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Abstract. There exist numerous languages and frameworks that support
an implementation of a variety of actor-based programming models in
Java using concurrency utilities and threads. Java 8 is released with fun-
damental new features: lambda expressions and further dynamic invo-
cation support. We show in this paper that such features in Java 8 allow
for a high-level actor-based methodology for programming distributed
systems which supports the programming to interfaces discipline. The
embedding of our actor-based Java API is shallow in the sense that it ab-
stracts from the actual thread-based deployment models. We further dis-
cuss different concurrent execution and thread-based deployment models
and an extension of the API for its actual parallel and distributed imple-
mentation. We present briefly the results of a set of experiments which
provide evidence of the potential impact of lambda expressions in Java 8
regarding the adoption of the actor concurrency model in large-scale dis-
tributed applications.

Keywords: Actor model, Concurrency, Asynchronous Message, Java, Lambda
Expression

1 Introduction

Java is beyond doubt one of the mainstream object oriented programming lan-
guages that supports a programming to interfaces discipline [9,35]. Through the
years, Java has evolved from a mere programming language to a huge plat-
form to drive and envision standards for mission-critical business applications.
Moreover, the Java language itself has evolved in these years to support its
community with new language features and standards. One of the noticeable
domains of focus in the past decade has been distribution and concurrency
in research and application. This has led to valuable research results and nu-
merous libraries and frameworks with an attempt to provide distribution and
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concurrency at the level of Java language. However, it is widely recognized
that the thread-based model of concurrency in Java that is a well-known ap-
proach is not appropriate for realizing distributed systems because of its inher-
ent synchronous communication model. On the other hand, the event-driven
actor model of concurrency introduced by Hewitt [17] is a powerful concept
for modeling distributed and concurrent systems [2,1]. Different extensions of
actors are proposed in several domains and are claimed to be the most suit-
able model of computation for many applications [18]. Examples of these do-
mains include designing embedded systems [25,24], wireless sensor networks
[6], multi-core programming [22] and delivering cloud services through SaaS
or PaaS [5]. This model of concurrent computation forms the basis of the pro-
gramming languages Erlang [3] and Scala [16] that have recently gained in pop-
ularity, in part due to their support for scalable concurrency. Moreover, based
on the Java language itself, there are numerous libraries that provide an imple-
mentation of an actor-based programming model.

The main problem addressed in this paper is that in general existing actor-
based programming techniques are based on an explicit encoding of mecha-
nisms at the application level for message passing and handling, and as such
overwrite the general object-oriented approach of method look-ups that forms
the basis of programming to interfaces and the design-by-contract discipline [26].
The entanglement of event-driven (or asynchronous messaging) and object-
oriented method look-up makes actor-based programs developed using such
techniques extremely difficult to reason about and formalize. This clearly ham-
pers the promotion of actor-based programming in mainstream industry that
heavily practices object-oriented software engineering.

The main result of this paper is a Java 8 API for programming distributed
systems using asynchronous message passing and a corresponding actor pro-
gramming methodology which abstracts invocation from execution (e.g. thread-
based deployment) and fully supports programming to interfaces discipline.
We discuss the API architecture, its properties, and different concurrent execu-
tion models for the actual implementation.

Our main approach consists of the explicit description of an actor in terms
of its interface, the use of the recently introduced lambda expressions in Java 8
in the implementation of asynchronous message passing, and the formalization
of a corresponding high-level actor programming methodology in terms of an
executable modeling language which lends itself to formal analysis, ABS [20].

The paper continues as follows: in Section 2, we briefly discuss a set of re-
lated works on actors and concurrent models especially on JVM platform. Sec-
tion 3 presents an example that we use throughout the paper, we start to model
the example using a library. Section 4 briefly introduces a concurrent model-
ing language and implements the example. Section 5 briefly discusses Java 8
features that this works uses for implementation. Section 6 presents how an ac-
tor model maps into programming in Java 8. Section 7 discusses in detail the
implementation architecture of the actor API. Section 8 discusses how a num-
ber of benchmarks were performed for the implementation of the API and how
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they compare with current related works. Section 9 concludes the paper and
discusses the future work.

2 Related Work

There are numerous works of research and development in the domain of actor
modeling and implementation in different languages. We discuss a subset of
the related work in the level of modeling and implementation with more focus
on Java and JVM-based efforts in this section.

Erlang [3] is a programming language used to build massively scalable soft
real-time systems with requirements on high availability. Some of its uses are
in telecoms, banking, e-commerce, computer telephony and instant messag-
ing. Erlang’s runtime system has built-in support for concurrency, distribu-
tion and fault tolerance. While threads require external library support in most
languages, Erlang provides language-level features for creating and managing
processes with the aim of simplifying concurrent programming. Though all
concurrency is explicit in Erlang, processes communicate using message pass-
ing instead of shared variables, which removes the need for locks. Elixir [33]
is a functional meta-programming aware language built on top of the Erlang
VM. It is a dynamic language with flexible syntax with macros support that
leverages Erlang’s abilities to build concurrent, distributed, fault-tolerant ap-
plications with hot code upgrades.

Scala is a hybrid object-oriented and functional programming language in-
spired by Java. The most important concept introduced in [16] is that Scala ac-
tors unify thread-based and event-based programming model to fill the gap for
concurrency programming. Through the event-based model, Scala also pro-
vides the notion of continuations. Scala provides quite the same features of
scheduling of tasks as in concurrent Java; i.e., it does not provide a direct and
customizable platform to manage and schedule priorities on messages sent to
other actors. Akka [15] is a toolkit and runtime for building highly concurrent,
distributed, and fault tolerant event-driven applications on the JVM based on
actor model.

Kilim [31] is a message-passing framework for Java that provides ultra-
lightweight threads and facilities for fast, safe, zero-copy messaging between
these threads. It consists of a bytecode postprocessor (a “weaver”), a run time
library with buffered mailboxes (multi-producer, single consumer queues) and
a user-level scheduler and a type system that puts certain constraints on pointer
aliasing within messages to ensure interference-freedom between threads. The
SALSA [34,22] programming language (Simple Actor Language System and
Architecture) is an active object-oriented programming language that uses con-
currency primitives beyond asynchronous message passing, including token-
passing, join, and first-class continuations.

RxJava [7] by Netflix is an implementation of reactive extensions [27] from
Microsoft. Reactive extensions try to provide a solution for composing asyn-
chronous and event-based software using observable pattern and scheduling.



4 B. Nobakht, and F. S. de Boer

An interesting direction of this library is that it uses reactive programming to
avoid a phenomenon known as “callback hell”; a situation that is a natural
consequence of composing Future abstractions in Java specifically when they
wait for one another. However, RxJava advocates the use of asynchronous func-
tions that are triggered in response to the other functions. In the same direction,
LMAX Disruptor [4,8] is a highly concurrent event processing framework that
takes the approach of event-driven programming towards provision of con-
currency and asynchronous event handling. The system is built on the JVM
platform and centers on a Business Logic Processor that can handle 6 million
events per second on a single thread. The Business Logic Processor runs entirely
in-memory using event sourcing. The Business Logic Processor is surrounded
by Disruptors - a concurrency component that implements a network of queues
that operate without needing locks.

3 State of the Art: An example

In the following, we illustrate the state of the art in actor programming by
means of a simple example using the Akka [32] library which features asyn-
chronous messaging and which is used to program actors in both Scala and
Java. We want to model in Akka an “asynchronous ping-pong match” between
two actors represented by the two interfaces IPing and IPong which are depicted
in Listings 1 and 2. An asynchronous call by the actor implementing the IPong

interface of the ping method of the actor implementing the IPing interface should
generate an asynchronous call of the pong method of the callee, and vice versa.
We intentionally design ping and pong methods to take arguments in order to
demonstrate how method arguments may affect the use of an actor model in an
object-oriented style.

Listing 1: Ping as an interface

1 public interface IPing {
2 void ping(String msg);
3 }

Listing 2: Pong as an interface

1 public interface IPong {
2 void pong(String msg);
3 }

To model an actor in Akka by a class, say Ping, with interface IPing, this class
is required both to extend a given pre-defined class UntypedActor and implement the
interface IPing, as depicted in Listings 3 and 4. The class UntypedActor provides
two Akka framework methods tell and onReceive which are used to enqueue
and dequeue asynchronous messages. An asynchronous call to, for example,
the method ping then can be modeled by passing a user-defined encoding of this
call, in this case by prefixing the string argument with the string “pinged”, to a
(synchronous) call of the tell method which results in enqueuing the message.
In case this message is dequeued the implementation of the onReceive method
as provided by the Ping class then calls the ping method.
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Listing 3: Ping actor in Akka

1 public class Ping(ActorRef pong)
2 extends UntypedActor
3 implements IPing {
4
5 public void ping(String msg) {
6 pong.tell("ponged," + msg)
7 }
8
9 public void onReceive(Object m)

{
10 if (!(m instanceof String)) {
11 // Message not understood.
12 } else
13 if (((String) m).startsWith("

pinged") {
14 // Explicit cast needed.
15 ping((String) m);
16 }
17 }
18 }

Listing 4: Pong class in Akka

1 public class Pong
2 extends UntypedActor
3 implements IPong {
4
5 public void pong(String msg) {
6 sender().tell(
7 "pinged," + msg);
8 }
9

10 public void onReceive(Object m)
{

11 if (!(m instanceof String)) {
12 // Message not understood.
13 } else
14 if (m.startsWith("ponged") {
15 // Explicit cast needed.
16 ping((String) m);
17 }
18 }
19 }

Access to the sender of the message in Akka is provided by sender(). In the
main method as described in Listing 5 we show how the initialize and start the
ping/pong match. Note that a reference to the “pong” actor is passed to the
“ping” actor.

Listing 5: main in Akka

1 ActorSystem s = ActorSystem.create
();

2 ActorRef pong = s.actorOf(Props.
create(Pong.class));

3 ActorRef ping = s.actorOf(Props.
create(Ping.class, pong));

4 ping.tell(""); // To get a Future

Further, both the onReceive meth-
ods are invoked by Akka ActorSystem

itself. In general, Akka actors are of
type ActorRef which is an abstraction
provided by Akka to allow actors
send asynchronous messages to one
another. An immediate consequence of
the above use of inheritance is that the
class Ping is now exposing a public be-
havior that is not specified by its interface. Furthermore, a “ping” object refers
to a “pong” object by the type ActorRef . This means that the interface IPong is
not directly visible to the “ping” actor. Additionally, the implementation de-
tails of receiving a message should be “hand coded” by the programmer into
the special method onReceive to define the responses to the received messages.
In our case, this implementation consists of a decoding of the message (using
type-checking) in order to look up the method that subsequently should be in-
voked. This fundamentally interferes with the general object-oriented mecha-
nism for method look-up which forms the basis of the programming to inter-
faces discipline. In the next section, we continue the same example and dis-
cuss an actor API for directly calling asynchronously methods using the gen-
eral object-oriented mechanism for method look-up. Akka has recently released
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a new version that supports Java 8 features 4. However, the new features can
be categorized as syntax sugar on how incoming messages are filtered through
object/class matchers to find the proper type.

4 Actor Programming in Java

We first describe informally the actor programming model assumed in this
paper. This model is based on the Abstract Behavioral Specification language
(ABS) introduced in [20]. ABS uses asynchronous method calls, futures, inter-
faces for encapsulation, and cooperative scheduling of method invocations in-
side concurrent (active) objects. This feature combination results in a concurrent
object-oriented model which is inherently compositional. More specifically, ac-
tors in ABS have an identity and behave as active objects with encapsulated
data and methods which represent their state and behavior, respectively. Ac-
tors are the units of concurrency: conceptually an actor has a dedicated proces-
sor. Actors can only send asynchronous messages and have queues for receiv-
ing messages. An actor progresses by taking a message out of its queue and
processing it by executing its corresponding method. A method is a piece of se-
quential code that may send messages.

Listing 6: main in ABS

1 ABSIPong pong;
2 pong = new ABSPong;
3 ping = new ABSPing(pong);
4 ping ! ping("");

Asynchronous method calls use fu-
tures as dynamically generated ref-
erences to return values. The execu-
tion of a method can be (temporar-
ily) suspended by release statements
which give rise to a form of coopera-
tive scheduling of method invocations
inside concurrent (active) objects. Release statements can be conditional (e.g.,
checking a future for the return value). Listings 7, 8 and 6 present an imple-
mentation of ping-pong example in ABS. By means of the statement on line 6
of Listing 7 a “ping” object directly calls asynchronously the pong method of its
“pong” object, and vice versa. Such a call is stored in the message queue and the
called method is executed when the message is dequeued. Note that variables
in ABS are declared by interfaces. In ABS, Unit is similar to void in Java.

4 Documentation available at http://doc.akka.io/docs/akka/2.3.2/java/
lambda-index-actors.html

http://doc.akka.io/docs/akka/2.3.2/java/lambda-index-actors.html
http://doc.akka.io/docs/akka/2.3.2/java/lambda-index-actors.html
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Listing 7: Ping in ABS

1 interface ABSIPing {
2 Unit ping(String msg);
3 }
4 class ABSPing(ABSIPong pong)

implements ABSIPing {
5 Unit ping(String msg) {
6 pong ! pong("ponged," + msg);
7 }
8 }

Listing 8: Pong in ABS

1 interface ABSIPong {
2 Unit pong(String msg);
3 }
4 class ABSPong implements ABSIPong

{
5 Unit pong(String msg) {
6 sender ! ping( "pinged," + msg

);
7 }
8 }

5 Java 8 Features

In the next section, we describe how ABS actors are implemented in Java 8
as API. In this section we provide an overview of the features in Java 8 that
facilitate an efficient, expressive, and precise implementation of an actor model
in ABS.

Java Defender Methods Java defender methods (JSR 335 [13]) use the new
keyword default. Defender methods are declared for interfaces in Java. In con-
trast to the other methods of an interface, a default method is not an abstract
method but must have an implementation. From the perspective of a client of
the interface, defender methods are no different from ordinary interface meth-
ods. From the perspective of a hierarchy descendant, an implementing class
can optionally override a default method and change the behavior. It is left as a
decision to any class implementing the interface whether or not to override the
default implementation. For instance, in Java 8 java.util.Comparator provides a
default method reversed() that creates a reversed-order comparator of the orig-
inal one. Such default method eliminates the need for any implementing class
to provide such behavior by inheritance.

Java Functional Interfaces Functional interfaces and lambda expressions
(JSR 335 [13]) are fundamental changes in Java 8. A @FunctionalInterface is an
annotation that can be used for interfaces in Java. Conceptually, any class or
interface is a functional interface if it consists of exactly one abstract method.
A lambda expression in Java 8, is a runtime translation [11] of any type that is
replaceable by a functional interface. Many of Java’s classic interfaces are func-
tional interfaces from the perspective of Java 8 and can be turned into lambda
expressions; e.g. java.lang.Runnable or java.util.Comparator. For instance,

(s1, s2) → return s1.compareTo(s2);

is a lambda expression that can be statically cast to an instance of a Comparator<String>;
because it can be replaced with a functional interface that has a method with
two strings and returning one integer. Lambda expressions in Java 8 do not have
an intrinsic type. Their type is bound to the context that they are used in but
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their type is always a functional interface. For instance, the above definition of
a lambda expression can be used as:

Comparator<String> cmp1 = (s1, s2) → return s1.compareTo(s2);

in one context while in the other:

Function<String> cmp2 = (s1, s2) → return s1.compareTo(s2);

given that Function<T> is defined as:

interface Function<T> { int apply(T t1, T t2); }

In the above examples, the same lambda expression is statically cast to a dif-
ferent matching functional interface based on the context. This is a fundamen-
tal new feature in Java 8 that facilitates application of functional programming
paradigm in an object-oriented language.

This work of research extensively uses this feature of Java 8. Java 8 marks
many of its own APIs as functional interfaces most important of which in this
context are java.lang.Runnable and java.util.concurrent.Callable. This means that
a lambda expression can replace an instance of Runnable or Callable at runtime
by JVM. We will discuss later how we utilize this feature to allow us model an
asynchronous message into an instance of a Runnable or Callable as a form of a
lambda expression. A lambda expression equivalent of a Runnable or a Callable

can be treated as a queued message of an actor and executed.
Java Dynamic Invocation Dynamic invocation and execution with method

handles (JSR 292 [29]) enables JVM to support efficient and flexible execution
of method invocations in the absence of static type information. JSR 292 in-
troduces a new byte code instruction invokedynamic for JVM that is available
as an API through java.lang.invoke.MethodHandles. This API allows translation of
lambda expression in Java 8 at runtime to be executed by JVM. In Java 8, use of
lambda expression are favored over anonymous inner classes mainly because
of their performance issues [12]. The abstractions introduced in JSR 292 per-
form better that Java Reflection API using the new byte code instruction. Thus,
lambda expressions are compiled and translated into method handle invoca-
tions rather reflective code or anonymous inner classes. This feature of Java 8
is indirectly use in ABS API through the extensive use of lambda expressions.
Moreover, in terms of performance, it has been revealed that invoke dynamic is
much better than using anonymous inner classes [12].

6 Modeling actors in Java 8

In this section, we discuss how we model ABS actors using Java 8 features. In
this mapping, we demonstrate how new features of Java 8 are used.
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The Actor Interface We introduce an interface to model actors using Java 8 fea-
tures discussed in Section 5. Implementing an interface in Java means that the
object exposes public APIs specified by the interface that is considered the be-
havior of the object. Interface implementation is opposed to inheritance exten-
sion in which the object is possibly forced to expose behavior that may not be
part of its intended interface. Using an interface for an actor allows an object to
preserve its own interfaces, and second, it allows for multiple interfaces to be
implemented and composed.

A Java API for the implementation of ABS models should have the follow-
ing main three features. First, an object should be able to send asynchronously
an arbitrary message in terms of a method invocation to a receiver actor object.
Second, sending a message can optionally generate a so-called future which is
used to refer to the return value. Third, an object during the processing of a mes-
sage should be able to access the “sender” of a message such that it can reply to
the message by another message. All the above must co-exist with the funda-
mental requirement that for an object to act like an actor (in an object-oriented
context) should not require a modification of its intended interface.

The Actor interface (Listings 9 and 10) provides a set of default methods,
namely the run and send methods, which the implementing classes do not need
to re-implement. This interface further encapsulates a queue of messages that
supports concurrent features of Java API 5. We distinguish two types of mes-
sages: messages that are not expected to generate any result and messages that
are expected to generate a result captured by a future value; i.e. an instance of
Future in Java 8. The first kind of messages are modeled as instances of Runnable
and the second kind are modeled instances of Callable. The default run method
then takes a message from the queue, checks its type and executes the mes-
sage correspondingly. On the other hand, the default (overloaded) send method
stores the sent message and creates a future which is returned to the caller, in
case of an instance of Callable.

5 Such API includes usage of different interfaces and classes in java.util.concurrent

package [23]. The concurrent Java API supports blocking and synchronization fea-
tures in a high-level that is abstracted from the user.



10 B. Nobakht, and F. S. de Boer

Listing 9: Actor interface (1)

1 public interface Actor {
2 public void run() {
3 Object m = queue.take();
4
5 if (m instanceof Runnable) {
6 ((Runnable) m).run();
7 } else
8
9 if (m instanceof Callable) {

10 ((Callable) m).call();
11 }
12 }
13
14 // continue to the right

Listing 10: Actor interface (2)

1
2 public void send(Runnable m) {
3 queue.offer(m);
4 }
5
6 public <T> Future<T>
7 send(Callable<T> m) {
8 Future<T> f =
9 new FutureTask(m);

10 queue.offer(f);
11 return f;
12 }
13 }

Modeling Asynchronous Messages We model an asynchronous call

Future<V> f = e0 ! m(e1, . . . , en)

to a method in ABS by the Java 8 code snippet of Listing 11. The final local
variables u1, . . ., un (of the caller) are used to store the values of the Java 8 ex-
pressions e1, . . ., en corresponding to the actual parameters e1, . . . , en. The types
Ti, i = 1, . . . ,n, are the corresponding Java 8 types of ei, i = 1, . . . ,n.

Listing 11: Async messages with futures

1 final T1 u1 = e1;
2 . . .
3 final Tn un = en;
4 Future<V> v = e0.send(
5 () → { return m(u1,. . .,un); }
6 );

Listing 12: Async messages w/o futures

1 final T1 u1 = e1;
2 . . .
3 final Tn un = en;
4 e0.send(
5 { () → m(u1,. . .,un); }
6 );

The lambda expression which encloses the above method invocation is an
instance of the functional interface; e.g. Callable. Note that the generated object
which represents the lambda expression will contain the local context of the
caller of the method “m” (including the local variables storing the values of the
expressions e1, . . . , en), which will be restored upon execution of the lambda ex-
pression. Listing 12 models an asynchronous call to a method without a return
value.

As an example, Listings 13 and 14 present the running ping/pong example,
using the above API. The main program to use ping and pong implementation
is presented in Listing 15.
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Listing 13: Ping as an Actor

1 public class Ping(IPong pong)
implements IPing, Actor {

2 public void ping(String msg) {
3 pong.send( () → { pong.("ponged

," + msg) } );
4 }
5 }

Listing 14: Pong as an Actor

1 public class Pong implements IPong
, Actor {

2 public void pong(String msg) {
3 sender().send(( ) → { ping.("

pinged," + msg) } );
4 }
5 }

As demonstrated in the above examples, the “ping” and “pong” objects pre-
serve their own interfaces contrary to the example depicted in Section 3 in which
the objects extend a specific “universal actor abstraction” to inherit methods and
behaviors to become an actor. Further, messages are processed generically by the
run method described in Listing 9. Although, in the first place, sending an asyn-
chronous may look like to be able to change the recipient actor’s state, this is
not correct. The variables that can be used in a lambda expression are effectively
final. In other words, in the context of a lambda expression, the recipient actor
only provides a snapshot view of its state that cannot be changed. This prevents
abuse of lambda expressions to change the receiver’s state.

Modeling Cooperative Scheduling The ABS statement await g, where g is a boolean
guard, allows an active object to preempt the current method and schedule an-
other one. We model cooperative scheduling by means of a call to the await

method in Listing 16. Note that the preempted process is thus passed as an ad-
ditional parameter and as such queued in case the guard is false, otherwise it
is executed. Moreover, the generation of the continuation of the process is an
optimization task for the code generation process to prevent code duplication.

Listing 15: main in ABS API

1 IPong pong = new Pong();
2 IPing ping = new Ping(pong);
3 ping.send(
4 () -> ping.ping("")
5 );

Listing 16: Java 8 await implementation

1 void await(final Boolean guard,
2 final Runnable cont) {
3 if (!guard) {
4 this.send(() →
5 { this.await(guard, cont) })
6 } else { cont.run() }
7 }

7 Implementation Architecture

Figure 1 presents the general layered architecture of the actor API in Java 8. It
consists of three layers: the routing layer which forms the foundation for the
support of distribution and location transparency [22] of actors, the queuing
layer which allows for different implementations of the message queues, and
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finally, the processing layer which implements the actual execution of the mes-
sages. Each layer allows for further customization by means of plugins. The
implementation is available at https://github.com/CrispOSS/abs-api.

Fig. 1: Architecture of Actor API in Java 8

We discuss the architecture from bottom layer to top. The implementation
of actor API preserves a faithful mapping of message processing in ABS mod-
eling language. An actor is an active object in the sense that it controls how
the next message is executed and may release any resources to allow for co-
operative scheduling. Thus, the implementation is required to optimally utilize
JVM threads. Clearly, allocating a dedicated thread to each message or actor
is not scalable. Therefore, actors need to share threads for message execution
and yet be in full control of resources when required. The implementation fun-
damentally separates invocation from execution. An asynchronous message is a
reference to a method invocation until it starts its execution. This allows to min-
imize the allocation of threads to the messages and facilitates sharing threads
for executing messages. Java concurrent API [23] provides different ways to
deploy this separation of invocation from execution. We take advantage of Java
Method Handles [29] to encapsulate invocations. Further we utilize different
forms of ExecutorService and ForkJoinPool to deploy concurrent invocations of
messages in different actors.

In the next layer, the actor API allows for different implementations of a
queue for an actor. A dedicated queue for each actor simplifies the process
of queuing messages for execution but consumes more resources. However,
a shared queue for a set of actors allows for memory and storage optimiza-
tion. This latter approach of deployment, first, provides a way to utilize the
computing power of multi-core; for instance, it allows to use work-stealing
to maximize the usage of thread pools. Second, it enables application-level
scheduling of messages. The different implementations cater for a variety of

https://github.com/CrispOSS/abs-api
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plugins, like one that releases computation as long as there is no item in the
queue and becomes active as soon as an item is placed into the queue; e.g.
java.util.concurrent.BlockingQueue. Further, different plugins can be injected to
allow for scheduling of messages extended with deadlines and priorities [28].

We discuss next the distribution of actors in this architecture. In the archi-
tecture presented in Figure 1, each layer can be distributed independently of
another layer in a transparent way. Not only the routing layer can provide dis-
tribution, the queue layer of the architecture may also be remote to take advan-
tage of cluster storage for actor messages. A remote routing layer can provide
access to actors transparently through standard naming or addresses. We ex-
ploit the main properties of actor model [1,2] to distribute actors based on our
implementation. From a distributed perspective, the following are the main re-
quirements for distributing actors:

Reference Location Transparency Actors communicate to one another using
references. In an actor model, there is no in-memory object reference; how-
ever, every actor reference denotes a location by means of which the actor is
accessible. The reference location may be local to the calling actor or remote.
The reference location is physically transparent for the calling actor.

Communication Transparency A messagem from actor A to actor Bmay pos-
sibly lead to transferringm over a network such that B can process the mes-
sage. Thus, an actor model that supports distribution must provide a layer
of remote communication among its actors that is transparent, i.e., when
actor A sends message m, the message is transparently transferred over
the network to reach actor B. For instance, actors existing in an HTTP con-
tainer that transparently allows such communication. Further, the API im-
plementation is required to provide a mechanism for serialization of mes-
sages. By default, every object in JVM cannot be assumed to be an instance
of java.io.Serializable. However, the API may enforce that any remote ac-
tor should have the required actor classes in its JVM during runtime which
allows the use of the JVM’s general object serialization 6 to send messages
to remote actors and receive their responses. Additionally, we model asyn-
chronous messages with lambda expressions for which Java 8 supports se-
rialization by specification 7.

Actor Provisioning During a life time of an actor, it may need to create new
actors. Creating actors in a local memory setting is straightforward. How-
ever, the local setting does have a capacity of number of actors it can hold.
When an actor creates a new one, the new actor may actually be initialized
in a remote resource. When the resource is not available, it should be first
provisioned. However, this resource provisioning should be transparent to
the actor and only the eventual result (the newly created actor) is visible.

6 Java Object Serialization Specification: http://docs.oracle.com/javase/8/
docs/platform/serialization/spec/serialTOC.html

7 Serialized Lambdas: http://docs.oracle.com/javase/8/docs/api/java/
lang/invoke/SerializedLambda.html

http://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SerializedLambda.html
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SerializedLambda.html
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We extend the ABS API to ABS Remote API8 that provides the above proper-
ties for actors in a seamless way. A complete example of using the remote API
has been developed9. Expanding our ping-pong example in this paper, List-
ing 17 and 18 present how a remote server of actors is created for the ping and
pong actors. In the following listings, java.util.Properties is used provide input
parameters of the actor server; namely, the address and the port that the actor
server responds to.

Listing 17: Remote ping actor main

1 Properties p = new Properties();
2 p.put("host", "localhost");
3 p.put("port", "7777");
4 ActorServer s = new ActorServer(p)

;
5 IPong pong =
6 s.newRemote("abs://pong@http://

localhost:8888",
7 IPong.class);
8 Ping ping = new Ping(pong);
9 ping.send(

10 () -> ping.ping("")
11 );

Listing 18: Remote pong actor main

1 Properties p = new Properties();
2 p.put("host", "localhost");
3 p.put("port", "8888");
4 ActorServer s = new ActorServer(p)

;
5 Pong pong = new Pong();

In Listing 17, a remote reference to a pong actor is created that exposes the
IPong interface. This interface is proxied 10 by the implementation to handle the
remote communication with the actual pong actor in the other actor server. This
mechanism hides the communication details from the ping actor and as such
allows the ping actor to use the same API to send a message to the pong actor
(without even knowing that the pong actor is actually remote). When an actor
is initialized in a distributed setting it transparently identifies its actor server
and registers with it. The above two listings are aligned with the similar main
program presented in Listing 15 that presents the same in a local setting. The
above two listings run in separate JVM instances and therefore do not share
any objects. In each JVM instance, it is required that both interfaces IPing and
IPong are visible to the classpath; however, the ping actor server only needs to
see Ping class in its classpath and similarly the pong actor server only needs to
see Pong class in its classpath.

8 The implementation is available at https://github.com/CrispOSS/
abs-api-remote.

9 An example of ABS Remote API is available at https://github.com/CrispOSS/
abs-api-remote-sample.

10 Java Proxy: http://docs.oracle.com/javase/8/docs/api/java/lang/
reflect/Proxy.html

https://github.com/CrispOSS/abs-api-remote
https://github.com/CrispOSS/abs-api-remote
https://github.com/CrispOSS/abs-api-remote-sample
https://github.com/CrispOSS/abs-api-remote-sample
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
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Fig. 2: Benchmark results of comparing sampling time of message round trips in
ABS API and Akka. An example reading of above results is that the time shows
for p(90.0000) reads as “message round trips were completed under 10µs for
90% of the sent messages”. The first two columns show the “minimum” and
“mean” message round trip times in both implementations.

8 Experiments

In this section, we explain how a series of benchmarks were directed to evaluate
the performance and functionality of actor API in Java 8. For this benchmark,
we use a simple Java application that uses the “Ping-Pong” actor example dis-
cussed previously. An application consists of one instance of Ping actor and one
instance of Pong actor. The application sends a ping message to the ping actor and
waits for the result. The ping message depends on a pong message to the pong
actor. When the result from the pong actor is ready, the ping actor completes
the message; this completes a round trip of a message in the application. To be
able to make comparison of how actor API in Java 8 performs, the example is
also implemented using Akka [32] library. The same set of benchmarks are per-
formed in isolation for both of the applications. To perform the benchmarks, we
use JMH [30] that is a Java microbenchmarking harness developed by OpenJDK
community and used to perform benchmarks for the Java language itself.

The benchmark is performed on the round trip of a message in the appli-
cation. The benchmark starts with a warm-up phase followed by the running
phase. The benchmark composes of a number of iterations in each phase and
specific time period for each iteration specified for each phase. Every iteration
of the benchmark triggers a new message in the application and waits for the
result. The measurement used is sampling time of the round trip of a message.
A specific number of samples are collected. Based on the samples in different
phases, different percentile measurements are summarized. An example per-
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centile measurement p(99.9900) = 10 µs is read as 99.9900% of messages in
the benchmark took 10 micro-seconds to complete.

Each benchmark starts with 500 iterations of warm-up with each iteration
for 1 micro-second. Each benchmark runs for 5000 iterations with each iteration
for 50 micro-seconds. In each iteration, a maximum number of 50K samples are
collected. Each benchmark is executed in an isolated JVM environment with
Java 8 version b127. Each benchmark is executed on a hardware with 8 cores of
CPU and a maximum memory of 8GB for JVM.

The results are presented in Figure 2. The performance difference observed
in the measurements can be explained as follows. An actor in Akka is expected
to expose a certain behavior as discussed in Section 3 (i.e. onReceive). This means
that every message leads to an eventual invocation of this method inside actor.
However, in case of an actor in Java 8, there is a need to make a look-up for
the actual method to be executed with expected arguments. This means that
for every method, although in the presence of caching, there is a need to find
the proper method that is expected to be invoked. A constant overhead for the
method look-up in order to adhere to the object-oriented principles is naturally
to be expected. Thus, this is the minimal performance cost that the actor API in
Java 8 pays to support programming to interfaces.

9 Conclusion

In this paper, we discussed an implementation of the actor-based ABS modeling
language in Java 8 which supports the basic object-oriented mechanisms and
principles of method look-up and programming to interfaces. In the full version
of this paper we have developed an operational semantics of Java 8 features
including lambda expressions and have proved formally the correctness of the
embedding in terms of a bisimulation relation.

The underlying modeling language has an executable semantics and sup-
ports a variety of formal analysis techniques, including deadlock and schedu-
lability analysis [10,19]. Further it supports a formal behavioral specification of
interfaces [14], to be used as contracts.

We intend to expand this work in different ways. We aim to automatically
generate ABS models from Java code which follows the ABS design method-
ology. Model extraction allows industry level applications be abstracted into
models and analyzed for different goals such as deadlock analysis and concur-
rency optimization. This approach of model extraction we believe will greatly
enhance industrial uptake of formal methods. We aim to further extend the
implementation of API to support different features especially regarding dis-
tribution of actors especially in the queue layer, and scheduling of messages
using application-level policies or real-time properties of a concurrent system.
Furthermore, the current implementation of ABS API in a distributed setting
allows for instantiation of remote actors. We intend to use the implementation
to model ABS deployment components [21] and simulate a distributed envi-
ronment.
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