to model and reason about the distribution of the initial ABS objects over the deployment components
that provide them with the required resources? Chapter 3 reports about the ABS approach to the modeling
of dynamic/runtime aspects of deployment: how to model in ABS the dynamic acquisition and release of
resources, as it happens nowadays in modern cloud-based applications? A key element of the presented
approach is based on the ABS Cloud API which provides an interface (included in the ABS Standard Library)
to be used in the modeling of deployment scenarios including dynamic acquisition/release of resources. The
current version of the ABS Cloud API is reported in Chapter 4.

The deliverable includes also two technical appendixes, each one containing a paper. The first one, in
Appendix A and currently submitted, is integral part of Chapter 2: it describes a tool-based approach to
automatic static deployment for ABS, which has been validated by applying it to the FRH case study. The
second one, in Appendix B and published in the Proceedings of the 6th International ISoLA Symposium
2014, describes the application of the ABS Cloud API to the ATB case study.
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Chapter 1

Introduction

In modern software systems it is more and more frequent to observe a continuum between the development
and the deployment phases. For instance, the continuous delivery design practice [6] advocates the automa-
tion of the software delivery phase, in order to support the rapid and repeated releases of enhanced versions
of the application. At the modeling level, such a continuum between development and deployment is far from
being a common practice. In fact, traditional modeling techniques usually support the development phase
(as in model-driven development approaches [12]). On the contrary, more recent modeling languages (like
TOSCA [11]) focus specifically on application deployment, by expressing it in an infrastructure-independent
and portable way.

To cover this gap, the Envisage project includes among its main objectives the anticipation at the
modeling level of relevant aspects related to deployment. More precisely, in the D1.2.1 deliverable, the
Abstract Behavioral Specification language ABS is extended to represent the basic elements characterizing
deployment, namely the computing, memory, and communication resources that are usually assigned to the
deployed software components. In this way, it is possible in ABS to model relevant deployment issues, as we
discuss in the present deliverable, in combination with the classical ABS modeling of the architectural and
behavioral aspects of an applications.

We envisage several advantages from the anticipation at the modeling level of aspects related to deploy-
ment. On the one hand, this allows for an early analysis of different alternative deployments, thus providing
the operation teams, usually responsible for the actual application deployment, with a valuable decisions
support. On the other hand, it is possible to detect the need for additional iterations in the system design
development phase in case the results of the deployment analysis are not satisfactory. In this way, it is not
necessary to test real installations of the system in order to detect design decisions having a negative impact
on the system deployment.

1.1 Modeling Deployment within Envisage

The Envisage project dedicates two intertwined tasks to the modeling of deployment: Task T1.2 “Modeling
of Resources” and Task T1.3 “Modeling of Deployment”. The deliverables of these two tasks are indeed
synchronized: an initial report due at T18 and the final one at T30. For this reason, the present deliverable
D1.3.1 is strictly connected with the deliverable D1.2.1. The latter is dedicated to the definition of the
extensions of ABS for the modeling of resources, while the present deliverable applies such extensions to
the modeling of relevant deployment scenario. For this reason, in this deliverable we assume already known
(from D1.2.1) the notion of ABS deployment component and of how deployment components provide ABS
objects with resources.

According to the DoW, Task 1.3 “formalizes deployment models for virtualized architectures. . . . These
models will be described in terms of combinations of several features: the amount of processing or memory
resources allocated to abstract virtual machines, best and worst execution times, the choice of application-level
scheduling policies for client requests, and the distribution over different abstract virtual machines with fixed
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bandwidth constraints.” When the task started (at T6), after an initial joint collaboration dedicated to the
definition of commonly agreed basic modeling primitives, we organized the activities along two directions.
Both are dedicated to the investigation of application-level resource allocation problems, but they focus on
two distinct phases that we have called static and dynamic deployment. By static deployment we mean the
initial activation/configuration of an application. In ABS terminology, static deployment is the initial creation
of deployment components and localization inside those deployment components of the objects needed to
complete the considered ABS model. By dynamic deployment we mean application-level scheduling policies
that distribute client requests on the services that are currently available or, if needed, instantiate new
services while the application is running.

We have decided to follow these two lines of investigations because, inspired by the FRH and ATB case
studies, we have identified two specific independent problems that can be investigated in parallel.

The first one, taken from the FRH case study, deals with the optimization of the initial static deployment.
The FRH case study in fact, consists of a system that requires customized instantiation depending on the
customer profile (like the expected number of final users, the possibility to assist to usage peaks, etc.).
Different system instantiations correspond to different static deployments, decided on the base of specific
resource usage profiles, distinct replication criteria for specific critical sub-services, or other specific desiderata
like the installation of components in the same virtual machine (or installation in distinct virtual machines)
for efficiency (or fault tolerance) reasons.

Concerning the ATB case study, it includes an intensive computation –organized in smaller (independent)
tasks according to the MapReduce pattern– which is usually executed in the cloud. The access to cloud com-
puting resources is typically done via APIs allowing for a dynamic acquisition and release of virtual machines.
The possibility to acquire virtual machines on-demand opens an entire spectrum of different application level
policies for the management of dynamically acquired resources. On the one hand of the spectrum, the ap-
plication could always use the initially acquired virtual machine. On the other hand of the spectrum, the
application could acquire a new virtual machine every time a new task must be executed. Modeling in ABS
these (very) different policies allows for an anticipated evaluation of their advantages/disadvantages by using
the analysis or the simulation tools available for ABS.

Another motivation behind the decision to proceed in parallel in our study of static and dynamic deploy-
ment is that we envisage the possibility to combine, in a second phase, the obtained results. In fact, we expect
to exploit the expertise on static resource allocation and the ability to model dynamic deployment strategies,
to attack the more complex problem of dynamic acquisition, release and (re)distribution of resources based
on introspection of the current state of the system. In fact, the policies for dynamic deployment that we
have studied so far are agnostic of run-time information like the current level of utilization of the resources
provided by a virtual machine.

1.2 Contributions and Structure of the Deliverable

Chapter 2 reports the main results obtained about the modeling and analysis of static deployment. The
main contributions of this Chapter can be grouped into two categories: the identification of the relevant
basic elements to be modeled, and the realization of a tool-based support for automated static deployment.

We have identified the following three elements, not present in ABS, that are relevant in the model-
ing of static deployment: (i) local functional and resource requirements of objects, (ii) global deployment
constraints, and (iii) available types of deployment components. Concerning (i), we have extended ABS
with class annotations describing properties of the objects of that class. Two kinds of properties can be
expressed: the dependencies on other objects in the system to be deployed (e.g. a front-end balancer needs
at least two back-end services) and the amount of required resources (like CPU units or memory). As far
as (ii) is concerned, we have defined a domain specific language (DSL) to express the constraints that the
expected deployment should satisfy. For instance, it is possible to require the presence of a minimum number
of instances of a given type of object, or imposing the installation of objects in the same (or in distinct)
deployment component(s). This first version of the DSL is not directly included into ABS because the two
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languages focuses on distinct aspects: ABS is expected to contain the specification of local deployment infor-
mation associated to the declared ABS classes, while the DSL is used to express global requirements on the
desired system deployment. The possible inclusion of this language into ABS will be subsequently evaluated
and in case reported in the final deliverable of Task T1.3. Finally, concerning (iii), we have defined a specific
format for describing the different kinds of available deployment components, the corresponding provided
resources, and their cost.

Once all these elements have been specified, we have implemented a tool that synthesizes an ABS main
procedure so as to realize its optimal deployment, i.e. instantiates a group of deployment components and of
interconnected objects that satisfy the expressed requirements and constraints, having the minimum possible
cost. This represents a new model-driven approach to declarative automated deployment whose details are
reported in the technical annex in Appendix A.

Chapter 3 reports about the Envisage approach to the modeling of dynamic deployment policies. The idea
is to model the dynamic acquisition/release of computing resources by means of ABS classes implementing
a specific interface offering methods that, for instance, return new deployment components, allow for the
release of such components, or return the current accumulated costs. Such an interface is referred to as
the ABS Cloud API. A simple example of modeling of a cloud API in ABS is discussed in Chapter 3 by
means of a couple of examples. The first one deals with a generic cloud-based system with clients issuing
requests either at constant rate or according to an irregular distribution including peaks. The services run
in the cloud, and several deployment strategies are modeled. Among these strategies, a constant strategy
is considered that initially acquires the computing resources that will be used to run the services for the
entire system life-time. Another considered strategy takes decisions at run time: new computing resources
are dynamically acquired if all those that are already available are currently busy. The second one deals with
a more realistic system: the Montage toolkit for generating science-grade mosaics by composing multiple
astronomical images [7]. Montage is a modular system subject to different deployment scenarios spanning
from installation on researcher’s desktop machine to more advanced deployments on a grid or a cloud.

Once the different deployment strategies have been modeled, we can use the ABS simulation tool to
compare their performances (remaining at the modeling level). This approach has been already applied to
an initial modeling of the MapReduce part of the ATB case study (see the technical annex in Appendix B).

Chapter 4 reports the description of the version of the ABS Cloud API currently present in the ABS
Standard Library. The API aims to integrate and systematize the common parts of the case studies, especially
regarding lifecycle management of the ABS deployment components that are used to model virtual and
physical machines. As such, the API forms a common base on which the case studies can experiment with
deployment strategies, resource management, cost vs. time optimization, etc. We will assess (and in case
we will amend and extend) the API by means of its application to the modeling of the case studies. For
this reason, the current ABS Cloud API should be considered a preliminary version; the final version will be
reported in D1.3.2 (due at T30). Another related point that will be discussed in D1.3.2 is the identification
of a failure model, obtained by refining what has been initially presented at T12 in D1.1, to address dynamic
deployment failures like, for instance, the interruption of an Amazon EC2 Spot Instance. More advanced
aspects of dynamic deployment, indeed, will be addressed in the next year of activity and reported in
Deliverable D1.3.2.
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Chapter 2

Automatic Static Deployment

In this chapter we report the Envisage approach to the modeling and analysis, by means of the ABS language,
of the initial “static” application deployment. By static deployment we mean the initialization of an ABS
model, consisting of the creation of the needed deployment components, and the activation inside such
deployment components of the initial objects. These initial deployments are usually specified by the ABS
main procedures, that contain the commands for constructing the initial deployment components and the
objects initially located inside them. In extreme synthesis, in this chapter we present a tool-based approach
for the automatic generation of main procedures that realize static deployments that, on the one hand, are
guaranteed to provide to each initial object sufficient resources and, on the other hand, are optimal according
to costs associated to deployment components.

Our main source of inspiration for the present work has been provided us by the FRH case study, in
particular the problem of customizing the deployment of instances of the Fredhopper Cloud Services based
on the customer profile (e.g. the expected number of final clients, possible usage peaks, etc.). Reasoning
about deployment at the modeling level can have several interesting benefits. For example, in the case of
Fredhopper Cloud Services, it can be a valuable support to the decisions currently taken by the so-called
operations team responsible to actually deploy the Fredhopper Cloud Services instances.

The approach we have followed to deal with static system deployment is based on three main pillars
that, to be as general as possible, here we present independently of their application to the ABS modeling
language. The first one deals with the modeling of the software artifacts composing the desired system: their
description is enriched with the indication of their functional dependencies and the quantification of their
required resources. The second one consists of a high-level language for the declarative specification of the
desired deployment: minimal requirements can be expressed on the system to be deployed like, for instance,
the basic components that must be present (e.g., the need for a load balancer) or the number of replica of a
given service to guarantee for instance high availability. The third pillar is an automatic engine that, taking
as input the local requirements of the single software artifacts and the global expectations on the desired
system, computes a specific deployment that satisfies both kinds of constraints and possibly optimizes some
objective function to minimize the total deployment costs.

Beyond driving our research, the FRH case study has been used to validate the results of our work.

Contributions of the chapter The main contributions of this chapter are as follows.

• The extension of ABS with the possibility to annotate class definitions with deployment information.
Several deployment scenarios can be considered and, for each of them, it is possible to indicate specific
functional and resource-dependent requirements for the objects obtained as instantiation of such classes.

• The definition of DDLang, a domain specific language allowing for the high-level declarative specification
of the desired deployment.

• The implementation of Model-Driven Deployment Engine (MODDE), a tool that given the set of avail-
able ABS classes (annotated with their deployment information) and the declarative specification in
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DDLang of the desired system, computes an ABS main program that creates the needed deployment
components and deploys on them the required objects. The deployment components are taken from a
description of the available computing resources (each one with an associated cost) given to MODDE
as an additional input in JSON format.

It is worth to mention that in the implementation of our tool MODDE we have taken advantage of two
already available tools, namely Zephyrus [4] and Metis [10], to respectively support the computation of the
optimal allocation of objects over deployment components, and the generation of the sequence of actions
to be executed by the generated ABS main program. We have decided to leverage already available tools
that are not tailored to a specific modeling language, to realize an easily portable and adaptable framework
for model-driven deployment. In fact, if an alternative modeling language is considered instead of ABS, it
will be possible to adapt our approach simply by extending such a modeling language with the deployment
annotations, and by modifying only those (limited) parts of MODDE that depend on ABS. Our declarative
deployment language DDLang can be indeed applied to any other object-oriented modeling language as it
has no particular dependencies on the specific aspects of ABS.

Structure of the chapter In Section 2.1 we present the extension to ABS for the description of deployment
information. The declarative deployment language DDLang is presented in Section 2.2 while Section 2.3
discusses the implementation of MODDE. Sections 2.4 discusses the validation of our approach to model-
driven deployment.

2.1 Annotated ABS

Ideally, we would like to have a measure of the resource consumption associated to every object that can be
created, in such a way that we can have an estimation of the resources needed by the overall system and
take deployment decisions accordingly.

We do not focus on pre-defined resources. In our context a resource is simply a measurable quantity
that can be consumed by the ABS program. For instance, common resources that a program can consume
are memory, CPU clock cycles, and bandwidth. The resource amount is expressed with a natural number.
For instance, assuming that the minimal unit to measure the RAM memory is a MB, we can state that
a deployment component provides 2GB of RAM simply by associating to a given deployment component
1024 ∗ 2 units of memory. We associate to objects their expected maximum amount of needed resources,
and when two objects requires an amount r1 and r2 of the same resource we assume that the cumulative
consumption does not exceed the sum of r1 and r2. Obviously, a resource can never be consumed in more
quantities than provided.

We require an annotation for every relevant class that can be involved in the automatic generation of the
main. For instance, there is no need to annotate a class implementing an internal data structure. Intuitively,
an annotation for the class C describes: (i) the maximal resource consumption of an object obj of the class C,
(ii) the requirements on the initialization parameters for class C (for instance, at least two services should be
present in the initialization list of a load balancer), and (iii) how many other objects in the deployed system
can use the functionalities provided by obj (for instance, to avoid to overload a database instance, one could
impose a maximum number of services that in the deployed system use that instance).

The grammar of the annotation language can be found in the technical annex (Appendix A), here we
simply report a couple of examples. The first one is in Listing 2.1, taken from the specification of the Query
API of Fredhopper Cloud Services.

Abstracting away the implementation details, the Query API has been modelled as a QueryServiceImpl

class implementing the interface IQueryService. The interface and the class QueryServiceImpl are defined
in ABS at Lines 1 and 9. The annotation for the class QueryServiceImpl is introduced before the class
definition, at Line 4. The annotation MaxUse(1) at Line 5 specifies that an object of QueryServiceImpl
may be used by only one client object; technically speaking, the main can pass only once the reference
to this object to other objects in the deployment. Line 6 associates some resource costs to an object

8



Envisage Deliverable D1.3.1 Modeling of Deployment (Initial Report)

1 interface IQueryService extends Service {

2 List <Item > doQuery(String q);

3 }

4 [Deploy: scenario[

5 MaxUse (1),

6 Cost("CPU", 1), Cost("Memory", 4096),

7 Param("c", Default("CustomerX"),

8 Param("ds", Req)]]

9 class QueryServiceImpl(DeploymentService ds,

10 Customer c) implements IQueryService {

11 // Implementation

12 }

Listing 2.1: FRH Query API

of QueryServiceImpl. In particular, in this case an object of class QueryServiceImpl can consume up
to 4GB of memory and 1 CPU. Lines 7 and 8 annotate the single initialization parameters of the class.
QueryServiceImpl has two parameters: ds, an object implementing the DeploymentService interface, and
the customer c. The ds parameter is set as a required parameter. This means that before deploying an
object obj of QueryServiceImpl, it is necessary to deploy an object implementing DeploymentService and
pass this object as initialization parameter to obj. The customer parameter is instead set to a default value,
in this case the string CustomerX.

As mentioned above, multiple annotations are possible for the same class to identify different ways to de-
ploy the same type of object. For instance, consider the possibility that the object of class QueryServiceImpl
for a different customer requires 2GB of memory instead of 4GB and 2 CPUs. To capture this we can add
before the class definition the following annotation.

1 [Deploy: scenario[ Name( "NewCustomer ")

2 MaxUse (1),

3 Cost("CPU", 2), Cost(" Memory", 2048),

4 Param("c", Default (" NewCustomer "),

5 Param("ds", Req) ]]

This annotation represents a deployment scenario identified by NewCustomer (Line 1) that consumes a
different amount of resources and considers a different default value for the c parameter.1

2.2 DDLang

When a system deployment is automatically computed, a user expects to reach specific goals and could have
some desiderata. For instance, in the considered Fredhopper Cloud Services use case, the goal is to deploy
a given number of Query Services and a Platform Service, possibly located on different machines (e.g., to
improve fault tolerance).

All these goals and desiderata can be expressed in the Declarative Deployment Language (DDLang): a
language for stating the constraints that the final configuration should satisfy. The syntax of DDLang is
reported in the technical annex (Appendix A), here we discuss the ideas behind the language and some
simple examples. DDLang is used to express constraints on two kinds of quantities: basic quantities dealing
with object cardinalities, and more complex quantities dealing with deployment components cardinalities.
Concerning basic quantities, it is possible to express the number of objects exposing a given interface, or
deployed according to a predefined scenario. For instance, it is possible to require the presence of at least
3 instances of IQueryService among which at most 1 deployed according to the NewCustomer scenario.

1Please note the annotation in Listing 2.1 represents the default scenario (that we implicitly identify with Def) since the
scenario name is not explicitly indicated.
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Complex quantities are used to express the number of deployment components such that their resources
satisfy some given constraints and the contained objects satisfy some other (basic) constraints. For instance,
it is possible to express that at least one deployment component should provide 2 units of CPU, and no
deployment component can contain more than two instances of QueryServiceImpl.

More precisely, constraints on basic quantities are of kind expr comparisonOP expr, that can be com-
bined using the usual logical connectives. The syntactic element comparisonOP is a classical comparison
operator. The expression expr could identify different kinds of basic quantities: (i) an integer value, (ii)
the number of objects implementing an interface I (denoted INTERFACE[I]), (iii) the number of objects of
a class C (denoted CLASS[C]). In this last case, it is also possible to indicate the number of objects of a class
C deployed following a given scenario S (CLASS[C : S]).

With this expressivity it is possible to add constraints that abstract away from the deployment com-
ponents. For instance, one might require the deployment of at least 2 objects implementing the interface
IQueryService and exactly 1 object of class PlatformServiceImpl by using the following expression.

INTERFACE[IQueryService] >= 2 and

CLASS[PlatformServiceImpl] = 1

More complex quantities are concerned with deployment components. These are expressed with the
notation DC[ filter | simpleExpr ] where filter is an optional sequence of constraints on the resources
provided by the deployment component and simpleExpr is an expression. DC[ filter | simpleExpr ]

denotes the number of deployment components that satisfy the resource constraints of filter and that
contain objects satisfying the expression simpleExpr. For instance, we can specify that no deployment
component having less than 2 CPUs should contain more than one object of class QueryServiceImpl as
follows.

DC[ CPU <= 2 | CLASS[QueryServiceImpl] > 1 ] = 0

It is interesting to notice that using such constraints it is also possible to express co-location or distribution
requests. For instance, for efficiency reasons it could be convenient to co-locate highly interacting objects
or, for security or fault tolerance reasons, two objects should be required to be deployed separately. For
instance, in the considered case study, we require that an object of class QueryServiceImpl must be always
co-installed together with an object of class DeploymentServiceImpl. This can be achieved as follows.

DC[ CLASS[QueryServiceImpl] > 0 and

CLASS[DeploymentServiceImpl] = 0 ] = 0

The impossibility to co-locate two objects in the same deployment component can be expressed in a
similar manner. For example, in the FRH case study, we require that PlatformServiceImpl and LoadBal-

ancerServiceImpl are installed separately for fault tolerance reasons. This requirement is captured by the
following constraint.

DC[ CLASS[PlatformServiceImpl] > 0 and

CLASS[LoadBalancerServiceImpl] > 0 ] = 0

2.3 Deployment Engine

MODDE is the tool that we have implemented to generate an ABS main program realizing a deployment
of objects, obtained as instantiations from a set of annotated classes, which satisfies constraints expressed
in DDLang. The tool relies on scripts that integrate Zephyrus and Metis following the workflow depicted in
Figure 2.1. More precisely, MODDE takes three distinct inputs: the ABS program annotated as discussed in
Section 2.1, the user desiderata formalized as constraints in the language DDLang presented in Section 2.2,
and the list of available deployment components expressed as described below.

The list of components is given as a JSON object having two properties: DC_description, which describes
the different types of deployment components, and DC_availability, that specifies the number of available
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Figure 2.1: MODDE architecture

instances for each of these types. A deployment component type is identified by a name, the list of the
resources it provides and a (monetary) cost that the user has to pay in order to use it.

For instance the following JSON object defines the possibility of using 5 c3.large and 3 c3.xlarge

Amazon AWS instances as deployment components.

1 {

2 "DC_description": [

3 { "name" : "c3.large",

4 "provide_resources" :

5 {"CPU" : 2, "Memory" : 3750},

6 "cost" : 105 },

7 { "name" : "c3.xlarge",

8 "provide_resources" :

9 {"CPU" : 4, "Memory" : 7500},

10 "cost" : 210 } ],

11 "DC_availability": {

12 "c3.large" : 5,

13 "c3.xlarge" : 3 }

14 }

The c3.large AWS machine is identified as a deployment component type that provides 2 CPUs and
3.75 GB of RAM. When used, this type of deployment component cost 105 credits per hour.

The internals of the MODDE are detailed in the technical annex (Appendix A). Here, we simply comment
the tool architecture reported in Figure 2.1. When MODDE is executed, the first step builds a parse-tree
of the annotated ABS program, retrieving all the annotations and the class signatures. This step (step 1
in Figure 2.1) is performed by a Java program that outputs a JSON file. In the second step, the output
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of the annotation extraction is processed to generate the universe file of components required by the tool
Zephyrus. In fact, Zephyrus requires the description of the software artifacts to combine as components
equipped with provide and require ports. Besides the component universe, Zephyrus requires two additional
inputs: a description of all locations where components can be installed and the requirements imposed on
the final configuration. These two additional inputs are computed in steps 3 and 4 (see Figure 2.1) from the
description of the deployment components and the user desiderata.

When all the inputs for Zephyrus are collected the solver is launched (step 5). Since Zephyrus can be
used to minimize different quantities we use it to minimize the total cost of all the deployment components
used. The output of Zephyrus lists the objects that need to be deployed, the locations where they must be
deployed, and their bindings between require and provide ports.

For the generation of the ABS main program, the only remaining missing information is the deployment
order of the objects that need to be installed. To get this information, in step 6, we launch Metis. This planner
takes in input the final configuration produced by Zephyrus and, given the ABS annotations describing the
functional inter-object dependencies, it computes the precise order in which objects should be created in
order to reach the final configuration. After the generation of the Metis plan we have all the information
to generate the ABS main program. The deployment components to be used are created as computed by
Zephyrus. Then, following the order of the deployment actions computed by Metis, the new objects are
created and located in the corresponding deployment components. In case an object requires other objects
as initialization parameters, the required objects are passed based on the bindings among the components
as defined by Zephyrus. More precisely, if an object has require ports, it receives as initialization parameters
the references to those objects exposing the provide ports to which it has been connected by Zephyrus.

2.4 Validation

In order to validate our approach, we first collected the resource consumption of instances of the most
relevant classes in the ABS model. The numbers are based on real-world log files of customers of the in-
production Java version of the Fredhopper Cloud Services system. CPU usage was inferred from business
logs, and garbage collection logs were used to determine the memory consumption. We then associated cost
annotations to the involved classes with the calculated figures.

In our context, a deployment component can be considered to be an AWS instance. We defined the
capacity of each resource for several AWS instance types in the locations file.2 The price used in the cost
attribute of each AWS instance type concerns on-demand instances in the US East region running Linux.3

We created several deployment scenarios based on the varying requirements of different customers. For
instance, web shops with a large number of visitors require more Query Service instances than smaller web
shops (and this varies over time: visitor peaks are typically observed around Christmas or during promotions).
In general, this requires a scalable, and fault tolerant system with a proportionate number of Query Service
instances to handle computational tasks and network traffic and return the query results sufficiently quickly.

The deployment configuration also has to satisfy certain requirements. For instance, for security reasons,
services that operate on sensitive customer data should not be deployed on machines shared by multiple
customers. On the other hand, some services should be co-located with other services, for example, deploying
an instance of the Query Service to a machine requires the presence of the Deployment Service on that same
machine. Below we list some of these requirements of the Fredhopper Cloud Services.

• Platform Service and Service Provider should be located in the same location, but no other Services
should reside at the same location, and there is only one instance of Platform Service (shared by all
customers).

• Load Balancer should not be co-located with other Services and is dedicated per customer (for large
customers, there may be multiple Load Balancers).

2A full list of AWS instance types, with associated capacity for each resource, can be found at http://aws.amazon.com/

ec2/instance-types/.
3http://aws.amazon.com/ec2/pricing/
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• Query Service should always be deployed together with the Deployment Service on a dedicated machine
(per customer).

Section 2.2 shows the formal versions of some of the above requirements. The specification language proved
to be sufficiently expressive to capture the above and all other requirements.

A user can install the framework on AWS instances, exploiting the elasticity of the cloud to dynamically
adapt the number of the Query Services. In the modelling of the framework, the API to control the cloud
resources is defined as a class that implements the InfrastructureService interface. Since this interface
in reality is provided by Amazon itself, there is no need to deploy also an object implementing it on the
customer AWS instances. To model this, we define a deployment component called amazon_internals that
has no cost (the Amazon API is available to all its customers for free) and is used to deploy the object
implementing the Amazon interface.

We have automatically generated ABS deployments for several scenarios. We report and comment only
the result obtained by MODDE when 2 instances of the Query service are required for a customer, which is
a simple but already significative case.4

DeploymentComponent m1.large_1 =

new DeploymentComponent("m1.large_1",

map[Pair(Memory,7500), Pair(CPU,2)]);

DeploymentComponent m1.large_2 =

new DeploymentComponent("m1.large_2",

map[Pair(Memory,7500), Pair(CPU,2)]);

DeploymentComponent m1.xlarge_1 =

new DeploymentComponent("m1.xlarge_1",

map[Pair(Memory,15000), Pair(CPU,4)]);

DeploymentComponent m1.xlarge_2 =

new DeploymentComponent("m1.xlarge_2",

map[Pair(Memory,15000), Pair(CPU,4)]);

DeploymentComponent amazon_internals =

new DeploymentComponent("amazon_internals", map[]);

[DC: amazon_internals] InfrastructureService

o1 = new InfrastructureServiceImpl();

[DC: m1.xlarge_1] LoadBalancerService

o2 = new LoadBalancerServiceImpl();

[DC: m1.large_1] DeploymentService

o3 = new DeploymentServiceImpl(o1);

[DC: m1.large_2] DeploymentService

o4 = new DeploymentServiceImpl(o1);

[DC: m1.xlarge_2] MonitorPlatformService

o5 = new PlatformServiceImpl(list[o3,o4], o2);

[DC: m1.large_2] IQueryService

o6 = new QueryServiceImpl(o4, CustomerX);

[DC: m1.large_1] IQueryService

o7 = new QueryServiceImpl(o3, CustomerX);

[DC: m1.xlarge_2] ServiceProvider

o8 = new ServiceProviderImpl(o5, o2);

4MODDE generates long names for objects and components. Here, for the sake of brevity, we renamed these identifiers with
shorter strings.
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Figure 2.2: Example of automatic objects allocation to deployment components.

A graphical representation of the deployment generated by this ABS main can be seen in Figure 2.2.
Deployment components are depicted as boxes containing the objects and arrows between an object a towards
and object b represents the use of b as a parameter for the creation of a.

At a first sight, the deployment configuration suggested by MODDE differs from the one used in-
production which uses only instances of type c3.xlarge (one for the Platform Service and the Service
Provider, one for the Load Balancer, two for the two Query and Deployment Service pairs).

This discrepancy is due to the fact that we allowed MODDE to use all the possible AWS instances. How-
ever, Amazon is continuously updating its instances with new, better, and possibly cheaper ones. Currently,
the machines of type m1 have been deprecated and new m1 machines could not be acquired any more. The
optimal solution computed by MODDE can therefore be only used by costumers that have already m1 running
machines. New costumers have to rely instead on machines of type m3 and c3.

If MODDE is executed taking into account just the new m3 and c3 AWS instances, the computed config-
uration obtained is exactly the one currently adopted by the operations team, thus proving its optimality.

As can be seen from this example, tool support is extremely helpful to understand what the optimal
deployment scenario is in the presence of external changes, such as the appearance of new machines. With a
proper estimation of the cost, using MODDE, the computation of the optimal deployment scenario is trivial
and does not require a deep knowledge of the external environment conditions. This is extremely important
because it facilitates computing the price of the final product that may vary due to external conditions, such
as the possibility of using (or not using) a virtual machine.
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Chapter 3

Patterns for Dynamic Deployment
Strategies in ABS

A common strategy for web applications these days, especially in early development and deployment, is
to acquire the needed resources (server, storage, bandwidth) from a cloud infrastructure provider such as
Amazon, Windows or Google, instead of purchasing server hardware and data centre space. In that way,
initial costs can be kept low while still keeping the flexibility to react quickly to demand growth [2].

This chapter collects examples of how resource management can be integrated in ABS models of resource-
aware applications. In these examples we are integrating the resource management strategies in the client
layer (see Figure 3.1 which is taken from the DoW). These examples use a simple and initial version of a
Cloud API which only focus on computer resources and were originally developed in [8, 9]. The examples
have been adapted to the current syntax of the toolchain implemented in the Envisage project. Section 3.1
introduces the cloud API that the examples in this chapter use. Section 3.2 describes an example of a general
web application which distributes user requests to servers deployed on the cloud. Section 3.3 describes a
model of the Montage toolkit deployed on the cloud. Note that Chapter 4 introduces and explains the current
version of the cloud API that the case studies of the Envisage project use, which is a different API from the
one presented in this chapter.

Client Layer

Provisioning Layer

Formal Service Contract

Executable Model of Client Layer

Cloud API

Simulation
“early modeling”

Formal Methods
“early analysis”

Provisioning
“runtime monitoring”

Figure 3.1: The approach to modeling services in Envisage.

3.1 Example: An Initial Model of a Cloud Provider API

In this section we describe a cloud provider infrastructure that rents virtual servers to its clients. This
particular cloud API focuses on CPU resources, for this reason, the cost of leasing a virtual server depends
on the configuration of the CPU resources. In this initial and simple cloud API, we assume that it is in the
interest of the client application that virtual servers are kept running only when they are busy processing
requests from users, and that they are stopped and returned to the cloud provider otherwise. Furthermore,
we assume here that creating a machine is instantaneous. Note that these assumptions have changed in later
versions of the cloud API.

Figure 3.2 shows the interface of the cloud provider. The CloudProvider API includes methods for
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interface CloudProvider {
DeploymentComponent createMachine(Int capacity);
Unit acquireMachine(DeploymentComponent machine);
Unit releaseMachine(DeploymentComponent machine);
Rat getAccumulatedCost();

}

Figure 3.2: Interfaces of the cloud provider.

creating, acquiring and releasing virtual machines. In the implementation, this is done by creating deployment
components on which the client application can deploy objects. Using these operations, an application clients
can create Server objects on virtual machines (modeled by deployment components) that are obtained from
the CloudProvider via the method createMachine. Once the virtual machines are created and Server objects
are deployed, the applications can use the methods acquireMachine and releaseMachine to start and stop
virtual machines, so that the objects created inside them can process requests.

In addition, the cloud provider keeps track of the accumulated costs incurred by the client application.
For this simple API, the cost is calculated in terms of the sum of the processing capacities of the active
virtual machines; i.e., a call to acquireMachine(dc) starts accounting for the virtual machine dc and a call to
releaseMachine(dc) stops the accounting again for dc. The method getAccumulatedCost returns the accumu-
lated cost of the client application. Inside the cloud provider, an active run method does the accounting for
every time interval. For more details about the implementation if this cloud provider, see [9].

3.2 Example: Application-Level Management of Virtualized Resources

In this example we model and analyse by means of simulations a general web application which distributes
user requests to a number of servers deployed on the cloud. To clarify terminology, in this section we
shall refer to the clients of the web service as users, and the clients of the cloud provider (such as the web
service) as clients. Our aim here is to model and analyse a cloud-enabled application. As part of the model
of the application, we include a component which handles the management of virtualized resources at the
application level. This component monitors the user demand, provisions servers as needed, and distributes
user requests between the active servers in order to meet the deadlines of the user requests while keeping the
costs of leasing virtual servers down.

The example depicted in Figure 3.3 is a model of a client application which interacts with a cloud provider
API from Section 3.1 and with a user. This client application consists of a (dynamic) number of servers and
one balancer which is the main focus of our case study. The balancer is in charge of the management of the
virtualized resources acquired by the client application. The user sends processing requests to the balancer,
which sends them to an active server. To keep the focus on the balancer, we do not model the details of
these requests; instead, they carry a deadline and a processing cost that represent an abstraction of QoS and
computing requirements.

It is the responsibility of the balancer to implement a resource management strategy which both minimizes
the cost of running the client application on the cloud and maximizes the application’s QoS (i.e., minimizes
the number of deadline misses for user requests). Note that this model does not aim for precise measurements,
but rather for a rough understanding of the system behavior by means of simulations. Hence, no precise
costs of running the system are obtained via the simulations (which would depend on the varying price of
CPU hours). Rather, different balancing strategies can be compared by evaluation against different usage
scenarios, for example a user with a steady request rate or with an unexpected increase of load spike.

Figure 3.4 shows the interfaces of the entities of the case study in Real-Time ABS (the user needs no
interface since it is not referenced by any object). Each Server has a method process, which incurs run-time
costs on the server’s deployment component, which can be found via the getDC method. The Balancer’s
request method is called from the User. The balancer is responsible for creating Server objects on the
CloudProvider, using the API from Section 3.1, so that the Server objects can process requests.
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Figure 3.3: An on-demand deployment architecture for the client application. Neither user nor cloud provider
contribute to the cost of running the system, and we assume that the request processing costs are significantly
bigger than the CPU resources needed to run the balancer. Hence, only the servers are running in dedicated
virtual machines.

interface Server {
Unit process(Int cost); // called from Balancer
DeploymentComponent getDC();

}

interface Balancer {
Bool request (Int cost); // called from Client

}

Figure 3.4: Interfaces of the case study.

The Server . The class Server shown in Figure 3.5, which do not change as we vary strategies and
user behavior, implements the Server interface and is quite straightforward. The method process consumes
resources according to its cost argument, and the method getDC simply returns the deployment component
on which the server object is deployed.

The User Scenarios. We consider two user scenarios: steady load and load spike. The two scenarios
are modeled by the corresponding classes SteadyLoadUser and LoadSpikeUser, given in Figure 3.6. The two
classes have fields numRequests and numFailures, which are used for counting the number of sent requests
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class Server implements Server {
Unit process (Int cost) {

while (cost > 0) { [Cost: 1] skip; cost = cost − 1}
}

DeploymentComponent getDC() { return thisDC();}
}

Figure 3.5: Implementation of the Server class.

and the number of missed deadlines for these requests, respectively. Both classes implement the method
sendRequest which calls request with a given deadline on the balancer, suspends execution while waiting for
the reply to the call, and does the bookkeeping after the reply has been received by incrementing the fields
numRequests and numFailures as appropriate. The frequency of these requests is controlled by the active run
method which differs between the two classes. In the SteadyLoadUser class, the run method asynchronously
calls sendRequest and then suspends for a fixed duration. In contrast the run method of LoadSpikeUser has
the same steady load behavior except for a window of time (between time 60 and 80 according to the clock),
during which there is a load spike in which asynchronous calls to sendRequest are sent with much shorter
intervals.

3.2.1 Balancing strategies

In this case study, we model three different balancers for the application-level management of the virtualized
resources. The balancers provide the front end to our web application, which receives user requests, and uses
backend servers, deployed on the cloud, for processing these user requests. The different balancers reflect
different strategies for interacting with the cloud provider to achieve the resource management, and may be
described as follows:

• the constant balancer simply allocates one server sufficient for the expected load and keeps it running;

• the as-needed balancer calculates the server size needed to fulfill a specific request within the dead-
line, and allocates the needed resources disregarding the cost; and

• the budget-aware balancer operates with a given budget of CPU resources per time unit. Unused
CPU resources can be “saved for later” to cope with unexpected load spikes, but the cost of running
the system is still bounded.

The Constant Balancer. captures over-provisioning by processing all requests on a single server which
should have sufficient capacity, and is modeled by the class ConstantBalancer in Figure 3.7. It initializes the
web application by requesting a single machine from the cloud provider, on which it deploys a concurrent
object group consisting of a Server object. After initialization, the constant balancer uses this server to
process all user requests, and returns success to a user request if it was processed within the deadline.

The As-Needed Balancer. is modeled by the class DynamicBalancer in Figure 3.8. This class maintains
a data structure sleepingMachines which sorts available machines (with deployed servers) by CPU processing
capacity. We omit the (straightforward) definitions of the following auxiliary functions on this data structure:
hasMachine(s,i) checks if a machine of capacity i is available in the structure s; addMachine(s,i,m) adds a
machine m to the set associated with capacity i in s; and removeMachine(s,i,m) removes the machine m from
the set associated with i in s.

When the DynamicBalancer receives a request, it calculates the machine capacity resources needed to
fulfill the request, and requests a server deployed on a machine of appropriate size by calling the method
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class SteadyLoadUser(Balancer b) {
Int numRequests = 0;
Int numFailures = 0;
Unit run() {

while (True) {
this!sendRequest();
await duration(5, 5);

}
}

Unit sendRequest() {
[Deadline: Duration(2)] Fut<Bool> s = b!request(3);
await s?;
Bool success = s.get;
numRequests = numRequests + 1;
if (¬success) numFailures = numFailures + 1;

}
}

class LoadSpikeUser(Balancer b) {
Int numRequests = 0;
Int numFailures = 0;
Unit run() {

while (True) {
if (timeValue(now()) > 60 && timeValue(now()) < 80) {
this!sendRequest();
await duration(1, 1);

} else {
this!sendRequest();
await duration(5, 5);

}
}

}

Unit sendRequest() {
[Deadline: Duration(2)] Fut<Bool> s = b!request(3);
await s?;
Bool success = s.get;
numRequests = numRequests + 1;
if (¬success) numFailures = numFailures + 1;

}
}

Figure 3.6: Different user behavior modeled by the two classes SteadyLoadUser and LoadSpikeUser.

this.getMachine(resources). When it gets the server, it asynchronously calls process on this server and sus-
pends. Once the reply is available, it calls this.dropMachine(server) and returns success to the user if the
processing happened within the deadline.

The method getMachine first checks in sleepingMachines if there are available servers deployed on machines
of appropriate size, in which case such a server is returned. (The auxiliary function take(s) selects an element
of the set s.) Otherwise, the balancer requests a new machine from the cloud provider by calling createMachine
and deploys a server on the new machine. The method dropMachine asks the cloud provider to stop running
the machine on which the server is deployed and returns the server to the sleepingMachines set of appropriate
capacity. The field costPerTimeUnit keeps track of the amount of resources currently leased from the cloud
provider, and is updated by both methods getMachine and releaseMachine. This is the amount of resources
for which the application is currently charged.

The Budget-Aware Balancer. is a resource management strategy in which the balancer has a cer-
tain budget per time interval, and may save resources for later. This balancer is modeled by the class
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class ConstantBalancer(CloudProvider provider, Int serverSize) implements Balancer {
Server server;
DeploymentComponent dc;
Bool initialized = False;

Unit run() {
dc = await provider!createMachine(serverSize);
[DC: dc] server = new Server();
initialized = True;

}

Bool request (Int cost) {
await initialized;
Fut<Unit> r = server!process(cost); await r?;
return (durationValue(deadline()) > 0);

}
}

Figure 3.7: The Real-Time ABS model of the constant balancer.

class DynamicBalancer (CloudProvider provider) implements Balancer {
Map<Int, Set<Server>> sleepingMachines = EmptyMap;
Int costPerTimeUnit = 0;
Int machineStartTime = 0;

Server getMachine(Int size) {
Server server = null;
Time t = now();
costPerTimeUnit = costPerTimeUnit + size;
if (hasMachine(sleepingMachines, size)) {

server = take(lookupUnsafe(sleepingMachines, size));
sleepingMachines = removeMachine(sleepingMachines, size, server);
DeploymentComponent dc = await server!getDC();
Fut<Unit> fa = provider!acquireMachine(dc); await fa?;

} else {
DeploymentComponent dc = await provider!createMachine(size);
[DC: dc] server = new Server();

}
machineStartTime = timeDifference(t, now());
return server;

}

Unit dropMachine(Server server) {
DeploymentComponent dc = await server!getDC();
Fut<Unit> fr = provider!releaseMachine(dc); await fr?;
InfRat size = await dc!total(CPU);
costPerTimeUnit = costPerTimeUnit − finvalue(size);
sleepingMachines = addMachine(sleepingMachines, finvalue(size), server);

}

Bool request (Int cost) {
Int resources = (cost / durationValue(deadline())) + 1 + machineStartTime;
Server server = this.getMachine(resources);
Fut<Unit> r = server!process(cost); await r?;
this.dropMachine(server);
return durationValue(deadline()) > 0;

}
}

Figure 3.8: The Real-Time ABS model of the as-needed balancer.
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BudgetBalancer in Figure 3.9, with a class parameter budgetPerTimeUnit which determines this budget, and
a field availableBudget which keeps track of the accumulated (saved) resources. The fields sleepingMachines,
costPerTimeUnit, and machineStartTime and the methods getMachine and dropMachine are as in the previ-
ous example of the DynamicBalancer class. When the budget-aware balancer gets a request, it calculates
the resources needed to fulfill the request in the variable wantedResources and the resources it has available
on the budget in maxResources. If there are resources available on the budget, the budget-aware balancer
calls getMachine to get the best server the request according to the budget. The budget-aware balancer has
an active run method which monitors the resource usage and updates the available budget for every time
interval. It also maintains a log budgetHistory of the available resources over time.

class BudgetBalancer(CloudProvider provider,Int budgetPerTimeUnit) implements Balancer {
Map<Int, Set<Server>> sleepingMachines = EmptyMap;
Int costPerTimeUnit = 0;
Int machineStartTime = 0;
Int availableBudget = 1;
List<Int> budgetHistory = Nil;

Unit run() {
while (True) {

availableBudget = availableBudget + budgetPerTimeUnit − costPerTimeUnit;
budgetHistory = Cons(availableBudget, budgetHistory);
await duration(1, 1);

}
}

Bool request(Int cost) {
Bool result = False;
Int wantedResources = (cost / durationValue(deadline())) + 1 + machineStartTime;
Int maxResources = (budgetPerTimeUnit − costPerTimeUnit)

+ (max(availableBudget, 0) / durationValue(deadline()));
if (maxResources > 0) {
Server server= this.getMachine(min(wantedResources,maxResources));
Fut<Unit> r = server!process(cost); await r?;
this.dropMachine(server);
result = (durationValue(deadline()) > 0);

}
return result;

}

Server getMachine(Int size) { ... } // as in the DynamicBalancer
Unit dropMachine(Server server) { ... }// as in the DynamicBalancer

}

Figure 3.9: The Real-Time ABS model of the budget-aware balancer.

3.2.2 Comparing Balancing Strategies

Real-Time Maude has a formally defined semantics [1] which is used to implement a model simulator in the
Maude system [3]. In order to compare the three balancing strategies of our case study, we simulate their
behavior for the two user scenarios described in Section 3.2, in each case with a single “user” object generating
requests. For simplicity, we here set the budget of the budget-aware balancer to 1. All simulations were run
for 100 units of simulated time. The following measurements were extracted from the simulation traces:

• quality of service measured as the number of successful requests (i.e., requests completed within the
deadline) divided by the total number of requests; and

• accumulated cost of running the machines, measured as the total sum of CPU resources made available
by the cloud provider.
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Table 3.1 summarizes the results. Not surprisingly, the as-needed balancer exhibits the best QoS numbers,
but at potentially unbounded runtime cost. The constant balancer with a single running server exhibited
both the highest runtime cost and the worst QoS under unexpected load with the chosen scenarios.

User scenario
Steady load Load spike

Strategy QoS Cost QoS Cost
Constant balancer 100% 200 53% 200
As-needed balancer 100% 80 100% 128
Budget-aware balancer 100% 80 68% 97

Table 3.1: Simulation results.

The budget-aware strategy exhibits only slightly better QoS characteristics under load than the constant
balancer approach, which reflects how the budget was chosen. Figure 3.10 shows the available and used
budget over time. It can be seen that the available budget is mostly used during normal load, so there are
not many saved resources which can be used to deal with the load spike between time 60 and 80. A more
realistic system would have a monitoring component to alert an operator, who would be able to manually
add budget or switch to other balancing strategies, but this functionality was not considered in our case
study.
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Figure 3.10: Budget use over time for the budget-aware balancer. The load spike between time 60 and 80
quickly consumes the saved-up funds.

3.3 Example: The Montage Toolkit

Montage is a portable software toolkit for generating science-grade mosaics by composing multiple astro-
nomical images [7]. Montage is modular and can be run on a researcher’s desktop machine, in a grid, or on
a cloud. Due to the high volume of data in a typical astronomical dataset and the high resolution of the
resulting mosaic, as well as the highly parallelizable nature of the needed computations, Montage is a good
candidate for cloud deployment.

This section describes the architecture of the Montage system and how it can be modeled in Real-Time
ABS. We explain how costs are associated to the different parts of the model.
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Module Description
mImgtbl Extract geometry information from a set of FITS headers and

create a metadata table from it.
mOverlaps Analyze an image metadata table to determine which images

overlap on the sky.
mProject Reproject a FITS image.
mProjExec Reproject a set of images, running mProject for each image.
mDiff Perform a simple image difference between a pair of overlapping

images.
mDiffExec Run mDiff on all the overlap pairs identified by mOverlaps.
mFitplane Fit a plane (excluding outlier pixels) to an image. Used on the

difference images generated by mDiff.
mFitExec Run mFitplane on all overlapping pairs. Creates a table of image-

to-image difference parameters.
mBgModel Modeling/fitting program which uses the image-to-image difference

parameter table to interactively determine a set of corrections to
apply to each image to achieve a “best” global fit.

mBackground Remove a background from a single image
mBgExec Run mBackground on all the images in the metadata table.
mAdd Co-add the reprojected images to produce an output mosaic.

Figure 3.11: The modules of the Montage case study.

3.3.1 The Problem Description

Creating a mosaic from a set of input images involves a number of tasks: first reprojecting the images to a
common projection, coordinating system and scale, then rectifying the background radiation in all images
to a common flux scale and background level, and finally co-adding the reprojected background-rectified
images into a final mosaic. The tasks exchange data in the format FITS, which encapsulates image data
and meta-data. These tasks are implemented by a number of Montage modules [7], which are listed and
described in Fig. 3.11. These modules can be run individually or combined in a workflow, locally or remotely
on a grid or a cloud. Fig. 3.12 depicts the dataflow dependencies between the modules in a typical Montage
workflow [5]. These dependencies show which jobs can be parallelized on multiprocessor systems, grids, or
cloud services.

mProject

mProjExec

mImgtbl mOverlaps

mDiffExec

mDiff

mFitExec

mFitplane

mBgModel

mBackground

mBgExec

mAdd

Figure 3.12: Montage abstract workflow.

We model an abstract workflow architecture of Montage toolkit. In particular, we consider the case in
which Montage processes multiple input images in parallel. Our model abstracts from the implementation
details of the manipulation of images, replacing them with abstract statements and cost annotations.
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3.3.2 A Model of the Montage Workflow in Real-Time ABS

interface CalcServer {
DeploymentComponent getDC();
MetadataT mImgtbl(List<FITS> i);
MetadataT mOverlaps(MetadataT mt);
FITS mProject(FITS image);
FITSdf mDiff (FITS image1, FITS image2);
FITSfit mFitplane (FITSdf df);
CorrectionT mBgModel(Image2ImageT diffs, MetadataT ovlaps);
FITS mBackground (Int correction,FITS image );
FITS mAdd (List<FITS> images); }

class CalcServer implements CalcServer {
...
FITS mBackground (Int correction,FITS image ){
[Cost: 1] FITS result = correctFITS(image,correction);
return result;

}
... }

Figure 3.13: CalcServer interface and class in Real-Time ABS.

The Core Modules. The core modules that execute atomic tasks (i.e., mProject, mDiff, mFitplane,
mBgModel, mBackground, mAdd, mImgtbl, and mOverlaps) are modeled as methods inside a class CalcServer
which implements the CalcServer interface shown in Fig. 3.13. In the methods of this class, cost annotations
are used to specify the costs of executing atomic tasks. The images considered in the case study have a
constant size, so it is sufficient to use a constant cost for the atomic tasks. Lacking precise cost estimates for
the individual tasks, we consider an abstract cost model in which each atomic task is assigned the cost of
1 resource. (This cost model could be further refined; although some timing measurements are given in [7],
these are not detailed enough for this purpose.) The code for one such atomic task inside the CalcServer class
is shown in Fig. 3.13.

Resource Management. The workflow process does not interact with the different instances of CalcServer
directly. Instead, tasks are sent to an instance of ApplicationServer which acts as a broker for the preallocated
machine instances created in the init method. The ApplicationServer interface, partly shown in Fig. 3.14, pro-
vides the workflow which starts the parallelizable tasks (i.e., mProjExec, mDiffExec, mFitExec and mBgExec)
and distributes the atomic tasks (e.g., mDiff) to instances of CalcServer. Atomic tasks are sent directly to
one calculation server. Two fields activeMachines and servers keep track of the number of active jobs on
each created machine and the order in which servers get jobs, respectively. Surrounding every call to a
calculation server the auxiliary methods getServer and dropServer do the bookkeeping and resource manage-
ment of the virtual machines. Methods getServer and dropServer call the methods acquireMachineOfObject
and releaseMachineOfObject respectively, which communicate with the cloud provider API (described in Sec-
tion 3.1) to acquire and release virtual machines. Asynchronous method calls to the future variables fimage
and fnewimages, and task suspension are used to keep the application server responsive.

Our model defines algebraic data types FITS, FITSdf, FITSfit, as well as the list MetadataT and the maps
CorrectionT and Image2ImageT to represent the input and output data at the different stages of the workflow;
for example, FITS is a data type which represents image archives in FITS format, which is constructed from
an abstract representation of metadata and of image data. This data can be used to keep track of data
flow and abstractions of calculation results. The empty list and map are denoted Nil and EmptyMap. On
lists, the constructor Cons(h, t) takes as arguments an element h and a list t; head(Cons(h, t)) = h and
tail(Cons(h, t)) = t. The function isEmpty(l) returns true if l is the empty list. On maps, the function
lookupDefault(m, k, v) returns the value bound to k in m if the key k is bound in m, and otherwise it returns
the default value v.
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interface ApplicationServer {
FITS mAdd (List<FITS> images);
List<FITS> mProjExec(List<FITS> images);
List<FITSdf> mDiffExec (MetadataT metatable, List<FITS> images);
Image2ImageT mFitExec(List<FITSdf> dfs);
List<FITS> mBgExec (CorrectionT corrections, List<FITS> images);
... }

class ApplicationServer(CloudProvider provider) implements ApplicationServer {
List<CalcServer> servers = Nil; Map<DC,Int> activeMachines = EmptyMap;

Unit init() {
Int i = ...// number of machines deployed in the cloud;
while (i > 0) {

Fut<DeploymentComponent> fdc = provider!createMachine(3);
DeploymentComponent dc = fdc.get;
[DC: dc]CalcServer p = new CalcServer();
servers = Cons(p, servers); i = i − 1; } }

...
List<FITS> mBgExec(CorrectionT corrections,List<FITS> images) {
List<FITS> newimages = Nil;
if (isEmpty(images)==False) {
FITS image = head(images);
Int correction = lookupDefault(corrections,getId(image), 0);
CalcServer b = this.getServer();
Fut<FITS> fimage = b!mBackground (correction,image);
Fut<List<FITS>> fnewimages=this!mBgExec(corrections,tail(images));
await fimage?; FITS tmpimage = fimage.get;
this.dropServer(b);
await fnewimages?; List<FITS> newtmpimages = fnewimages.get;
newimages = Cons(tmpimage, newtmpimages);}

return newimages;}
...

//Bookkeeping and resource management of the VM
CalcServer getServer() {

nTasks = nTasks + 1;
await (¬(servers == Nil));
CalcServer s = head(servers); servers = tail(servers);
this.acquireMachineOfObject(s);
servers = appendright(servers, s); //round−robin
return s; }

Unit dropServer(CalcServer s) {
this.releaseMachineOfObject(s); lastTask = now(); }

Unit acquireMachineOfObject(CalcServer o) {
Fut<DeploymentComponent> fdc = o!getDC();
await fdc?; DeploymentComponent dc = fdc.get;
if (¬contains(keys(activeMachines), dc)) {

Fut<Unit> f = provider!acquireMachine(dc); await f?;}
activeMachines = incrementCount(activeMachines, dc); }

Unit releaseMachineOfObject(CalcServer o) {
Fut<DeploymentComponent> fdc = o!getDC();
await fdc?; DeploymentComponent dc = fdc.get;
activeMachines = decrementCount(activeMachines, dc);
if (nTasks == 200) {
Set<DC> machines = keys(activeMachines);
while (~(emptySet(machines))) {
DC machine = take(machines);
machines = remove(machines, machine);
provider!releaseMachine(machine); } } }

... }

Figure 3.14: The ApplicationServer interface and class (abridged).
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Chapter 4

The ABS Cloud API

This chapter describes the facilities for modeling cloud deployment as currently implemented in ABS. The
scope and content of the Cloud API is expected to change as the project progresses; the final version will be
reported in D1.3.2.

4.1 Standard Library Support

This section builds upon Deliverable D1.2.1, where we discussed resource modeling and its effects on model
simulation. This section shows support for modeling complex deployment scenarios in ABS and how this is
applied in the case studies.

All ABS identifiers (classes, interfaces, functions, data types) mentioned in this chapter are exported
from the module ABS.DC.

4.1.1 Datatypes, Expressions and Deployment Component Configurations

As mentioned in Deliverable D1.2.1, deployment components are involved in modeling resource configurations
and deployment scenarios. All cogs and their processes are deployed on some deployment component, which
will restrict execution capacity according to its resource configuration. This section expands on the use of
deployment components.

Finding the current deployment component. The function thisDC() returns a reference to the current
deployment component, i.e., the deployment component that contains the cog on which the current process
is running.

Resource Configurations. The datatype ResourceType, as described in Deliverable D1.2.1, has construc-
tors for the resource types in use in ABS. Currently, the resource types are CPU, Bandwidth and Memory.
A resource configuration assigns numeric values to a subset of these resource types. Resource configurations
can be used to describe, create and query deployment configurations.

Example:

def Map<Resourcetype, Rat> amazonSmallInstance() =
map[Pair(CPU, 20), Pair(Memory, 10000)];

This example defines an amazonSmallInstance to be a deployment component with 20 CPU and 10000 Memory
capacity. Note that there is no value given for bandwidth; in this case, bandwidth is deemed to be either
infinite or not necessary for purposes of the given model.
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Infinite values. Cogs that are created outside any deployment component are in effect running under a
resource configuration with infinite resources of all types. To express infinity, the module ABS.DC defines a
datatype InfRat as follows:

data InfRat = InfRat | Fin(Rat finvalue);

The value of a resource can be either infinity (InfRat) or a finite value Fin(value). The concrete value can be
accessed via the finvalue() function. It is an error to call finvalue on an infinite value InfRat.

4.1.2 The DeploymentComponent Interface

As described in Deliverable D1.2.1, cogs are deployed on deployment components. A deployment component
is created with a given resource configuration which influences the non-functional properties of all cogs
deployed thereon.

Example:
DeploymentComponent dc = new DeploymentComponent("Small Server 1", amazonSmallInstance());
[DC: dc] Worker w = new CWorker();

In this example, the new cog w (with an initial object of class CWorker and all objects that this object
creates without annotations) will run on the deployment component dc with the resource configuration
specified above.

Information about the current deployment component. The deployment component interface con-
tains methods that give access to information about the resource configuration and current resource usage.

Example:
[Atomic] Rat load(Resourcetype rtype, Int periods);
[Atomic] InfRat total(Resourcetype rtype);

The method load returns a value between 0 and 100 that represents the load (consumed resources vs. available
resources) for the given resource type over the last n periods. If the resource type is infinite in the resource
configuration of the deployment component, the load is always 0.

The method total returns the total capacity of the deployment component for the given resource type.
Note that the total capacity can be infinite, as in the case of an unspecified value when creating the deploy-
ment component.

Changing a resource configuration. For some simulation scenarios, it is necessary to modify the ef-
fective resource configuration. Usually these methods are called in a dedicated part of the model that
implements load monitoring and resource balancing. Note that the methods in this section are sufficiently
general to express unrealistic scenarios. For example, using Linux control groups, traffic shaping etc. it is
possible to manipulate CPU, bandwidth or available memory for certain types of virtual machine or container
deployments. The Cloud API supports these kinds of operations, but does not ensure that the modeled sce-
narios are realistic wrt. some physical deployment scenario – it is the responsibility of the modeler to ensure
that models reflect the real system.

The following methods in the DeploymentComponent interface modify its resource scenario:

Example:
Unit incrementResources(Rat amount, Resourcetype rtype);
Unit decrementResources(Rat amount, Resourcetype rtype);
Unit transfer(DeploymentComponent target, Rat amount, Resourcetype rtype);

The methods incrementResources and decrementResources increment or decrement the total available re-
sources by the given amount. Neither have an effect when the resource type is infinite. In addition,
decrementResources will not decrement below zero resources.
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Not Acquired

Figure 4.1: The deployment component lifecycle

Incrementing and decrementing resources becomes effective in the next time slot. For example, incre-
menting the CPU resource type by 5 will make 5 more resources of that type available every period beginning
with the next refreshment of resources.

The method transfer is a utility method implemented in terms of incrementing and decrementing re-
sources. It transfers a given amount of resources to the target deployment component.

4.1.3 The CloudProvider Interface and Deployment Component Lifecycle

When going beyond static scenarios with a fixed number of deployment components, it is necessary to intro-
duce components to manage the creation, allocation, deallocation and destruction of deployment components.
Such a component can also collect the billing (cost) information that results in quantitative measurements
on fitness of different deployment scenarios. (See [5] for an example of such a scenario).

The CloudProvider interface deals with modeling the lifecycle and billing information of a number of
deployment components. See Figure 4.1 for the life cycle of a deployment component that is managed by a
cloud provider.

Finding a cloud provider. The DeploymentComponent interface includes a method getProvider() that
returns a reference to the cloud provider that handles the given deployment component. Note that the
returned reference can be null if the deployment component is not managed by a cloud provider.

Acquiring a deployment component. Acquiring a deployment component follows Figure 4.1. It is,
however, necessary to perform launching and acquiring of instances atomically, otherwise trying to acquire
a freshly-launched instance might fail in case the cloud provider handed out the fresh instance in response
to another instance request that matched its resource configuration.

DeploymentComponent launchInstance(Map<Resourcetype, Rat> description);
Bool acquireInstance(DeploymentComponent instance);
Bool prelaunchInstance(DeploymentComponent instance);

The launchInstancemethod returns either a fresh deployment component or a deployment component that has
been released previously and whose resource configuration fits the description. This method might not return
instantly, modeling the fact that machine instances might not be created instantly, depending on instance
type and cloud provider platform. The returned deployment component is considered to be acquired by the
requestor and can be used immediately for deploying new cogs.

The acquireInstance method acquires a deployment component, i.e., after this method returns True the
caller is allowed to deploy cogs on the deployment component until the deployment component is released
again. If this method returns False, the deployment component has already been acquired.

Since acquiring a deployment component requires having a reference already, the DeploymentComponent
interface offers a convenience method Bool acquire() with the same semantics as acquireInstance. In case the
deployment component is not managed by a cloud provider, acquire will always succeed.

The method prelaunchInstance always creates a new deployment component whose resource configuration
fits the description. This method can be used for load balancing purposes, or in anticipation of incoming
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launchInstance requests, which will experience less delay when pre-launched deployment components are
already created.

Releasing a deployment component. A model can release a deployment component after all activities
have finished.

Bool releaseInstance(DeploymentComponent instance);
Bool killInstance(DeploymentComponent instance);

After releaseInstance, a subsequent call to launchInstance might return a reference to that same deployment
component if it fits. A deployment component that has been released representsx a running but idle virtual
machine instance.

The DeploymentComponent interface offers a convenience method Bool release(). In case the deployment
component is not managed by a cloud provider, release will always succeed.

After calling the method killInstance, no call to launchInstance will ever return a reference to that deploy-
ment component, and it will not influence the cost of running the model anymore.

4.2 Multiple Cloud Providers

It is possible to use more than one cloud provider in a model. Each deployment component will be managed
by the cloud provider that created it. The deployment component methods acquire() and release() will work
as expected. The deployment component method getProvider() will return a reference to the cloud provider
that manages that deployment component.

The cloud provider of the current deployment component can be obtained via thisDC()getProvider()!.
There is no built-in way of obtaining a reference to another cloud provider; references to multiple cloud
providers are passed along in the normal way via method calls or class initialization parameters.

4.3 Application in the Case Studies

All case studies use ABS cogs and deployment components to model code deployed on virtual machines.
This section briefly discusses the state of cloud deployment modeling in the case studies as of M18.

The Fredhopper case study (Task T4.3) contains an early version of the presented Cloud API (the
InfrastructureService interface and InfrastructureServiceImpl class). Appendix B presents a publication de-
scribing the cloud processing part of the Atbrox case study (Task T4.2) in the form of a dynamic deployment
model implementing the MapReduce processing framework. The ETICS case study of Engineering (Task
T4.4) implements a version of the Cloud API in the class ResourcePool.

Work is currently under way to unify the three case studies and unify deployment component lifecycles
using the common framework.
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Glossary

ABS Abstract Behavioural Specification language. An executable class-based, concurrent, object-oriented
modelling language based on Creol, created for the HATS project. In Envisage this language has been
extended with the notion of deployment component, which is a container providing running objects with the
needed resources.

ABS Cloud API An interface included in the ABS Standard Library for the modeling of typical remote
calls to a cloud infrastructure to acquire, release, monitor and manage virtual computing resources.

ABS Standard Library It includes ABS class and interface declarations that are typically included into
ABS programs.

API Application Programming Interface. It usually identifies the set of external remote calls a program
or a service exposes to its clients.

Cloud Computing metaphor identifying utilities for acquisition and consumption of virtual computing
resources on-demand.

Domain Specific Language Programming or modeling language specialized for a particular application
domain.

Dynamic deployment Acquisition or release of new resources like computing power, memory, etc. dur-
ing a computing system lifetime, including the allocation of the new acquired resources to corresponding
computing components.

MapReduce Programming model for processing large data sets. Based on the idea of two kinds of paral-
lelizable tasks it is specifically tailored for execution in a multi-threaded system.

Static deployment Initial configuration of a component-based computing system obtained by means of
the proper distribution and interconnection of the components over the available computing resources.
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ABSTRACT
Production of modern software systems frequently adopts a
so-called continuous delivery approach, according to which
there is a continuum between the development and the de-
ployment phases. Nevertheless, at the modelling level, the
combination between development and deployment is far
from being a common practice. In this paper, we address
the problem of promoting deployment as an integral part of
modelling. To this aim, we adopt the object-oriented ABS
language, which supports the modelling of systems com-
posed of concurrent objects running inside deployment com-
ponents. We extend ABS with class annotations expressing
the requirements to be satisfied in order to deploy an object
of that class. Then, we define a declarative deployment lan-
guage and implement a tool that, starting from a high-level
declaration of the desired system, computes a main program
that instantiates an optimal deployment of the system.

1. INTRODUCTION
In modern software systems it is more and more frequent

to observe a continuum between the development and the
deployment phases. For instance, the continuous delivery
design practice [18] advocates the automation of the soft-
ware delivery phase, in order to support the rapid and re-
peated releases of enhanced versions of the application. At
the modelling level, such a continuum between development
and deployment is far from being a common practice. In
fact, traditional modelling techniques usually support the
development phase (see, for instance, model-driven devel-
opment approaches [29]). On the contrary, more recent
modelling languages (like, for instance, TOSCA [25]) focus
specifically on application deployment, by expressing it in
an infrastructure-independent and portable way.

In this paper, we address the problem of promoting de-
ployment as an integral part of modelling. The approach
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that we present is based on three main pillars. The first one
deals with the modelling of the software artefacts compos-
ing the desired system: their description is enriched with the
indication of their functional dependencies and the quantifi-
cation of the resources they require in order to be properly
executed. The second one consists of a high-level language
for the declarative specification of the desired deployment:
minimal requirements can be expressed on the system to be
deployed like, for instance, the basic components that must
be present (e.g., the need for a load balancer) or the number
of replica of a given service to guarantee for instance high
availability. The third pillar is an automatic engine that,
taking as input the local requirements of the single software
artefacts and the global expectations on the desired system,
computes a fully specified deployment that satisfies both
kinds of constraints and possibly optimizes some objective
function to minimize the total deployment costs.

Our research has been driven and validated by an indus-
trial use case: the Fredhopper Cloud Services which offers
search and targeting facilities on a large product database
to e-Commerce companies. Depending on the specific pro-
file of an e-Commerce company —like the expected number
of clients or the preference between a completely external-
ized cloud-based installation or a hybrid on-premises/cloud
configuration— Fredhopper has to decide the most appropri-
ate customized deployment of the service. Currently, such
decisions are taken manually by an operation team which de-
cides customized, hopefully optimal, service configurations
taking into account the tension among several aspects like
the level of replications of critical parts of the service to
ensure high availability, the costs of the virtual computing
resources to acquire, and the necessity of some customers to
keep their data private.

We envisage several advantages from the anticipation at
the modelling level of aspects related with deployment. On
the one hand, this allows for an early analysis of different
alternative deployments, thus providing the operation team
with a valuable decisions support. On the other hand, it is
possible to detect the need for additional iterations in the
system design in case the results of the deployment analysis
are not satisfactory. In this way, it is not necessary to test
real installations of the system in order to detect design de-
cisions having a negative impact on the system deployment.

We apply our approach to a specific modelling language,
the Abstract Behavioral Specification language (ABS). ABS
supports the modelling of distributed systems represented
as a network of deployment components, which are contain-
ers providing concurrent asynchronously communicating ob-



jects with the resources they need to properly execute. The
selection of ABS is justified by two main reasons: the pres-
ence in ABS of the linguistic elements needed to properly
model aspects related with deployment, and the already
available modelling in ABS of the Fredhopper Cloud Ser-
vices. This permits the comparison of the model of deploy-
ment that our approach will automatically compute with
those that are actually adopted by the operation team. In
other terms, Fredhopper already has a set of concrete bench-
marks that we can use to validate and evaluate the results
of our model-based automatic deployments.

The main contributions of the paper are as follows.

• The extension of ABS with the possibility to annotate
class definitions with deployment information. Several
deployment scenarii can be considered and, for each
of them, it is possible to indicate specific functional
and resource-dependent requirements for the objects
obtained as instantiation of such classes.

• The definition of DDLang, a domain specific language
allowing for the high-level declarative specification of
the desired deployment.

• The implementation of Model-Driven Deployment En-
gine (MODDE), a tool that given the set of available
ABS classes (annotated with their deployment infor-
mation) and the declarative specification in DDLang of
the desired system, computes an ABS main program
that creates the needed deployment components and
deploys on them the required objects. The deployment
components are taken from a description of the avail-
able computing resources (each one with an associated
cost) given to MODDE as an additional input in JSON
format.

It is worth to mention that in the implementation of our
tool MODDE we have taken advantage of two already avail-
able tools, namely Zephyrus [6] and Metis [22], to respec-
tively support the computation of the optimal allocation of
objects over deployment components, and the generation of
the sequence of actions to be executed by the generated
ABS main program. We have decided to leverage already
available tools that are not tailored to a specific modelling
language, to realize an easily portable and adaptable frame-
work for model-driven deployment. In fact, if an alternative
modelling language is considered instead of ABS, it will be
possible to adapt our approach simply by extending such a
modelling language with the deployment annotations, and
by modifying only those (limited) parts of MODDE that de-
pend on ABS. Our declarative deployment language DDLang
can be indeed applied to any other object-oriented modelling
language as it has no particular dependencies on the specific
aspects of ABS.

Structure of the paper.
In Section 2 we discuss the related literature. The de-

scription of the Fredhopper Cloud Services used to drive
and validate our work is reported in Section 3. In Section
4 we present the extension to the ABS modelling language
allowing for the definition of ABS models extended with
deployment information. The declarative deployment lan-
guage DDLang is presented in Section 5 while Section 6 dis-
cusses the implementation of MODDE. Sections 7 discuss

the validation of our approach to model-driven deployment.
Finally, in Section 8 we draw some concluding remarks.

2. RELATED WORK
The deployment of applications and services has been ex-

tensively studied in the literature. Automated approaches
have been developed already, but thus far mostly for the par-
ticular case of configuring package-based FOSS (Free and
Open Source Software) distributions on a single system.
There are nowadays generic, solver-based component man-
agers for this task [1]. Similar approaches have been de-
veloped in the context of Software Product Lines where a
correct instance of a product needs to be composed of a
consistent set of features [28].

Things get more complicated when the deployment of ap-
plications needs to be performed on a pool of distributed and
interconnected machines. This problem has lately attracted
significant attention in the area of system administration.
Many popular system management tools exist to that end:
CFEngine [5], Puppet [20], MCollective [27], and Chef [26]
are just a few among the most popular ones. Despite their
differences, such tools allow to declare the components that
should be installed on each machine, together with their con-
figuration files. The burden of specifying where components
should be deployed, and how to interconnect them is left to
the system admin, let alone in solving the difficult problem
of optimal resource allocation.

Two deployment approaches standing at opposite sides
are gaining more and more momentum: the holistic and
the DevOps one. In the former, one defines a complete
model for the entire application and the deployment plan
is then derived in a top-down manner. In the latter, put for-
ward by the DevOps community, an application is deployed
by assembling available components that serve as the basic
building blocks. This emerging approach works in a bottom-
up direction: from individual component descriptions and
recipes for installing them, an application is built as a com-
position of these recipes.

As of today, most of the industrial products, offered by big
companies, such as Amazon, HP and IBM, rely on the holis-
tic approach. In this context, one prominent work is repre-
sented by the TOSCA (Topology and Orchestration Speci-
fication for Cloud Applications) standard [25], promoted by
the OASIS consortium for open standards. TOSCA pro-
poses an XML-like rich language (or YAML) to describe an
application. Deployment plans are usually specified using
the BPMN or BPEL notations, i.e., workflow languages de-
fined in the context of business process modelling. TOSCA
specification, however, still lacks proper tooling and technol-
ogy support for large-scale industry usages.

The most important representative for the DevOps ap-
proach is instead Juju [19], by Canonical. It is based on the
concept of charm: the atomic unit containing a description
of a component. This description in the form of meta-data
is coupled with configuration data and hooks that are scripts
to deploy and connect components. Unfortunately, even in
this case, in order to use Juju, some advanced knowledge of
the application to install is mandatory. This is due to the
fact that the meta-data are written to support the system
administrators in their decisions but are not sufficiently de-
tailed to support completely automatic deployment. Follow-
ing this philosophy, but focusing more on cloud aspects, are



Terraform [16], Apache Brooklyn [4], and other tools sup-
porting the Cloud Application Management for Platforms
protocol [24].

Recently, to overcome the limitations of the holistic and
DevOps approaches, Zephyrus [6] has been introduced. This
tool automatically generates, starting from a partial and ab-
stract description of the target application written in the
Aeolus Model language [7], a fully detailed architecture in-
dicating which components are needed to realize such an
application, how to distributed them on virtual machines,
and how to bind them together [6]. Zephyrus is also capable
of producing optimal architectures, minimizing the amount
of needed virtual machines while still guaranteeing that each
software component has its needed share of computing re-
sources (CPU power, memory, bandwidth, etc.) on the ma-
chine where it gets deployed. As shown in [8], Zephyrus
could be used to compute a plan of deployment steps lead-
ing to an optimal and safe configuration if used in combina-
tion with Metis [21,22]: a planner that generates a complete
deployment plan that will have to be executed to bring the
current state of a deployed application to a given final con-
figuration. Plans are made of individual deployment actions
like installing a software component, changing its state ac-
cording to its component life-cycle, provisioning virtual ma-
chines, etc.

Inspired by the results presented in [8] where Zephyrus
and Metis are used to actually deploy complex systems on
an OpenStack cloud, in this work we apply them at the
modelling level to the ABS object-oriented language. In
this way, on the one hand, we rely on already established
tools for quickly generate the desired deployment solution
and, on the other hand, we develop a framework based on
independent engines that can be adapted to other modelling
languages.

To the best of our knowledge there are no other works
that deal with deployment at the modelling level, providing
a tool that automatically computes optimal target config-
urations. Two recent efforts, Feinerer’s work on UML [10]
and Engage [12], are more similar to our approach as they
both rely on a solver to plan deployments. Feinerer’s work
is based on the UML component model, which includes con-
flicts and dependencies, but lacks the aspects concerning vir-
tual machines and deployment. Engage, on the other hand,
offers no support for conflicts in the specification language.
Neither Feinerer’s work nor Engage allows to find a deploy-
ment that uses resources in an optimal way, minimizing the
number of needed (virtual) machines.

ConfSolve [17] improves on the automatic component allo-
cation: it relies on a constraint solver to propose an optimal
allocation of virtual machines to servers, and of applications
to virtual machines. It relies on an object-oriented declar-
ative language (which, differently from ABS does not deal
with behavioural aspects), but it does not devise a plan of
actions leading to the deployment of the target and optimal
configuration.

Other domain specific languages for the deployment of ap-
plications in the clouds have been proposed, e.g., the com-
ponent based application model of [9], CloudML [15], and
CloudMF [11]. All these approaches mainly aim at mod-
elling the entities involved in the cloud and effective and ef-
ficient deployment engines are still to be developed for them.

As far as the modelling languages are concerned, in this
work we just focus on ABS. Our findings however can be
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Figure 1: The Fredhopper System

reported in a rather straightforward manner to other lan-
guages. For instance, an interesting candidate language is
SmartFrog [14] (a Java based language and framework de-
veloped at HP for managing deployment in a distributed
setting) or its extensions such as DADL (Distributed Ap-
plication Description Language) [23]. Note that all these
languages cannot be used right away since, as we had to
do with ABS, they need to be enriched with annotations
describing the resource consumption of the various entities
defined.

3. FREDHOPPER CLOUD SERVICES
Fredhopper develops the Fredhopper Cloud Services to of-

fer search and targeting facilities on a large product database
to e-Commerce companies as services (SaaS) over the cloud
computing infrastructure (IaaS). In addition to the cloud of-
fering, the Fredhopper system can instead also be deployed
on-premise at the customer.

The Fredhopper Cloud Services drives over 350 global re-
tailers with more than 16 billion in online sales every year.
A typical customer of Fredhopper is a web shop, and an
end-user is a visitor of the web shop. Figure 1 shows a
high-level view of the Fredhopper system from the customer
perspective. An example of a very commonly used Fredhop-
per service is the Fredhopper Query API, which allows users
to query over their product catalogue via full text search1

and faceted navigation.2
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Figure 2: Architecture of the Fredhopper Cloud
Services

The architecture of the Fredhopper Cloud Services is shown

1http://en.wikipedia.org/wiki/Full_text_search
2http://en.wikipedia.org/wiki/Faceted_navigation



in Figure 2. The services offered by Fredhopper are exposed
at endpoints. In practice, these services are implemented to
be RESTful and accept connections over HTTP. Typically,
software services are deployed as service instances. Each in-
stance offers the same service and is exposed via the Load
Balancing Service, which in turn offers a service endpoint.
Requests through the endpoint are then distributed over the
instances. Depending on the expected number of requests
from end-users or the expected service throughput, more or
less instances may be deployed and be exposed through the
same endpoint. This calls for specific customized deploy-
ments of the Fredhopper Cloud Services.

The key services of the Fredhopper Cloud Services are the
following ones.

Load Balancing Service.
The Load Balancing Service is responsible for distribut-

ing requests from service endpoints to their corresponding
instances. Currently at Fredhopper, this service is imple-
mented by HAProxy:3 a TCP/HTTP load balancer that
also provides HTTP authentication.

Platform Service.
The Platform Service provides an interface to the Cloud

Engineers to deploy and manage service instances and to
expose them through service endpoints. The Platform Ser-
vice takes a service specification, which includes a resource
configuration for the service, and creates and deploys the
specified service. A service specification from a customer de-
termines which type of service is being offered, the number
of service instances to be deployed initially and the amount
of virtualised resources to be consumed by instance.

Deployment Service.
The Deployment Service provides an API to the Platform

Service to deploy service instances onto specified virtualised
resources provided by the Infrastructure Service. The API
also offers operations to control the life-cycle of the deployed
service instances. The Deployment Service allows the Fred-
hopper Cloud Services to be independent of the specific in-
frastructure that underlies the service instances.

Infrastructure Service.
The Infrastructure Service offers an API to the Deploy-

ment Service to acquire and release virtualised resources.
At the time of writing the Fredhopper Cloud Services uti-
lizes virtualised resources from the Amazon Web Services, 4

where processing and memory resources are exposed through
Elastic Compute Cloud instances.5

Query Service.
The Query Service provides the basic functionality for cus-

tomers to query over their product catalogue via full text
search and faceted navigation. The result of a query is a list
of items that satisfy the given query, ordered by decreasing
relevance.

All these services are modelled in ABS. Table 3 summa-
rizes the main code metrics of the Fredhopper Cloud Services

3www.haproxy.org
4aws.amazon.com
5https://aws.amazon.com/ec2/instance-types/

Metric Value
Lines of Code 1282

Classes 13
Interfaces 16

Data Types 8
Functions 31

Table 1: Code metrics of the Fredhopper Cloud Ser-
vices ABS model

ABS implementation.
Please note that to deliver high-quality digital shopping

experiences to end-users, it is crucial to find an optimal de-
ployment configuration: the number and kind of virtual ma-
chines used in a deployment must be sufficiently powerful
and the cost of the virtual machines must be maintained at
an acceptable level. The deployment configuration must also
take into account several requirements: some services can be
shared between various customers, while other services that
manipulate private customer data should be deployed on a
dedicated (per-customer) basis.

Finding an optimal deployment configuration that satis-
fies all requirements is a complex task. It is currently done
manually by an operations team. This requires domain-
specific knowledge and is prone to human-error. Further-
more, the operations team takes conservative precautions to
ensure customer quality, by overspending on the deployment
configuration. In this context, a tool based on a rigorous for-
mal approach that helps evaluating and finding better de-
ployment configurations, at a fraction of the time currently
required by the operations team, clearly represents a signif-
icant breakthrough.

4. ANNOTATED ABS
In this section we will briefly describe the ABS language

focusing only on those aspects that are concerned with de-
ployment: namely classes, objects instantiation, interfaces,
and deployment components. Moreover, we present our ex-
tension of ABS with class annotations expressing the de-
ployment requirements of the objects obtained as instances
of such classes.

4.1 ABS
The Abstract Behavioral Specification language ABS has

been designed to develop executable models with an object-
oriented program flow. ABS targets distributed and concur-
rent systems by means of concurrent object groups and asyn-
chronous method calls. Moreover, ABS supports a range of
techniques for model exploration and analysis, based on for-
mal semantics. The reader interested in the details of ABS
and the related tools can refer to the ABS project website;6

here we simply discuss specific linguistic features supporting
deployment modelling. The basic element is the deployment
component, which is a container for objects.

DeploymentComponent small =

new DeploymentComponent("m1",

map[Pair(Memory,500), Pair(CPU,1)]);

DeploymentComponent large =

new DeploymentComponent("m2",

map[Pair(Memory,1500), Pair(CPU,4)]);

6http://abs-models.org



[DC: large] Service s1 = new Service();

[DC: large] Service s2 = new Service();

[DC: small] Balancer b = new Balancer(list[s1,s2]);

In the ABS code above, the two deployment components
small and large are initially created. Every deployment
component has an associated identification string and a set
of provided resources. Next, three objects are created: the
first two are services that are located on the large deploy-
ment component, while the last one is a balancer located on
the small deployment component. Notice that the balancer
receives as initialization parameters a list with the references
to the two service objects.

In ABS it is possible to declare interface hierarchies and
define classes implementing them.

interface EndPoint { }

interface ReverseProxy extends EndPoint { }

class Balancer(List<Service> services)

implements ReverseProxy { ... }

In the excerpt of ABS code above, ReverseProxy is de-
clared as an interface that extends EndPoint, and the class
Balancer is defined as an implementation of this interface.
Notice that the initialization parameters required at object
instantiation are indicated as parameters in the correspond-
ing class definition. As commented above, the initialization
parameters of class Balancer consist of the list of the service
instances to be balanced.

4.2 ABS annotations
Ideally, we would like to have a measure of the resource

consumption associated to every object that can be created.
In this way, assuming that computing the composition of
such costs is possible, we can have a precise estimation of the
resources needed by the overall system and take deployment
decisions accordingly.

We do not focus on pre-defined resources. In our context
a resource is simply a measurable quantity that can be con-
sume by the ABS program. For instance, common resources
that a program can consume are memory, CPU clock cycles,
and bandwidth. The resource amount is expressed with a
natural number. For instance, assuming that the minimal
unit to measure the RAM memory is a MB, we can state
that a deployment component provides 2GB of RAM sim-
ply by associating to a given deployment component 1024∗2
units of memory. When two objects consume an amount r1
and r2 of the same resource we assume that the cumulative
consumption does not exceed the sum of r1 and r2. Obvi-
ously, a resource can never be consumed in more quantities
than provided.

We require an annotation for every relevant class that can
be involved in the automatic generation of the main.For in-
stance, there is no need to annotate a class implementing an
internal data structure. Intuitively, an annotation for the
class C describes: (i) the maximal resource consumption of
an object obj of the class C, (ii) the requirements on the ini-
tialization parameters for class C (for instance, at least two
services should be present in the initialization list of a load
balancer), and (iii) how many other objects in the deployed
system can use the functionalities provided by obj.

The ANTLR7 grammar of the annotation language is re-
ported in Table 2 and a specific example of annotated ABS
code is in Listing 1 (annotations in Lines 4–8).
7http://www.antlr.org

1 ann
2 : ’[Deploy: scenario[’ expr (’,’ expr)* ’]]’;

3 expr
4 : ’Name(’ STRING ’)’
5 | ’MaxUse(’ INT ’)’
6 | ’Cost(’ STRING ’,’ INT ’)’
7 | ’Param(’ STRING ’,’ paramKind ’)’;

8 paramKind
9 : User

10 | ’Default(’ STRING ’)’
11 | Req
12 | ’List(’ INT ’)’;

Table 2: Grammar of ABS annotations

1 interface IQueryService extends Service {
2 List <Item > doQuery(String q);
3 }

4 [Deploy: scenario[
5 MaxUse (1),
6 Cost("CPU", 1), Cost("Memory", 400),
7 Param("c", Default("CustomerX"),
8 Param("ds", Req)]]

9 class QueryServiceImpl(DeploymentService ds,
10 Customer c) implements IQueryService {
11 // Implementation
12 }

Listing 1: Fredhopper Query API

In general, given a class C, an annotation ann is simply a
list of comma separated expressions expr where the expres-
sions are of the following types.

• Name(X): associates a name X to the annotation. The
name, also called scenario name or simply scenario,
identifies unequivocally the annotation in case of dif-
ferent annotations for the same class C, each one rep-
resenting a different way for deploying objects of that
class.This expression can be left unspecified in at most
one of the annotations of a class: in this case the name
is set to the default value Def.

• MaxUse(X): indicates that an object obj of class C can
be used in the creation of at most X other objects. This
parameter expresses the constraint that in the specified
deployment scenario, obj can provide its functionali-
ties only to a limited number of other client objects.
By default, if this field is absent, an unlimited number
of client objects is considered.

• Cost( r, X ): indicates that an object obj of class C

consumes at most X units of the resource r.

• Param( param, kind ): indicates how the initializa-
tion parameters param for class C must be instantiated
when an object obj of class C is deployed. There are
four different cases:

1. User: the user has to enter the parameter name.
This happens when only the user knows how to
specify the parameter value. In this case, the au-
tomatic deployer leaves the parameter unspecified
and the user will have to manually instantiate it.



2. Default( X ): the parameter must be set to the
default value X.

3. Req: the parameter is required to be defined by
MODDE: here, MODDE is responsible to first cre-
ate an appropriate object and then pass it as pa-
rameter when obj is instantiated.

4. List(X): the parameter requires a list of at least X
objects (where X is a natural number) that should
be defined by MODDE. Similar to what happens
with the Req parameter, X objects should be cre-
ated and their list passed as parameter when obj

is instantiated.

We now discuss the annotated ABS code of Listing 1 taken
from the specification of the Query API of Fredhopper Cloud
Services described in Section 3.

Abstracting away the implementation details, the Query
API has been modelled as a QueryServiceImpl class imple-
menting the interface IQueryService. The interface and the
class QueryServiceImpl are defined in ABS at Lines 3 and
9. The annotation for the class QueryServiceImpl is intro-
duced before the class definition, at Line 4. The annotation
at Line 5 specifies that an object of QueryServiceImpl may
be used as parameter only once during the creation of other
objects. Line 6 associates some resource costs to an object of
QueryServiceImpl. In particular, in this case an object of
class QueryServiceImpl can consume up to 4GB of memory
and 1 CPU. Lines 7 and 8 annotate the single initialization
parameters of the class. QueryServiceImpl has two param-
eters: ds, an object implementing the DeploymentService

interface, and the customer c. The ds parameter is set as
a required parameter. This means that before deploying an
object obj of QueryServiceImpl, it is necessary to deploy
an object implementing DeploymentService and pass this
object as initialization parameter to obj. The customer pa-
rameter is instead set to a default value, in this case the
string CustomerX.

As mentioned above, multiple annotations are possible for
the same class to identify different ways to deploy the same
type of object. For instance, consider the possibility that
the object of class QueryServiceImpl for a different cus-
tomer requires 2GB of memory instead of 4GB and 2 CPUs.
To capture this we can add before the class definition the
following annotation.

1 [Deploy: scenario[ Name( "NewCustomer ")
2 MaxUse (1),
3 Cost("CPU", 2), Cost(" Memory", 200),
4 Param("c", Default (" NewCustomer "),
5 Param("ds", Req) ]]

This annotation represents a deployment scenario iden-
tified by NewCustomer (Line 1) that consumes a different
amount of resources and considers a different default value
for the c parameter.8

5. DDLang
When a system deployment is automatically computed,

a user expects to reach specific goals and could have some
desiderata. For instance, in the considered Fredhopper Cloud
Services use case, the goal is to deploy a given number of

8Please note the annotation in Listing 1 represents the de-
fault scenario (Def) since the Name annotation is not defined.

1 spec
2 : expr comparisonOP expr |
3 | spec boolOP spec | ’true’ |
4 | ’not’ spec | ’(’ spec ’)’ ;

5 expr
6 : ’DC[’ resourceFilter ’|’ simpleExpr ’]’
7 | ’DC[’ simpleExpr ’]’
8 | expr arithmeticOP expr
9 | simpleExpr ;

10 resourceFilter
11 : STRING comparisonOP INT
12 | resourceFilter ’;’ resourceFilter ;

13 simpleExpr
14 : exprNoDC comparisonOP exprNoDC
15 | simpleExpr boolOP simpleExpr |
16 | ’true’ | ’not’ spec | ’(’ spec ’)’ ;

17 exprNoDC :
18 INT |
19 ’INTERFACE[’ STRING ’]’|
20 ’CLASS[’ STRING ’]’ |
21 ’CLASS[’ STRING ’:’ STRING ’]’ |

22 exprNoDC arithmeticOP exprNoDC ;
23 comparisonOP : ’<=’ | ’<’ | ’=’ | ’>=’ | ’>’ ;

24 arithmeticOP : ’+’ | ’-’ | ’*’ ;

25 boolOP : ’and’ | ’or’ | ’impl’ | ’iff’ ;

Table 3: DDLang grammar

Query Services and a Platform Service, possibly located on
different machines (e.g., to improve fault tolerance).

All these goals and desiderata can be expressed in the
Declarative Deployment Language (DDLang): a language for
stating the constraints that the final configuration should
satisfy. As shown in Table 3, a constraint in DDLang is a
specification spec of basic constraints expr comparisonOP

expr (Line 2) combined using the usual logical connectives.
These basic constraints specify how many elements (e.g.,
classes, interfaces, or deployment components) the user de-
sires to create. An expression expr could identify differ-
ent kinds of basic quantities: (i) an integer value, (ii) the
number of objects implementing an interface I (denoted
INTERFACE[I] - Line 19), (iii) the number of objects of a
class C (denoted CLASS[C] - Line 20). In this last case, it is
also possible to indicate the number of objects of a class C

deployed following a given scenario S (CLASS[C : S] - Line
21).

With this expressivity it is possible to add constraints
that abstract away from the deployment components. For
instance, one might require the deployment of at least 2 ob-
jects implementing the interface IQueryService and exactly
1 object of class PlatformServiceImpl by using the follow-
ing expression.

INTERFACE[IQueryService] >= 2 and

CLASS[PlatformServiceImpl] = 1

More complex quantities are concerned with deployment
components. These are expressed (Line 6) with the notation
DC[ filter | simpleExpr ] where filter is a sequence of
constraints on the resources provided by the deployment
component and simpleExpr is an expression. DC[ filter

| simpleExpr ] denotes the number of deployment compo-
nents that satisfy the resource constraints of filter and
that contain objects satisfying the expression simpleExpr.
For instance, we can specify that no deployment component
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Figure 3: MODDE execution flow

having less than 2 CPUs should contain more than one ob-
ject of class QueryServiceImpl as follows.

DC[ CPU <= 2 | CLASS[QueryServiceImpl] >= 2 ] = 0

It is interesting to notice that using such constraints it is
also possible to express co-location or distribution requests.
For instance, for efficiency reasons it could be convenient
to co-locate highly interacting objects or, for security or
fault tolerance reasons, two objects should be required to
be deployed separately. For instance, in the considered case
study, we require that an object of class QueryServiceImpl

must be always co-installed together with an object of class
DeploymentServiceImpl. This can be achieved as follows.

DC[ CLASS[QueryServiceImpl] > 0 and

CLASS[DeploymentServiceImpl] = 0 ] = 0

The impossibility to co-locate two objects in the same de-
ployment component can be expressed in a similar manner.
For example, in our case study, we require that Platform-

ServiceImpl and LoadBalancerServiceImpl are installed
separately for fault tolerance reasons. This requirement is
captured by the following constraint.

DC[ CLASS[PlatformServiceImpl] > 0 and

CLASS[LoadBalancerServiceImpl] > 0 ] = 0

6. DEPLOYMENT ENGINE
MODDE is the tool that we have implemented to generate

an ABS main program realizing a deployment of objects,
obtained as instantiations from a set of annotated classes,
which satisfies constraints expressed in DDLang. The tool

relies on scripts that integrate Zephyrus and Metis following
the workflow depicted in Figure 3. More precisely, MODDE
takes three distinct inputs: the ABS program annotated
as discussed in Section 4, the user desiderata formalized as
constraints in the language DDLang defined in Section 5,
and the list of available deployment components expressed
as described below.

The list of components is given as a JSON object having
two properties: DC_description, which describes the differ-
ent types of deployment components, and DC_availability,
that specifies the number of available instances for each of
these types. A deployment component type is identified by a
name, the list of the resources it provides and a (monetary)
cost that the user has to pay in order to use it.

For instance the following JSON object defines the possi-
bility of using 5 c3.large and 3 c3.xlarge Amazon AWS
instances as deployment components.

1 {

2 "DC_description": [

3 { "name" : "c3.large",

4 "provide_resources" :

5 {"CPU" : 2, "Memory" : 375},

6 "cost" : 105 },

7 { "name" : "c3.xlarge",

8 "provide_resources" :

9 {"CPU" : 4, "Memory" : 750},

10 "cost" : 210 } ],

11 "DC_availability": {

12 "c3.large" : 5,

13 "c3.xlarge" : 3 }

14 }

The c3.large AWS machine is identified as a deployment
component type that provides 2 CPUs and 3.75 GB of RAM.
When used, this type of deployment component cost 105
credits per hour.

When MODDE is executed, the first step builds a parse-
tree of the annotated ABS program, retrieving all the anno-
tations and the class signatures. This step (step 1 in Figure
3) is performed by a Java program that outputs a JSON file.

In the second step, the output of the annotation extrac-
tion is processed to generate the universe file of components
required by Zephyrus. Indeed, Zephyrus requires as input
a representation of the components to deploy following the
Aeolus model specification [7]. In Aeolus, a component is
a grey-box showing relevant internal states and the actions
that can be acted on the component to change its state dur-
ing the deployment process. Each state activates provide
and require ports that represent functionalities that the com-
ponent offers and needs, respectively. Active require ports
must be bound to active provide ports of other components.

We model an ABS object obj as an Aeolus component
with two states: an initial state Init representing that obj

is not yet created, and an On state meaning that the object
has been created. If the object has some initialization pa-
rameters requiring the existence of other objects, these are
seen as require ports. For instance, in our use case, the in-
stantiation of an object of class QueryServiceImpl requires
as initialization parameter an object exposing the interface
DeploymentService. For this reason the Aeolus component
representing an object obj of class QueryServiceImpl re-
quires the functionality DeploymentService in the On state.
Dually, since the class QueryServiceImpl implements the



Figure 4: Aeolus model representation for object of
class QueryServiceImpl

interface IQueryService, the Aelous component associated
to obj provides the functionality IQueryService in the On

state, plus the interfaces Service and EndPoint which are
extended by IQueryService. The graphical representation
of this Aeolus component is reported in Figure 4.

In Aeolus is possible to associate numbers to ports to deal
with capacity/replication constraints. For require ports, this
number indicates the minimal number of distinct compo-
nents that should satisfy the requirement. Instead, for pro-
vide ports, the number stands for the maximal amount of
distinct components that can use the provided functional-
ity. In our setting, the number associated to a requirement
of interface I for a class C is therefore the number of objects
exposing interface I to be created and passed as initializa-
tion parameters to objects of class C. The number associ-
ated to the provide ports is instead the number defined by
the MaxUse annotation. For example, consider an object
obj of class QueryServiceImpl. The number associated to
the require port DeploymentService is 1 since only a sin-
gle object implementing the interface DeploymentService is
needed. Moreover, since its functionality is intended to be
used by only one customer (i.e., its MaxUse annotation is set
to 1) the number associated to the provide ports is also set
to 1. 9

The first input of the Zephyrus tool is the universe of all
the components obtained from the annotated classes. More-
over, to compute the optimal allocation of these components,
Zephyrus requires two additional inputs: a description of all
locations where components can be installed and the require-
ments imposed on the final configuration. These two addi-
tional inputs are computed in steps 3 and 4 (see Figure 3)
from the description of the deployment components and the
user desiderata. In particular, in step 3, every deployment
component available is translated as a Zephyrus location, as-
sociated with the resource capacities it provides. In step 4,
the constraints in the DDLang input are translated into the
specification request language of Zephyrus. This translation
is rather straightforward since the specification of Zephyrus
is more expressive than DDLang.10

When all the inputs for Zephyrus are collected the solver
is launched (step 5). The execution of Zephyrus is the most
computation intensive task. Indeed, Zephyrus needs to solve
the problem of finding the optimal allocation of the compo-

9In ABS a single class C can expose several interfaces (see,
e.g., the three interfaces in the provide ports of Figure 4).
In this case, the MaxUse(n) indicates the maximal usage of
the object of class C for every single provided interface.

10In the Zephyrus specification it is indeed possible to have
also global variables and additional constraint on the loca-
tions. For more details about the specification language of
Zephyrus we refer the interested reader to [6].

nents that satisfy the user desiderata which can be seen as
a generalization of the bin packing problem, a well known
NP-hard problem [13]. Even though this theoretical com-
plexity is quite high, in practice in our tested scenarios (but
also in other deployment scenarios such as those discussed
in [8]) Zephyrus was able to successfully compute the opti-
mal solution in reasonable time (i.e., few minutes or less).

Since Zephyrus can be used to minimize different quanti-
ties we use it to minimize the total cost of all the deployment
components used. The output of Zephyrus lists the objects
that need to be deployed, where they are deployed, and their
dependencies.

For the generation of the ABS main program, the only
remaining missing information is the deployment order of
the objects that need to be installed. To get this informa-
tion, in step 6, we launch Metis. This planner takes in input
the final configuration produced by Zephyrus and the uni-
verse file obtained at step 2 and computes the actions to be
performed in order to reach the final configuration. In our
specific setting where the Aeolus components have only two
states, the relevant actions are the state changes from the
Init to the On states.

After the generation of the Metis plan we have all the
information to generate the ABS main program. The de-
ployment components to be used are created as computed
by Zephyrus. Then, following the order of the state changes
computed by Metis, the new objects are created and located
in the corresponding deployment components. In case an ob-
ject requires other objects as initialization parameters, the
required objects are passed based on the bindings among the
components as defined by Zephyrus.
MODDE is written in python (∼1k lines of code) with

the exception of the annotation extractor which is written
for convenience in Java (∼500 lines of code). MODDE is
publicly available from https://github.com/jacopoMauro/

abs_deployer.

7. VALIDATION
In order to validate our approach, we first collected the re-

source consumption of instances of the most relevant classes
in the ABS model. The numbers are based on real-world
log files of customers of the in-production Java version of
the Fredhopper Cloud Services system. CPU usage was in-
ferred from business logs, and garbage collection logs were
used to determine the memory consumption. We then as-
sociated cost annotations to the involved classes with the
calculated figures.

In our context, a deployment component can be consid-
ered to be an AWS instance. We defined the capacity of
each resource for several AWS instance types in the loca-
tions file.11 The price used in the cost attribute of each
AWS instance type concerns on-demand instances in the US
East region running Linux.12

We created several deployment scenarii based on the vary-
ing requirements of different customers. For instance, web
shops with a large number of visitors require more Query
Service instances than smaller web shops (and this varies
over time: visitor peaks are typically observed around Christ-

11A full list of AWS instance types, with associated capacity
for each resource, can be found at http://aws.amazon.com/
ec2/instance-types/.

12http://aws.amazon.com/ec2/pricing/



mas or during promotions). In general, this requires a scal-
able, and fault tolerant system with a proportionate number
of Query Service instances to handle computational tasks
and network traffic and return the query results sufficiently
quickly.

The deployment configuration also has to satisfy certain
requirements. For instance, for security reasons, services
that operate on sensitive customer data should not be de-
ployed on machines shared by multiple customers. On the
other hand, some services should be co-located with other
services, for example, deploying an instance of the Query
Service to a machine requires the presence of the Deploy-
ment Service on that same machine. Below we list some of
these requirements.

• Platform Service and Service Provider should be co-
located, but no other Services should reside at the
same location, and there is only one instance of Plat-
form Service (shared by all customers).

• Load Balancer should not be co-located with other
Services and is dedicated per customer (for large cus-
tomers, there may be multiple Load Balancers).

• Query Service should always be deployed together with
the Deployment Service on a dedicated machine (per
customer).

Section 5 shows the formal versions of some of the above
requirements. The specification language proved to be suf-
ficiently expressive to capture the above and all other re-
quirements.

A user can install the framework on AWS instances, ex-
ploiting the elasticity of the cloud to dynamically adapt the
number of the Query Services. In the modelling of the frame-
work, the API to control the cloud resources is defined as
a class that implements the InfrastructureService inter-
face. Since this interface in reality is provided by Amazon
itself, there is no need to deploy also an object implementing
it on the customer AWS instances. To model this, we define
a deployment component called amazon_internals that has
no cost (the Amazon API is available to all its customers
for free) and is used to deploy the object implementing the
Amazon interface.

We have automatically generated ABS deployments for
several scenarii. We report and comment only the result
obtained by MODDE when 2 instances of the Query service
are required for a customer,13 which is a simple but already
significative case.

DeploymentComponent m1.large_1 =

new DeploymentComponent("m1.large_1",

map[Pair(Memory,750), Pair(CPU,2)]);

DeploymentComponent m1.large_2 =

new DeploymentComponent("m1.large_2",

map[Pair(Memory,750), Pair(CPU,2)]);

DeploymentComponent m1.xlarge_1 =

new DeploymentComponent("m1.xlarge_1",

map[Pair(Memory,1500), Pair(CPU,4)]);

13The input files for MODDE implementing this use case
can be found at https://github.com/jacopoMauro/abs_
deployer/tree/master/test. Please note that MODDE
generates long names for objects and components. Here,
for the sake of brevity, we renamed these identifiers with
shorter strings.
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HAProxy
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Deployment
Service
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Deployment
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Service
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Figure 5: Example of automatic objects allocation
to deployment components.

DeploymentComponent m1.xlarge_2 =

new DeploymentComponent("m1.xlarge_2",

map[Pair(Memory,1500), Pair(CPU,4)]);

DeploymentComponent amazon_internals =

new DeploymentComponent("amazon_internals", map[]);

[DC: amazon_internals] InfrastructureService

o1 = new InfrastructureServiceImpl();

[DC: m1.xlarge_1] LoadBalancerService

o2 = new LoadBalancerServiceImpl();

[DC: m1.large_1] DeploymentService

o3 = new DeploymentServiceImpl(o1);

[DC: m1.large_2] DeploymentService

o4 = new DeploymentServiceImpl(o1);

[DC: m1.xlarge_2] MonitorPlatformService

o5 = new PlatformServiceImpl(list[o3,o4], o2);

[DC: m1.large_2] IQueryService

o6 = new QueryServiceImpl(o4, CustomerX);

[DC: m1.large_1] IQueryService

o7 = new QueryServiceImpl(o3, CustomerX);

[DC: m1.xlarge_2] ServiceProvider

o8 = new ServiceProviderImpl(o5, o2);

A graphical representation of the deployment generated
by this ABS main can be seen in Figure 5. Deployment
components are depicted as boxes containing the objects and
arrows between an object a towards and object b represents
the use of b as a parameter for the creation of a.

At a first sight, the deployment configuration suggested
by MODDE differs from the one used in-production which
uses only instances of type c3.xlarge (one for the Platform
Service and the Service Provider, one for the Load Balancer,
two for the two Query and Deployment Service pairs).

This discrepancy is due to the fact that we allowed MODDE
to use all the possible AWS instances. However, Amazon is
continuously updating its instances with new, better, and
possibly cheaper ones. Currently, the machines of type m1

have been deprecated and new m1 machines could not be ac-
quired any more. The optimal solution computed by MODDE
can therefore be only used by costumers that have already
m1 running machines. New costumers have to rely instead
on machines of type m3 and c3.

If MODDE is executed taking into account just the new m3

and c3 AWS instances, the computed configuration obtained
is exactly the one currently adopted by the operations team,
thus proving its optimality.



As can be seen from this example, tool support is ex-
tremely helpful to understand what the optimal deployment
scenario is in the presence of external changes, such as the
appearance of new machines. With a proper estimation of
the cost, using MODDE, the computation of the optimal
deployment scenario is trivial and does not require a deep
knowledge of the external environment conditions. This is
extremely important because it facilitates computing the
price of the final product that may vary due to external
conditions such as the possibility of using (or not using) a
virtual machine.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed a new way to tackle and

unify the modelling of a software system together with its de-
ployment. We followed a model-driven approach that allows
the user to specify the deployment aspects in a declarative
way, without requiring in-depth knowledge of the system to
be deployed.

We focused and used our approach on the ABS modelling
language, but we are not limited to it: other languages that
have primitives to handle the deployment aspects can be
used as well, provided that annotation related to the execu-
tion costs of the system are used. The desiderata of the final
system are then specified in the form of constraints written
in a domain specific language. These constraints are pro-
cessed by MODDE. The result is an automatically generated
main program that deploys the system and satisfies the user
wishes.

MODDE has been validated on an industrial case study
from the e-Commerce company Fredhopper. The results
are encouraging since the deployment solutions generated by
MODDE resemble those devised by the operations. This is a
complex, time consuming process that requires in-depth do-
main specific knowledge. Clearly, any automated tool that
can give quicker and better evaluations of the deployment
configuration based on a rigorous formal approach is a big
step forward.

This is just the first step towards the possibility of having
a one button click deployment solution. Indeed, ideally, the
annotations that the developer now has to enter manually,
could be inferred automatically using formal methods tools
such as [3]. Unfortunately, these techniques are not yet suffi-
ciently mature to be used in a production environment. For
this reason we currently resort to manual annotations.

As of today, our approach simply consider systems whose
configuration is obtained by using only the initialization pa-
rameters. In more complex cases, the configuration should
involve also method indications to pass configuration infor-
mation to objects also after their creation. For instance,
this is necessary in cases in which there are mutual or circu-
lar dependencies, where multi-stage configuration is usually
adopted [2]. As a future work, we will consider annotations
on method signatures in order to be able to automatically
compute deployments involving also method invocations.

Based on the feedback from the operations team at Fred-
hopper, we would also like to improve some functionalities of
MODDE. For instance, we would like to find the best deploy-
ment configuration given a user-specified maximal cost and
a maximal resource consumption. Furthermore, annotations
could be enriched with parametric costs that depend on the
class parameters. The declarative language can be simpli-
fied by adding “syntactic sugar” that allows users to enter

their desiderata in a more concise and readable way. More-
over, we would also like to tackle the computational aspects
involved in the process of finding the optimal configuration.
Even though it did not happen during our validation, the
optimization problem, being NP-hard in nature, may take
a lot of time to be solved. For this reason, we would also
like to exploit heuristics such as local search techniques that
quickly provide good solutions, even though they are sub-
optimal or not provably optimal.
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Abstract. Software engineering increasingly emphasizes variability by
developing families of products for a range of application contexts or user
requirements. ABS is a modeling language which supports variability in
the formal modeling of software by using feature selection to transform
a delta-oriented base model into a concrete product model. ABS also
supports deployment models, with a separation of concerns between exe-
cution cost and server capacity. This allows the model-based assessment
of deployment choices on a product’s quality of service. This paper com-
bines deployment models with the variability concepts of ABS, to model
deployment choices as features when designing a family of products.

1 Introduction

Variability is prevalent in modern software in order to satisfy a range of applica-
tion contexts or user requirements [34]. A software product line (SPL) realizes
this variability through a family of product variants (e.g., [29]). A specific prod-
uct is obtained by selecting features from a feature model [36]; these models
typically focus on the functionality and software quality attributes of different
features and products. To express variability in system design, features typically
take the form of architectural models, behavioral models, and test suites [35].
Architectural variability [16] focuses on the presence of component variants,
and can be described using, e.g., the Variability Modeling Language [27], UML
stereotypes [14], or (hierarchical) component models such as Koala [37]. In Delta
modeling [10,30,31], a set of deltas specifies modifications to a core product. ∆-
MontiArch applies delta modeling to architectural description [15]; a delta can
add or remove components, ports, and connections between components.

Whereas architectural models describe the logical organization of a system
in terms of components and their connections, we are interested in the physical
organization of software units on physical or virtual machines; we call this phys-
ical organization the deployment architecture. Varying deployment architectures
will perform the same computations, but with different cost and/or time spent.
Thus, a deployment architecture comprises specifications of execution costs and
available resources.
? Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services (http://www.envisage-project.eu).
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Fig. 2. The SPL variability space with
deployment variability.

This paper integrates deployment variability in SPL models such that dif-
ferent targeted deployment architectures may be taken into account early in
the design of the SPL. We aim at a reasonable orthogonality between func-
tional and deployment variability in the SPL model. The starting point for this
work is the abstract behavioral specification language ABS, which adds support
for variability to models in the kernel modeling language Core ABS [20]. ABS
is object-oriented to be easy to use for software developers; it is executable to
support code generation and (timed) validation of models; and it has a formal
semantics which enables the static analysis of models (e.g., the worst-case re-
source consumption can be derived for a model). ABS is particularly suitable for
our objective because (1) ABS supports SPL modeling based on deltas [9, 11],
and (2) ABS supports the modeling of deployment decisions based on the mod-
eling concept of deployment components [23] in Real-Time ABS [7]. Real-Time
ABS leverages resources and their dynamic management to the abstraction level
of software models. Fig. 1 shows how functional variability modeling in ABS
and time and deployment models in Real-Time ABS both extend Core ABS. Al-
though these extensions of ABS coexist, they have so far never been combined.
The purpose of this paper is to combine these two extensions in order to model
deployment variability, corresponding to the dotted area in Fig. 1.

Our approach to deployment variability for SPL models makes a separation
of concerns between cost and capacity which introduces two new variation points
in the variability space of ABS feature models (depicted in Fig. 2):

– Resource cost variability: These features determine the costs associated
with executing the SPL’s logical artifacts; and

– Deployment architecture variability: These features determine how the
logical artifacts are deployed on locations with different execution capacities.

The main contribution of the paper is an integration of delta models with de-
ployment architectures in ABS. This integration allows orthogonality between
functional and deployment variability, such that features expressing functional-
ity, resource cost and deployment variability are kept in different trees in the
ABS feature models. The integration is illustrated by variability patterns for
MapReduce [12], a programming model for highly parallelizable programs. Fur-
thermore, this integration allows ABS tools to be used to analyze functional
features with respect to deployment architecture during the early design stage
of SPLs.
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Fig. 3. A family of products sharing an underlying MapReduce structure.

Paper overview. Sect. 2 motivates our work by an example of deployment vari-
ability. Sect. 3 presents modeling in the abstract behavioral specification lan-
guage ABS and Sect. 4 delta modeling and its realization in ABS. Sect. 5 com-
bines delta-oriented variability with deployment modeling, and discusses how to
extend a feature model with deployment variability. Sect. 6 revisits the example,
Sect. 7 discusses related work, and Sect. 8 concludes the paper.

2 Motivating Example

MapReduce [12] is a programming pattern for processing large data sets in two
stages; first the Map stage separates parallelizable jobs on distinct subsets of
data to produce intermediate results, then the Reduce stage merges the interme-
diate data into a final result. The initial and intermediate data are on the form
of key/value pairs, and the final result is a list of values per key. MapReduce
does not specify the computations done by the two stages or the distribution of
workloads across machines, making it a good abstract base model for SPLs.

Our example uses MapReduce to model product variants of a range of ser-
vices which inspect a set of documents. Individual products may implement,
e.g., Wordcount, which counts the occurrences of words in the given documents,
and Wordsearch, which searches for documents in which a given word occurs.
For simplicity, we assume that a service either provides the Wordcount or the
Wordsearch feature. The services are implemented on a cluster of computers,
using MapReduce.

To attract clients to the word count and word search services, freely available
demo versions offer the same functionality as the full versions, albeit with a lower
quality of service. When the services are deployed, the demo versions will run
on a few machines, whereas the full versions have access to the full power of
the cluster. Our model has three versions of each service: the purely functional
model, the model with full access to the cluster, and a model with restricted
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access to the cluster. This product family (see Fig. 3) is a running example in
the paper.

3 Behavioral and Deployment Modeling in ABS

The abstract behavioral specification language ABS targets the executable de-
sign of distributed object-oriented systems. It has a formally defined kernel called
Core ABS [20]. ABS is based on concurrent object groups (COGs), akin to con-
current objects [8,21], Actors [1], and Erlang processes [5]. COGs support inter-
leaved concurrency based on guarded commands. ABS has a functional and an
imperative layer, combined with a Java-like syntax. Real-Time ABS [7] extends
Core ABS models with (dense) time; in this paper we do not specify execution
time directly but rather observe time by measurements of the executing model.

ABS has a functional layer with algebraic data types such as the empty type
Unit, booleans Bool, integers Int; parametric data types such as sets Set<A> and
maps Map<A, B> (for type parameters A and B); and functions over values of
these data types, with support for pattern matching. The modeler can define
additional types to succinctly express data structures of the problem domain.

The imperative layer of ABS describes side-effectful computation, concur-
rency, communication and synchronization. ABS objects are active in the sense
that their run method, if defined, gets called upon creation. Communication
and synchronization are decoupled: Communication is based on asynchronous
method calls. After executing f=o!m(e), which assigns the call to a future vari-
able f, the caller proceeds execution without blocking while m(e) executes in the
context of o. Two operations on future variables control synchronization in ABS.
First, the statement await f? suspends the active process unless a return value
from the call associated with f has arrived, allowing other processes in the same
COG to execute. Second, the return value is retrieved by the expression f.get,
which blocks all execution in the COG until the return value is available. Inside
a COG, Core ABS also supports standard synchronous method calls o.m(e).

A COG can have at most one active process, executing in one of the objects
of the COG. Scheduling is cooperative via await g statements, which suspend
the current process until g (a condition over object or future variable state)
becomes true. The remaining statements of ABS (assignment, object creation,
conditionals and loops) are designed to be familiar to a Java programmer.

Deployment Modeling. One purpose of describing deployment in a mod-
eling language is to differentiate execution time based on where the execution
takes place, i.e., the model should express how the execution time varies with
the available capacity of the chosen deployment architecture. For this purpose,
Real-Time ABS extends Core ABS with primitives to describe deployment archi-
tectures which express how distributed systems are mapped on physical and/or
virtual media with many locations. Real-Time ABS lifts deployment architec-
tures to the abstraction level of the modeling language, where the physical or
virtual media are represented by deployment components [22].

4



A deployment component is part of the model’s deployment architecture, on
which a number of COGs are deployed. Deployment components are first-class
citizens and they support a number of methods for load monitoring and load
balancing purposes (cf. [22]). Each deployment component has an execution ca-
pacity, which is the amount of resources available per accounting period. By
default, all objects execute in a default (root) environment with unrestricted
capacity. Other deployment components with restricted capacities may be cre-
ated to capture different deployment architectures. COGs are created on the
same deployment component as their creator by default; a different deployment
component may be selected by an optional deployment annotation [DC: dc] to
object creation, for a deployment component dc.

The available resource capacity of a deployment component determines the
amount of computation which may occur in the objects deployed on that de-
ployment component. Objects allocated to the deployment component compete
for the shared resources in order to execute, and they may execute until the
deployment component runs out of resources or they are otherwise blocked. For
the case of CPU resources, the resources of the deployment component define
its capacity inside an accounting period, after which the resources are renewed.

The resource consumption of executing statements in the Real-Time ABS
model is expressed by means of adding a cost annotation [Cost: e] to any state-
ment. It is the responsibility of the modeler to specify appropriate resource costs.
A behavioral model may be gradually transformed to provide more realistic
resource-sensitive behavior by inserting more fine-grained cost annotations. The
automated static analysis tool COSTABS [2] can compute a worst-case approx-
imation of resource consumption, based on static analysis techniques. However,
the modeler may also want to capture normative constraints on resource con-
sumption, such as resource limitations, at an abstract level; these can be made
explicit in the model during the very early stages of the system design. To this
end, cost annotations may be used by the modeler to abstractly represent the
cost of some computation which is not fully specified in the model.

4 Delta-Oriented Variability in ABS

This section describes how SPLs are modeled in ABS. ABS includes a delta-
oriented framework for variability [9,11]. Fig. 4 depicts a delta-oriented variabil-
ity model where a feature model F with orthogonal variability [18] is represented
as two trees that hierarchically structure the set of features of this model. Sets
of features from the feature model F are linked to sets of delta modifications
from the delta model ∆, which apply to the common base model P to produce
different product line configurations C, C ′ and C ′, and finally a specific product
ρ is extracted from the product line configuration C.

Feature model. A feature model in ABS is represented textually as a for-
est of nested features where each tree structures the hierarchical dependencies
between related features, and each feature in a tree may have a collection of
Boolean or integer attributes. The ABS feature model can also express other
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Fig. 4. A graphical representation of a Delta-Oriented variability model.

cross-tree dependencies, such as mandatory and optional sub-features, and mu-
tually exclusive features. The group keyword is used to specify the sub-features
of a feature; the oneof keyword means that exactly one of the sub-features must
be selected in the created product line, the range of values associated to an
attribute specify the values in which an attribute can be instantiated when an
specify product is generated. For the full details, we refer the reader to [9, 11].

Example 1. In the functional feature model of the MapReduce example from
Section 2, a tree with a root Calculations offers two alternative and mutually
exclusive features that can be selected to express that a specific product supports
counting words or searching for words.

root Calculations { group oneof { Wordcount, Wordsearch }}

In addition ABS allows a feature model with multiple roots (hence, multiple
trees) to describe orthogonal variability [18], which is useful for expressing unre-
lated functional and other features (e.g., features related to quality of service).

Delta model. The concept of delta modeling was introduced by Schaefer et
al. [6,31–33] as a modeling and programming language approach for SPLs. This
approach aims at automatically generating software products for a given valid
collection of features, providing flexible and modular techniques to build differ-
ent products that share functionality or code. In delta-oriented programming,
application conditions over the set of features and their attributes, are associated
with units of program modifications called delta modules. These delta modules
may add, remove, or otherwise modify code. The implementation of an SPL in
delta-oriented programming is divided into a common core module and a set of
delta modules. The core module consists of classes that implement a complete
product of the SPL. Delta modules describe how to change the core module to
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obtain new products. The choice of which delta modules to apply is based on
the selection of desired features for the final product.

Technically, delta modules have a unique identifier, a list of parameters, and a
body containing a sequence of class and interface modifiers. Such a modification
can add a class or interface declaration, modify an existing class or interface,
or remove a class or interface. The modifications can occur within a class or
interface body, and modifier code can refer to the original method by using the
original() keyword. Delta modules in ABS can be parametrized by attribute
values to enable the application of a single delta in more than one context.

Product line configuration. The product line configuration links feature
models with delta modules to provide a complete specification of the variability
in an ABS product line. A product line configuration consists of the set of features
of the product line and a set of delta clauses. Each delta clause names a delta
module and specifies the conditions required for its application, called application
conditions. A partial ordering on delta modules constrains the order in which
delta modules can be applied to the core module.

Specific product. A product selection clause generates a specific product
from an ABS product line. It states which features are to be included in the
product and specifies concrete values for their attributes. A product selection
is checked against the feature model for validity. The product selection clause
is used by the product line configuration to guide the application of the delta
modules during the generation of the final product.

Generated final product. Given a Core ABS program P , a set of delta
modules ∆, a product line configuration C, and a feature model F (as depicted
in Fig. 4), the final product ρ, which will be a Core ABS program, is derived as
follows: First check that the selection of features for ρ satisfies the constraints
imposed by the feature model F ; then select the delta modules from ∆ with a
valid application condition with respect to ρ; and finally apply the delta modules
to the core program P in some order respecting the partial order described in
C, replacing delta parameters in the code with the literal values supplied by the
feature.

5 Deployment Variability in ABS

Feature models usually describe functional variability in a software product line.
This section discusses lifting deployment variability to ABS feature models and
its interaction with functional variability. Our approach aims to establish or-
thogonality between the functional and deployment aspects in an SPL model in
order to maintain multiple axes of variability (see Fig. 2). The further separa-
tion of concerns between cost and capacity in the deployment models of ABS is
reflected in the feature models as well.

Thus, variability in a deployment-aware SPL comprises these variation points
in the feature models:
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Functional variability: These features determine the functional behavior of a
product and are used as in standard SPL engineering.

Resource cost variability: These features describe the choice of how the in-
curred resource cost is estimated during execution of the model. The basic fea-
ture is the no cost feature, typically selected for functional analysis of the SPL
model. Other cost models are fixed-cost for selected jobs (similar to costs in a
basic queuing network or simulation model; see, e.g., [19]), and data-sensitive
costs. These can be either measured, real cost for selected jobs or worst-case
approximations (which may depend on data flow as well as control flow). All of
these can be expressed via cost annotations.

Deployment architecture variability: These features determine how the log-
ical artifacts of the model are mapped to a specific deployment architecture,
which determines the execution capacity of the different locations on which the
logical artefacts execute. The basic feature is the undeployed feature which does
not impose any capacity restrictions on the execution. This feature is typically
selected together with no cost during functional analysis and testing. When an-
alyzing non-functional properties, features describe how selected parts of the
logical architecture are deployed on deployment components with restricted ca-
pacity, either statically or (for virtualized deployment) dynamically.

Example 2. We extend the feature model of Example 1 with a Resources tree
for resource costs, and a Deployments tree for deployment architecture. The
Resources root has the basic feature NoCost, the feature FixedCost for a ba-
sic data-independent cost model specified in the attribute cost, the feature
WorstcaseCost for a worst-case cost model in terms of the size of the input files,
and MeasuredCost for using the actual incurred cost measured during execution
of the model. The Deployments root has three alternative features related to
the number of available machines in the physical deployment architecture; the
capacity of each machine is specified by the attribute capacity.

root Resources {
group oneof {
NoCost,
FixedCost { Int cost in [ 0 .. 10000 ] ; },
WorstcaseCost,
MeasuredCost

}
}
root Deployments {
group oneof {
NoDeploymentScenario,
UnlimitedMachines { Int capacity in [ 0 .. 10000 ] ; },
LimitedMachines { Int capacity in [ 0 .. 10000 ] ; Int machinelimit in [ 0 .. 100 ] ; }

}
}
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// These definitions to be changed in delta modifications
type InKeyType = String; // filename
type InValueType = List<String>; // file contents
type OutKeyType = String; // word
type OutValueType = Int; // count

interface MapReduce {
List<Pair<OutKeyType, List<OutValueType>>>

mapReduce(List<Pair<InKeyType, InValueType>> docs); // invoked by client
Unit finished(Worker w); // invoked by workers when finished with 1 task

}

interface IMap { // invoked by MapReduce controller
List<Pair<OutKeyType, OutValueType>>
invokeMap(InKeyType key, InValueType value);

}

interface IReduce { // invoked by MapReduce controller
List<OutValueType>
invokeReduce(OutKeyType key, List<OutValueType> value);

}

interface Worker extends IMap, IReduce { }

Fig. 5. Interfaces of the base model of the MapReduce example in ABS.

6 Example: Product Variability in the MapReduce
Example

This section describes the implementation of a generic MapReduce framework
in ABS and its adaptation to different products as described in Section 2. It
will become apparent that a product that is implemented according to best
practices for object-oriented software (i.e., decomposing functionality, methods
implementing one task only, and the careful definition of datatypes) also makes
the product well-suited as a base product for a software product line.

6.1 Commonalities in the ABS Base Product

Fig. 5 shows the interfaces for the main MapReduce object and for the Worker
objects which will carry out the computations in parallel. The computation is
started by calling the mapReduce method with a list of (key, value) pairs. The
main object will then create a number of worker objects, call invokeMap on these
objects, gather and collate the results of the mapping phase, call invokeReduce
on the workers and collate and return the final result.

The base product in our example implements a word count function (com-
puting word occurrences over a list of files), without a resource or deployment
model. Worker objects are reused from a pool, but there is no bound on the
number of workers created. Workers add themselves back to the pool by calling
finished.

Figure 6 shows part of the worker implementation of the base product (i.e., a
Wordcount product without any cost model). The invokeReduce method sets up
the result, calls a private method reduce which emits intermediate results using
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class Worker(MapReduce master) implements Worker {
List<OutValueType> reduceResults = Nil;

List<OutValueType> invokeReduce(OutKeyType key, List<OutValueType> value) {
reduceResults = Nil;
this.reduce(key, value);
List<OutValueType> result = reduceResults;
reduceResults = Nil;
master!finished(this);
return result;

}

Unit emitReduceResult(OutValueType value) {
reduceResults = Cons(value, reduceResults);

}

// variation point for functional model
Unit reduce(OutKeyType key, List<OutValueType> value) {
OutValueType result = 0;
... // sum up value list into result variable ...
this.emitReduceResult(result);

}
}

Fig. 6. The reduce part of the Wordcount example in the Worker class.

the method emitReduceResult. The reduce method in Fig. 6 is equivalent to the
one shown in the original MapReduce paper [12]. The mapping functions of the
worker objects are implemented in the same way.

6.2 Variability in the ABS Product Line

To change the functional feature of the model from computing word counts to
computing word search, some parts of the model need to be altered via delta
application. The same applies when varying the deployment and cost model, as
explained in Section 5. These variation points turn out to be orthogonal and can
be modified independently of each other.

In the example, the methods to be modified by deltas are not public; i.e., they
are not part of the published interface of the classes comprising the base model.
This appears to be a recurring pattern: public methods like invokeReduce of Fig. 6
interact with the outside world, gather and decompose data for computation and
returning. If the modeler factors out computation into private methods with only
one single task to perform (like reduce in Fig. 6), these methods can be cleanly
replaced in deltas, without imposing constraints on the implementation. This
suggests that clean object-oriented code will in general be likely to be amenable
to delta-oriented modification.

Functional variability. The following delta shows a delta fragment that
modifies the functionality of the base model:

delta DOccurrences;
modifies type OutValueType = String; // Change the method signatures
modifies class Worker {
modifies Unit map(InKeyType key, InValueType value) {
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... // change non−public map method to compute occurrences
}
modifies Unit reduce(OutKeyType key, List<OutValueType> value) {
... // change non−public reduce method to compute occurrences

}
}

By modifying the type synonyms InKeyType, InValueType, OutKeyType and
OutValueType from the base model, we can change the data types and method
signatures of the model without having to change any code in the MapReduce
class. Modifying the methods map and reduce of the Worker class changes the
computation performed by the product. The new map and reduce methods use
emitMapResult and emitReduceResult as in the base model; hence they do not
need to care about invocation or return value handling protocols.

Resource cost variability. Costs are incurred during (and because of)
computational activity. This means that cost model and functional model are
related. However, the two aspects can be decoupled

cleanly via the original() call, which we use to associate the given cost with
the original code. Care must be taken in the productline definition to ensure
that any deltas incurring costs are applied after deltas modifying functionality;
otherwise, the cost association would be overwritten.

delta DFixedCost (Int cost);
modifies class Worker {
modifies Unit emitMapResult(OutKeyType key, OutValueType value) {
[Cost: cost] original(key, value);

}
modifies Unit emitReduceResult(OutValueType value) {
[Cost: cost] original(value);

}
}

This FixedCost delta assigns a cost (given as a delta attribute) to each com-
putation of an intermediate result; the feature attribute is passed in as a delta
parameter. In general, costs are introduced into MapReduce by wrapping the
methods invokeMap and invokeReduce for assigning costs to starting a compu-
tation step, and by modifying emitMapresult and emitReduceresult for assigning
costs to the production of a result. Figure 6 shows where these methods are
invoked.

An alternative approach to adding resource costs via hooks is to use the ABS
original() call, wrapping the original map, emitMapresult etc. methods with costs.
This approach makes the functional model simpler, but leads to a more com-
plicated product line configuration since the correct order of delta application
must be specified in that case.

Deployment architecture variability. Deployment architecture, i.e., de-
cisions on how many workers to create and how many resources to supply them
with, is implemented in the MapReduce class. As mentioned, this class manages
a pool of Worker instances which is by default of unbounded size. To change this
behavior, the modeler implements a delta that overrides a method getWorker
(and also the method finished of the MapReduce implementation in case the new
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productline MapReduceSPL;

features
Wordcount, Wordsearch, // Functional features
NoCost, FixedCost, WorstCaseCost, MeasuredCost, // Resource cost features
NoDeploymentScenario, UnlimitedMachines, LimitedMachines; // Deployment architectures

delta DOccurrences when Wordsearch;
delta DFixedCost(Cost.cost) after DOccurrences when Cost;
delta DUnboundedDeployment(UnlimitedMachines.capacity) when UnlimitedMachines;
delta DBoundedDeployment(LimitedMachines.capacity, LimitedMachines.machinelimit)

when LimitedMachines;
...

Fig. 7. Product line configuration for the MapReduce example in ABS.

product WordcountModel (Wordcount, NoCost, NoDeploymentScenario);
product WordcountFull (Wordcount, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordcountDemo (Wordcount, Cost{cost=10},

LimitedMachines{capacity=20, machinelimit=2});

product WordsearchModel (Wordsearch, NoCost, NoDeploymentScenario);
product WordsearchFull (Wordsearch, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordsearchDemo (Wordsearch, Cost{cost=10},

LimitedMachines{capacity=20, machinelimit=2});

Fig. 8. Specifying Products for the MapReduce example in ABS.

getWorker method does not use the resource pool of the base model). The capac-
ity and number of deployment components can be adjusted via delta parameters:

delta DBoundedDeployment (Int capacity, Int maxWorkers);
modifies class MapReduce {
... // adjust behavior of resource pool and capacities of created deployment components

}

The product line configuration. The feature model presented in Section 5
extends the model of Section 2 with resource cost variability, resulting in 14
different products. Fig. 7 shows part of the product line configuration and Fig. 8
shows the specification of some of the derivable products.

In the deployment components of the deployment architecture features, ca-
pacity is defined by the amount of resource costs that can be processed per
accounting period (in terms of the dense time semantics of execution in Real-
Time ABS). When the base model is extended with features for deployment
architecture and resource cost, the load on the individual deployment compo-
nents, defined as the actual incurred cost per accounting period, can be recorded
and visualized.

We illustrate how deployment variability for products can be validated using
the simulation tool of ABS, by comparing the performance of two different de-
ployments of the Wordcount product, varying the number of available machines
between 5 (the “Demo” version) and 20 (the “Full” version), but keeping the cost
model, input data and computation model constant. The graphs in Fig. 9 shows
the total load of all machines over simulated time for the two products. The
figure shows two typical instances of a typical MapReduce workload; first, the
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Fig. 9. Varying deployment model, constant cost and functional model

map processes execute until they are finished, then the reduce processes execute.
The start of the reduce phase can be observed in the graph of Fig. 9 as the sec-
ond spike in processing activity. It can be seen that the demo version takes over
twice as much simulated time to complete its execution, while the full version
completes its execution earlier by incurring a load that is higher than for the
demo version (while still decreasing as the map processes terminate).

Similar qualitative investigations can be performed regarding the influence
of varying cost models (e.g., worst-case vs. average cost) and more involved
deployment strategies.

7 Related Work

The inherent compositionality of the concurrency model considered in this paper
allows objects to be naturally distributed on different locations, because only an
object’s local state is needed to execute its methods. In previous work [4,22,23],
the authors have introduced deployment components as a modeling concept to
captures restricted resources shared between a group of concurrent objects, and
shown how components with parametric resources may be used to capture a
model’s behavior for different assumptions about the available resources. The
formal details of this approach are given in [23]; two larger case studies on
virtualized systems deployed on the cloud are presented in [3,24]. Our approach
to deployment modeling would be a natural fit for resource-sensitive deployment
in other Actor-based approaches, e.g., [5, 17].

Deployment variability is not considered in the recent software diversity sur-
vey [35], but it has been studied in the context of feature models. For example,
a feature model that captures the architectural and technological variability of
multilayer applications is described in [13] together with an associated model-
driven development process. In contrast our paper considers a much simpler
feature model, but it is integrated in a full SPL framework and explicitly linked
to executable models which can be compared by tool-based analysis. Without
considering variability, a platform ontology and modeling framework based on
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description logic is proposed by [38], which can be used to automatically con-
figure various reusable concrete platforms that can be later be integrated with
a platform-independent model using the Model Driven Architecture approach.
We follow a similar approach based on the extending a purely functional model
with deployment features, but our framework is based on simpler concepts which
does not introduce the overhead of description logic. In the context of QoS vari-
ability, [25] study a modeling and analysis framework for testing the QoS of an
orchestration before deployment to determine realistic Service Level Agreement
contracts; their analysis uses probabilistic model of QoS. Our work similarly al-
lows the model-based comparison of QoS variability, but focuses on deployment
architecture and processing capacity rather than orchestration.

The MapReduce programming pattern which is the basis for the example
of this paper, has been formalized and studied from different perspectives. [39]
develop a CSP model of MapReduce, with a focus on the correctness of the
communication between the processes. [26] develops a rigorous description of
MapReduce using Haskell, resulting in an executable specification of MapRe-
duce. [28] formalizes an abstract model of MapReduce using the proof assistant
Coq, and use this formalization to verify JML annotations of MapReduce appli-
cations. However, none of these works focus on deployment strategies or relate
MapReduce to deployment variability in SPLs.

8 Conclusion

Software today is increasingly often developed as a range of products for devices
with restricted resource capacity or for virtualized utility computing. For an
SPL targeting such platforms, the deployment of different products in the range
should also be considered as a variation point in the SPL.

This paper integrates explicit resource restricted deployment scenarios into a
formal modeling language for SPL engineering. This integration is based on delta
models to systematize the derivation of product variants, and demonstrated in
the ABS modeling language. The proposed integration emphasizes orthogonality
between functional features, resource cost features, and deployment architecture
features, to facilitate finding the best match between functional features and a
target deployment architecture for a specific product. The supported analysis
allows the validation of deployment decisions for specific products in the SPL,
which may entail a refinement of the feature model. Resource cost variability
can be exploited to compare product performance under different cost models
such as fixed cost, measured simulation cost, and worst-case cost.

The approach is demonstrated on an example using the MapReduce program-
ming pattern as its common base product, and used to compare the performance
of full versions to restricted demo versions of product variants. A restriction of
our work is the concrete semantics which makes it difficult to reason about
whole product lines, requiring a per-product approach to validation. This could
be lifted by using a symbolic semantics and applying symbolic execution tech-
niques to analyze the deployment sensitive SPL models, allowing the analysis to
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be lifted from concrete deployment architectures for specific products to a more
generalized analysis.
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