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Abstract. The ABS modelling language targets concurrent and dis-
tributed object-oriented systems. The language has been designed to
permit scalable formal verification of detailed executable models. This
paper considers formal specifications of safety properties in terms of his-
tories of observable communication, and formal proofs of properties ex-
pressed in this manner for given ABS models. We present a case study of
a Network-on-Chip packet switching platform, including an executable
formal model in ABS of a generic m× n mesh chip with an unbounded
number of packets, and verify a number of its properties. We address
the formal verification of unbounded concurrent systems and show how
scalable verification can be done by means of compositional and local
reasoning about history-based specifications of observable behavior.

1 Introduction

In this paper we address the formal verification of unbounded concurrent sys-
tems and show how scalable verification of functional behavior can be achieved
by means of compositional and local reasoning about history-based specifica-
tions of observable behavior. To focus on high-level design, we consider models
of the targeted systems. These models should be sufficiently abstract to facili-
tate reasoning, yet sufficiently concrete to faithfully reflect the data and control
flow of the targeted system. ABS is a formal, executable modeling language for
concurrent and distributed systems [26], specifically targeting this level of ab-
straction: (i) it combines functional, imperative, and object-oriented program-
ming styles, allowing intuitive, modular, high-level modeling of concepts, domain
and data; (ii) ABS models are fully executable and model system behavior pre-
cisely [3]; (iii) ABS can model synchronous as well as asynchronous communica-
tion; (iv) ABS has been developed to permit scalable formal verification: there
is a program logic as well as a compositional proof system [17] that permits
to prove global system properties by reasoning about object-local invariants;
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(v) ABS comes with an IDE and a range of analysis as well as productivity
tools [40], specifically, there is a formal verification tool called KeY-ABS [18].

For scalable verification, we focus on behavioral properties specified in terms
of communication histories. Communication histories have been used to give
fully abstract semantics to concurrent object-oriented systems (e.g., [25]), de-
scribing observable behavior while abstracting from implementation detail. A
fully abstract semantics captures the minimal information needed to character-
ize equivalence in all program contexts [31]. Hence, communication histories are
a natural choice of specification formalism for compositional verification. We
specify monitor-like invariants relating local states to local observable behavior,
and compose specifications purely in terms of communication histories.

We provide empirical evidence of our scalability claim by way of a case
study on a Network-on-Chip (NoC) [29] packet switching platform called AS-
PIN (Asynchronous Scalable Packet Switching Integrated Network) [36]. Our
goal is to prove the correctness of an ABS model of an ASPIN NoC of arbitrary,
unbounded size with respect to safety properties expressed in terms of commu-
nication histories. Concretely, we prove that “no packets are lost” and that “a
packet is never sent in a circle”. The main contributions of this paper are (i) a
formal model of a generic m×n mesh ASPIN chip in ABS with unbounded num-
ber of packets, as well as a packet routing algorithm; (ii) the formal specification
using communication histories of safety properties which together ensure that
no packets are lost; and (iii) formal proofs, done with KeY-ABS, that the ABS
model of ASPIN fulfills these safety properties.3

ABS was developed with the explicit aim to enable scalable verification of
detailed, precisely modeled, executable, concurrent systems. Our paper shows
that this claim is justified. Our work is the first compositional verification (in the
sense made precise in Sect. 7) of a generic NoC model unbounded in the number
of nodes and packets. It has been achieved with manageable effort and thus
shows that our approach based on deductive verification is a viable alternative
for the verification of concurrent systems.

Paper overview: Sect. 2 briefly introduces the modeling language ABS and
Sect. 3 details formal specification based on communication histories, Sect. 4
provides background on deductive verification with expressive program logics,
and Sect. 5 presents the ASPIN NoC case study. Sect. 6 explains how we achieved
the formal specification and verification of the case study and gives details about
the exact properties proved as well as the necessary effort. Sect. 7 sketches some
directions for future work, Sect. 8 discusses related work and Sect. 9 concludes.

2 The ABS Modeling Language

ABS [26] is a behavioral specification language for developing abstract executable
models of concurrent, distributed, and object-oriented systems. ABS offers a
clean integration of concurrency and object orientation based on concurrent

3 The complete model with all formal specifications and proofs is available at
https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/noc.
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object groups (COGs) . ABS permits synchronous as well as asynchronous com-
munication [27], akin to Actors [1] and Erlang processes [7]. ABS offers a range
of complementary modeling alternatives in a concurrent and object-oriented
framework that integrates algebraic datatypes and functional and imperative
programming styles with a Java-like syntax and formal semantics [26]. Com-
pared to object-oriented programming languages, ABS abstracts from low-level
implementation choices such as imperative data structures. Compared to design-
oriented languages like UML diagrams, it models data-sensitive control flow and
it is executable. We now briefly introduce the functional and imperative layers
of ABS.

The functional layer of ABS is used to model computations on the internal
data of concurrent objects. It allows modelers to abstract from implementation
details of imperative data structures at an early stage in the software design and
thus allows data manipulation without committing to a low-level implementation
choice. This layer combines a simple language for parametric algebraic data types
(ADTs) and a pure first-order functional language which includes expressions
such as variables, values, constructors, functions, and case expressions. ABS
has a library with four predefined basic types (Bool, Int, String, and Unit), and
parametric datatypes (e.g., lists, sets, and maps). The predefined datatypes come
with arithmetic and comparison operators, and the parametric datatypes have
built-in standard functions. The type Unit is used as a return type for methods
without explicit return value. All other types and functions are user-defined.

The imperative layer of ABS addresses concurrency, communication, and
synchronization in the system design, and defines interfaces, classes, and meth-
ods in an object-oriented style. In ABS, each concurrent object group (COG)
has its own thread of execution where one process is active and the others are
suspended on a process queue. Classes can be active in the sense that their run
method, if defined, automatically triggers a process upon creation. Statements
are standard for sequential composition s1; s2, and for skip, if, while, and return
constructs. In addition, ABS includes statements await and suspend for the ex-
plicit suspension of active processes, so scheduling in ABS is cooperative. The
statement suspend unconditionally suspends the execution of the active process
and moves this process to the queue. The statement await g conditionally sus-
pends execution: the guard g controls thread release and consists of Boolean
conditions and return tests (explained in the next paragraph). Just like expres-
sions, the evaluation of guards is side-effect free. However, if g evaluates to false,
the process is suspended and the execution thread becomes idle. When the exe-
cution thread is idle, an enabled task may be selected from the process queue by
means of a default scheduling policy. The language also includes COG creation
new C(e), method calls o!m(e), and future dereferencing fr.get (here e denotes
a lists of expressions).

Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments of the form
fr=o!m(e) to future variables fr. Here, o is an object expression, m a method
name, and e are expressions providing actual parameter values for the method in-
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vocation. (Local calls are written this!m(e).) A future denotes a “mailbox” where
the return value to the method call can be retrieved. After calling fr=o!m(e),
the variable fr refers to the corresponding future and the caller may proceed
without blocking. Two operations on future variables control synchronization in
ABS [13]. First, the guard await fr? suspends the active process unless a return
to the call associated with fr has arrived, allowing other processes in the COG
to execute. Second, the return value is retrieved by the expression fr.get, which
blocks all execution in the COG until the return value is available. For example,
the statement sequence fr=o!m(e);x=fr.get contains no suspension statement
and, therefore, encodes commonly used blocking calls, abbreviated x=o.m(e)
(often referred to as synchronous calls). Futures are first-class citizens of ABS
and can be passed around as method parameters. If the return value of a call is
of no interest, the call may occur directly as a statement o!m(e) with no asso-
ciated future variable. This corresponds to asynchronous message passing. The
details of the sequential execution of several threads inside a COG are not used
in the verification techniques showcased in this paper and therefore we focus on
single-object COGs (i.e., concurrent objects) in the sequel.

3 Observable Behavior

A distributed system can be specified by the externally observable behavior of
its constituents. The behavior of each component is reflected in the possible com-
munication histories over observable events [22]. Theoretically this is justified,
because communication histories can been used for fully abstract semantics of
object-oriented languages [25]. Here, we strive for compositional communication
histories of asynchronously communicating systems. Therefore, it is appropriate
to record separate events for object creation, method invocation, reaction upon
a method call, resolving a future, and for fetching the value of a future. Each of
these events is witnessed by merely one object, namely the generating object.

Fig. 1 illustrates the relation among the observable events associated with an
asynchronous method call. Assume that object o calls a method m on object o′

with parameter values e, where u denotes the identity of the associated future.
An invocation message is sent from o to o′ when the method is invoked. This
is reflected by the invocation event invEv(o, o′, u,m, e) generated by o. An in-
vocation reaction event invREv(o, o′, u,m, e) is generated by o′ once m starts to
execute. When m has terminated, object o′ generates the future resolution event
futEv(o′, u,m, e), reflecting that u receives the return value e. The fetching event
fetREv(o, u, e) is generated by o once the value of the resolved future is accessed.
References u to futures bind all four event types together and allow to filter out
those events from an event history that relate to the same method invocation.
Since future identities may be passed to another object o′′, that object may also
fetch the future value, reflected by the event fetREv(o′′, u, e), generated by o′′ in
Fig 1. Based on these events, we formalize the notion of communication history.
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o o′

invEv(o, o′, u,m, e)

invREv(o, o′, u,m, e)

futEv(o′, u,m, e)

fetREv(o, u, e)

o′′

fetREv(o′′, u, e)

Fig. 1. Communication events and when they occur in the history.

Definition 1. (Communication history) The communication history H of
a system of objects O is a sequence of events, as defined above, such that each
event in H is generated by an object in O.

For a history H, we let H/o abbreviate the projection of H to the events
generated by o. Since each event is generated by a single object, it follows that
the projections of a history to two different objects are disjoint.

Definition 2. (Local history) For a (global) history H and an object o, the
projection H/o is the local history of o.

For a method call with future u, the possible ordering of the associated events
is described by the regular expression

invEv(o, o′, u,m, e) · invREv(o, o′, u,m, e) · futEv(o′, u,m, e)[·fetREv( , u, e)]∗

for some fixed o, o′, m, e, e, and where “·” denotes concatenation of events, “ ”
denotes arbitrary values. Thus, the return value from a method call may be read
several times (or not at all), each time with the same value, namely the value
given in the preceding future event.

A communication history H is wellformed if the order of communication
events follows the pattern defined above, the identities of generated futures are
fresh, and the communicating objects are non-null.

Lemma 1. The global history H of a system modeled with ABS and derived
from its operational semantics, is wellformed.

The formal definition of wellformedness and a proof of Lemma 1 are given in [16].
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Invariants Safety properties [4] take the form of history invariants, which are
predicates over all finite sequences in the (prefix-closed) set of possible histories.

The class invariant serves as a contract for the ABS class: Class invariants
express a relation between the internal state and observable communication of
class instances. They are specified by a predicate over the class attributes and
the local history. A class invariant must hold after initialization of an object, it
must be maintained by all methods, and it must hold at all processor release
points (i.e., await, suspend) [15].

A global history invariant can be obtained from the class invariants associated
with all objects in the system, adding wellformedness of the global history. This
is made more precise in Sect. 6.2.

4 Deductive Verification

KeY-ABS is a deductive verification system based on the KeY theorem prover [8]
for constructing formal proofs about ABS programs. A formal proof is a sequence
of reasoning steps to show the truth of a formula (a theorem). The formal proof
must lead without gaps from axioms to the theorem by applying proof rules.

The program logic of KeY-ABS is first-order dynamic logic for ABS (ABSDL)
[17, 18]. For a sequence of executable ABS statements S and ABSDL formulae
P and Q, the formula P → [S]Q expresses: If the execution of S starts in a state
where the assertion P holds and the program terminates normally, then the
assertion Q holds in the final state. Thus, given an ABS method m with body
mb and a class invariant I , the ABSDL formula I → [mb]I expresses that the
method m preserves the class invariant. KeY-ABS uses a Gentzen-style sequent
calculus to prove ABSDL formulae. In sequent notation P → [S]Q is written

Γ, P ` [S]Q,∆,

where Γ and ∆ stand for (possibly empty) sets of side formulae. A sequent
calculus as realized in ABSDL essentially constitutes a symbolic interpreter for
ABS. For example, the assignment rule for local program variables is

Γ ` {v := e}[rest]φ,∆

Γ ` [v = e; rest]φ,∆

where v is a local program variable and e is a pure (side effect-free) expression.
This rule rewrites the formula by moving the assignment from the program into
a so-called update [8], as {v := e} shown above, which captures state changes.
The symbolic execution continues with the remaining program rest. Updates
can be viewed as explicit substitutions that accumulate in front of the modality
during symbolic program execution. Updates can only be applied to formulae or
terms. Once the program to be verified has been completely executed and the
modality is empty, the accumulated updates are applied to the formula after the
modality, resulting in a pure first-order formula. Below we show a more complex
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type Pos = Pair<Int, Int>; // (x,y) coordinates
type Packet = Pair<Int, Pos>; // (id, destination)
type Buffer = Int;
data Direction = N | W | S | E | NONE;

// north, west, south, east, the direction for not moving
data Port = P(Bool inState , Bool outState, Router rId, Buffer buff);

// (input port state, output port state, neighbor router id, buffer size)
type Ports = Map<Direction, Port>;

Fig. 2. ADTs for the ASPIN model in ABS

proof rule, for asynchronous method invocation:

asyncCall

Γ ` (o 6 .= null ∧ wf(h)), ∆

Γ ` (futureIsFresh(u, h)→
{fr := u || h := h · invEv(this, o, u,m, e)}[rest]φ), ∆

Γ ` [fr = o!m(e); rest]φ,∆

The rule has two premisses and splits the proof in two cases. The first premiss (on
top) ensures that the callee is non-null and the current history h is wellformed.
The second case introduces a constant u which represents the future generated
for the result of this method invocation. The left side of the implication ensures
that u is fresh in h and the right side updates the history by appending the
invocation event generated by this call. We refer to [17] for the other ABSDL
rules as well as soundness and completeness proofs of the ABSDL calculus.

5 Network-on-Chip Case Study

Network-on-Chip (NoC) [29] is a packet switching platform for single chip sys-
tems which scales well to an arbitrary number of resources (e.g., CPU, memory).
The NoC architecture is an m × n mesh of switches and resources which are
placed on the slots formed by the switches. The NoC architecture essentially is
the on-chip communication infrastructure.

Asynchronous Scalable Packet Switching Integrated Network (ASPIN) [36]
is an example of a NoC with routers and processors. ASPIN has physically
distributed routers in each core. Each router is connected to four neighboring
routers and each core is locally connected to one router. ASPIN routers are
split into five separate modules (north, south, east, west, and local) with ports
that have input and output channels and buffers. ASPIN uses input buffering
for storage: each input channel has an independent FIFO buffer. Packets arriv-
ing from different neighboring routers (and from the local core) are stored in the
respective FIFO buffer. Communication between routers uses a four-phase hand-
shake protocol with request and acknowledgment messages between neighboring
routers to transfer a packet. In ASPIN, the distributed X-first algorithm routes
packets from input channels to output channels: packets first move along the X
(horizontal) axis of the grid, and afterwards along the Y (vertical) axis to reach
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interface Router{
Unit setPorts(Router e, Router w, Router n, Router s);
Unit getPk(Packet pk, Direction srcPort);}

class RouterImp(Pos address, Int buffSize) implements Router {
Ports ports = EmptyMap;
Set<Packet> receivedPks = EmptySet; // received packages

Unit setPorts(Router e, Router w, Router n, Router s){
ports = map[Pair(N, P(True, True, n, 0)), Pair(S, P(True, True, s, 0)),

Pair(E, P(True, True, e, 0)), Pair(W, P(True, True, w, 0))];}

Unit getPk(Packet pk, Direction srcPort){
if (addressPk(pk) != address) {
await buff(lookup(ports,srcPort)) < buffSize;
ports = put(ports,srcPort,increaseBuff(lookup(ports,srcPort)));
this!redirectPk(pk,srcPort);}

else { // record that packet was successfully received
receivedPks = insertElement(receivedPks, pk); } }

Unit redirectPk(Packet pk, Direction srcPort){
Direction direc = xFirstRouting(addressPk(pk), address);
await (inState(lookup(ports,srcPort)) == True)

&& (outState(lookup(ports,direc)) == True);
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), False));
ports = put(ports, direc, outSet(lookup(ports, direc), False));
Router r = rId(lookup(ports, direc));
Fut<Unit> f = r!getPk(pk, opposite(direc)); await f?;
ports = put(ports, srcPort, decreaseBuff(lookup(ports, srcPort)));
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), True));
ports = put(ports, direc, outSet(lookup(ports, direc), True));}}

Fig. 3. A model of an ASPIN router using ABS

their destination. We model the functionality and routing algorithm of ASPIN
in ABS starting from a model by Sharifi et al. [34,35] written in Rebeca [37]. In
Sect. 6 we will formally verify our model using ABSDL.

We model each router as a concurrent object that communicates with other
routers through asynchronous method calls. The abstract data types used in our
model are given in Fig. 2. We abstract from the local communication to cores,
so each router has four ports and each port has an input and output channel,
the identifier rId of the neighbor router, and a buffer. Packets are modeled as
pairs that contain the packet identifier and the final destination coordinate.

The ABS model of a router is shown in Fig. 3. Method setPorts initializes the
ports in a router and connects it to the neighbor routers. Packets are transferred
using a protocol expressed by two methods redirectPk and getPk. The internal
method redirectPk is called by the router to redirect a packet to a neighbor router.
The X-first routing algorithm in Fig. 4 selects the port direc (and consequently
the neighbor router). The parameter srcPort determines the local input buffer in
which the packet is temporarily stored. As part of the communication protocol,
the input channel of srcPort and the output channel of direc are blocked until
the neighbor router confirms receipt of the packet, using f = r!getPk(...); await f?
statements to simulate request and acknowledgment messages (here r is the Id
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def Direction xFirstRouting(Pos destination, Pos current) =
case x(current) < x(destination) {

True => E;
False => case x(current) > x(destination) {

True => W;
False => case y(current) < y(destination) {

True => S;
False => case y(current) > y(destination) {

True => N;
False => NONE; }; }; }; };

Fig. 4. X-first routing algorithm in ABS

of the neighbor router). The method getPk checks if the final destination of the
packet is the current router, if so, it stores the packet, otherwise it temporarily
stores the packet in the srcPort buffer and redirects it. The model uses standard
library functions for maps and sets (e.g, put, lookup, etc.) and observers as well
as other functions over the ADTs (e.g., addressPk, inState, decreaseBuff).

6 Formal Specification and Verification of the Case Study

We now formalize and verify safety properties for the ABS NoC model in ABSDL
using the KeY-ABS verification tool. The application is based on the theory
presented in Sects. 3 and 4, ensuring the correctness of the results. Our approach
uses local reasoning about RouterImp objects and establishes a system invariant
over the global history from invariants over the local histories of each object.

6.1 Local Reasoning

The four-event semantics for asynchronous communication keeps the local his-
tories of different objects disjoint, so it is possible to reason locally about each
object over the local histories (cf. Sect. 3). Lemmas 2 and 3 present the history-
based class invariants for RouterImp. We then discuss the proof obligations ver-
ified by KeY-ABS that stem from reasoning about our model in terms of these
class invariants. Fig. 5 illustrates the explanations.

Lemma 2. Every time a router R terminates an execution of the getPk method,
R must either have sent an internal invocation to redirect the packet or have
stored the packet in its receivedPks set.

We formalize this lemma as an ABSDL formula (slightly beautified):

∀i1, u . 0 ≤ i1 < len(h) ∧ futEv(this, u, getPk, ) = at(h, i1)
⇒
∃i2, pk . 0 ≤ i2 < i1 ∧ invREv( , this, u, getPk, (pk, )) = at(h, i2) ∧
((dest(pk) 6= address(this)⇒
∃i3 . i2 < i3 < i1 ∧ invEv(this, this, , redirectPk, (pk, )) = at(h, i3)) ∨

(dest(pk) = address(this)⇒ pk ∈ receivedPks))
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this next

this!redirectPk(pk,s)

next!getPk(pk,d)

await f? == True

invEv(this,this,u1,redirectPk,(pk,s))
invREv(this,this,u1,redirectPk,(pk,s))

invEv(this,next,u2,getPk,(pk,d)) invREv(this,next,u2,getPk,(pk,d))

futEv(next,u2,getPk, )

futEv(this,u1,redirectPk, )

Fig. 5. Communication history between a router and its neighboring router next, to
which the package is sent.

Here, “ ” denotes a value without interest. The function len(s) returns the length
of sequence s, at(s, i) the element located at index i of sequence s, dest(pk) the
destination address of packet pk, and address(r) the address of router r.

This formula expresses that for every future event ev1 of getPk with future
identifier u in history h (capturing a termination of getPk), there is a corre-
sponding invocation reaction event ev2 that contains the sent packet pk. This is
achieved by pattern matching with u in the preceding history. If this router is the
destination of pk, then pk must be in its receivedPks set, otherwise an invocation
event of redirectPk containing pk must occur in the history between ev1 and ev2.
This invariant captures the properties of the state and is prefix-closed.4

Lemma 3. Every time a router R terminates an execution of the redirectPk
method, the input and output channels used to redirect the fetched packet are
released, and the packet has been redirected to a neighbour router through an
invocation of the getPk method.

Again, we formalize this lemma as an ABSDL formula:

∀u . futEv(this, u, redirectPk, ) = at(h, len(h)− 1)
⇒
∃i1, i2, pk, srcP, dirP . 0 < i1 < i2 < len(h)− 1 ∧

(invREv(this, this, u, redirectPk, (pk, srcP)) = at(h, i1) ∧
invEv(this, , , getPk, (pk, opposite(dirP))) = at(h, i2)) ∧

(inState(lookup(ports, srcP)) ∧ outState(lookup(ports, dirP)))

4 In the heap model of KeY-ABS, a heap value can potentially be modified when a
process is released. Therefore, to prove the above property we need a slightly stronger
invariant expressing that the address of a router in the heap is rigid (cannot be
modified by any other process). Due to a current technical limitation of the tool,
we proved the invariant for a slightly simplified model where the router address is
a parameter of getPk. This modification does not affect the overall behavior of the
model and will be lifted in future work.
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This formula expresses that whenever the last event in the history h is a future
event of redirectPk method (capturing termination of redirectPk), there are cor-
responding invocation reaction and invocation events which we find by pattern
matching with the same future and packet in the previous history. The source
port srcP and the direction port dirP used in the latest execution of redirectPk
can be found in these two events. The input channel of srcP and the output
channel of dirP must be released in the current state. This invariant captures
the properties of the current state and is prefix-closed.

All three methods of RouterImp satisfy both invariants. The statistics for
verifying the lemmas by KeY-ABS is given below (in terms of the proof size):

setPorts getPk redirectPk
nodes branches nodes branches nodes branches

Lemma 2 1638 12 11540 108 27077 200
Lemma 3 214 1 1845 11 4634 34

KeY-ABS provides heuristics and proof strategies that automate large parts of
the proof construction. The remaining user input typically consists of universal
and existential quantifier instantiations.

6.2 System Specification

A system property of an ABS program can be formulated as a global history
invariant, which holds for all finite sequences in the prefix-closed set of possible
global histories. The global history of an ABS program consists of the local
histories of each object in the system, and is wellformed according to Lemma 1.
We now want to derive a global system specification from the history-based class
invariants of the system’s objects.

The basis for local reasoning in the proof system for ABS is that class invari-
ants must be satisfied at process release points and after method termination
(see Sect. 3), but class invariants need not be prefix-closed. Consequently, a local
history invariant is in general weaker than the class invariant. For compositional
reasoning, we may therefore need to weaken the class invariants in order to trans-
form class invariants into prefix-closed history invariants. The system invariant
can then obtained directly from the history invariants of the composed objects
since the local histories are disjoint. The proof rule for compositional reasoning
about ABS programs is given and proved sound in [17], by which we obtain a
system invariant below for the NoC model.

Let Ithis(h) denote the conjunction of the class invariants IgetPk(this, h) and
IredirectPk(this, h), defined in Lemmas 2 and 3, where h is the local history
of this object. The class invariants are already prefix-closed and need not be
weakened. Define a system invariant I(H) as the conjunction of the instantiated
class invariants of all RouterImp objects r in the system:

I(H) , wf(H) ∧
∧

(r:RouterImp)∈newob(H)

Ir(H/r)
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Here, H denotes the global history of the system and Ir(H/r) denotes the his-
tory invariant of r applied to the local history H/r of a router r as obtained by
projection from H (Def. 2). The function newob(H) returns the set of RouterImp
objects generated within the system execution, as captured by H. History well-
formedness, denoted wf(H), ensures a proper ordering of the events that belong
to the same method invocation. Each wellformed interleaving of the local histo-
ries represents a possible global history. As a consequence, we obtain:

Theorem 1. Every time a router R terminates an execution of the redirectPk
method, the pair of input and output channels used to redirect the fetched packet
are released, and a neighbour router of R must either have sent an internal in-
vocation to redirect the packet further or have stored the packet in its receivedPks
set. Hence, the network does not drop any packets.

More Properties. Besides Thm. 1 we proved in a similar fashion that a packet
always moves towards its destination. This follows from two lemmas that hold
locally and are proven with KeY-ABS: (i) whenever a router redirects a packet
then it moves one step closer to its destination, and (ii) when a packet arrives at
its destination then its distance to it becomes zero. The proof of (i) for redirectPk
has 5178 nodes and 80 branches, the one of (ii) for getPk has 13401 nodes and
110 branches. As corollary we obtain that a packet is never sent in a circle.

Effort. The modeling of the NoC case study in ABS took ca. two person weeks.
Formal specification and verification was mainly done by the first author of
this paper who at the time was not experienced with the verification tool KeY-
ABS. The effort for formal specification was ca. two person weeks and for formal
verification of Lemmas 2, 3 ca. one person month, but this included training to
use the tool effectively. Subsequent specification and verification of the property
that a packet always moves towards its destination merely took one working day.

7 Future Work

Deadlock Analysis. In addition to history-based invariants, it is conceivable to
prove other properties, such as deadlock-freedom. Deadlocks may occur in a sys-
tem, for example, when a shared buffer between processes is full and one process
can decrease the buffer size only if the other process increases the buffer size. This
situation is prevented in the ABS model by disallowing self-calls before decreas-
ing the size of the buffer (the method invocation of getPk within redirectPk in
our model is an external call). It is possible to argue informally that our ABS
model of NoC is indeed deadlock-free, but a formal proof with KeY-ABS is fu-
ture work. The main obstacle is that deadlocks are a global property and one
would need to find a way to encode sufficient conditions for deadlock-freedom
into the local histories. There are deadlock analyzers for ABS [20], but these,
like other approaches to deadlock analysis of concurrent systems, work only for
a fixed number of objects.
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Extensions of the Model. The ASPIN chip model presented in this paper can
be extended with time (e.g, delays and deadline annotations) and scheduling
(e.g., FIFO, EDF, user-defined, etc.) using Real-Time ABS [9]. A timed model
would allow to run simulations and obtain results about the performance of the
model. Adding scheduling to the model would make it possible to reason about
the ordering of sent packets (using FIFO scheduling) or to express priority of
packets. It is possible to change the routing algorithm (Fig. 4) without the need
to alter the RouterImp class (Fig. 3). Then one may compare the performance of
different routing algorithms by means of simulations.

8 Related Work

Early work on verifying concurrent systems was non-compositional: interference
freedom tests were used for shared variable concurrency [33] and cooperation
tests for synchronous message passing [6]. Compositional approaches were in-
troduced for shared variables in the form of rely-guarantee [28] and for syn-
chronous message passing in the form of assumption-commitment [32]. Extend-
ing these principles for compositional verification, object invariants can be used
to achieve modularity (e.g., [24]). Communication histories first appeared in the
object-oriented setting [12] and then for CSP [22]. Soundararajan developed
an axiomatic proof system for CSP using histories and projections [38], and
Zwiers developed the first sound and complete proof system using histories [42].
Reasoning about asynchronous method calls and cooperative scheduling using
histories was first done for Creol [19] and later adapted to Dynamic Logic [2].
Din introduced a proof system based on four communication events, significantly
simplifying the proof rules [15] and extended the approach to futures [16, 17].
This four event proof system is the basis for KeY-ABS [18].

The pure history-based proof system of ABS requires strong hiding of local
state: the state of other objects can only be accessed through method calls, so
shared state is internal and controlled by cooperative scheduling. Consequently,
specifications can be purely local. More expressive specifications require signifi-
cantly more complex proof systems e.g., modifies-clauses in Boogie [24] or frac-
tional permissions [21] in Chalice [30]. To specify fully abstract interface behavior
these systems need to simulate histories in an ad hoc manner (e.g., [24, Fig. 1]).
A combination of permission-based separation logic [5] and histories has recently
been proposed for modular reasoning about multithread concurrency [41].

Formal analysis of NoC systems is usually done in specialized formalisms. No-
tably, xMAS is a language with a small set of primitives for specifying abstract
microarchitectural models of communication fabrics [14]. It supports, for exam-
ple, deadlock detection [39], model checking in Verilog by inferring inductive
invariants for xMAS models [11], and compositional model-checking bounded
latency properties [23]. Among the approaches based on general specification
formalisms, ACL2 has been used for non-compositional analysis of, e.g., mes-
sage loss and deadlock-free routing (e.g., [10]). Sharifi et al. [34, 35] used the
actor-based language Rebeca to study deadlock-freedom and successful pack-
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age sending for the ASPIN chip and the X-first routing algorithm by means
of non-compositional model-checking techniques. They work with configurations
of fixed size which triggered our interest in the verification of ASPIN models
in a compositional and scalable manner. Compared to the Rebeca model, the
ASPIN model in ABS is decoupled from the routing algorithm and uses object-
oriented modeling concepts and high-level concurrency control, which makes it
more compact and easier to comprehend. In contrast to most previous work, our
approach works for an unbounded number of objects and it is valid for generic
NoC models for any m × n mesh in the ASPIN chip as well as any number of
sent packets.

9 Conclusion

We presented an approach to scalable verification of unbounded concurrent and
distributed systems which allows global safety properties to be established us-
ing local verification rules and symbolic execution. The approach is realized in
the proof system KeY-ABS [18], developed for the ABS modeling language.
We demonstrated the viability of our verification approach by proving the cor-
rectness of safety properties for an ABS model of an ASPIN NoC of arbitrary,
unbounded size. This is possible in our proof system, because each class invari-
ant is independent of its class instances and properties are specified in terms of
local communication histories. The paper develops a formal model of the case
study, explains how local specifications are formalized using communication his-
tories, and uses KeY-ABS to obtain formal proofs of global properties such as
“no packets are lost” and “a packet is never sent in a circle”. This is, to the best
of our knowledge, the first time that scalable, history-based reasoning techniques
have been applied to NoC systems. Our work also shows that a general purpose
modeling language and verification framework for concurrent and distributed
systems is adequate for NoC systems. After an initial modeling and training
effort, system properties can be specified and verified within hours or few days.
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8. B. Beckert, R. Hähnle, and P. H. Schmitt (eds.) Verification of Object-Oriented
Software: The KeY Approach, LNCS 4334. Springer, 2007.

9. J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering, 9(1):29–43, 2013.

10. D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A formal approach to the
verification of networks on chip. EURASIP J. Embedded Syst., 2009:2:1–2:14, 2009.

11. S. Chatterjee and M. Kishinevsky. Automatic generation of inductive invariants
from high-level microarchitectural models of communication fabrics. Formal Meth-
ods in System Design, 40(2):147–169, 2012.

12. O.-J. Dahl. Can program proving be made practical? In Les Fondements de la
Programmation, pages 57–114. IRIA, Dec. 1977.

13. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP, LNCS 4421, pages 316–330. Springer, Mar. 2007.
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