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Executive Summary:
Behavioural Interfaces for Virtualized Services

This document summarises deliverable D2.1 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This report studies and develops abstract descriptions of components of virtualized systems that are
amenable to automatic verification and validation. These abstract descriptions are behavioral interfaces
for the target language developed in Task T1.1 (ABS) and are mostly used to verify the interoperability
obligations between the different parties that compose a virtual system.

The following aspects are reported:

1. the decision algorithm for deadlock freedom of behavioural interfaces of virtual systems;

2. the abstract specifications of virtual systems by means of communication histories and definition of
their compositions;

3. the analysis of resource deployments in virtual systems by means of type systems.
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Chapter 1

Introduction

Work package 2 studies and develops abstract descriptions of components of virtualised systems that are
amenable to automatic verification and validation (an issue that is considered in Work package 3). According
to the Envisage DoW, the Deliverable 2.1

1. studies a notion of behavioural interface for the basic virtualized services as developed in Task T1.1.
These interfaces are mostly used to verify the interoperability obligations between the different parties
that compose a virtual system;

2. defines the formal assessment of the relationship between the detailed description of a virtualized service
as given in Task T1.1 and the behavioural interface as defined in this task;

3. motivates the appropriateness of the behavioural interfaces developed in this task by the needs arising
in the initial definition of the Envisage case studies, and possibly refined according to the feedbacks.

The language for virtualized services that is developed in Task T1.1 – ABS – is an abstract, executable,
object-oriented modelling language with a formal semantics. In ABS, method invocations are asynchronous:
the caller continues after the invocation and the called code runs on a different task. Tasks are cooperatively
scheduled, that is there is a notion of group of objects, called COG, and there is at most one active task at
each time per COG. The active task explicitly returns the control in order to let other tasks progress. The
synchronisation between the caller and the called methods is performed when the result is strictly necessary.
Technically, the decoupling of method invocation and the returned value is realised using future variables
(see [9] and the references in there), which are pointers to values that may be not available yet. Clearly, the
access to values of future variables may require waiting for the value to be returned.

As regards the above item 1, the Deliverable 2.1 studies the formalisation of the obligations of
components of ABS systems that guarantee never-ending waitings for returned values. This property, which
turns out to be a consequence of deadlock freedom, is enforced by associating behavioural interfaces to
method definitions, following the techniques ranging from session types [13] to process contracts [23] and to
calculi of processes such as Milner’s CCS or pi-calculus [24,25]. These behavioural interfaces are sequences of
basic terms recording the method invocations and the synchronisations between calling and called methods.

In Chapters 2 and 3 we have investigated two possible techniques. The one in Chapter 2 defines be-
havioural interfaces, called lams, that feature recursion and resource creation; therefore their underlying
model has infinite states. These interfaces were already studied in the previous European project HATS,
where we proposed two analysis techniques [14], which give imprecise, yet sound, answers (in some cases,
the techniques may signal false positives). Chapter 2 defines a decision algorithm for lams that is based on
a fixpoint technique. This algorithm takes a lam and returns a precise answer, according to whether the
lam manifests a circular dependency (a deadlock) or not. The behavioural interfaces defined in Chapter 3
are based on communication histories. These histories abstractly capture the system state at any point in
time [7,8]. Partial correctness properties of a system may thereby be specified by finite initial segments of its
communication histories. A history invariant is a predicate over the communication history, which holds for
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Envisage Deliverable D2.1 Behavioural Interfaces for Virtualized Services

all finite sequences in the (prefix-closed) set of possible histories, expressing safety properties (such as there
is never a blocking call). The chapter defines a framework for compositional reasoning about object systems,
establishing an invariant over the global history from invariants over the local histories of each object.

The two techniques described in Chapters 2 and 3 mainly differ in the ways the interfaces are related to
the virtualized service as given in Task T1.1 – see the above item 2. As regards lams, we have designed
an inference system that automatically extracts behavioural interfaces from ABS code [18] (this activity that
completely redefines the inference system of the EU-funded project HATS [14] lasted during the initial
months of Envisage). In this case, a subject reduction theorem guarantees the correctness of the association
behavioural interfaces/virtualized services. The inference system will be discussed in Work package 3. As
regards communication histories, Chapter 3 defines a proof system for local (class-based) reasoning using
Hoare triples, and a rule for composition of object specifications. A soundness and completeness result of the
logics with respect to the operational semantics is proved. A crucial property of communication histories and
their proof system is that the corresponding Hoare triples can be verified with the KeY theorem prover [4].
A reasoning system developed in KeY is currently being defined in dynamic logic and will be discussed in
Work package 3.

Since the behavioural interfaces in Chapters 2 and 3 appear to be related, currently we are investigating
the relation between them. The ultimate goal is to bridge the gap between the two techniques by translating
the inference system for deadlock analysis developed at BOL into a dynamic logic proof system for KeY and
reformulate lams as suitable invariants on communication histories. This work is planned to be done within
the scope of Task 3.4, Hybrid Analysis.

As regards the above item 3, all services described in D4.1 by our industrial partners ATB, FRH, and
ENG are in general highly concurrent (e.g. crawling with multiple crawler nodes and processes, indexing and
serving of data to mobile users). Therefore deadlock handling is absolutely of relevance.

Deliverable D1.1 also introduces a basic notion of deployment component and of computing resource.
The former represents abstract virtual machines in a cloud architecture and the latter one represents any
cloud resource that can properly be quantified (for example memory, disk, network, etc). Chapter 4 reports
on a preliminary study of a type-based technique for analysing the deployment of resources in ABS. In
particular, we design a type system for a dialect of ABS that supports dynamic COG creation and movements
between deployment components (which are statically defined). The type of a program expresses the resource
deployments over periods of (logical) time. This technique allows the inference of types, in the same style
as [18], and the resource load of deployment components can be visualised by means of a standard graphic
plotter program. The details of the technique, such as the system for deriving behavioural types automatically
and the correctness results, will be reported in the Deliverable D2.2 (Formalization of Service Contracts and
SLAs – Initial Report) of the Envisage project.

1.1 List of Papers Comprising Deliverable D2.1

This section lists all the papers that this deliverable comprises, indicates where they were published, and
explains how each paper is related to the main text of this deliverable. The deliverable contains either
extended abstracts of the papers or the parts that are relevant for the Envisage project. The full papers
are made available in the appendix of this deliverable and on the Envisage web site at the url http://www.
envisage-project.eu/ (select “Dissemination”). Direct links are also provided for each paper listed below.

Paper 1: Deadlock analysis of unbounded process networks This paper [15] addresses deadlock
detection in concurrent programs that create networks with arbitrary numbers of nodes. This problem is
extremely complex and solutions either give imprecise answers or do not scale. To enable the analysis of
such programs, the contribution (1) defines an algorithm for detecting deadlocks of a basic model featuring
recursion and fresh name generation: the lam programs, and (2) illustrate its relevance by designing a type
system for value passing CCS that returns lam programs. As a byproduct of these two techniques, one has an
algorithm that is more powerful than previous ones and that can be easily integrated in the current release of
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Envisage Deliverable D2.1 Behavioural Interfaces for Virtualized Services

TyPiCal, a type-based analyser for pi-calculus. The algorithm (1) has also been integrated in the deadlock
analyser of ABS [18] and is available online at http://df4abs.nws.cs.unibo.it.

The paper was written by Elena Giachino, Naoki Kobayashi and Cosimo Laneve and an extended version
was published in the proceedings of CONCUR 2014.

Download the paper at http://www.cs.unibo.it/~laneve/papers/concur2014.pdf.

Paper 2: Representation of behavioural interfaces for concurrent objects communicating by
asynchronous method calls and futures First-class futures improve the communication efficiency be-
tween objects. However, futures are shared entities between objects. In this work [10, 11] we achieve local
reasoning inside each class using communication histories that deal with futures and asynchronous method
calls. The reasoning system is proved sound and relative complete with respect to the operational semantics.

The paper was written by Crystal Chang Din and Olaf Owe and was published in the Journal of Logical
and Algebraic Methods in Programming 2014.

Download the paper at http://dx.doi.org/10.1016/j.jlamp.2014.03.003.

Paper 3: Towards the typing of resource deployment This paper [17] is a preliminary study of a
type-based technique for analysing the deployments of resources in cloud computing. The type system is
targeted to (a dialect of) ABS with dynamic resource creations and movements. The technique admits the
inference of types and may underlie the optimisation of the costs and consumption of resources.

The paper was written by Elena Giachino and Cosimo Laneve and was published in the proceedings of
ISoLA 2014.

Download the paper at http://www.cs.unibo.it/~laneve/papers/Isola2014.pdf.
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Chapter 2

A decision algorithm for deadlock freedom of
behavioural interfaces of virtual systems

2.1 Introduction

Deadlock detection in concurrent programs that create networks with arbitrary numbers of nodes is extremely
complex and solutions either give imprecise answers or do not scale. To enable the analysis of such programs,
we define an algorithm for detecting deadlocks of a basic model featuring recursion and fresh name generation:
the lam programs.

As a byproduct of the inference algorithm discussed in [14, 18], we have a deadlock detection algorithm
for ABS that is more powerful than previous ones and that has been integrated in our analyser available at
http://df4abs.nws.cs.unibo.it

2.2 A decision algorithm for detecting lam’s circularities

Deadlock-freedom of concurrent programs has been largely investigated in the literature [1, 5, 12, 21, 26, 27].
The proposed algorithms automatically detect deadlocks by building graphs of dependencies (a, b) between
resources, meaning that the release of a resource referenced by a depends on the release of the resource
referenced by b. The absence of cycles in the graphs entails deadlock freedom. When programs have infinite
states, in order to ensure termination, current algorithms use finite approximate models that are excerpted
from the dependency graphs. The most critical programs are those that create networks with an arbitrary
number of nodes.

To illustrate the issue, consider the following pi-calculus-like process that computes the factorial (the
notation “.” represents the prefix, while “|” represents parallel composition):

Fact(n,r,s) = if n=0 then r?m. s!m

else new t in (r?m. t!(m*n)) | Fact(n-1,t,s)

Here, r?m waits to receive a value for m on r, and s!m sends the value m on s. The expression new t in P cre-
ates a fresh communication channel t and executes P. If the above code is invoked with r!1 | Fact(n,r,s),
then there will be a synchronisation between r!1 and the input r?m in the body of Fact(n,r,s). In turn,
this may delegate the computation of the factorial to another process in parallel by means of a subsequent
synchronisation on a new channel t. That is, in order to compute the factorial of n, Fact builds a network
of n + 1 nodes, where node i takes as input a value m and outputs m*i. Due to the inability of statically
reasoning about unbounded structures, the current analysers usually return false positives when fed with
Fact. For example, this is the case of TyPiCal [21, 22], a tool developed for pi-calculus. In particular,
TyPiCal fails to recognise that there is no circularity in the dependencies among r, s, and t.

In Chapter A, we develop a technique to enable the deadlock analysis of processes with arbitrary networks
of nodes. Instead of reasoning on finite approximations of such processes, we associate them with terms of a
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basic recursive model, called lam – for deadLock Analysis Model –, which collects dependencies and features
recursion and dynamic name creation [14,16]. For example, the lam function corresponding to Fact is

fact(a1, a2, a3, a4) = (a2, a3) + (ν a5, a6)
(
(a2, a6) N fact(a5, a6, a3, a4)

)

where (a2, a3) displays the dependency between the actions r?m and s!m and (a2, a5) the one between r?m and
t!(m*n), and (ν a)L defines a new name a whose scope is L. The semantics of fact is defined operationally
by unfolding the recursive invocations, e.g. by replacing the invocations with the instance of the body where
the defined names are replaced by fresh names and the formal parameters are replaced by the actual ones. In
particular, the unfolding of fact(a1, a2, a3, a4) yields the following sequence of abstract states (bound names
in the definition of fact are replaced by fresh ones in the unfoldings).
fact(a1, a2, a3, a4) −→ (a2, a3) +

(
(a2, a6) N fact(a5, a6, a3, a4)

)

−→ (a2, a3) + (a2, a6) N (a6, a3) + (a2, a6) N (a6, a8) N fact(a7, a8, a3, a4)
−→ (a2, a3) + (a2, a6) N (a6, a3) + (a2, a6) N (a6, a8) N (a8, a3)

+(a2, a6) N (a6, a8) N (a8, a10) N fact(a9, a10, a3, a4)
−→ · · ·

While the model of fact is not finite-state, in Chapter A we demonstrate that it is decidable whether
the computations of a lam program will ever produce a circular dependency. The algorithm is defined by
means of a standard fixpoint technique. In our previous work [14, 16], the decidability was established only
for a restricted subset of lams.

Combining the type inference developed for ABS in [18], we have an analyser that is powerful enough
to detect deadlocks of programs that create networks with arbitrary numbers of processes. It is also worth
to notice that the algorithm defined in this chapter has been applied to value passing CCS in [15] and the
technique can be easily extended to pi-calculus.
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Chapter 3

Representation of Behavioural Interfaces for
Concurrent Objects Communicating by
Asynchronous Method Calls and Futures

3.1 Introduction

Nowadays many software systems are distributed. However, distributed systems are difficult to analyse
especially when we take concurrency, communication and synchronisation mechanisms into account. We
present a model which facilitates invariant specification over the locally visible communication history of each
distributed component (concurrent object). We model the system by core ABS, in which concurrent objects
communicates with one another by asynchronous method calls and futures, and present a compositional
approach for specification.

3.2 Representation of Behavioural Interfaces using Communication His-
tories

In Chapter B we present a communication model for concurrent objects communicating by means of asyn-
chronous message passing and futures. We describe the execution of an object by different communication
events which reflect the observable interaction between the object and its environment. The observable
behavior of a system is described by communication histories over observable events [6, 19].

3.2.1 Communication Events

Since message passing in ABS is asynchronous, we consider separate events for method invocation, reacting
upon a method call, resolving a future, and for fetching the value of a future. Each event is observable to only
one object, which is the one that generates the event. The events generated by a method call cycle is depicted
in Figure 3.1. The object o calls a method m on object o′ with input values e and where u denotes the future
identity. An invocation message is sent from o to o′ when the method is invoked. This is reflected by the
invocation event 〈o→ o′, u,m, e〉 generated by o. An invocation reaction event 〈�o′, u,m, e〉 is generated by
o′ once the method starts execution. When the method terminates, the object o′ generates the future event
〈← o′, u, e〉. This event reflects that u is resolved with return value e. The fetching event 〈o �, u, e〉 is
generated by o when o fetches the value of the resolved future. Since future identities may be passed to other
objects, e.g, o′′, that object may also fetch the future value, reflected by the event 〈o′′ �, u, e〉, generated by
o′′. The object creation event 〈o ↑ o′, C, e〉 represents object creation, and is generated by o when o creates
a fresh object o′.

Definition 3.2.1. (Events) Let type Mid include all method names, and let Data be the supertype of
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o'o

u

<o      o', u, m, e >

<     o', u, e>

<o      , u, e>

o''

 <       o', u, m, e >

<o''      , u, e>

<o''      , u, e>

Figure 3.1: A method call cycle: object o calls a method m on object o′ with future u. The events on
the left-hand side are visible to o, those in the middle are visible to o′, and the ones on the right-hand side
are visible to o′′. There is an arbitrary delay between message receiving and reaction. The message sending
marked in orange from o to o′′ represents that the future u is passed from o to o′′.

all values occurring as actual parameters, including future identities Fid and object identities Oid. Let
caller, callee, receiver : Oid, future : Fid, method : Mid, args : List[Data], and result : Data. Communica-
tion events Ev include:

• Invocation events 〈caller→ callee, future,method, args〉, generated by caller.

• Invocation reaction events 〈�callee, future,method, args〉, generated by callee.

• Future events 〈← callee, future, result〉, generated by callee.

• Fetching events 〈receiver �, future, result〉, generated by receiver.

• Object creation events 〈caller ↑ callee, class, args〉, generated by caller.

Events may be decomposed by functions. For instance, _.result : Ev → Data is well-defined for future
and fetching events, e.g., 〈← o′, u, e〉.result = e.

The execution of a system up to present time may be described by its history of observable events,
defined as a sequence. A sequence over some type T is constructed by the empty sequence ε and the right
append function _·_ : Seq[T ]× T → Seq[T ] (where “_” indicates an argument position). Projection, _/_ :
Seq[T ]× Set[T ]→ Seq[T ] is defined inductively by ε/s , ε and (a · x)/s , if x ∈ s then (a/s) · x else a/s fi,
for a : Seq[T ], x : T , and s : Set[T ], restricting a to the elements in s.

For a method invocation with future u, the ordering of events depicted in Figure 3.1 is described by the
following regular expression:

〈o→ o′, u,m, e〉 · 〈�o′, u,m, e〉 · 〈← o′, u, e〉[·〈_ �, u, e〉]∗

for some fixed o, o′, m, e, e, and where _ denotes an arbitrary value. This implies that the result value may
be read several times, each time with the same value, namely that given in the preceding future event.

3.2.2 History-Based Program Specification

The communication history abstractly captures the system state at any point in time [7,8]. Partial correctness
properties of a system may thereby be specified by finite initial segments of its communication histories. A
history invariant is a predicate over the communication history, which holds for all finite sequences in the
(prefix-closed) set of possible histories, expressing safety properties [2]. In this section we present a framework
for compositional reasoning about object systems, establishing an invariant over the global history from
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invariants over the local histories of each object. Since the local object histories are disjoint with our five-
event semantics, it is possible to reason locally about each object. In particular, the history updates of
the operational semantics affect the local history of the active object only, and can be treated simply as an
assignment to the local history. The local history is not effected by the environment, and interference-free
reasoning is then possible. Correspondingly, the reasoning framework consists of two parts: A proof system
for local (class-based) reasoning, and a rule for composition of object specifications.

3.2.3 Class Invariants

The class invariant must hold after initialization of all class instances and must be maintained by all methods,
serving as a contract for the different methods: A method implements its part of the contract by ensuring
that the invariant holds upon termination, assuming that it holds when the method starts execution. A class
invariant establishes a relationship between the internal state and the observable behavior of class instances.
The internal state reflects the values of the fields, and the observable behavior is expressed as potential
communication histories. A user-provided invariant IC(w,H) for a class C is a predicate over the fields
w, the read-only parameters cp and this, in addition to the local history H which is a sequence of events
generated by this.

3.2.4 System Invariants

A history invariant for instances of C is a predicate that only talks about the local history of that object
and is satisfied at all times. A history invariant can usually be derived from the class invariant (when prefix-
closed). For an instance o of C with actual class parameter values e, the history invariant Io:C(e)(h) is defined
by hiding the internal state w and instantiating this and the class parameters cp:

Io:C(e)(h) , ∃w . IC(w, h)this,cpo,e

but in addition it must be proved that Io:C(e)(H) holds at all times, possibly weakening the class invariant
if needed. In practice this is trivial, when the history invariant is prefix closed (with respect to the history).

We next consider systems with several objects and with an externally created initial object. The initial
object may create some objects which again may create other objects and so on. We say that the system is
generated by the externally created object.

The history invariant IS(h) for a system S given by an initial object, say c : C(e), is then given by the
conjunction of the history invariants of the initial and generated objects on their respective local histories:

IS(h) , 〈c ↑ c, C, e〉 ≤ h ∧ wf(h)
∧

(o:C(e))∈newob(h)

Io:C(e)(h/o)

The externally created object will appear as an initial creation event in the global history, and thus be
part of newob(h), which returns the set of created objects in a history h. The well-formedness property
wf (h) serves as a connection between the local histories, relating events with the same future to each other.
Note that the system invariant is obtained directly from the history invariants of the dynamically composed
objects, without any restrictions on the local reasoning, since the local histories are disjoint. This ensures
compositional reasoning.

3.3 Conclusion

In Chapter B we present a compositional reasoning system for distributed, concurrent objects with asyn-
chronous method calls and shared futures. A class invariant defines a relation between the inner state and the
observable communication of instances, and can be verified independently for each class. The class invariant
can be instantiated for each object of the class, resulting in a history invariant over the observable behavior
of the object. Compositional reasoning is ensured as history invariants may be combined to form global
system specifications.
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Chapter 4

Towards the typing of resource deployment

4.1 Introduction

In cloud computing, resources as files, databases, applications, and virtual machines may either scale or
move from one machine to another in response to load increases and decreases (resource deployment). We
study a type-based technique for analysing the deployments of resources in cloud computing. In particular,
we design a type system for a dialect of core ABS [20], a concurrent object-oriented language with dynamic
resource creations and movements. The type of a program is behavioural, namely it expresses the resource
deployments over periods of (logical) time. Our technique admits the inference of types and may underlie
the optimisation of the costs and consumption of resources.

4.2 A type based technique for resource deployment of coreABS

One of the prominent features of cloud computing is elasticity, namely the property of providing (almost
infinite) computing resources on demand, thereby eliminating the need for up-front commitments by users.
This elasticity may be a convenient opportunity if resources may go and shrink automatically at a fine-
grained scale when user’s needs change. However, current cloud technologies do not match this fine-grained
requirement. For example, the Google AppEngine automatically scales in response to load increases and
decreases, but it charges clients by the cycles (type of operations) used; Amazon Web Service charges clients
by the hour for the number of virtual machines used, even if a machine is idle [3].

Fine-grained resource management is an area where competition between cloud computing providers
may unlock new opportunities by committing to more precise cost bounds. In turn, such cost bounds should
encourage programmers to pay attention to resource managements (that is, releasing and acquiring resources
only when necessary) and allow for a more direct measurement of operational and development inefficiencies.

In order to let resources, such as files or databases or applications or memories or virtual machines,
be deployed in cloud machines, the languages for programming the cloud must include explicit operations
for creating, deleting, and moving resources – resource deployment operations – and corresponding software
development kits should include tools for analysing resource usages. It is worth to observe that the leveraging
of resource management to the programming language might also open opportunities to implement Service
Level Agreements (SLAs) validation via an automated test infrastructure, thus offering the opportunity for
third-party validation of SLAs and assessing penalties appropriately.

In Chapter C, we study resource deployment (in cloud computing) by extending a simple concurrent
object-oriented model with lightweight primitives for dynamic resource management. In our model, resources
are groups of objects that can be dynamically created and can be moved from one (virtual) machine to
another, called deployment components. We then define a technique for analysing and displaying resource
loads in deployment components that is amenable to be prototyped.

The object-oriented language is overviewed by discussing in detail a few examples. Then we discuss the
type system for analysing the resource deployments. Our technique is based on so-called behavioural types
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that abstractly describe the behaviours of systems. In particular, the types we consider record the creations
of resources and their movements among deployment components. They are similar to those ranging from
languages for session types [13] to process contracts [23] and to calculi of processes such as Milner’s CCS
or pi-calculus [24, 25]. In our mind, behavioural types are intended to represent a part of SLA that may be
validated in a formal way and that support compositional analysis. Therefore they may play a fundamental
role in the negotiation phase of cloud computing tradings.

The behavioural types presented in Chapter C are a simple model that may be displayed by highlighting
the resource load of deployment components using existing tools.

The work reported in Chapter C is an overview of our type system for analysing resource deployments.
Therefore the style is informal. Problems and (our) solutions are discussed mainly by means of examples. The
details of the technique, such as the system for deriving behavioural types automatically and the correctness
results, will be reported in the Deliverable D2.2 (Formalization of Service Contracts and SLAs – Initial
Report) of the Envisage project.
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Glossary

ABS Abstract Behavioural Specification language. An executable class-based, concurrent, object-oriented
modelling language based on Creol, created for the HATS project.

Behavioural Interface The intended behaviour of programs such as functional behaviour and resource
consumption can be expressed in the behavioural interface. Formal specifications of program behaviour is
useful for precise documentation, for the generation of test cases and test oracles, for debugging, and for
formal program verification.

Communication Histories The communication history h of a system of objects S is a sequence of events,
such that each event in h is generated by an object in S.

Contract Abstract specification of a program’s behaviour at runtime, used to perform specific analysis on
the program, like deadlock detection or resource consumption analysis.

Deployment component Abstraction encoding virtual machine identities: a cog inside a specific deploy-
ment component corresponds to a thread executing in a specific virtual machine and using its resources and
computation power.

Lam Main data structure of the Deadlock Analysis which stores all the sets of await and get synchronisa-
tions between cogs possibly generated by a method’s execution.

Observable Behaviour The observable behaviour of an object is the interaction between the object and
its environment which can be captured in the communication history over observable events.

Records. Annex structure used in the Deadlock and the Resource Analysis which store where (i.e. in
which cogs) are every manipulated objects.
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Appendix A

A decision algorithm for deadlock freedom of
behavioural interfaces of virtual systems
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Deadlock analysis of unbounded process networks
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Abstract. Deadlock detection in concurrent programs that create networks with
arbitrary numbers of nodes is extremely complex and solutions either give im-
precise answers or do not scale. To enable the analysis of such programs, (1) we
define an algorithm for detecting deadlocks of a basic model featuring recursion
and fresh name generation: the lam programs, and (2) we design a type system for
value passing CCS that returns lam programs. As a byproduct of these two tech-
niques, we have an algorithm that is more powerful than previous ones and that
can be easily integrated in the current release of TyPiCal, a type-based analyser
for pi-calculus.

1 Introduction

Deadlock-freedom of concurrent programs has been largely investigated in the liter-
ature [2, 4, 1, 11, 18, 19]. The proposed algorithms automatically detect deadlocks by
building graphs of dependencies (a, b) between resources, meaning that the release of
a resource referenced by a depends on the release of the resource referenced by b. The
absence of cycles in the graphs entails deadlock freedom. When programs have infinite
states, in order to ensure termination, current algorithms use finite approximate models
that are excerpted from the dependency graphs. The cases that are particularly critical
are those of programs that create networks with an arbitrary number of nodes.

To illustrate the issue, consider the following pi-calculus-like process that computes
the factorial:

Fact(n,r,s) = if n=0 then r?m. s!m
else new t in (r?m. t!(m*n)) | Fact(n-1,t,s)

Here, r?m waits to receive a value for m on r, and s!m sends the value m on s. The
expression new t in P creates a fresh communication channel t and executes P. If the
above code is invoked with r!1 | Fact(n,r,s), then there will be a synchronisation
between r!1 and the input r?m in the body of Fact(n,r,s). In turn, this may delegate
the computation of the factorial to another process in parallel by means of a subsequent
synchronisation on a new channel t. That is, in order to compute the factorial of n,
Fact builds a network of n+1 nodes, where node i takes as input a value m and outputs
m*i. Due to the inability of statically reasoning about unbounded structures, the current
analysers usually return false positives when fed with Fact. For example, this is the
case of TyPiCal [12, 11], a tool developed for pi-calculus. (In particular, TyPiCal
fails to recognise that there is no circularity in the dependencies among r, s, and t.)
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In this paper we develop a technique to enable the deadlock analysis of processes
with arbitrary networks of nodes. Instead of reasoning on finite approximations of such
processes, we associate them with terms of a basic recursive model, called lam – for
deadLock Analysis Model –, which collects dependencies and features recursion and
dynamic name creation [5, 6]. For example, the lam function corresponding to Fact is

fact(a1, a2, a3, a4) = (a2, a3) + (ν a5, a6)
(
(a2, a6) N fact(a5, a6, a3, a4)

)

where (a2, a3) displays the dependency between the actions r?m and s!m and (a2, a5)
the one between r?m and t!(m*n). The function fact is defined operationally by un-
folding the recursive invocations; see Section 3. The unfolding of fact(a1, a2, a3, a4)
yields the following sequence of abstract states (bound names in the definition of fact
are replaced by fresh ones in the unfoldings).
fact(a1, a2, a3, a4) −→ (a2, a3) +

(
(a2, a6) N fact(a5, a6, a3, a4)

)

−→ (a2, a3) + (a2, a6) N (a6, a3) + (a2, a6) N (a6, a8) N fact(a7, a8, a3, a4)
−→ (a2, a3) + (a2, a6) N (a6, a3) + (a2, a6) N (a6, a8) N (a8, a3)

+(a2, a6) N (a6, a8) N (a8, a10) N fact(a9, a10, a3, a4)
−→ · · ·

While the model of fact is not finite-state, in Section 4 we demonstrate that it
is decidable whether the computations of a lam program will ever produce a circular
dependency. In our previous work [5, 6], the decidability was established only for a
restricted subset of lams.

We then define a type system that associates lams to processes. Using the type
system, for example, the lam program fact can be extracted from the factorial pro-
cess Fact. For the sake of simplicity, we address the (asynchronous) value passing
CCS [15], a simpler calculus than pi-calculus, because it is already adequate to demon-
strate the power of our lam-based approach. The syntax, semantics, and examples of
value passing CCS are in Section 5; the type system is defined in Section 6. As a
byproduct of the above techniques, our system is powerful enough to detect deadlocks
of programs that create networks with arbitrary numbers of processes. It is also worth to
notice that our system admits type inference and can be easily extended to pi-calculus.
We discuss the differences of our techniques with respect to the other ones in the liter-
ature in Section 7 where we also deliver some concluding remark.

2 Preliminaries

We use an infinite set A of (level) names, ranged over by a, b, c, · · · . A relation on a set
A of names, denoted R, R′, · · · , is an element of P(A × A), where P(·) is the standard
powerset operator and · × · is the cartesian product. Let
– R+ be the transitive closure of R.
– {R1, · · · , Rm} b {R′1, · · · , R′n} if and only if, for all Ri, there is R′j such that Ri ⊆ R′j+.
– (a0, a1), · · · , (an−1, an) ∈∈ {R1, · · · , Rm} if and only if there is Ri such that (a0, a1),· · · ,

(an−1, an) ∈ Ri.
– {R1, · · · , Rm}N {R′1, · · · , R′n}

def
= {Ri ∪ R′j | 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

We use R,R′, · · · to range over {R1, · · · , Rm} and {R′1, · · · , R′n}, which are elements
of P(P(A × A)).
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Definition 1. A relation R has a circularity if (a, a) ∈ R+ for some a. A set of relations
R has a circularity if there is R ∈ R that has a circularity.

For instance
{
{(a, b), (b, c)}, {(a, b), (c, b), (d, b), (b, c)}, {(e, d), (d, c)}, {(e, d)}

}
has a

circularity because the second element of the set does.

3 The language of lams

In addition to the set of (level) names, we will also use function names, ranged over by
f, g, h, · · · . A sequence of names is denoted by ã and, with an abuse of notation, we
also use ã to address the set of names in the sequence.

A lam program is a pair
(
L , L

)
, where L is a finite set of function definitions

f(̃a) = Lf, with ã and Lf being the formal parameters and the body of f, and L is the
main lam. The syntax of the function bodies and the main lam is

L ::= 0 | (a, b) | f(̃a) | LN L | L + L | (ν a)L

The lam 0 enforces no dependency, the lam (a, b) enforces the dependency (a, b), while
f(̃a) represents a function invocation. The composite lam LNL′ enforces the dependen-
cies of L and of L′, while L + L′ nondeterministically enforces the dependencies of L
or of L′, (ν a)L creates a fresh name a and enforces the dependencies of L that may use
a. Whenever parentheses are omitted, the operation “N” has precedence over “+”. We
will shorten L1 N · · ·N Ln into Ni∈1..nLi and (ν a1) · · · (ν an)L into (ν a1 · · · an)L. Function
definitions f(̃a) = Lf and (ν a)L are binders of ã in Lf and of a in L, respectively, and
the corresponding occurrences of ã in Lf and of a in L are called bound. A name x in
L is free if it is not underneath a (ν a) (similarly for function definitions). Let var(L) be
the set of free names in L.

In the syntax of L, the operations “N” and “+” are associative, commutative with
0 being the identity on N, and definitions and lams are equal up-to alpha renaming of
bound names. Namely, if a < var(L), the following axioms hold:

(ν a)L = L (ν a)L′ N L = (ν a)(L′ N L) (ν a)L′ + L = (ν a)(L′ + L)
Additionally, when V ranges over lams that do not contain function invocations, the

following axioms hold:

VN V = V V + V = V VN (L′ + L′′) = VN L′ + VN L′′ (1)

These axioms permit to rewrite a lam without function invocations as a collection (op-
eration +) of relations (elements of a relation are gathered by the operation N). Let ≡
be the least congruence containing the above axioms.

Definition 2. A lam V is in normal form, denoted nf(V), if V = (ν ã)(V1 + · · · + Vn),
where V1, · · · , Vn are dependencies only composed with N.

Proposition 1. For every V, there is nf(V) such that V ≡ nf(V).
In the rest of the paper, we will never distinguish between equal lams. Moreover,

we always assume lam programs
(
L , L

)
to be well formed.
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Remark 1. The axioms (1) are restricted to terms V that do not contain function invoca-
tions. In fact, f(d̃)N((a, b)+(b, c)), (f(d̃)N(a, b))+(f(d̃)N(b, c)) because the evaluation
of the two lams (see below) may produce terms with different names.

In the paper, we always assume lam programs
(
L , L

)
to be well-formed.

Definition 3. A lam program
(
L , L

)
is well formed if (1) function definitions in L

have pairwise different function names and all function names occurring in the function
bodies and L are defined; (2) the arity of function invocations occurring anywhere in the
program matches the arity of the corresponding function definition; (3) every function
definition in L has shape f(̃a) = (ν c̃)Lf, where Lf does not contain any ν-binder and
var(Lf) ⊆ ã ∪ c̃.

Operational semantics. Let a lam context, noted L[ ], be a term derived by the following
syntax:

L[ ] ::= [ ] | LN L[ ] | L + L[ ]

As usual L[L] is the lam where the hole of L[ ] is replaced by L. According to the
syntax, lam contexts have no ν-binder; that is, the hassle of name captures is avoided.
The operational semantics of a program

(
L , L

)
is a transition system where states are

lams, the transition relation is the least one satisfying the rule

(Red)

f(̃a) = (ν c̃)Lf ∈ L c̃′ are fresh Lf [̃c
′
/̃c][̃a′/̃a] = L′

f

L[f(̃a′)] −→ L[L′
f
]

and the initial state is the lam L′ such that L ≡ (ν c̃)L′ and L′ does not contain any
ν-binder. We write −→∗ for the reflexive and transitive closure of −→.

By (red), a lam L is evaluated by successively replacing function invocations with
the corresponding lam instances. Name creation is handled by replacing bound names
of function bodies with fresh names. For example, if f(a) = (ν c)((a, c) N f(c)) and
f(a′) occurs in the main lam, then f(a′) is replaced by (a′, c′) N f(c′), where c′ is a
fresh name.

Let us discuss some examples.

1.
( {f(a, b, c) = (a, b) N g(b, c) + (b, c), g(d, e) = (d, e) + (e, d)}, f(a, b, c)

)
. Then

f(a, b, c) −→ (a, b) N g(b, c) + (b, c) −→ (a, b) N (
(b, c) + (c, b)

)
+ (b, c)

−→ (a, b) N (b, c) + (a, b) N (c, b) + (b, c)
The lam in the final state does not contain function invocations. This is because
the above program is not recursive. Additionally, the evaluation of f(a, b, c) has not
created names. This is because the bodies of f and g do not contain ν-binders.

2.
({f′(a) = (ν b)(a, b) N f′(b)} , f′(a0)

)
. Then

f′(a0) −→ (a0, a1) N f′(a1) −→ (a0, a1) N (a1, a2) N f′(a2)
−→n (a0, a1) N · · ·N (an+1, an+2) N f′(an+2)

In this case, because of the (ν b) binder, the lam grows in the number of dependen-
cies as the evaluation progresses.
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3.
({f′′(a) = (ν b)(a, b) + (a, b) N f′′(b)}, f′′(a0)

)
. Then

f′′(a0) −→ (a0, a1) + (a0, a1) N f′′(a1)
−→ (a0, a1) + (a0, a1) N (a1, a2) + (a0, a1) N (a1, a2) N f′′(a2)
−→n (a0, a1) + · · · + (a0, a1) N · · ·N (an+1, an+2) N f′′(an+2)

In this case, the lam grows in the number of “+”-terms, which in turn become larger
and larger as the evaluation progresses.

Flattening and circularities. Lams represent elements of the set P(P(A ×A )). This
property is displayed by the following flattening function.

Let L be a set of function definitions and let I(·), called flattening, be a function on
lams that (i) maps function name f defined in L to elements of P(P(A × A)) and (ii)
is defined on lams as follows

I(0) = {∅}, I((a, b)) = {{(a, b)}}, I(LN L′) = I(L) N I(L′),

I(L + L′) = I(L) ∪ I(L′), I((ν a)L) = I(L)[a′/a] with a′ fresh,

I(f(̃c)) = I(f)[̃c/̃a] (where ã are the formal parameters of f).

Note that I(L) is unique up to a renaming of names that do not occur free in L. Let
I⊥ be the map such that, for every f defined in L , I⊥(f) = {∅}. For example, let L
defines f and g and let

I(f) = {{(a, b), (b, c)}} I(g) = {{(b, a)}}
L′′ = f(a, b, c) + (a, b) N g(b, c) N f(d, b, c) + g(d, e) N (d, c) + (e, d).

Then
I(L′′) =

{{(a, b), (b, c)}, {(a, b), (c, b), (d, b), (b, c)}, {(e, d), (d, c)}, {(e, d)}}
I⊥(L′′) =

{
∅, {(a, b)}, {(d, c)}, {(e, d)}} .

Definition 4. A lam L has a circularity if I⊥(L) has a circularity. A lam program
(
L , L

)

has a circularity if there is L −→∗ L′ and L′ has a circularity.

The property of “having a circularity” is preserved by ≡ while the “absence of cir-
cularities” of a composite lam can be carried to its components.

Proposition 2. 1. if L ≡ L′ then L has a circularity if and only if L′ has a circularity;
2. L N L′ has no circularity implies both L and L′ have no circularity (similarly for
L + L′ and for (ν a)L).

4 The decision algorithm for detecting circularities

In this section we assume a lam program
(
L , L

)
such that pairwise different function

definitions in L have disjoint formal parameters. Without loss of generality, we assume
that L does not contain any ν-binder.
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Fixpoint definition of the interpretation function. The basic item of our algorithm is the
computation of lam functions’ interpretation. This computation is performed by means
of a standard fixpoint technique that is detailed below.

Let A be the set of formal parameters of definitions in L and let κ be a special name
that does not occur in

(
L , L

)
. We use the domain

(
P(P(A∪ {κ} × A∪ {κ})), ⊆

)
which

is a finite lattice [3].

Definition 5. Let fi (̃ai) = (ν c̃i)Li, with i ∈ 1..n, be the function definitions in L . The
family of flattening functions I(k)

L
: {f1, · · · , fn} →P(P(A ∪ {κ} × A ∪ {κ})) is defined

as follows

I(0)
L

(fi) = {∅} I(k+1)
L

(fi) = {projãi
(R+) | R ∈ I(k)

L
(Li)}

where projã(R)
def
= {(a, b) | (a, b) ∈ R and a, b ∈ ã} ∪ {(κ, κ) | (c, c) ∈ R and c < ã}.

We notice that I(0)
L

is the function I⊥ of the previous section.

Proposition 3. Let f(̃a) = (ν c̃)Lf ∈ L . (i) For every k, I(k)
L

(f) ∈P(P((̃a∪{κ})× (̃a∪
{κ}))). (ii) For every k, I(k)

L
(f) b I(k+1)

L
(f).

Proof. 1 is immediate by definition. 2 follows by a straightforward structural induction
on L. ut

Since, for every k, I(k)
L

(fi) ranges over a finite lattice, by the fixpoint theory [3], there
exists m such that I(m)

L
is a fixpoint, namely I(m)

L
≈ I(m+1)

L
where ≈ is the equivalence

relation induced by b. In the following, we let IL , called the interpretation function (of
a lam), be the least fixpoint I(m)

L
.

Example 1. For example, let L be the factorial function in Section 1. Then

I(0)
L

(fact) = {∅} I(1)
L

(fact) = {{(a2, a3)},∅} I(2)
L

(fact) = {{(a2, a3)},∅}
That is, in this case, IL = I(1)

L
. ut

Lemma 1. Let f(̃a) = (ν c̃)Lf ∈ L and b′, b′′ ∈ b̃ and c̃′ be disjoint from b̃, ã. Then
(b′, b′′) ∈∈ I(k+1)

L
(f(̃b)) if and only if there is R ∈ I(k)

L
(Lf[c̃

′/̃c][̃b/̃a]) such that (b′, b′′) ∈ R+.
(In particular this statement holds when I(k+1)

L
= I(k)

L
= IL .)

Lam programs and circularities. Below we use multiple lam contexts, that is lam con-
texts with several holes, written L[ ] · · · [ ], with the standard meaning. For example, if
L[ ][ ] = [ ] N (a, b) + [ ] then L[f(b, c)][(a, c)] = f(b, c) N (a, b) + (a, c).

Lemma 2. Let
({f1 (̃a1) = (ν c̃1)L1, · · · , fn (̃an) = (ν c̃n)Ln}, L) be a lam program and

let

L[fi1 (̃a′1)] · · · [fim (̃a′m)] −→m
L[Li1 [̃c′1/̃ci1

][̃a′1/̃ai1
]] · · · [Lim [̃c′m/̃cim

][̃a′m/̃aim
]]

where L[·] · · · [·] is a multiple context without function invocations.
Then, the following two properties are equivalent:
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1. I(k+1)
L

(L[fi1 (̃a′1)] · · · [fim (̃a′m)]) has a circularity,

2. I(k)
L

(L[Li1 [̃c′1/̃ci1
][̃a′1/̃ai1

]] · · · [Lim [̃c′m/̃cim
][̃a′m/̃aim

]]) has a circularity.

Proof. Let L′ = L[fi1 (̃a′1)] · · · [fim (̃a′m)] and L′′ = L[Li1 [̃c′1/̃ci1
][̃a′1/̃ai1

]] · · · [Lim [̃c′m/̃cim
][̃a′m/̃aim

]].
For the implication 2⇒ 1, there are two subcases:

a) I(k)
L

(L′′) has a circularity consisting only of names in c̃′i . Namely there are c′0, c
′
1, · · · ,

c′h ∈ c̃′j such that

(c′0, c
′
1), (c′1, c

′
2), · · · , (c′h, c′0) ∈∈ I(k)

L
(L′′) .

Since names c̃′i are fresh, then, by definition of IL (·), the circularity must occur in
I(k)
L

(Li j [̃c
′
i /̃ci j

]), and conversely. In turn, this is possible if and only if I(k)
L

(Li j ) has a

circularity consisting of names in c̃i j (because [̃c′j/̃ci j
] is a bijective renaming). This

means, by definition of I(k+1)
L

(·), that (κ, κ) ∈∈ I(k+1)
L

(fi j ) and, in turn, (κ, κ) ∈∈ I(k+1)
L

(L′).
b) I(k)

L
(L′′) has a circularity, let it be (b0, b1), · · · (bh, b0), that also contains names not

in c̃′1, · · · , c̃′m. Without loss of generality, let

(b0, b1), · · · , (bh′−1, bh′ ) ∈∈ I(k)
L

(Li j [̃c
′
j/̃ci j

][̃a′j/̃ai j
]) (2)

while the other pairs of the circularity come from the context L[ ] · · · [ ]. The general
case follows by iterating the following argument. Then, by Lemma 1, (2) is possible
if and only if (b0, bh′ ) ∈ I(k+1)

L
(fi j (̃a

′
j)). This last statement gives (b0, bh′ ), (bh′+1, bh′+2),

· · · (bh, b0) ∈∈ I(k+1)
L

(L′).

For the converse, we consider two cases.

c) Case (κ, κ) ∈∈ I(k+1)
L

(L′). If (κ, κ) comes from the context L, (κ, κ) ∈∈ I(k)
L

(L′′) follows
immediately. If (κ, κ) comes from I(k+1)

L
(fi j (̃a

′
j)), then by the definition of I(k+1)

L
,

I(k)
L

(Li j ) also has a circularity, hence also I(k)
L

(L′′).
d) Otherwise, I(k+1)

L
(L′) has a circularity on names other than κ. By the definition of

I(k+1)
L

(·), there exists R j ∈ I(k+1)
L

(fi j (̃a
′
j)) for each j ∈ {1, . . . ,m} such that

I(k+1)
L

(L[R1] · · · [Rm])

has a circularity. (Here, we have identified R ⊆ A × A with the lam expression
N(a1,a2)∈R(a1, a2).) Because L does not contain function invocations, we have

I(k+1)
L

(L[R1] · · · [Rm]) = I(k)
L

(L[R1] · · · [Rm]).

By the definition of I(k+1)
L

, there exists R′j ∈ I(k)
L

(Li j [̃c
′
j/̃ci j

][̃a′j/̃ai j
]) such that R j ⊆

R′j
+. Therefore, I(k)

L
(L[R′1] · · · [R′m]) has a circularity, hence also I(k)

L
(L′′). ut

Lemma 3. Let
(
L , L

)
be a lam program and L[f(̃a′)] −→ L[L′ [̃c′/̃c][̃a′/̃a]]. The fol-

lowing two properties are equivalent:

1. IL (L[f(̃a)]) has a circularity,
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2. IL (L[L′ [̃c′/̃c][̃a′/̃a]]) has a circularity.

Proof. The proof is similar to the one of Lemma 2: we consider the k such that I(k)
L

= I
and we reason on I(k+1) and I(k). ut
Theorem 1. A lam program

(
L , L

)
has a circularity if and only if IL (L) has a circu-

larity.

Proof. (If direction) By definition,
(
L , L

)
has a circularity if there is L −→∗ L′ such

that I⊥(L′) has a circularity. By induction on the length of L −→∗ L′. When the length
is 0 then I⊥(L′) has a circularity implies IL (L) has a circularity (by I⊥(L′) = I(0)

L
(L′)

and Proposition 3(2)). Assume L −→∗ L′ be equal to L −→ L′′ −→∗ L′. By inductive
hypothesis, we assume that the theorem holds on the computation L′′ −→∗ L′. Then,
by Lemma 3, if IL (L′′) has a circularity then IL (L) has a circularity. Therefore the
theorem.

(Only-if direction) We demonstrate that, if IL (L) has a circularity then there is
L −→∗ L′ such that I⊥(L′) has a circularity.

Let m be the least natural number such that IL = I(m)
L

. Let L = L[fi1 (̃a′1)] · · · [fin (̃a′n)]
such that L[ ] · · · [ ] does not contain function invocations. Then

L −→n
L[Li1 [̃c′1/̃ci1

][̃a′1/̃ai1
]] · · · [Lin [̃c′n/̃cin

][̃a′n/̃ain
]] = L′′

where c̃′1, · · · , c̃′n are fresh. Additionally, by Lemma 2, I(m−1)
L

(L′′) has a circularity be-
cause I(m)

L
(L′) has a circularity. Now, we reapply the same argument to L′′ since I(m−1)

L
(L′′)

has a circularity. After m-steps we get a lam L′ such that I(0)
L

(L′) = I⊥(L′) has a circu-
larity. ut

For example, let L be the factorial function in Section 1 and let L = (a3, a2) N
fact(a1, a2, a3.a4). From Example 1, we have IL (fact) = {{(a2, a3)},∅}. Since IL (L)
has a circularity, by Theorem 1, there is L −→∗ L′ such that I⊥(L′) has a circularity. In
fact it displays a circularity after the first transition:

L −→ (a3, a2) N ((a2, a3) +
(
(a2, a5) N fact(a5, a6, a3, a4)

)
) .

5 Value-passing CCS

In the present and next sections, we apply the foregoing theory of lams to refine Kobaya-
shi’s type system for deadlock-freedom of concurrent programs [11]. In his type system,
the deadlock-freedom is guaranteed by a combination of usages, which are a kind of
behavioral types capturing channel-wise communication behaviors, and capability/obli-
gation levels, which are natural numbers capturing inter-channel dependencies (like “a
message is output on x only if a message is received along y”). By replacing numbers
with (lam) level names, we can achieve a more precise analysis of deadlock-freedom
because of the algorithm in Section 4. The original type system in [11] is for the pi-
calculus [16], but for the sake of simplicity, we consider a variant of the value-passing
CCS [15], which is sufficient for demonstrating the power of our lam-based approach.
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P (processes) ::= 0 | x!e | x?y.P | (P | Q) | if e then P else Q | (ν ã; x : T)P | A(̃a; ẽ)
e (expressions) ::= x | v | e1 op e2

T (types) ::= int | U
U (usages) ::= 0 |!a1

a2 |?a1
a2 .U | (U1|U2) | α | µα.U

Fig. 1. The Syntax of value-passing CCS

Our value-passing CCS uses several disjoint countable sets of names: in addition
to level names, there are integer and channel names, ranged over by x, y, z, · · · , process
names, ranged over by A, B, · · · , and usage names, ranged over by α, β, · · · . A value-
passing CCS program is a pair

(
D , P

)
, where D is a finite set of process name definitions

A(̃a; x̃) = PA, with ã; x̃ and PA respectively being the formal parameters and the body
of A, and P is the main process.

The syntax of processes PA and P is shown in Figure 1. A process can be the inert
process 0, a message x!e sent on a name x that carries (the value of) an expression e, an
input x?y.P that consumes a message x!v and behaves like P[v/y], a parallel composition
of processes P | Q, a conditional if e then P else Q that evaluates e and behaves either
like P or like Q depending on whether the value is , 0 (true) or = 0 (false), a restriction
(ν ã; x : T)P that behaves like P except that communications on x with the external
environment are prohibited, an invocation A(̃a; ẽ) of the process corresponding to A.

An expression e can be a name x, an integer value v, or a generic binary operation
on integers v op v′, where op ranges over a set including the usual operators like +,
≤, etc. Integer expressions without names (constant expressions) may be evaluated to
an integer value (the definition of the evaluation of constant expressions is omitted).
Let [[e]] be the evaluation of a constant expression e ([[e]] is undefined when the integer
expression e contains integer names). Let also [[x]] = x when x is a non-integer name.

We defer the explanation of the meaning of types T (and usages U) until Section 6. It
is just for the sake of simplicity that processes are annotated with types and level names.
They do not affect the operational semantics of processes, and can be automatically
inferred by using an inference algorithm similar to those in [11, 10].

Similarly to lams, A(̃a; x̃) = PA and (ν ã; x : T)P are binders of ã; x̃ in PA and of ã, x
in P, respectively. We use the standard notions of alpha-equivalence, free and bound
names of processes and, with an abuse of notation, we let var(P) be the free names in
P. In process name definitions A(̃a; x̃) = PA, we always assume that var(PA) ⊆ ã, x̃.

Definition 6. The structural equivalence ≡ on processes is the least congruence con-
taining alpha-conversion of bound names, commutativity and associativity of | with
identity 0, and closed under the following rule:

((ν ã; x : T )P) | Q ≡ (ν ã; x : T )(P | Q) ã, x < var(Q) .

The operational semantics of a program
(
D , P

)
is a transition system where the states

are processes, the initial state is P, and the transition relation →D is the least one
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closed under the following rules:

(R-Com)
[[e]] = v

x!e | x?y.P→D P[v/y]

(R-Par)
P→D P′

P | Q→D P′ | Q

(R-New)
P→D Q

(ν ã; x : T )P→D (ν ã; x : T )Q
(R-IfT)

[[e]] , 0
if e then P else Q→D P

(R-IfF)
[[e]] = 0

if e then P else Q→D Q

(R-Call)
[[̃e]] = ṽ A(̃a; x̃) = P ∈ D

A(̃a′; ẽ)→D P[̃a′/̃a][̃v/x̃]
(R-Cong)
P ≡ P′ P′ →D Q′ Q′ ≡ Q

P→D Q

We often omit the subscript of →D when it is clear from the context. We write →∗
for the reflexive and transitive closure of→.

The deadlock-freedom of a process P, which is the basic property that we will verify,
means that P does not get stuck into a state where there is a message or an input. The
formal definition is below.

Definition 7 (deadlock-freedom). A program
(
D , P

)
is deadlock-free if the following

condition holds: whenever P →∗ P′ and either (i) P′ ≡ (ν ã1; x1 : T1) · · · (ν ãk; xk :
Tk)(x!v | Q), or (ii) P′ ≡ (ν ã1; x1 : T1) · · · (ν ãk; xk : Tk)(x?y.Q1 | Q2), then there exists
R such that P′ → R.

Example 2 (The dining philosophers). Consider the program consisting of the process
definitions

Phils(a1, a2, a3, a4; n : int, fork1 : U1, fork2 : U2) =

if n = 1 then Phil(a1, a2, a3, a4; fork1, fork2) else
(ν a5, a6; fork3 : U3 | U3 | !a5

a6 )( Phils(a1, a2, a5, a6; n − 1, fork1, fork3)
| Phil(a5, a6, a3, a4; fork3, fork2) | fork3!1 )

Phil(a1, a2, a3, a4; fork1 : U1, fork2 : U2) =

fork1?x1.fork2?x2.( fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2) )

and of the main process P:

(ν a1, a2; fork1 : U1 | U1 | !a1
a2 )(ν a3, a4; fork2 : U2 | U2 | !a1

a2 )
( Phils(a1, a2, a3, a4; m, fork1, fork2) | Phil(a1, a2, a3, a4; fork1, fork2) | fork1!1 | fork2!1 )

Here, U1 = µα.?a2
a1 .(!

a1
a2 | α), U2 = µα.?a4

a3 .(!
a3
a4 | α), and U3 = µα.?a6

a5 .(!
a5
a6 | α), but please ig-

nore the types for the moment. Every philosopher Phil(a1, a2, a3, a4; fork1, fork2) grabs
the two forks fork1 and fork2 in this order, releases the forks, and repeats the same be-
havior. The main process creates a ring consisting of m + 1 philosophers, where only
one of the philosophers grabs the forks in the opposite order to avoid deadlock. This
program is indeed deadlock-free in our definition. On the other hand, if we replace
Phil(a1, a2, a3, a4; fork1, fork2) with Phil(a1, a2, a3, a4; fork2, fork1) in the main process,
then the resulting process is not deadlock-free. ut

The dining philosophers example is a paradigmatic case of the power of the analysis
described in the next section. This example cannot be type-checked in Kobayashi’s
previous type system [11]: see Remark 2 in Section 6.
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6 The deadlock freedom analysis of value-passing CCS

We now explain the syntax of types in Figure 1. A type is either int or a usage. The
former is used to type integer names; the latter is used to type channel names [11,
9]. A usage describes how a channel can be used for input and output. The usage 0
describes a channel that cannot be used, !a1

a2 describes a channel that is used for output,
?a1

a2 .U describes a channel that is first used for input and then used according to U, and
U | U′ describes a channel that is used according to U and U′, possibly in parallel. For
example, in process x!2 | x?z.y!z, y has the usage !a1

a2 (please, ignore the subscript and
superscript for the moment), and x has the usage !a3

a4 | ?a5
a6 .0. The usage µα.U describes a

channel that is used recursively according to U[µα.U/α]. The operation µα.− is a binder
and we use the standard notions of alpha-equivalence, free and bound usage names.
For example, µα.!a1

a2 .α describes a channel that can be sequentially used for output an
arbitrary number of times; µα.?a1

a2 .!
a3
a4 .α describes a channel that should be used for input

and output alternately. We often omit a trailing 0 and just write ?a1
a1 for ?a1

a1 .0.
The superscripts and subscripts of ? and ! are level names of lams (recall Section 3),

and are used to control the causal dependencies between communications [11]. The
superscript, called an obligation level, describes the degree of the obligation to use the
channel for the specified operation. The subscript, called a capability level, describes the
degree of the capability to use the channel for the specified operation (and successfully
find a partner of the communication).

In order to detect deadlocks we consider the following two conditions:
1. If a process has an obligation of level a, then it can exercise only capabilities of

level a′ less than a before fulfilling the obligation. This corresponds to a dependency
(a′, a). For example, if x has type ?a1

a2 and y has type !a3
a4 , then the process x?u.y!u has

lam (a2, a3).
2. The whole usage of each channel must be consistent, in the sense that if there

is a capability of level a to perform an input (respectively, a message), there must be a
corresponding obligation of level a to perform a corresponding message (respectively,
input). For example, the usage !a1

a2 | ?a2
a1 is consistent, but neither !a1

a2 | ?a1
a2 nor !a1

a2 is.
To see how the constraints above guide our deadlock analysis, consider the (deadlocked)
process: x?u.y!u | y?u.x!u. Because of condition 2 above, the usage of x and y must be
of the form ?a1

a2 | !a2
a1 and ?a3

a4 | !a4
a3 respectively. Due to 1, we derive (a2, a4) for x?u.y!u, and

(a4, a2) for y?u.x!u. Hence the process is deadlocked because the lam (a2, a4) N (a4, a2)
has a circularity. On the other hand, for the process x?u.y!u | y?u.0 | x!u, we derive the
lam (a2, a4), which has no circularity. Indeed, this last process is not deadlocked. While
we use lams to detect deadlocks, Kobayashi [11] used natural numbers for obligation/-
capability levels.

As explained above, usages describe the channel-wise behavior of a process, and
they form a tiny process calculus. The usage reduction relation U { U′ defined below
means that if a channel of usage U is used for a communication, the channel may be
used according to U′ afterwards.

Definition 8. Let = be the least congruence on usages containing alpha-conversion of
bound names, commutativity and associativity of | with identity 0, and closed under the
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following rule:
(UC-Mu)

µα.U = U[µα.U/α]

The reduction relation U { U′ is the least relation closed under the rules:

(UR-Com)

!a1
a2 | ?a3

a4 .U { U

(UR-Par)
U1 { U′1

U1 | U2 { U′1 | U2

(UR-Cong)
U1 = U′1 U′1 { U′2 U′2 = U2

U1 { U2

As usual, we let{∗ be the reflexive and transitive closure of{.

The following relation rel(U) guarantees the condition 2 on capabilities and obliga-
tions above, that each capability must be accompanied by a corresponding obligation.
This must hold during the whole computation, hence the definition below. The predicate
rel(U) is computable because it may be reduced to Petri Nets reachability (see [10] for
the details about the encoding).

Definition 9. U is reliable, written rel(U), when the following conditions hold:

1. whenever U {∗ U′ and U′ = !a1
a2 | U1, there are U2 and U3 such that U1 =

?a2
a3 .U2 | U3 for some a3; and

2. whenever U {∗ U′ and U′ = ?a1
a2 .U1 | U2, there is U3 such that U2 = !a2

a3 | U3 for
some a3.

The following type system uses type environments, ranged over Γ, Γ′, · · · , that
map integer and channel names to types and process names to sequences [̃a; T̃ ]. When
x < dom(Γ), we write Γ, x : T for the environment such that (Γ, x : T )(x) = T and
(Γ, x : T )(y) = Γ(y), otherwise. The operation Γ1 | Γ2 is defined by:

(Γ1 | Γ2)(x) =



Γ1(x) if x ∈ dom(Γ1) and x < dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) and x < dom(Γ1)
[̃a; T̃ ] if Γ1(x) = Γ2(x) = [̃a; T̃ ]
int if Γ1(x) = Γ2(x) = int
U1 | U2 if Γ1(x) = U1 and Γ2(x) = U2

The map Γ1 | Γ2 is undefined if, for some x, (Γ1 | Γ2)(x) does not match any of the
cases. Let var(Γ) = {a | there is x : Γ(x) = U and a ∈ var(U)}.

There are three kinds of type judgments:

Γ ` e : T – the expression e has type T in Γ;
Γ ` P : L – the process P has lam L in Γ;
Γ ` (

D , P
)

:
(
L , L

)
– the program

(
D , P

)
has lam program

(
L , L

)
in Γ.

As usual, Γ ` e : T means that e evaluates to a value of type T under an environ-
ment that respects the type environment Γ. The judgment Γ ` P : L means that P uses
each channel x according to Γ(x), with the causal dependency as described by L. For
example, x:?a1

a2 , y:!a3
a4 ` x?u.y!u : (a2, a3) should hold.

The typing rules of value-passing CCS are defined in Figure 2, where we use the
predicate noact(Γ) and the function ob(U) defined as follows:
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Processes:
(T-Zero)
noact(Γ)
Γ ` 0 : 0

(T-Out)
Γ ` e : int

Γ, x:!a1
a2 ` x!e : 0

(T-In)
Γ, x : U, y : int ` P : L

Γ, x:?a1
a2 .U ` x?y.P : LN (Na∈ob(Γ)(a2, a))

(T-Par)
Γ ` P : L Γ′ ` P′ : L′

Γ | Γ′ ` P | P′ : LN L′

(T-New)
Γ, x : U ` P : L rel(U) ã ∩ var(Γ) = ∅

Γ ` (ν ã; x : U)P : (ν ã)L

(T-If)
Γ ` e : int Γ′ ` P : L Γ′ ` P′ : L′

Γ | Γ′ ` if e then P else P′ : L + L′

(T-Call)

Γ(A) = [̃a; T̃] |̃a| = |̃a′| Γ ` ẽ : T̃
Γ ` A(̃a′; ẽ) : fA (̃a′)

Expressions:
(T-Int)
noact(Γ)
Γ ` n : int

(T-Var)
noact(Γ)

Γ, x : T ` x : T

(T-Op)
Γ ` e : int Γ ` e′ : int
Γ ` e op e′ : int

(T-Seq)

(Γi ` ei : Ti)i∈1..n

Γ1 | · · · | Γn ` e1,. . ., en : T1,. . ., Tn

Programs:
(T-Prog)

D =
⋃

i∈1..n{Ai (̃ai; x̃i : T̃i) = Pi} Γ = (Ai : [̃ai; T̃i])i∈1..n

(Γ, x̃i : T̃i ` Pi : Li)i∈1..n Γ′ ` P : L L =
⋃

i∈1..n{fAi (̃ai) = Li}
Γ | Γ′ ` (

D , P
)

:
(
L , L

)

Fig. 2. The type system of value-passing CCS (we assume a function name fA for every process
name A)

noact(Γ) = true if and only if, for every channel name x ∈ dom(Γ), Γ(x) = 0;
ob(Γ) =

⋃
x∈dom(Γ),Γ(x)=U ob(U) where

ob(0) = ∅ ob(!a1
a2 ) = {a1} ob(?a1

a2 .U) = {a1}
ob(U | U′) = ob(U) ∪ ob(U′) ob(µα.U) = ob(U[0/α])

The predicate noact(Γ) is used for controlling weakening (as in linear type systems). For
example, if we did not require noact(Γ) in rule T-Zero, then we would obtain x:?a1

a2 .0 `
0 : 0. Then, by using T-In and T-Out, we would obtain: x:?a1

a2 .0 | !a2
a1 ` 0 | x!1 : 0, and

wrongly conclude that the output on x does not get stuck. It is worth to notice that, in
the typing rules, we identify usages up to =.

A few key rules are discussed. Rule (T-In) is the unique one that introduces de-
pendency pairs. In particular, the process x?u.P will be typed with a lam that contains
pairs (a2, a), where a2 is the capability of x and a is the obligation of every channel
in P (because they are all causally dependent from x). Rule (T-Out) just records in
the type environment that x is used for output. Rule (T-Par) types a parallel composi-
tion of processes by collecting the environments – operation “ | ” – (like in other linear
type systems [13, 9]) and the lams of the components. Rule (T-Call) types a process
name invocation in terms of a (lam) function invocation and constrains the sequences
of level names in the two invocations to have equal lengths (|̃a| = |̃a′|) and the types of
expressions to match with the types in the process declaration.
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Example 3. We illustrate the type system in Figure 2 by typing two simple processes:

P = (ν a1, a2; x:?a1
a2 | !a2

a1 )(ν a3, a4; y:?a3
a4 | !a4

a3 )(x?z.y!z | y?z.x!z)
Q = (ν a1, a2; x:?a1

a2 | !a2
a1 )(ν a3, a4; y:?a3

a4 | !a4
a3 )(x?z.y!z | y?z.0 | x!1)

The proof tree of P is

y:!a4
a3 , z : int ` y!z : 0

x:?a1
a2 , y:!a4

a3 ` x?z.y!z : (a2, a4)
x:!a2

a1 , z : int ` x!z : 0
x:!a2

a1 , y:?a3
a4 ` y?z.x!z : (a4, a2)

x:?a1
a2 | !a2

a1 , y:?a3
a4 | !a4

a3 ` x?z.y!z | y?z.x!z : (a2, a4) N (a4, a2)
∅ ` P : (ν a1, a2)(ν a3, a4)

(
(a2, a4) N (a4, a2)

)

and we notice that the lam in the conclusion has a circularity (in fact, P is deadlocked).
The typing of Q is

z : int ` z : int
y:!a4

a3 , z : int ` y!z : 0
x:?a1

a2 , y:!a4
a3 ` x?z.y!z : (a2, a4)

y : 0, z : int ` 0 : 0
y:?a3

a4 ` y?z.0 : 0
∅ ` 1 : int

x:!a2
a1 ` x!1 : 0

x:?a1
a2 | !a2

a1 , y:?a3
a4 | !a4

a3 ` x?z.y!z | y?z.0 | x!1 : (a2, a4)
∅ ` Q : (ν a1, a2)(ν a3, a4)(a2, a4)

The lam in the conclusion has no circularity. In fact, Q is not deadlocked. ut

Example 3 also spots one difference between the type system in [11] and the one in
Figure 2. Here the inter-channel dependencies check is performed ex-post by resorting
to the lam algorithm in Section 4; in [11] this check is done during the type check-
ing(/inference) and, for this reason, the process P is not typable in previous Kobayashi’s
type systems. In this case, the two analysers both recognize that P is deadlocked; Ex-
ample 4 below discusses a case where the precision is different.

The following theorem states the soundness of our type system.

Theorem 2. Let Γ ` (
D , P

)
:
(
L , L

)
such that noact(Γ). If

(
L , L

)
has no circularity

then
(
D , P

)
is deadlock-free.

The following examples highlight the difference of the expressive power of the sys-
tem in Figure 2 and the type system in [11].

Example 4. Let
(
D , P

)
be the dining philosopher program in Example 2 and U1 and U2

be the usages defined therein. We have Γ ` (
D , P

)
:
(
L , L

)
where

Γ = Phils : [a1, a2, a3, a4; int,U1,U2],Phil : [a1, a2, a3, a4; U1,U2]
L = { fPhils(a1, a2, a3, a4) = fPhil(a1, a2, a3, a4)

+(νa5, a6)(fPhils(a1, a2, a5, a6) N fPhil(a5, a6, a3, a4)),
fPhil(a1, a2, a3, a4) = (a1, a4) N (a3, a1) N (a3, a2) N fPhil(a1, a2, a3, a4) }

L = (νa1, a2, a3, a4)(fPhils(a1, a2, a3, a4) N fPhil(a1, a2, a3, a4))

For example, let

P1 = fork1?x1.fork2?x2.( fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2) )
P2 = fork2?x2.( fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2) )
P3 = fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2)
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Then the body P1 of Phil is typed as follows:

Γ2, fork1:!a1
a2 ` fork1!x1 : 0 Γ2, fork2:!a3

a4 ` fork2!x2 : 0
Γ2, fork1 : U1, fork2 : U2 ` Phil(a1, a2, a3, a4; fork1, fork2) : fPhil(a1, a2, a3, a4)

Γ2, fork1:!a1
a2 | U1, fork2:!a3

a4 | U2 ` P3 : fPhil(a1, a2, a3, a4)
Γ1, fork1:!a1

a2 | U1, fork2 : U2 ` P2 : (a3, a1) N (a3, a2) N fPhil(a1, a2, a3, a4)
Γ, fork1 : U1, fork2 : U2 ` P1 : (a1, a4) N (a3, a1) N (a3, a2) N fPhil(a1, a2, a3, a4)

where Γ1 = Γ, x1 : int, Γ2 = Γ, x2 : int, U1 = µα.?a2
a1 .(!

a1
a2 | α) and U2 = µα.?a4

a3 .(!
a3
a4 |

α). Because
(
L , L

)
has no circularity, by Theorem 2, we can conclude that

(
D , P

)
is

deadlock-free. ut
Remark 2. The dining philosopher program cannot be typed in Kobayashi’s type sys-
tem [11]. That is because his type system assigns obligation/capability levels to each
input/output statically. Thus only a fixed number of levels (represented as natural num-
bers) can be used to type a process in his type system. Since the above process can
create a network consisting of an arbitrary number of dining philosophers, we need an
unbounded number of levels to type the process. (Kobayashi [11] introduced a heuristic
to partially mitigate the restriction on the number of levels being fixed, but the heuristic
does not work here.) A variant of the dining philosopher example has been discussed
in [8]. Since the variant is designed so that a finite number of levels are sufficient, it is
typed both in [11] and in our new type system.

Similarly to the dining philosopher program, the system in [11] returns a false positive
for the process Fact in Section 1, while it is deadlock-free according to our new system.
We detail the arguments in the next example.

Example 5. Process Fact of Section 1 is written in the value passing CCS as follows.

Fact(a1, a2, a3, a4; n : int, r:?a1
a2 , s:!a3

a4 ) =

if n = 0 then r?n.s!n else
(ν a5, a6; t:?a5

a6 | !a6
a5 )(r?n.t!(m × n) | Fact(a5, a6, a3, a4; n − 1, t, s))

Let Γ = Fact : [a1, a2, a3, a4; int, ?a1
a2 , !

a3
a4 ] and P be the body of the definition above.

Then we have Γ, n : int, r:?a1
a2 , s:!a3

a4 ` P : L for L = (a2, a3) + (ν a5, a6)((a2, a6) N
fFact(a5, a6, a3, a4)). Thus, we have: Γ ` (

D , P′
)
:
(
L , L′

)
for:

P′ = (ν a1, a2; r:?a1
a2 | !a2

a1 )(ν a3, a4; s:?a4
a3 | !a3

a4 )(r!1 | Fact(a1, a2, a3, a4; m, r, s) | s?x.0)
L = {fFact(a1, a2, a3, a4) = L}
L′ = (ν a1, a2, a3, a4)(0N fFact(a1, a2, a3, a4) N 0)

where m is an integer constant. Since (L , L′) does not have a circularity, we can con-
clude that (D , P′) is deadlock-free.

6.1 Proof of Theorem 2

Let Γ { Γ′ if, for some x, Γ = Γ′′, x : U and Γ′ = Γ′′, x : U′ with U { U′. As usual,
let{∗ be the transitive closure of{.

Theorem 2 follows from the following lemmas.
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Lemma 4 (type preservation). Let Γ ` (
D , P

)
:
(
L , L

)
and P→D Q. Then there exist

L′ and Γ′ such that Γ {∗ Γ′ and Γ′ ` (
D ,Q

)
:
(
L , L′

)
and IL (L′) b IL (L).

Proof. This follows by induction on the derivation of P →D Q, with case analysis on
the last rule used. The only non-trivial cases are R-Com and R-Call.

– Case R-Com: In this case, we have

P = x!e | x?y.P′ Q = P′[v/y] [[e]] = v
Γ = Γ0 | Γ1 D =

⋃
i∈1..n{Ai (̃ai; x̃i : T̃i) = Pi}

(Γ0, x̃i : T̃i ` Pi : Li)i∈1..n Γ1 ` P : L

By the conditions Γ1 ` P : L and P = x!e | x?y.P′, we have

Γ1 = (Γ2 | Γ3), x:!a1
a2 | ?a3

a4 .U
Γ2 ` e : int Γ3, x : U, y : int ` P′ : L′

L = 0N (L′ N (Na∈ob(Γ3)(a2, a)))

By the condition Γ2 ` e : int and [[e]] = v, we have Γ2 ` v : int. By using the
standard substitution lemma, we obtain Γ2 | Γ3, x : U ` P′[v/y] : L′. Let Γ′ =

Γ0 | ((Γ2 | Γ3), x : U). Then we have the required result.
– Case R-Call: In this case, we have

P = Ai (̃a′; ẽ) Q = Pi [̃a
′
/̃a][̃v/x̃] [[̃e]] = ṽ

Γ = Γ0 | Γ1 D =
⋃

i∈1..n{Ai (̃ai; x̃i : T̃i) = Pi}
(Γ0, x̃i : T̃i ` Pi : Li)i∈1..n Γ1 ` ẽ : T̃i L = fAi (̃a

′)

By the conditions Γ1 ` ẽ : T̃i and [[̃e]] = ṽ, we have Γ1 ` ṽ : T̃i. Thus, by applying the
standard substitution lemma to Γ0, x̃i : T̃i ` Pi : Li, we obtain Γ0 | Γ1 ` Q : Li[̃a

′
/̃ai

].
We have the required result for Γ′ = Γ1 and L′ = Li [̃a

′
/̃ai

]. ut
Lemma 5. Let Γ ` (

D , P
)

:
(
L , L

)
such that IL (L) has no circularity and noact(Γ). If

1. either P ≡ (ν ã1; x1 : U1) · · · (ν ãk; xk : Uk)(x!v | Q)
2. or P ≡ (ν ã1; x1 : U1) · · · (ν ãk; xk : Uk)(x?y.P′ | Q)

then there exists R such that P→D R.

Proof. If Q contains conditionals or process calls at the top level, then the required
property immediately follows. Thus, we can assume that Q is a parallel composition of
inputs and messages. That is

Q ≡ y1!e1 | · · · | ym!em | z1?w1.Q1 | · · · | zn?wn.Qn

where {x, y1, · · · , ym, z1, · · · , zn} ⊆ {x1, · · · , xk} because noact(Γ).
We demonstrate the case 1 of the statement, the other case is similar, hence omitted.
Since Γ ` (

D , P
)

:
(
L , L

)
then there is Γ′ such that Γ′ ` (ν ã1; x1 : U1) · · · (ν ãk; xk :

Uk)(x!e | Q) :L. By applying k-times rule (T-New), we are reduced to Γ′, x1 : U1, · · · xk :
Uk ` x!e | Q :L. Let x = x1. We notice that n ≥ 1 because, by rel(U1), U1 =!a

a′′ | ?a′
a .U

′
1 |

U′′1 and by (T-Par) and definition of Γ | Γ′, Q ≡ z?w.Q′ | Q′′ for some z,w,Q′,Q′′.
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By the typing rules, Γ′, x1 :U1, · · · xk :Uk ` x!e | Q :L is possible provided, for every
1 ≤ i ≤ n:

Γ′i , zi:?
a′i
ai ` zi?wi.Qi : Li N (Na∈ob(Γ′i )(ai, a)

)

where Γ′i = Γ′, x1 : U i
1, · · · xk : U i

k and Γ′, x1 : U1, · · · xk : Uk = Γ′1, z1:?a′1
a1 | · · · | Γ′n, zn:?a′n

an

and L = Ni∈1..n
(
Li N (Na∈ob(Γ′i )(ai, a)

))
.

We notice that L ≡ (Ni∈1..nLi
) N L′, with L′ =

(Ni∈1..n, a∈ob(Γ′i )(ai, a)
)
. Since I⊥(L) has

no circularity then, by Proposition 2, I⊥(Ni∈1..nLi) N I⊥(L′) has no circularity and, in
turn, I⊥(L′) = {RL′ } and RL′ , where RL′ =

⋃
i∈1..n{(ai, a) | a ∈ ob(Γ′i )}, have no circularity.

Let a j, with j ∈ 1..n, be a minimal level of RL′ , namely:

– there is no a′ such that (a′, a j) ∈ RL′ .
Because RL′ has no circularity, a j does exist and, without loss of generality, let z j = x j.

By rule (T-In), U j =?
a′j
a j .U

′
j | U′′j . By rel(U j) we derive U′′j =!a j

a′′j
| U′′′j , for some a′′j and

U′′′j . By (T-Par) and the fact that a j is minimal in RL′ , we immediately derive that there
exists 1 ≤ i ≤ m such that yi = x j, thus we have P→D R for some R, as required. ut

Type inference An untyped value-passing CCS program is a program where restric-
tions are (ν x)P, process invocations are A(̃e) and process definitions are A(x̃) = P.
Given an untyped value-passing CCS program

(
D , P

)
, with var(P) = ∅, there is an

inference algorithm to decide whether there exists a program
(
D ′, P′

)
that coincides

with
(
D , P

)
, except for the type annotations, and such that Γ ` (

D ′, P′
)

:
(
L , L

)
. The

algorithm is almost the same as that of the type system in [10] and, therefore, we do not
re-describe it here. The only extra work compared with the previous algorithm is the
lam program extraction, which is done using the rules in Figure 2. Finally, it suffices to
analyze the extracted lams by using the fixpoint technique in Section 4.

Synchronous value passing CCS and pi calculus The type system above can be easily
extended to the pi-calculus, where channel names can be passed around through other
channels. To that end, we extend the syntax of types as follows.

T ::= int | ch(T,U).

The type ch(T,U) describes a channel that is used according to the usage U, and T is
the type of values passed along the channel. Only a slight change of the typing rules is
sufficient, as summarized below.

(T-Out’)
Γ ` e : T

Γ, x : ch(T, !a1
a2 ) ` x!e : Na∈ob(Γ)(a2, a)

(T-In’)
Γ, x : ch(T,U), y : T ` P : L

Γ, x : ch(T, ?a1
a2 .U) ` x?y.P : LN (Na∈ob(Γ)(a2, a))

In particular, (T-Out’) introduces dependencies between an output channel and the
values sent along the channel. We notice that, in case of synchronous value passing
CCS (as well as pi-calculus), where messages have continuations, rule (T-Out’) also
introduces dependency pairs between the capability of the channel and the obligations
in the continuation.
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7 Related Work and Conclusions

In this paper we have designed a new deadlock detection technique for the value-passing
CCS (and for the pi-calculus) that enables the analysis of networks with arbitrary num-
bers of nodes. Our technique relies on a decidability result of a basic model featuring
recursion and fresh name generation: the lam programs. This model has been intro-
duced and studied in [5, 6] for detecting deadlock of an object-oriented programming
language [7], but the decidability was known only for a subset of lams where only linear
recursion is allowed [6], and only approximate algorithms have been given for the full
lam model.

The application of the lam model to deadlock-freedom of the value-passing CCS
(and pi-calculus) is also new, and the resulting deadlock-freedom analysis significantly
improves the previous deadlock-freedom analysis [11], as demonstrated through the
dining philosopher example. In particular, Kobayashi’s type system provides a mecha-
nism for dealing with a limited form of unbounded dependency chains, but the mecha-
nism is rather ad hoc and fragile with respect to a syntactic change. For example, while

Fib(n,r) = if n<2 then r?n else new s in new t in
(Fib!(n-1,s) | s?x.(Fib!(n-2,t)|t?y.r!(x+y))

is typable, the variation obtained by swapping new s in and new t in is untypable. Nei-
ther Fact nor the dining philosopher example are typable in [11]. More recently, in [17],
Padovani has introduced another type system for deadlock-freedom, which has a better
support than Kobayashi’s one for reasoning about unbounded dependency chains, by
using a form of polymorphism on levels. However, since the levels in his type system
are also integers, neither the Fact example nor the dining philosopher example are ty-
pable. In addition, Padovani’s type system cannot deal with non-linear channels, like
the fork channels in the dining philosopher example. That said, our type system does
not subsume Padovani’s one, as our system does not support recursive types.

Like other type-based analyses, our method cannot reason about value-dependent
behaviors. For example, consider the following process:

(if b then x?z.y!z else y!1 | x?z.) | (if b then x!1 | y?z. else y?z.x!z).

It is deadlock-free, but our type system would extract the lam expression: ((ax, ay) +

0) N (0 + (ay, ax)) (where ax and ay are the capability levels of the inputs on x and y
respectively), detecting a (false) circular dependency.

The integration of TyPiCal with the deadlock detection technique of this paper is
left for future work. We expect that we can extend our analysis to cover lock-freedom [8,
17], too. To that end, we can require that a lam is not only circularity-free but is also well
founded, and/or combine the deadlock-freedom analysis with the termination analysis,
following the technique in [14].
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Distributed and concurrent object-oriented systems are difficult to analyze due to the
complexity of their concurrency, communication, and synchronization mechanisms. We
consider the setting of concurrent objects communicating by asynchronous method calls. The
future mechanism extends the traditional method call communication model by facilitating
sharing of references to futures. By assigning method call result values to futures, third
party objects may pick up these values. This may reduce the time spent waiting for
replies in a distributed environment. However, futures add a level of complexity to program
analysis, as the program semantics becomes more involved.
This paper presents a Hoare style reasoning system for distributed objects based on
a general concurrency and communication model focusing on asynchronous method
calls and futures. The model facilitates invariant specifications over the locally visible
communication history of each object. Compositional reasoning is supported, and each
object may be specified and verified independently of its environment. The presented
reasoning system is proven sound and (relatively) complete with respect to the given
operational semantics.
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1. Introduction

Distributed systems play an essential role in society today. For example, distributed systems form the basis for critical
infrastructure in different domains such as finance, medicine, aeronautics, telephony, and Internet services. It is of great
importance that such systems work properly. However, quality assurance of distributed systems is non-trivial since they
depend on unpredictable factors, such as different processing speeds of independent components. It is highly challenging to
test such distributed systems after deployment under different relevant conditions. These challenges motivate frameworks
combining precise modeling and analysis with suitable tool support. In particular, compositional verification systems allow the
different components to be analyzed independently from their surrounding components. Thereby, it is possible to deal with
systems consisting of many components.

Object orientation is the leading framework for concurrent and distributed systems, recommended by the RM-ODP [1].
However, method-based communication between concurrent units may cause busy-waiting, as in the case of remote and
synchronous method invocation, e.g., Java RMI [2]. Concurrent objects communicating by asynchronous method calls, which
allows the caller to continue with its own activity without blocking while waiting for the reply, combine object-orientation
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and distribution in a natural manner, and therefore appear as a promising paradigm for distributed systems [3]. Moreover,
the notion of futures [4–7] improves this setting by providing a decoupling of the process invoking a method and the process
reading the returned value. By sharing future identities, the caller enables other objects to wait for method results.

ABS is a high-level imperative object-oriented modeling language, based on the concurrency and synchronization model
of Creol [8]. It supports futures and concurrent objects with an asynchronous communication model suitable for loosely
coupled objects in a distributed setting. In ABS, each concurrent object encapsulates its own state and processor, and internal
interference is avoided as at most one process is executing. The concurrent object model of ABS without futures supports
compositionality because there is no direct access to the internal state variables of other objects, and a method call leads to
a new process on the called object. With futures, compositionality is more challenging.

In this paper, we consider the general communication model of ABS focusing on the future mechanism. A compositional
reasoning system for ABS with futures has been presented in [9] based on local communication histories. We here present
a revised and simplified version of this system and show that it is sound with respect to an operational semantics which
incorporates a notion of global communication history. We also show a completeness result.

The execution of a distributed system can be represented by its communication history or trace; i.e., the sequence of
observable communication events between system components [10,11]. At any point in time the communication history
abstractly captures the system state [12,13]. In fact, traces are used in the semantics for full abstraction results (e.g., [14,15]).
The local history of an object reflects the communication visible to that object, i.e., between the object and its surroundings.
A system may be specified by the finite initial segments of its communication histories, and a history invariant is a predicate
which holds for all finite sequences in the set of possible histories, expressing safety properties [16].

In our reasoning system, we formalize object communication by an operational semantics based on five kinds of com-
munication events, capturing shared (first class) futures, where each event is visible to only one object. Consequently, the
local histories of two different objects share no common events. For each object, a history invariant can be derived from
the class invariant by hiding the local state of the object. Modularity is achieved since history invariants can be estab-
lished independently for each object, without interference, and composed at need. This results in behavioral specifications
of dynamic system in an open environment. Such specifications allow objects to be specified independently of their internal
implementation details, such as the internal state variables. In order to derive a global specification of a system composed of
several components, one may compose the specification of different components. Global specifications can then be provided
by describing the observable communication history between each component and its environment.

The main contribution of this paper is the presentation of a set of Hoare rules and a proof of soundness and relative
completeness with respect to a revised operational semantics including a global communication history. The operational
semantics is implemented in Maude by rewriting rules and can be exploited as an executable interpreter for the language,
such that execution traces can be automatically generated while simulating programs. In earlier work [17], a similar proof
system is derived from a standard sequential language by means of a syntactic encoding. However, soundness with respect
to the operational semantics was not considered. A challenge of the current work is that the presence of the global history
and shared futures complicate compositional reasoning and also the soundness and completeness proof. We therefore focus
the current work on the core communication model with futures and consider process suspension mechanism, but ignore
other aspects such as inheritance. The work is relevant for the more general setting of concurrent objects with asynchronous
methods and futures, and it can easily be extended to the full ABS setting.

An ABS reasoning system is currently being implemented within the KeY framework at Technische Universität Darmstadt.
The tool support from KeY for (semi-)automatic verification is valuable for verifying ABS programs. A publisher–subscriber
example will be used here to illustrate the language and the reasoning system.

Paper overview. Section 2 introduces and explains the core language syntax, Section 3 formalizes the observable behavior
in the distributed systems, Section 4, presents the operational semantics, and Section 5 defines the proof system for local
reasoning within classes and finally considers object composition. A publisher–subscriber example is presented in Section 2
and the corresponding proofs are shown in Section 6. Section 7 defines and proves soundness and relative completeness
for our reasoning system. Section 8 shows how to extend the language with non-blocking queries on futures. Section 9
discusses the relevance of choices made in the considered language and formalization, and briefly discusses how some
other approaches may affect the reasoning system. Section 10 discusses related and future work, and Section 11 concludes
the paper.

2. A core language with shared futures

We consider concurrent objects interacting through method calls. Class instances are concurrent, encapsulating their own
state and processor. Each method invoked on the object leads to a new process, and at most one process is executing on
an object at a time. Object communication is asynchronous, as there is no explicit transfer of control between the caller and
the callee. In this setting a future represents a placeholder for the return value of a method call. Each future has a unique
identity which is generated when the method is invoked, and a futures may be seen as a shared entity of information
accessible by any object that knows its identity. A future is resolved upon method termination, by placing the return value
of the method in the future. Thus, unlike the traditional method call mechanism, the callee does not send the return value
directly back to the caller. However, the caller may keep a reference to the future, allowing the caller to fetch the future value
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In ::= interface I [extends I+] ?{S∗} interface declaration
Cl ::= class C([T cp ]∗) [implements I+]

{[T w [:= e]?]∗ [s] ? M∗} class definition
M ::= S B method definition
S ::= T m([T x]∗) method signature
B ::= {[var [T x [:= e]?]∗; ]? [s; ]? put e} method blocks
T ::= I | Int | Bool | String | Void | Fut〈T 〉 types
v ::= x | w variables (local or field)
e ::= null | this | v | cp | f (e) pure expressions
s ::= v := e | fr := v!m(e) | v := get e | v := new C(e) statements

| skip | if e then s [else s]? fi | s; s

Fig. 1. Core language syntax, with C class name, cp formal class parameter, m method name, w fields, x method parameter or local variable, and where fr
is a future variable. We let [ ]∗ , [ ]+ and [ ]? denote repeated, repeated at least once and optional parts, respectively, and e is a (possibly empty) expression
list. Expressions e and functions f are side-effect free.

once resolved. References to futures may be shared between objects, e.g., by passing them as parameters. After resolving
a future reference, this means that third party objects may fetch the future value. Thus, the future value may be fetched
several times, possibly by different objects. In this manner, shared futures provide an efficient way to distribute method call
results to a number of objects.

For the purposes of this paper, we consider a core object-oriented language with futures, presented in Fig. 1. It includes
basic statements for first-class futures, inspired by ABS [18]. Methods are organized in classes in a standard manner. A class
C takes a list of formal parameters cp, and defines fields w , optional initialization statements s and methods M . There is
read-only access to class parameters cp, method parameters x, and implicit variables, such as this, referring to the current
object, and the implicit method parameter future, referring to the future of the call. A method definition has the form
m(x){var y; s; put e}, when ignoring type information, where x is the list of formal parameters, y is an optional list of
method-local variables, s is a sequence of statements, and the value of e is put in the future of the call upon termination
(i.e., “resolving the future”).

A future variable fr is declared by Fut〈T 〉fr, indicating that fr may refer to futures which may contain values of type T .
The call statement fr := x!m(e) invokes the method m on object x with input values e. The identity of the generated
future is assigned to fr, and the calling process continues execution without waiting for fr to become resolved. The query
statement v := get fr is used to fetch the value of a future. The statement blocks until fr is resolved, and then assigns the
value contained in fr to v .

To avoid blocking, ABS provides statements for process control, including a statement await fr?, which releases the
current process as long as fr is not yet resolved. This gives rise to more efficient programming with futures. In Section 8 we
show how process release statements, including a releasing query statement, can be added as an extension of the present
work. However, we first focus on a core language for futures, with a simple semantics, avoiding specialized features such as
process control.

The core language contains additionally statements for assignment, skip, conditionals, and sequential composition. Ob-
ject variables are typed by interfaces, and we assume that call and query statements are well-typed. If x refers to an
object where m is defined with input types S and return type T , the following code is well-typed when e is of type S:
Fut〈T 〉fr; T v; fr := x!m(e); v := get fr, which represents a traditional synchronous and blocking method call. This call is
abbreviated by the notation

v := x.m(e)

Note that the call v := this.m(e) will block, and thus a construct for local calls, say v := m(e), would be useful. The core lan-
guage ignores language features that are orthogonal to shared futures, such as inheritance. We refer to [19] for a treatment
of this.

2.1. Publisher–subscriber example

To illustrate the language, and in particular the usage of shared futures, we consider an implementation of a version
of the publisher–subscriber example, in which clients may subscribe to a service, while the service object is responsible
for generating news and distributing each news update to the subscribing clients. To avoid bottlenecks when publishing
events, the service delegates publishing to a chain of proxy objects, where each proxy object handles a bounded number
of clients, as illustrated in Fig. 2. The implementation of the classes Service and Proxy can be found in Fig. 3. We use this
implementation later in the paper to illustrate our reasoning techniques: We will define class invariants and illustrate the
proof system by verification of these invariants.

The example takes advantage of the future concept by letting the service object delegate publishing of news
updates to the proxies without waiting for the result of the news update. This is done by the sequence fut :=
prod!detectNews();proxy!publish(fut). Thus the service object is not blocking by waiting for news updates. Furthermore,
the calls on add are blocking; however, this is harmless since the implementation of add may not deadlock and terminates
efficiently. The other calls in the example are not blocking nor involving shared futures.
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Fig. 2. A publisher–subscriber example with proxies handling at most three clients each.

For convenience, we introduce the following notation for uni- and multicast to be used in the example. A call fr := x!m(e)
is abbreviated to x!m(e) when the future (and result) is not needed. For this kind of simple message passing we also allow x
to be a collection of objects (a list in the example), with the effect that the invocation is sent to all objects in the collection,
thereby allowing us to program multi-casting (without explicit futures). A multicast to an empty collection has no effect. For
simplicity, we here omit the (redundant) return statement of Void methods.

3. Observable behavior

In this section we describe a communication model for concurrent objects communicating by means of asynchronous
message passing and futures. The model is defined in terms of the observable communication between objects in the system.
We consider how the execution of an object may be described by different communication events which reflect the observable
interaction between the object and its environment. The observable behavior of a system is described by communication
histories over observable events [10,11].

3.1. Communication events

Since message passing is asynchronous, we consider separate events for method invocation, reacting upon a method call,
resolving a future, and for fetching the value of a future. Each event is observable to only one object, which is the one that
generates the event. The events generated by a method call cycle is depicted in Fig. 4. The object o calls a method m on
object o′ with input values e and where u denotes the future identity. An invocation message is sent from o to o′ when
the method is invoked. This is reflected by the invocation event 〈o → o′, u,m, e〉 generated by o. An invocation reaction event

interface ServiceI{
Void subscribe(ClientI cl);
Void produce()}

interface ProxyI{
ProxyI add(ClientI cl);
Void publish(Fut<News> fut)}

interface ClientI{
Void signal(News ns)}

interface ProducerI{
News detectNews()}

class Service(Int limit) implements ServiceI{
ProducerI prod; ProxyI proxy; ProxyI lastProxy;
{prod := new Producer(); proxy := new Proxy(limit,this); lastProxy := proxy; this!produce()}

Void subscribe(ClientI cl){lastProxy := lastProxy.add(cl)}

Void produce(){var Fut<News> fut; fut := prod!detectNews(); proxy!publish(fut)}}

class Proxy(Int limit, ServiceI s) implements ProxyI{
List<ClientI> myClients := Nil; ProxyI nextProxy;

ProxyI add(ClientI cl){
var ProxyI lastProxy := this;
if length(myClients) < limit then myClients := appendright(myClients, cl)
else if nextProxy = null then nextProxy := new Proxy(limit,s) fi;
lastProxy := nextProxy.add(cl) fi; put lastProxy}

Void publish(Fut<News> fut){
var News ns = None;
ns := get fut; myClients!signal(ns);
if nextProxy = null then s!produce() else nextProxy!publish(fut) fi}}

Fig. 3. Implementation of the publisher–subscriber example. Notice that proxy!publish(...) is a unicast and myClients!signal(...) is a multicast. We have used
ABS syntax for lists. See Appendix A for a full implementation including data type definitions (including News) and implementation of the Producer and
Client classes.
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Fig. 4. A method call cycle: object o calls a method m on object o′ with future u. The events on the left-hand side are visible to o, those in the middle
are visible to o′ , and the ones on the right-hand side are visible to o′′ . There is an arbitrary delay between message receiving and reaction. The message
sending from o to o′′ represents that the future u is passed from o to o′′ .

〈� o′, u,m, e〉 is generated by o′ once the method starts execution. When the method terminates, the object o′ generates
the future event 〈← o′, u, e〉. This event reflects that u is resolved with return value e. The fetching event 〈o �, u, e〉 is
generated by o when o fetches the value of the resolved future. Since future identities may be passed to other objects, e.g.,
o′′ , that object may also fetch the future value, reflected by the event 〈o′′ �, u, e〉, generated by o′′ . The object creation event
〈o ↑ o′, C, e〉 represents object creation, and is generated by o when o creates a fresh object o′ .

Definition 1 (Events). Let type Mid include all method names, and let Data be the supertype of all values occurring as actual
parameters, including future identities Fid and object identities Oid. Let caller, callee, receiver : Oid, future : Fid, method : Mid,
args : List[Data], and result : Data. Communication events Ev include:

• Invocation events 〈caller → callee, future,method,args〉, generated by caller.
• Invocation reaction events 〈� callee, future,method,args〉, generated by callee.
• Future events 〈← callee, future, result〉, generated by callee.
• Fetching events 〈receiver �, future, result〉, generated by receiver.
• Object creation events 〈caller ↑ callee, class,args〉, generated by caller.

Events may be decomposed by functions. For instance, _.result : Ev → Data is well-defined for future and fetching events,
e.g., 〈← o′, u, e〉.result = e.

For a method invocation with future u, the ordering of events depicted in Fig. 4 is described by the following regular
expression (using · for sequential composition of events)

〈o → o′, u,m, e〉 · 〈� o′, u,m, e〉 · 〈← o′, u, e〉[·〈_ �, u, e〉]∗
for some fixed o, o′ , m, e, e, and where _ denotes an arbitrary value. This implies that the result value may be read several
times, each time with the same value, namely that given in the preceding future event.

3.2. Communication histories

The execution of a system up to present time may be described by its history of observable events, defined as a sequence.
A sequence over some type T is constructed by the empty sequence ε and the right append function _ · _ : Seq[T ] × T →
Seq[T ] (where “_” indicates an argument position). The choice of constructors gives rise to generate inductive function
definitions, in the style of [13]. Projection, _/_ : Seq[T ] × Set[T ] → Seq[T ] is defined inductively by ε/s � ε and (a · x)/s �
if x ∈ s then (a/s) · x else a/s fi, for a : Seq[T ], x : T , and s : Set[T ], restricting a to the elements in s. For sequences a
and b, let a ew x denote that x is the last element of a, and a � b denote that a is a prefix (initial sequence) of b, while a 
 b
denotes that a is a subsequence of b (not necessarily a tight one). Let [x1, x2, . . . , xi] denote the sequence of x1, x2, . . . , xi for
i > 0. For instance, [x1, x2] � [x1, x2, x3, x4, x5] and [x2, x4] 
 [x1, x2, x3, x4, x5]. Functions for event decomposition are lifted
to sequences in the standard way, ignoring events for which the decomposition is not defined, e.g., _.result : Seq[Ev] →
Seq[Data]. A communication history for a set S of objects is defined as a sequence of events generated by the objects in S .
We say that a history is global if S includes all objects in the system.

Definition 2 (Communication histories). The communication history h of a system of objects S is a sequence of type Seq[Ev],
such that each event in h is generated by an object in S .

We observe that the local history of a single object o is achieved by restricting S to the single object, i.e., the history
contains only elements generated by o. For a history h, we let h/o abbreviate the projection of h to the events generated
by o. Since each event is generated by only one object, it follows that the local histories of two different objects are disjoint.

Definition 3 (Local histories). For a global history h and an object o, the projection h/o is the local history of o.
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4. Operational semantics

We define the operational semantics by a transition system, presented in the style of SOS. A system state g is here
captured as a mapping. In our case a system state (configuration) consists of objects, messages, and futures, each identified
by unique identifiers. A mapping is seen as a set of bindings from identifiers to units: the bindings id �→ ob(state, code),
id �→ msg(callee,method,args), and id �→ fut(value), represent bindings of an object identifier to an object, a future identifier
to an invocation message and a future identifier to a future containing a value, respectively. Here code denotes a sequence
of statements followed by a put statement, or is empty. The special constant null may not bind to an object. A substate is
given by the corresponding submapping. The local state of an object is given by two mappings, one for attributes a and
one for local variables l, mapping variable names to values. We assume a given interpretation of data types and associated
functions.

Notation. We use the following mapping notation. A mapping is seen as a set of bindings written [zi �→ valuei] for a set
of disjoint identifiers zi , the domain. Map look-up is written M[z] where M is a mapping and z an identifier. The notation
is lifted to expressions, letting M[e] mean the expression e evaluated in the state given by M . Map composition is written
M + M ′ where bindings in M ′ override those in M for the same identifier. A map update, written M[z �→ d], is the map M
updated by binding z to the value d, i.e., M[z �→ d] is the same as M + [z �→ d]. For an expression e, the notation M[z := e]
abbreviates M[z �→ M[e]].

The state of an object is given by a twin mapping, written (a|l), where a is the state of the field variables (including
this, nextFut, nextObj, class parameters cp, and the local history H) and l is the state of the parameters and local variables
(including the implicit parameter future). Look-up (a|l)[z] is simply given by (a + l)[z]. The notation (a|l)[v := e] abbreviates
if v in l then (a | l[v �→ (a|l)[e]]) else (a[v �→ (a|l)[e]] | l), where in is used for testing domain membership. We extract
the local state and code of an object o from the global state g by g[o].State and g[o].Code, respectively.

Definition 4 (Configuration mappings). A configuration of type Config is a mapping from object identities to objects of the
form ob(δ, s), from future identities to values of the form

msg(o,m,d) or fut(d)

and possibly from the global history identifier H to a sequence of events h. The state δ of an object has the form of a twin
mapping (a|l). Let OB be the type of object bindings o �→ ob((a|l), s) such that o ∈ Oid, o �= null, and this �→ o ∈ a, FUT the
type of future bindings u �→ fut(d) for u ∈ Fid, MSG the type of message bindings u �→ msg(o,m,d) for u ∈ Fid, and HIST
the type of history bindings H �→ h for h ∈ Seq[Ev].

Thus in a global state we talk about objects, messages, futures, and possibly a representation of the global history, each
with unique identities. An object identity o is mapped to the corresponding object, given as a pair of the state δ and the
code s to be executed, written ob(δ, s). A future identity u is mapped to a message containing the callee, the name of the
called method and the actual parameters, written msg(o,m,d), or to the contained value, written fut(d). A class C could be
bound to the attributes of the class and the set of methods, say [C �→ class(att,ms)]. The method definitions in a class
is of the form, (m, p, l, s) where m is the method name, p is the list of formal parameters, l contains the local variables
(including default values), and s is the code. However, as classes here represent static information they are ignored in the
operational semantics. The code of an object is simply a list of statements to be executed.

Generation of fresh object and future identifiers is modeled by the initial algebra given by the constructors:

• initO taking an object identity (the generating object) and returning an (initial) object identity,
• initF taking an object identity (the generating object) and returning an (initial) future identity,
• nextFid taking a future identity (say the last generated one) and returning a future identity,
• nextOid taking an object identity (say the last generated one) and returning an object identity.

When no ambiguity arises, we omit the index on the next function. A generator term, say next(next(next(initF(o)))), repre-
sents a unique future identity. Equality over generator terms is given by the syntactic equality, thus local uniqueness implies
global uniqueness since the generating object is encoded in the terms. The operational semantics uses an attribute nextFut,
initialized to initF(this), such that a fresh future identity is generated by next(nextFut). Similarly, the attribute nextObj is
initialized to initO(this), such that a fresh object identity is generated by next(nextObj).

4.1. Operational rules

For our purpose, a configuration is a set of units such as concurrent objects, messages, futures, and possibly a repre-
sentation of the global history. The units are uniquely identified and the configuration is formalized as a mapping. We use
blank-space as the configuration constructor, allowing associativity, commutativity, identity (ACI) pattern matching. We later
extend system configurations with an explicit representation of the global history (H �→ h). The history is included to define
the interleaving semantics upon which we derive our history-based reasoning formalism.
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skip: o �→ ob(δ,skip; s)
empty−−−−→ o �→ ob(δ, s)

assign : o �→ ob(δ, v := e; s)
empty−−−−→ o �→ ob(δ[v := e], s)

call : o �→ ob(δ, fr := v!m(e); s)
〈o → δ[v],δ[nextFut],m,δ[e]〉−−−−−−−−−−−−−−−−−−→ o �→ ob(δ[fr := nextFut,nextFut := next(nextFut)], s)

δ[nextFut] �→ msg(δ[v],m, δ[e])
start : u �→ msg(o,m,d)

o �→ ob((a|l′), empty)
〈� o,u,m,d〉−−−−−−−−→ o �→ ob((a|(l[p �→ d, future �→ u])), s)

where m is statically bound to (m, p, l, s)

return : o �→ ob(δ,put e)
〈← o,δ[future],δ[e]〉−−−−−−−−−−−−→ o �→ ob(δ, empty)

δ[future] �→ fut(δ[e])
query : u �→ fut(d)

o �→ ob(δ, v := get e; s)
〈o �,u ,d〉−−−−−−−→ u �→ fut(d)

o �→ ob(δ[v := d], s)
if δ[e] = u

new : o �→ ob(δ, v := new C(e); s)
〈o ↑ δ[nextObj],C,δ[e]〉−−−−−−−−−−−−−−→ o �→ ob(δ[v := nextObj,nextObj := next(nextObj)], s)

δ[nextObj] �→ ob(δinit, init)

Fig. 5. Operational rules reflecting small-step semantics. Variables are denoted by single characters (the uniform naming convention is left implicit). An
object state δ has the form (a|l). Method names are assumed to be unique for each class, and indexed with the class name during type analysis. Thus
in the operational semantics we may assume that method names are unique in the system. Consequently, method binding can be done at static time. In
Rule start, we assume that m is bound to a method with local state l (including default values), parameters p, and code s. Note that parameters and the
implicit parameter future, which are read-only, are added to the local state in Rule start. In Rule new, δinit denotes the initial state (including the binding
this �→ δ[nextObj], cp �→ δ[e]), and default/initial values for the fields; and init denotes the initialization statements of class C .

For disjoint substates g1 and g2 (i.e. mappings with disjoint domains) we let g1||g2 denote the composition, and let || be
an ACI operator. Since we deal with distributed systems communicating asynchronously, g1 will involve exactly one object,
o, plus possibly messages and futures. The context rule

g1
α−→ g′

1

g1||g2
α−→ g′

1||g2

allows us to derive system transitions for composed systems, and the rule for sequential composition allows us to deal with
sequences of statements inside each object.

The operational rules are summarized in Fig. 5. Objects are concurrent in the sense that their executions are interleaved,
and in each object statements are executed sequentially. Method invocation is captured by the rule call. The generated future
identity is locally unique, and also globally unique since the identity is given by a generator term embedding the parent
object. The future identity generated by this rule is first bound to an invocation message, which is to be consumed by rule
start. And a future unit is generated upon method completion reusing the same future identifier. When there is no active
code in an object, denoted empty, a method call is selected for execution by rule start. The invocation message is removed
from the configuration by this rule, and the future identity of the call is assigned to the implicit parameter future. Method
execution is completed by rule return, and a future value is fetched by rule query. A future unit appears in the configuration
when resolved by rule return, which means that a query statement blocks until the future is resolved. Remark that rule query
does not remove the future unit from the configuration, which allows several objects to fetch the value of the same future.
Object creation is captured by the rule new. The generated object identity is locally unique, and also globally unique since
the identity is given by a generator term embedding the parent object. The object identity generated by this rule is then
bound to the generated object. The given language fragment may be extended with constructs for inter object reentrance,
process control and suspension, e.g., by using the ABS approach of [17].

4.2. Augmenting the operational semantics with a history

We have above formulated an operational semantics, representing interleaving semantics, by transitions of the form
g1

α−→ g2, which expresses a transition from the system (sub)state g1 to the system (sub)state g2 labeled by the event α
(possibly empty). The set of sequences of events for all possible executions corresponds to the trace set.

The given operational semantics does not explicitly include a history. The history of a state is implicitly given as the
sequence of events that has occurred in the execution leading to this state, initially being empty. We may include the
history H explicitly by transforming each rule g1

α−→ g2 to
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call :
o �→ ob(δ, fr := v!m(e); s),
H �→ h

−→ o �→ ob(δ[fr := u], s)
u �→ msg(δ[v],m, δ[e])
H �→ h · 〈o → δ[v], u,m, δ[e]〉

if u /∈ id(h)

new :
o �→ ob(δ, v := new C(e); s)
H �→ h

−→ o �→ ob(δ[v := o′], s)
o′ �→ ob(δinit , init)
H �→ h · 〈o ↑ o′, C, δ[e]〉

if o′ /∈ id(h)

Fig. 6. Abstract rule for call and object generation. As earlier δinit and init denote the initial state (including the binding this �→ o′ and binding of the actual
class parameters δ[e]) and the initialization statements of class C , respectively.

g1 + [H �→ h] −→ g2 + [H �→ h · α]
where h is (the value of) the history of the prestate and h · α the history of the poststate, letting h · α denote h when
α is empty. In this way the special identifier H maps to the current history in a global state. Note that the event α
may be omitted from the transition symbol in this version of the semantics, since it is redundant. Since we deal with
predicates referring to the history, we will below use this history-explicit semantics. Furthermore, we have implemented
the history-explicit semantics in Maude, which then allows run-time testing of properties over histories.

Assignments to the history is not possible with the given operation rule for assignments. It would require a specialized
assignment rule. However, a program may not update the history by explicit assignments, since the history is hidden from
the programmer.

4.2.1. An abstract semantics
The operational semantics above is executable and in particular includes an algorithm for generation of future identities

and object identities. Local uniqueness will here imply global uniqueness. This is due to the rules call and new. By redefining
these two rules we may give a more abstract semantics, based on non-determinism in generation of fresh identities. The
abstract semantics uses history information, and we here therefore consider rules with explicit representation of the history.
The abstract semantics is given in Fig. 6, in which the function id is overloaded, i.e., either Seq[Ev] → Set[Id] or List[Data] →
Set[Id], where Id is the supertype of Oid and Fid. Namely, id extracts all the object/future identities occurring in a history
and in the expression list e, as follows:

id(ε) � {null} id(h · γ ) � id(h) ∪ id(γ )

id(〈o → o′, u,m, e〉) � {o,o′, u} ∪ id(e) id(〈� o′, u,m, e〉) � {o′, u} ∪ id(e)
id(〈← o′, u, e〉) � {o′, u} ∪ id(e) id(〈o �, u, e〉) � {o, u} ∪ id(e)
id(〈o ↑ o′, C, e〉) � {o,o′} ∪ id(e)

where γ : Ev. Remark that null is always included in id(h). For a global history h, the projection id(h)/Fid returns all future
identities in h, and id(h/o)/Fid returns the futures generated by o or received as parameters.

Note that the special variables nextFut and nextObj are not needed, nor are the semantical functions initF/initO and next
for generating identities. Global uniqueness of object and future identities is here an explicit condition. Clearly the old
version of the call and new rules is a specialization of the abstract semantics. Thus a history obtainable with the executable
semantics is also a possible history of the abstract semantics.

4.3. Semantic properties

We provide a notion of global and local wellformedness for histories corresponding to the abstract operational semantics,
where the constructive approach to making fresh identities is abstracted away. (For soundness we could also use a version
of wellformedness corresponding to the executable operational semantics.)

Definition 5 (Globally wellformed histories). Let h : Seq[Ev] be a non-empty history of a global object system S . The well-
formedness predicate wf : Seq[Ev] → Bool is defined by:

wf (ε) � true
wf (〈o ↑ o, C, e〉) � o �= null ∧ id(e) = ∅
wf (h · 〈o → o′, u,m, e〉) � wf (h) ∧ o ∈ oid(newob(h)) ∧ ({o′} ∪ id(e)) ⊆ id(h/o) ∧ u /∈ id(h)

wf (h · 〈� o, u,m, e〉) � wf (h) ∧ o ∈ oid(newob(h)) ∧ h/u ew 〈_ → o, u,m, e〉
wf (h · 〈← o, u, e〉) � wf (h) ∧ o ∈ oid(newob(h)) ∧ id(e) ⊆ id(h/o) ∧ h/u ew 〈� o, u, _, _〉
wf (h · 〈o �, u, e〉) � wf (h) ∧ o ∈ oid(newob(h)) ∧ u ∈ id(h/o) ∧ (h/u).result ew e
wf (h · 〈o ↑ o′, C, e〉) � wf (h) ∧ o ∈ oid(newob(h)) ∧ id(e) ⊆ id(h/o) ∧ o′ /∈ id(h)

where non-interesting arguments are identified by _ in projections, and h/u abbreviates the projection of the history h to the
future u, i.e. the subsequence of events γ such that γ .future = u. Similarly, h.result is the sequence of result values extracted
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from the subsequence of h of events which has a result, i.e., future and fetching events. As defined below, newob(h/o)

extracts the objects created by o.

Wellformedness expresses that generated object and future identities are fresh (/∈ id(h) clauses), and otherwise no locally
new identities are created (subset of id(h/o) clauses); that active objects have been generated (∈ oid(newob(h) clauses); and
that the ordering of method call cycles given in Fig. 4 is respected (ew clauses). Note that the first event in a global history
must be an object generation event, representing an externally generated initial object. The initial object has no accessible
creator, and we use the convention that it is created by itself. The function newob : Seq[Ev] → Set[Obj × Cls × List[Data]]
returns the set of created objects (each given by its object identity, associated class and class parameters) in a history:

newob(ε) � ∅
newob(h · 〈o ↑ o′, C, e〉) � newob(h) ∪ {o′ : C(e)}
newob(h · others) � newob(h)

where others matches all other events. The function oid : Set[Obj × Cls × List[Data]] → Set[Obj] extracts object identities o
from a set of elements of the form {o : C(e)}, like from the output of function newob .

For the core language considered, method bodies are executed sequentially, and it is possible to strengthen the notion of
wellformedness to reflect this, i.e., ensuring

0 ≤ #(h/o/{�}) − #(h/o/{←}) ≤ 1

where # denotes sequence length. However, this would exclude addition of mechanisms for process release or non-blocking
query of futures. Since we will consider an addition such statements in Section 8, and since this property can be expressed
by a local invariant, we do not let our notion of wellformedness reflect sequentially ordered method executions.

It follows directly from Definition 5 that a wellformed global history is monotone in the sense

h ≤ h′ ⇒ wf (h′) ⇒ wf (h)

and that it satisfies the communication order pictured in Fig. 4, i.e.,

∀u .∃o,o′,m, e, e . h/u � [〈o → o′, u,m, e〉 · 〈� o′, u,m, e〉 · 〈← o′, u, e〉[·〈_ �, u, e〉]∗]
We can prove that the operational semantics guarantees wellformedness:

Lemma 1. The global history h of a global object system S obtained by the given abstract operational semantics, is wellformed, wf(h).

This lemma can be proved by induction over the number of rule applications, proving the inductive property

wf (g[H])
∧ Futures(g[H]) = g/(MSG ∪ FUT)

∧ ∀o . id(g[o].State) ⊆ id(g[H]/o)

for any reachable configuration g , where g/(MSG ∪ FUT) is the submapping of g consisting of bindings to messages and
futures, and where Futures(h) is the sequence of bindings to messages and futures calculated from the history. The second
conjunct is needed to prove the event ordering information (given by ew of the wellformedness predicate). The third con-
junct says that future/object identities found in the state of a given object have been observed in the local history. This is
needed to prove that future identities appearing as future in the future/fetching events, object identities appearing as callee
in the invocation events, and future/object identities appearing as args or result in the invocation/future/new events have been
observed in the local history, given that our underlying programming language does not offer any functions producing (new)
future or object identities. Note that freshness of identities and non-nullness of the objects generating the events follow by
the definition of configuration.

Definition 6 (Locally wellformed histories). Local wellformedness of a local history h for an object o, denoted wf o(h), is defined
by

wf o(h) � ∃h′ .wf (h′) ∧ h = h′/o

Here h ranges over local histories and h′ over global histories.

It follows that global wellformedness implies local wellformedness of the local history of an object o, i.e.,

wf (h) ⇒ wf o(h/o)

Thus local wellformedness may be assumed in a given class. Moreover, it follows that local wellformedness reduces to
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wf o(ε) � true
wf o(h · 〈o → o′, u,m, e〉) � wf o(h) ∧ o �= null ∧ ({o′} ∪ id(e)) ⊆ id(h) ∧ u /∈ id(h)

wf o(h · 〈� o, u,m, e〉) � wf o(h) ∧ o �= null ∧ h/u ≤ 〈o → o, u,m, e〉
wf o(h · 〈← o, u, e〉) � wf o(h) ∧ o �= null ∧ id(e) ⊆ id(h) ∧ h/u ew 〈� o, u, _, _〉
wf o(h · 〈o �, u, e〉) � wf o(h) ∧ o �= null ∧ u ∈ id(h) ∧ (h/u ≤ [〈o → _, u, _, _〉]∨

(h/u).result ew e) ∧ h/u/{→o,�,←} �= ε ⇒ 〈← o, u, e〉 ∈ h
wf o(h · 〈o ↑ o′, C, e〉) � wf o(h) ∧ o �= null ∧ id(e) ⊆ id(h) ∧ o′ /∈ id(h)

where h ranges over histories local to o. The clause h/u/{→o,�,←} �= ε expresses that the object o is the callee of the
call with future u. Note that the first event may or may not be a creation event, possibly an external creation represented
by a self creation.

5. Program verification

5.1. Local reasoning

Local assertions express conditions on a state of a given object and the local history H. Thus in a class C assertions
may refer to the fields of C , as well as the class parameters cp, and this, which are constant. Inside a method the assertions
may refer to the formal parameters (including future) and local variables of that method. Assertions may not refer to the
run-time variables nextFut and nextObj used in the executable operational rules, nor the corresponding semantical functions
for generating fresh names (initF, initO and next). For convenience, we let WF abbreviate wf this(H) since this is the only
wellformedness predicate one may talk about inside a given class.

The reasoning rules for the core language are defined in Fig. 7. The triple {P } s {Q } expresses that if P holds prior to
execution of the statement list s then Q holds after execution, provided it terminates. We write � {P } s {Q } if {P } s {Q } is
derivable by the rules. If the statement list s is empty we write � {P } {Q }. Notice that the Rule imp together with sequential
composition comp allows us to conclude {P } s {Q } from {P ′} s {Q ′} when P ∧ WF ⇒ P ′ and Q ′ ∧ WF ⇒ Q . Standard rules
for if-statements and adaptation are not included here. An adaptation rule would allow reuse of verification of triples, for
instance when strengthening an invariant.

The rules for comp, skip, and assign, are standard. The imp rule is specialized to empty statement expressing that execu-
tions give wellformed states. The other rules deal with futures or object generation, and involve effects on the local history.
The effects of a method call cycle is reflected by the rules call, method, return, and query, each introducing a call cycle event,
an invocation, invocation reaction, future, and fetching event, respectively. Rule new extends the history of the creating object
with an object creation event. The universal quantifiers in the precondition of call, query, and new reflect non-determinism
of the introduced logical variables in the local reasoning. The use of y′ in rule body reflects that y in P and Q does not
refer to the local variables, y.

As an example we consider reasoning about a blocking self call, i.e., v := this.m(e), which is an abbreviation of
Fut〈T 〉fr; fr := this!m(e); v := get fr. We should be able to verify

{true} v := this.m(e) {false} (1)

since this call blocks and will never terminate, as there is no reentrance in the core language. By the imp rule it suffices to
prove

{true} fr := this !m(e); v := get fr {WF ⇒ false}
By the rule for query and call, this reduces to proving the precondition

∀fr, v .WFH
H ·〈this →this,fr,m,e〉·〈this �,fr,v〉 ⇒ false

By definition of local wellformedness this can be reduced to false ⇒ false, which is true, since H/fr/{→this,�,←} �= ε
but 〈← this, fr, e〉 ∈ H does not hold. Thus we have verified the triple (1). This example demonstrates the strength of the
reasoning system, but it also indicates a weakness of the core language. In order to better support self calls, one could
consider reentrance or release mechanisms. In Section 8 we consider the latter and extend the language with constructs for
non-blocking and terminating self calls.

Note that one might split the method rule into two rules, block and method’, as follows:

block
{P y

y′ ∧ y = default} s {Q y
y′ }

{P } {var y; s} {Q }

method’
{P } body {Q }

{PH
H ·〈�this,future,m,x〉} (m(x) body) {Q }
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imp
P ∧ WF ⇒ Q

{P } {Q }

comp

{P } s1 {R}
{R} s2 {Q }

{P } s1; s2 {Q }

skip {Q } skip {Q }

assign {Q v
e } v := e {Q }

call {∀fr′ . Q fr,H
fr′,H ·〈this →o,fr′,m,e〉} fr := o!m(e) {Q }

method
{P y

y′ ∧ y = default} s {Q y
y′ }

{P H
H ·〈�this,future,m,x〉} (m(x) {var y; s}) {Q }

return {Q H
H ·〈← this,future,e〉} put e {Q }

query {∀v ′ . Q v,H
v ′,H ·〈this�,e,v ′〉} v := get e {Q }

new {∀v ′ . Q v,H
v ′,H ·〈this↑v ′,C,e〉} v := new C(e) {Q }

Fig. 7. Hoare style rules for the core language. Primed variables represent fresh logical variables, and WF is an abbreviation for w fthis(H).

Here block represents classical reasoning about blocks and method’ represents the simple extension from blocks to annotated
method declarations.

By applying the rule imp and sequential composition comp we may also derive {P } s {Q } from {P } s {WF ⇒ Q }. Implica-
tion the other direction is trivial, since Q is stronger than WF ⇒ Q : We may derive {P } s {WF ⇒ Q } from {P } s {Q } by the
imp rule. Accordingly, we have the following result:

Lemma 2 (Equivalence of Hoare triples).

� {P } s {WF ⇒ Q } ⇔� {P } s {Q }

5.2. Invariant reasoning

In interactive and non-terminating systems, it is difficult to specify and reason compositionally about object behavior
in terms of pre- and post-conditions of the defined methods. Instead, pre- and post-conditions to method definitions are
in our setting used to establish a so-called class invariant, i.e., a local assertion that holds after initialization of the class,
and is maintained by all methods. The class invariant serves as a contract for the class: A method implements its part of
the contract by ensuring that the invariant holds upon termination, assuming that the invariant holds initially. To facilitate
compositional and component-based reasoning about programs, the class invariant is used to establish a relationship between
the internal state and the observable behavior of the class instance. The internal state is given by the values of the class fields,
whereas the observable behavior is expressed as a set of potential communication histories. By hiding the internal state,
class invariants form a suitable basis for compositional reasoning about object systems. Assumptions to the environment
may be reflected by invariants on the form of implications.

A user-provided invariant IC (w,H) for a class C is a predicate over the fields w and the local history H, as well as the
formal class parameters cp and this, which are constant (read-only) variables.

5.3. Compositional reasoning

A history invariant for instances of C is a predicate that only talks about the local history of that object and is satisfied at
all times (in contrast to class invariants that may be temporarily violated inside a method). A history invariant can usually
be derived from the class invariant (when prefix-closed). For an instance o of C with actual class parameter values e, the
history invariant Io:C(e)(h) is defined by hiding the internal state w and instantiating this and the class parameters cp:

Io:C(e)(h) � ∃w . IC (w,h)
this,cp
o,e

but in addition it must be proved that Io:C(e)(H) holds at all times, i.e., is maintained by each statement in the class C ,
possibly weakening the class invariant if needed. In practice this is trivial, when the history invariant is prefix closed (with
respect to the history) [20].

We next consider systems with several objects and with an externally created initial object. The initial object may create
some objects which again may create other objects and so on. We say that the system is generated by the externally created
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object. (We might generalize to several externally generated objects, using a reserved name to represent the environment
of the program.)

The history invariant I S (h) for a system S given by an initial object, say c : C(e), is then given by the conjunction of the
history invariants of the initial and generated objects on their respective local histories:

I S(h) � 〈c ↑ c, C, e〉 ≤ h ∧ wf (h)
∧

(o:C(e))∈newob(h)

Io:C(e)(h/o)

The externally created object will appear as an initial creation event in the global history, and thus be part of newob(h). The
wellformedness property serves as a connection between the local histories, relating events with the same future to each
other. Note that the system invariant is obtained directly from the history invariants of the dynamically composed objects,
without any restrictions on the local reasoning, since the local histories are disjoint. This ensures compositional reasoning.
The composition rule is similar to [17]. Soundness of the composition rule is considered in [20].

6. Specification and verification of the publisher–subscriber example

In this example we consider object systems based on the classes found in Fig. 3. Different executions may lead to
different global histories for this system, depending on the interleaving of the different object activities. However, we may
state some general properties, like the following one: For every signal invocation from a proxy py to a client c with news
ns, the client must have subscribed to a service v , which must have issued a publish invocation with a future u generated
by a detectNews invocation, and then the proxy py must have received news ns from that future. This expresses that when
clients get news it is only from services they have subscribed to, and the news is resulting from actions of the server. This
global property can be formalized as follows:

H ew 〈py → c, u0, signal,ns〉 �⇒ ∃v, u . (〈� v, _, subscribe, c〉, 〈py �, u,ns〉) 
 H ∧
(〈v → _, u,detectNews, ε〉, 〈v → _, _,publish, u〉) 
 H

where non-interesting arguments are identified by _ rather than existentially quantified variables, for better readability.
We may derive this property within the proof system using the following class invariants, which focus on the order of

the local events (while ignoring fields):

IService(limit)(H) � (∃c . 〈this → _, _,add, c〉 
 H
�⇒ (〈� this, _, subscribe, c〉, 〈this → _, _,add, c〉) 
 H) ∧

(∃u . 〈this → _, _,publish, u〉 
 H
�⇒ (〈this → _, u,detectNews, ε〉, 〈this → _, _,publish, u〉) 
 H)

IProxy(limit,s)(H) � (∃u . 〈this → _, _,publish, u〉 
 H
�⇒ (〈� this, _,publish, u〉, 〈this → _, _,publish, u〉) 
 H)∧

(∃c,ns . 〈this → c, _, signal,ns〉 
 H
�⇒ ∃u . 〈� this, _,add, c〉, 〈� this, _,publish, u〉, 〈this �, u,ns〉,

〈this → c, _, signal,ns〉 
 H)

These invariants are straightforwardly verified in the above proof system. As explained, the corresponding invariants for
the object instances s : Service(limit) and p : Proxy(limit, s) are obtained by substituting actual values for this and class
parameters:

Is:Service(limit)(H) � (∃c . 〈s → _, _,add, c〉 
 H
�⇒ (〈� s, _, subscribe, c〉, 〈s → _, _,add, c〉) 
 H) ∧

(∃u . 〈s → _, _,publish, u〉 
 H
�⇒ (〈s → _, u,detectNews, ε〉, 〈s → _, _,publish, u〉) 
 H)

I p:Proxy(limit,s)(H) � (∃u . 〈p → _, _,publish, u〉
H
�⇒ (〈� p, _,publish, u〉, 〈p → _, _,publish, u〉) 
 H) ∧
(∃c,ns . 〈p → c, _, signal,ns〉 
 H
�⇒ ∃u . 〈� p, _,add, c〉, 〈� p, _,publish, u〉, 〈p �, u,ns〉,

〈p → c, _, signal,ns〉 
 H)

The global invariant of a system S with one server object s : Service(limit) and some clients, created by an initial object, say
c : C(e), is then

I S(h) � 〈c ↑ c, C, e〉 ≤ h ∧ wf (h) ∧ Is:Service(limit)(h/s)
∧

(p:Proxy(limit,s))∈newob(h)

I p:Proxy(limit,s)(h/p)



JID:JLAMP AID:7 /FLA [m3G; v 1.134; Prn:15/05/2014; 10:10] P.13 (1-24)

C.C. Din, O. Owe / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–••• 13

Fig. 8. Projection from the global states to the local states. Statement s2 in object o′ follows statement s1 in object o. Local state d2 is maintained by the

transition g2
o′ :s2−−−→ g3.

where wellformedness allows us to relate the different object histories. Note that invariants of other objects are ignored
as we have not given invariants for other classes (and are by default true). From this global invariant we may inductively
derive the system property defined above, by means of induction with respect to the length of the history, similarly to the
buffer example in [17]. By strengthening the class invariant of Proxy, we can also prove other properties such as:

For each proxy, if nextProxy is null, the number of contained clients is less or equal to limit, otherwise equal to limit.

7. Soundness and completeness

We say that a reasoning system is sound if any provable property is valid, i.e.,

� {P } s {Q } ⇒|� {P } s {Q }
To prove that a reasoning system is sound, we need to show that all axioms of the system are valid and that all inference
rules are sound, in the sense that they preserve validity. Validity of Hoare triples, denoted |� {P } s {Q }, is defined by means
of the operational semantics. We base the semantics on the operational semantics augmented with histories, as given by
unlabeled transitions of the form g1 → g2. Note that each rule is local to one object, and we write g1

o−→ g2 to indicate
that the execution step is made by object o. When exactly one statement s is executed by o and we wish to highlight this
statement, we write g1

o:s−−→ g2:

Definition 7 (Explicit execution step).

g1
o−→ g2 � g1 → g2 ∧ ∀o′ . (o �= o′) ⇔ (g1[o′] = g2[o′])

expresses a transition from system (sub)state g1 to system (sub)state g2 due to an execution step made by object o (while
all other objects are unchanged).

g1
o:s−→ g2 � g1

o−→ g2 ∧ g1[o].Code = s; g2[o].Code

expresses a transition from the system (sub)state g1 to the system (sub)state g2 due to an execution step made by object o
through execution of statement s.

The latter relation is lifted to sequences of statements s, executed by the same object o, by

g1
o: s;s−−−→ g2 � ∃g′ . g1

o:s−→ g′ ∧ g′ o:s−→ g2

letting g1
o:ε−−→ g2 � g1 = g2.

In Section 5 the axioms and inference rules are defined locally for each statement. Therefore, to express the soundness
of our reasoning system, a notion of local state transitions are needed. Accordingly, we develop a proof structure to extract
local state transition from the rewriting rules as shown in Fig. 8.

We consider pre- and post-conditions over local states and the local history. Such an assertion can be evaluated in a
state defining values for attributes (of the appropriate class), parameters and local variables (of the method) and the local
history. We let P o′ :s−−→o

Q express that if the condition P holds for object o before execution of s by object o′ , then Q holds
for o after the execution. For convenience, we add a similar notation without s. This is defined as follows:

Definition 8 (Validity of pre/post-conditions over execution steps).

P o′−→o Q � ∀g, g′, z .wf (g[H]) ∧ wf (g′[H]) ∧ g o′−→ g′ ∧ loc(g,o)[P ] ⇒ loc(g′,o)[Q ]
P o′:s−−→o Q � ∀g, g′, z .wf (g[H]) ∧ wf (g′[H ]) ∧ g o′:s−−→ g′ ∧ loc(g,o)[P ] ⇒ loc(g′,o)[Q ]
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where z is the list of auxiliary variables in P and/or Q , not bound by g nor g′ . Here loc(g,o) denotes the local state of
object o, as derived from the global state g . The function loc : Config × Oid → State is defined by

loc(g,o) � g[o].State + [
H �→ g[H]/o

]

where the resulting H ranges over local histories (i.e., in the alphabet of o), and where this is bound to o in g as explained
earlier. Thus the extraction is made by taking the state of object o and adding the history localized to o. Then loc(g,o)[x]
is the value bound to variable x in the local state loc(g,o). We also use the notation loc(g,o)[e] to evaluate expressions e
in the local state of o; and in particular loc(g,o)[P ] is the truth-value of the condition P in the local state of o, made by
replacing the free variables in P by the corresponding values given by the local state and the given history.

Due to the local understanding of histories in local assertions and disjointness of alphabets for different objects, we have
the following non-interference result:

Lemma 3 (Non-interference).

o �= o′ ⇒ P o′−→o P

expressing that an assertion on object o is not affected by execution of other objects (o′). This means that local reasoning can be done
locally.

The proof is straight forward by considering the rules of the operational semantics: Each rule involves exactly one object,
and no object o′ may change the state of object o (assuming o �= o′). Object o′ may change the global history but not the
projection on o since each object has disjoint alphabets.

The above non-interference result allows the following local understanding of validity of Hoare triples for statement lists:

Definition 9 (Validity of Hoare triples for statement lists).

|� {P } s {Q } � ∀o . P o:s−→o Q

Here o is the executing object and the object on which P and Q are interpreted. Thus a Hoare triple is valid if for any
object o executing s, the postcondition holds in the poststate, provided the precondition holds in the prestate, assuming
wellformedness. As seen this is not affected by the environment of o.

Due to Definition 9 which incorporates global wellformedness, and the entailment of local wellformedness from global
wellformedness, we have the following result:

Lemma 4 (Equivalence of validity).

|� {P } s {WF ⇒ Q } ⇔|� {P } s {Q }

A Hoare axiom is said to be sound if it is valid. A proof rule is sound if validity of the premises imply validity of the
conclusion.

Note that global validity, say of a global invariant I over H , could be defined directly on global states (with explicit H),
i.e., the meaning of {I(H)} s {I(H)} is that I(g[H]) ⇒ I(g′[H]) for all transitions g o:s−−→ g′ .

Theorem 1 (Soundness).

� {P } s {Q } ⇒|� {P } s {Q }

Theorem 2 (Relative completeness).

|� {P } s {Q } ⇒� {P } s {Q }
assuming completeness of the underlying logic for verification conditions.

The proofs for soundness and completeness are considered below. The proof is done by identifying weakest liberal
preconditions for each construct, according to the given semantics, and prove that these are derivable in the system. In
fact for each statement the given proof rules express the weakest liberal preconditions (modulo wellformedness). Thus the
system is complete in the sense of Cook since the proof of completeness satisfies Cook’s condition on expressiveness [21].

We first state a lemma useful for reducing the problem at hand. Due to Lemma 2 and Lemma 4, we derive the following
result:
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Lemma 5 (Proof alternatives). For proving � {P } s {Q } ⇔|� {P } s {Q }, it suffices to prove � {P } s {WF ⇒ Q } ⇔|� {P } s {WF ⇒ Q }.

In other words, to prove that the reasoning system for {P } s {Q } is sound and complete, it suffices to prove that the
reasoning system is sound and complete for postconditions of the form WF ⇒ Q .

7.1. Proof of soundness and completeness

The proof of soundness is by induction on the proof structure. It suffices to prove that each axiom is valid and that each
inference rule is sound. Below we consider validity of each axiom and soundness of the imp rule and method rule.

The proof of completeness is by induction on the number of applications of operational rules. We show below the base
case corresponding to executing one basic statement. Each base case will involve at least one application of an operational
rule. In the inductive step we may assume |� {P } s {Q } implies � {P } s {Q } for n execution steps and it is sufficient to prove
|� {P } s; s {Q } implies � {P } s; s {Q } for any basic statement s.

We first show soundness and completeness for empty statement lists. For each basic statement s we will show that
validity of {P } s {Q } can be reduced to an implication P ⇒ Q ′ and that {Q ′} s {Q } is a Hoare axiom, i.e., Q ′ is the weakest
possible precondition according to validity. Thus soundness follows, and completeness also follows when Q ′ is the pre-
condition of the axiom, since � {P } s {Q } can be obtained by the imp rule, using P ⇒ Q ′ . We show below for each basic
statement s that the axiom for s expresses exactly the weakest possible precondition according to validity. Thus by the imp
rule, completeness follows for s as above, proving � {P }{Q ′} s {Q }.

For sequential composition we notice first that by Lemma 5 and the imp rule, one may keep assertions on the form
WF ⇒ P . And for these kinds of assertions the validity of sequential composition reduces to the standard one. Thus this
case is not so interesting. Standard rules for if-statements and loops are not considered here. At the end we consider
soundness and completeness for reasoning about annotated method declarations.

The implication rule. For the implication rule we observe that by definition |� {P } {Q } reduces to

∀o, g, z .wf (g[H]) ∧ loc(g,o)[P ] ⇒ loc(g,o)[Q ]
which by definition of local wellformedness reduces to WF ∧ P ⇒ Q (for all free variables involved), which is exactly the
condition of the implication rule. Thus the given Hoare rule is sound.

For completeness of reasoning about empty sequence lists, we have that |� {P } {Q } implies � {P } {Q } since |� {P } {Q }
gives WF ∧ P ⇒ Q which again gives � {P } {Q }, and since we assume completeness of the underlying logic.

7.1.1. Basic statements
Before we look at the different basic statements, we first notice that given a semantic rule of form o �→ ob(δ, s; s) α−→

o �→ ob(δ′, s), we may reduce |� {P } s {Q } to

wf (h) ∧ wf (h · α) ∧ δ[PH
h/o] ⇒ δ′[Q H

h/o·α]
(for all o, h, and other free variables) which by prefix closure of wf is

wf (h · α) ∧ δ[PH
h/o] ⇒ δ′[Q H

h/o·α]
which by definition of local wellformedness is

wf o(H · α) ∧ δ[P ] ⇒ δ′[Q H
H ·α]

for all local histories H and other free variables, since h/o spans all possible local histories, i.e., for all local histories h we
have that h/o = h, and using the definition of local wellformedness. This can be reformulated as

δ[P ] ⇒ (wf o(H · α) ⇒ δ′[Q H
H·α])

which is the same as

δ[P ] ⇒ δ′[WF ⇒ Q ]HH·α
According to Lemma 5, this can be simplified to

δ[P ] ⇒ δ′[Q H
H ·α]

(for all free variables) since we may assume that the postcondition Q already has WF as a condition. We use this general
reduction result when considering the different statements below.

Skip statement. The operational semantics of the skip statement is given by

o �→ ob(δ,skip; s)
empty−−−→ o �→ ob(δ, s)
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As explained above, |� {P } skip {Q } reduces to δ[P ] ⇒ δ[Q ]. For a local state δ consisting of substitutions ai �→ vi and
l j �→ u j (for ai and l j ranging over fields and method local variables) we may rename vi and u j to ai and l j respectively,
and obtain

P ⇒ Q

for all ai and l j and H. For a given postcondition Q , the weakest possible precondition satisfying this is Q . Therefore
the axiom {Q }skip{Q } defines the weakest precondition. Thus soundness follows and completeness also follows since the
precondition of the axiom is the weakest possible according to validity, and since any stronger precondition can be obtained
by the imp rule.

Assignment statement. The operational semantics of assignment statement is given by

o �→ ob(δ, v := e; s)
empty−−−→ o �→ ob(δ[v := e], s)

As explained above, |� {P } v := e {Q } reduces to δ[P ] ⇒ δ[v := e][Q ] which (as explained for skip) reduces to

P ⇒ Q v
e

(for all free variables). Thus, for postcondition Q the weakest possible precondition is Q v
e which is exactly what is stated

in the axiom {Q v
e } v := e {Q }.

Return statement. The operational semantics of the return statement is given by

o �→ ob(δ,put e)
〈← o,δ[future],δ[e]〉−−−−−−−−−−−→ o �→ ob(δ, empty)

δ[future ] �→ fut(δ[e])
As explained above, |� {P } put e {Q } reduces to

δ[P ] ⇒ δ[H := H · 〈← o, δ[future], δ[e]〉][Q ]
which is

P ⇒ Q H
H·〈←this,future,e〉

Thus, for postcondition Q the weakest possible precondition is

Q H
H ·〈← this,future,e〉

which is exactly the same as the precondition of the axiom {Q H
H ·〈← this,future,e〉} put e {Q }.

Query statement. The operational semantics of query statement is given by

u �→ fut(d)

o �→ ob(δ, v := get e; s)
if δ[e] = u

〈o �,u ,d〉−−−−−−→ u �→ fut(d)

o �→ ob(δ[v := d], s)

As explained above, |� {P } v := get e {Q } reduces to

δ[P ] ⇒ δ[v := d,H := H · 〈o �, e,d〉][Q ]
which, as explained above, reduces to

P ⇒ Q v,H
d,H ·〈this �,e,d〉

(for all d, H, and other free variables) which means

∀d . P ⇒ Q v,H
d,H ·〈this�,e,d〉

Since d may not occur in P , this reduces to

P ⇒ ∀d . Q v,H
d,H ·〈this�,e,d〉

Thus, for postcondition Q the weakest possible precondition is

∀d . Q v,H
d,H ·〈this�,e,d〉

which is exactly the same as the precondition of the axiom {∀v ′ . Q v,H
v ′,H ·〈this�,e,v ′〉} v := get e {Q }.
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Asynchronous method call statement. The abstract operational semantics of asynchronous method call is given by

o �→ ob(δ, fr := v!m(e); s)
H �→ h
if u /∈ id(h)

−→
o �→ ob(δ[fr := u], s)
u �→ msg(δ[v],m, δ[e])
H �→ h · 〈o → δ[v], u,m, δ[e]〉

As explained above, |� {P } fr := v!m(e) {Q } reduces to

δ[P ] ∧ u /∈ id(H) ⇒ δ[fr := u,H := H · 〈o → δ[v], u,m, δ[e]〉][Q ]
which is, assuming Q has WF as a condition according to Lemma 5,

P ⇒ ∀u . Q fr,H
u,H ·〈this →v,u,m,e〉

since WF implies uniqueness of future identities in invocation events. Thus, for postcondition Q the weakest possible
precondition is

∀fr′ . Q fr,H
fr′,H ·〈this →v,fr′,m,e〉

which is exactly the same as the precondition of the axiom {∀fr′.Q fr,H
fr′,H ·〈this →v,fr′,m,e〉} fr := v!m(e) {Q }.

New statement. The abstract operational semantics of object creation is given by

o �→ ob(δ, v := new C(e); s)
H �→ h
if o′ /∈ id(h)

−→
o �→ ob(δ[v := o′], s)
o′ �→ ob(δinit, init)
H �→ h · 〈o ↑ o′, C, δ[e]〉

As explained above, |� {P } v := new C(e) {Q } reduces to

δ[P ] ∧ o′ /∈ id(H) ⇒ δ[v := o′,H := H · 〈o ↑ o′, C, e〉][Q ]
which is, assuming Q has WF as a condition according to Lemma 5,

P ⇒ ∀v ′ . Q v,H
v ′,H ·〈o↑v ′,C,e〉

since WF implies uniqueness of object identities in object creation events. Thus, for postcondition Q the weakest possible
precondition is

∀v ′ . Q v,H
v ′,H ·〈o↑v ′,C,e〉

which is exactly the same as the precondition of the axiom {∀v ′ . Q v,H
v ′,H ·〈o↑v ′,C,e〉} v := new C(e) {Q }.

For each basic statement, we have now shown that the reasoning rule expresses the weakest possible precondition
according to the semantics. As explained, this ensures soundness and completeness. We have paid special attention to all
statements that involve futures and histories, apart from method declarations which are treated next.

7.1.2. Annotated method declarations
We first define validity of annotated method declarations, which has not been considered so far. Then we consider

soundness and completeness for reasoning about annotated method declarations.

Definition 10 (Validity of annotated method declarations).

|� {P } (m(x){var y; s}) {Q } � ∀o, g, g′′, y′, z .wf (g[H]) ∧ wf (g′′[H]) ∧
g′ o:s−→o g′′ ∧ loc(g,o)[P y

y′ ] ⇒ loc(g′′,o)[Q y
y′ ]

where y′ are fresh logical variables and g′ denotes g[H := H · 〈� o, future,m, x〉, y := default]. Here default represents the
default values of the appropriate types, and z is the list of logical variables other than y′ . The use of y′ reflects that y in P
and Q does not refer to the local variables y of the method.

To prove that the reasoning rule

method
{P y

y′ ∧ y = default} s {Q y
y′ }

{PH
H·〈�this,future,m,x〉} (m(x){var y; s}) {Q }
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is sound, we need to show that the validity of the premise implies the validity of the conclusion. The validity of the
conclusion reduces to

∀o, g′, g′′, y′, z .wf (g′[H]) ∧ wf (g′′[H ]) ∧ g′[y �→ default] o−→
o:s g′′ ∧ loc

(
g′,o

)[P y
y′ ] ⇒ loc(g′′,o)[Q y

y′ ]
which is exactly the validity of the premise. We therefore have

|� {PH
H·〈�this,future,m,x〉} (m(x){var y; s}) {Q } ⇔|� {P y

y′ ∧ y = default} s {Q y
y′ }

Thus the given Hoare rule is sound.
For completeness, we must prove

� {R} (m(x){var y; s}) {Q }
for any R and Q assuming

|� {R} (m(x){var y; s}) {Q } (2)

Taking P of the above equivalence as RH
pop(H)

we get

|� {(RH_pop(H))HH ·〈�this,future,m,x〉} (m(x){var y; s}) {Q } ⇔|� {(RH
pop(H))

y
y′ ∧ y = default} s {Q y

y′ }
which reduces to

|� {R} (m(x){var y; s}) {Q } ⇔|� {(RH
pop(H))

y
y′ ∧ y = default} s {Q y

y′ }
since (RH

pop(H)
)HH·〈�this,future,m,x〉 is the same as R . By (2) and the induction hypothesis (i.e., that completeness applies to

structurally simpler programs) we have

� {(RH
pop(H))

y
y′ ∧ y = default} s {Q y

y′ }
And the method proof rule gives us

� {R} (m(x){var y; s}) {Q }
Consequently, we have completeness for reasoning about annotated method declarations.

8. Addition of non-blocking queries and process control

We consider here an extension of the considered core language by constructs for process control, allowing conditional
and unconditional process release and release while waiting for a future to be resolved, thereby avoiding blocking.

suspend unconditional release
await b conditional release
x := await future releasing query
x := await o.m(e) releasing call

Conditional release allows releasing the processor while waiting for a condition b to be satisfied. Unconditional release may
be defined in terms of conditional release as follows:

suspend � await true

A releasing query allows releasing the processor while waiting for the future to be resolved. Similarly, a releasing call
statement releases while waiting for the call to be completed. A releasing call is defined in terms of releasing query, waiting
for the associated future:

x := await o.m(e) � v := o!m(e); x := await v

where v is a fresh future variable.
Thus it suffices to formalize conditional release and releasing query.

8.1. Operational semantics

The operational semantics is given in Fig. 9. The old rules for the core language are unchanged, apart from adding
the queue element to the objects considered in the rules. The old notion of wellformedness is already compatible with the
added statements. Notice that an idle object (i.e., an object with an empty statement list) may choose to continue processing
a suspended method activation from the queue, provided it is enabled, or start a new method activation by the old start
rule.
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await bool : o �→ ob((a|l),await b; s,q)
empty−−−−→ o �→ ob((a|empty), empty,q · (l,await b; s))

await fut : o �→ ob((a|l), x := await e; s,q)
empty−−−−→ o �→ ob((a|empty), empty,q · (l, x := await e; s))

choose bool : o �→ ob((a|l′), empty, (l,await b; s) · q)
empty−−−−→ o �→ ob((a|l), s,q)

if (a|l)[b] = true

choose fut : u �→ fut(d)

o �→ ob((a|l′), empty, (l, x := await e; s) · q)
empty−−−−→ o �→ ob((a|l), x := d; s,q)

u �→ fut(d)

if (a|l)[e] = u

Fig. 9. Operational rules for process control.

8.2. Axiomatic semantics

Let e is an expression denoting a future. For partial correctness reasoning, we may define x := await e by

suspend ; x := get e

since the effect of temporary blocking is not visible within partial correctness. Thus, {P } x := await e {Q } is the same as
{P } await true; x := get e {Q }. Hence, it remains to give reasoning rules for conditional release.

Reasoning over conditional release points can be done by means of the local invariant I . The invariant I must be proved
to hold after initialization and that it is maintained by each method. The rule below ensures that the invariant is reestab-
lished at release points.

{I ∧ L ∧ h0 = H} await b {b ∧ I ∧ L ∧ h0 ≤ H}
where L is an assertion referring to method parameters, local variables, and logical variables only. Thus the invariant pro-
vides information about the fields (and class parameters), and the local assertion L allows reasoning about local variables
and parameters. A logical variable h0 is used to express that the history may only be appended. Note that the triple
{h0 = H} s {h0 ≤ H} can be derived for all statements s.

The reasoning rule is somewhat simpler than in [17]. The present version of conditional release will release even when
the condition is satisfied.

8.3. Example

We reconsider the previous example, and show a more efficient implementation of the publish method, using a releasing
query statement to avoid blocking the proxy object. This allows a higher degree of concurrent activity.

Void publish(Fut<News> fut){
var News ns = None;
ns := await fut;
myClients!signal(ns);
if nextProxy = null then s!produce() else nextProxy!publish(fut) fi}

We are still able to prove the same local and global invariants as before, because the local invariants are defined by
means of subsequences of the history. In particular, the local history of the proxy object may grow at the process releasing
point which is between 〈� this, _, publish, u〉 and 〈this �, u,ns〉. Since the class invariant defined in Section 6 does not
require tight subsequence of history, the class invariant is maintained here.

9. Discussion

The setting of concurrent objects communicating solely by asynchronous method calls allows compositional reasoning in
a way which resembles sequential reasoning. The main complication compared to sequential reasoning is the manipulation
of the local history variable. Disjointness of alphabets for disjoint objects implies that local histories are disjoint, in the
sense that processing steps made by one object do not affect the invariants of other objects. This ensures local reasoning
inside each class, and composition of concurrent objects amounts to conjunction of invariants and relating local histories to
the global history. We have extended this framework to futures, supporting local reasoning about futures based on locally
visible events involving futures. Thus in order to obtain global knowledge about futures one relies on the composition rule.
We find that specification of futures is tightly connected to that of the objects creating and operating on the futures. Our
approach makes this possible.
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We have shown how to extend the framework to the high-level process control statements (suspension and await state-
ments) of the Creol/ABS languages, including constructs for fetching futures without blocking. This is useful to obtain more
efficient computations and to avoid deadlocks. It also opens up for local calls of the form x := await this.m(. . .) which
are then executed before x is assigned the resulting future. In contrast a local call of the form x := this.m(. . .) would dead-
lock since our semantics would block, as shown in Section 5.1. Reentrant handling of such local calls could be done as in
Creol [8]. However, efficient implementation and specialized reasoning of local calls are omitted here for simplicity reasons
as we focus on object interaction mechanisms.

Our setting does not allow remote access to fields, as found in several mainstream object-oriented languages including
Java and Spec� [22]. This would necessitate constructs for programming critical regions, for instance by means of locks
using a thread-based concurrency model. Remote field access would severely complicate our setting. In order to do com-
positional reasoning with histories one would need to consider read and write operations to shared variables [23,24], as
well as reasoning problems related to aliasing. Non-observable events would then be reflected in the histories, making both
specification and reasoning much more low-level and much more complicated. As an alternative to history-based specifica-
tions, several approaches for Java and Spec� use specifications with model variables. However, one needs more fine-grained
control of when a class invariant holds. Rather than invariants maintained by each methods body (and reestablished at
release points when considering suspend and await statements), one would need to consider invariants maintained by all
atomic statements, as in [23], or include explicit control of when an invariant holds, for instance based on packing and
unpacking of invariants as in [25].

Aliasing occurs when more than one variable refer to the same object. Therefore, if both variables v1 and v2 refer to
the same object o, modifications of v1 on o’s fields affect the value of the variable v2 as well. Thus with remote field
assignments the classical assignment axiom (as in Fig. 7) would not be sound. We consider a programming language in
which access to the internal state variables of other objects is only possible through remote method calls. This is the reason
why the classical assignment axiom is sound in our case.

Our setting extended with await statements allows callbacks, i.e., inside a method body one may make calls to the caller
object or other objects received as parameters. The implicit caller parameter (typed by a cointerface as in Creol) opens up
for callbacks to the caller object without passing that object as an explicit parameter [8]. An object o making a non-blocking
call, say x := await r.m(e), is free to handle such callbacks, since the execution of the caller is suspended. The callback
from r can then be executed as soon as any ongoing method execution of the object o reaches the end or a release point.
In this way callbacks are possible without reentry mechanisms. (As before, calls for which the future is not needed by the
caller, also allow callbacks, as was illustrated in the produce method of class Service in Fig. 3.) In contrast a callback from r
while the object o is blocking for some future would lead to deadlock. Therefore deadlock can be avoided if all queries are
non-blocking, i.e., using the await mechanism.

Furthermore, a blocking query made by an object o will not cause deadlock if the callee does not cause a query to o.
In order to get a syntactic guarantee for deadlock freedom, one could consider a partial ordering implying that there is no
circular query chain starting with a blocking query (considering the implicit queries defined by calls with dot-notation).
For simplicity we assume that each class has exactly one interface and we ignore complications with interface inheritance.
We may then consider a strict partial ordering of interfaces, and restrict (blocking and non-blocking) queries to smaller
interfaces according to the ordering. The body of a method used to implement a certain interface may query a future if
the associated callee has a smaller interface according to the ordering. A complication is that a query on a future may not
identify the callee (the object producing the future value). However, if the call introducing the future is in the same body,
one may statically associate a callee with the future. For futures appearing as formal parameters it suffices to consider all
possible callees associated with the corresponding actual parameters – in the whole program. (A similar discussion applies
to futures appearing as method results.) This gives a static approximation of the possible callees. When the callee is of
the same interface as the caller we may use the partial order implied by ownership, i.e., we may allow calls to (statically
known) child objects.

The example in Fig. 3 can be seen to be deadlock-free according to this strategy. Class Service has one blocking query
in method subscribe, given by the call lastProxy.add. This query is OK with ProxyI less than ServiceI. Class Proxy has one
blocking query in method add, given by the call nextProxy.add. This query is made to a child object of the same interface. In
method publish there is a query on fut, which is OK with ProducerI less than ProxyI, since prod is the (only) associated callee
of the corresponding actual parameter. From Appendix A, we see that the remaining classes are OK with NewsProducerI less
than ProducerI. Clearly, the interface ordering required is a proper partial order.

10. Related work

Models for asynchronous communication without futures have been explored for process calculi with buffered chan-
nels [11], for agents with message-based communication [26], for method-based communication [27], and in particular for
Java [28]. Reasoning about distributed and object-oriented systems is challenging, due to the combination of concurrency,
compositionality and object orientation. Moreover, the gap in reasoning complexity between sequential and concurrent,
object-oriented systems makes tool-based verification difficult in practice. A recent survey of these challenges can be found
in [29]. The present approach follows the line of work based on communication histories to model object communication
events in a distributed setting [29,10,30,17,31,32,11,33,24]. Objects are concurrent and interact solely by method calls and
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futures, and remote access to object fields are forbidden. Object generation is reflected in the history by means of object
creation events. This enables compositional reasoning of concurrent systems with dynamic generation of objects and aliasing
(while avoiding alias reasoning problems).

Futures, first introduced in Multilisp [5] are language constructs that improve concurrency and data flow synchronization
in a natural and transparent way. Some frameworks allow futures to be passed to other processes. Such shared futures are
called first class futures, which offer greater flexibility in application design and can significantly improve concurrency in
object-oriented paradigms. A reasoning system for asynchronous method communication without futures is introduced in
[17], from which we redefine the six-event semantics to reflect actions on first class futures, ending up with a five-event
semantics. The semantics provides a clean separation of the activities of the different objects, which leads to disjointness
of local histories. Thus, object behavior can be specified in terms of the observable interaction of the current object only.
This simplifies the model and the accompanied proof system, thereby reducing the gap between reasoning about sequential
systems and concurrent object-oriented systems. Especially, when reasoning about a class, it is not necessary to explicitly
account for the activity of objects in the environment. A class invariant defines a relation between the inner state and the
observable communication of instances, and can be verified independently for each class. The class invariant can be instan-
tiated for each object of the class, resulting in a history invariant over the observable behavior of the object. Compositional
reasoning is ensured as history invariants may be combined to form global system specifications. The composition rule is
similar to [17], which is inspired by previous approaches [33,24].

By creating unique references for method calls, the label construct of Creol [8] resembles futures, as callers may postpone
reading result values. Verification systems capturing Creol labels can be found in [29,31]. However, a label reference is local
to the caller, and cannot be shared with other objects. In [29], a compositional verification system for Creol is presented.

A reasoning system for asynchronous method calls and futures has been presented in [34], using a combination of global
and local invariants. Futures are treated as visible objects rather than reflected by events in histories. In contrast to our
work, global reasoning is obtained by means of global invariants, rather than by compositional rules. Thus the environment
of a class must be known at verification time. The completeness proof is based on a semantic characterization of the global
invariant in terms of futures and two history variables. One denotes the sequence of generated communication events,
which is updated by method calls, upon each method activation, and by each return statement. The other records the local
state in order to reason about the internal process queue.

A compositional reasoning system for ABS with futures has been presented in our earlier work [9] based on local com-
munication histories. We here show that a revised and simplified version of this system is sound and (relatively) complete
with respect to a revised version of an operational semantics which incorporates a notion of global communication history.
The present system is based on disjointness of events and uses five kinds of events, i.e., four related to futures and one for
object creation, which is a simplification compared to earlier work with disjoint events. Soundness of the composition rule
is studied in [20].

A compositional Hoare Logic for concurrent processes (objects) is presented in [35]. Soundness and relative completeness
are proved with respect to the operational semantics. Communication histories capture the sequences of output messages,
input messages and the generated object identities. History information is used in both the operational semantics and the
reasoning system. In contrast to the present work, communication is by message passing rather than by method interaction,
the objects communicate through FIFO channels, and futures are not considered.

In [36], a reasoning system for a subset of Eiffel is presented. Soundness and completeness of the reasoning system
is proved with respect to the given operational semantics. However, concurrency is not considered as the language is
sequential. Object orientation is the main focus, and in particular exception handling (but not futures) is included. In Eiffel,
so-called once routines cache the first execution result for the later received invocations, where the arguments are irrelevant.
Therefore, a “once routine” has less flexibility than the concept of shared futures in ABS.

11. Conclusion

In this paper we present a sound and relative complete compositional reasoning system for distributed objects with
shared futures, based on a general concurrency and communication model centered around concurrent objects, asyn-
chronous methods calls, and futures. This model is chosen due to advantages with respect to program reasoning, while
integrating asynchronous interaction and object orientation in a natural manner. Compositional reasoning is facilitated by
expressing object properties in terms of observable interaction between the object and its environment, recorded on com-
munication histories. Object generation is reflected in the history by means of object creation events. A method call cycle
with multiple future readings is reflected by four kinds of events, giving rise to disjoint communication alphabets for differ-
ent objects. Specifications in terms of history invariants may then be derived independently for each object and composed
in order to derive properties for concurrent object systems.

At the class level, invariants define relationships between class attributes and the observable communication of class
instances. The presented Hoare style system is proven sound and relatively complete with respect to the given operational
semantics. This system is easy to apply in the sense that class reasoning is similar to standard sequential reasoning, but
with the addition of effects on the local history for statements involving futures. In particular, reasoning inside classes is
not affected by the complexity of concurrency and synchronization; and one may express assumptions about inputs from
the environment when convenient.
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At the global level, the notion of wellformedness allows us to connect the information in the different local invariants
of each object, according to the natural event ordering (as expressed in Fig. 4). The notion of wellformedness and event
kinds are simpler than in earlier work, and thus local reasoning as well as global reasoning are simplified. The presented
reasoning system is illustrated by a version of the Publisher–Subscriber example. As seen in the example the presence of
future implies that specifications typically involve existentially quantified future identities to express causal relationships in
communication patterns. The example also shows that histories are highly expressive, letting projections and functions over
the history express minimal requirements.

An interpreter for the considered core language based on the operational semantics has been implemented in Maude,
including calculation of the global history. With the underlying tool support of Maude one can prototype and model check
programs written in the language with respect to properties involving local and global histories. An ABS reasoning system is
currently being implemented within the KeY framework at Technische Universität Darmstadt. The tool support from KeY for
(semi-)automatic verification is valuable for verifying ABS programs. The current axiomatic system has been integrated in
the tool. In [37] we compare initial experiments with this extension of the KeY system with the developed runtime checker
for ABS programs with futures.

Appendix A. Complete code of publisher–subscriber example

data News = E1 | E2 | E3 | E4 | E5 | None;

interface ServiceI{
Void subscribe(ClientI cl);
Void produce()}

interface ProxyI{
ProxyI add(ClientI cl);
Void publish(Fut<News> fut)}

interface ProducerI{
News detectNews()}

interface NewsProducerI{
Void add(News ns);
News getNews();
List<News> getRequests()}

interface ClientI{
Void signal(News ns)}

class Service(Int limit, NewsProducerI np) implements ServiceI{
ProducerI prod; ProxyI proxy; ProxyI lastProxy;
{prod := new Producer(np); proxy := new Proxy(limit,this); lastProxy := proxy; this!produce()}

Void subscribe(ClientI cl){lastProxy := lastProxy.add(cl)}

Void produce(){var Fut<News> fut := prod!detectNews(); proxy!publish(fut)}}

class Proxy(Int limit, ServiceI s) implements ProxyI{
List<ClientI> myClients := Nil; ProxyI nextProxy;

ProxyI add(ClientI cl){
var ProxyI lastProxy = this;
if length(myClients) < limit then myClients := appendright(myClients, cl)
else if nextProxy == null then nextProxy := new Proxy(limit,s) fi;
lastProxy := nextProxy.add(cl) fi; put lastProxy}

Void publish(Fut<News> fut){
var News ns = None;
ns = fut.get; myClients!signal(ns);
if nextProxy == null then s!produce() else nextProxy!publish(fut) fi}}
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class Producer(NewsProducerI np) implements ProducerI{
News detectNews(){
var List<News> requests := Nil; News news := None;
requests := np.getRequests();
while requests == Nil do requests := np.getRequests() od
news := np.getNews(); put news}}

class NewsProducer implements NewsProducerI{
List<News> requests := Nil;
Void add(News ns){requests := appendright(requests,ns)}
News getNews(){var News firstNews := head(requests); requests := tail(requests); put firstNews}
List<News> getRequests(){put requests}}

class Client implements ClientI{
News news := None;
Void signal(News ns){news := ns}}

We have here augmented the given core language with ABS syntax for data types.
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Abstract. In cloud computing, resources as files, databases, applica-
tions, and virtual machines may either scale or move from one machine
to another in response to load increases and decreases (resource deploy-
ment). We study a type-based technique for analysing the deployments
of resources in cloud computing. In particular, we design a type system
for a concurrent object-oriented language with dynamic resource cre-
ations and movements. The type of a program is behavioural, namely it
expresses the resource deployments over periods of (logical) time. Our
technique admits the inference of types and may underlie the optimisa-
tion of the costs and consumption of resources.

1 Introduction

One of the prominent features of cloud computing is elasticity, namely the
property of letting (almost infinite) computing resources available on demand,
thereby eliminating the need for up-front commitments by users. This elasticity
may be a convenient opportunity if resources may go and shrink automatically
at a fine-grain when user’s needs change. However, current cloud technologies
do not match this fine-grain requirement. For example, Google AppEngine auto-
matically scales in response to load increases and decreases, but it charges clients
by the cycles (type of operations) used; Amazon Web Service charges clients by
the hour for the number of virtual machines used, even if a machine is idle [2].

Fine-grained resource management is an area where competition between
cloud computing providers may unlock new opportunities by committing to more
precise cost bounds. In turn, such cost bounds should encourage programmers to
pay attention to resource managements (that is, releasing and acquiring resources
only when necessary) and allow more direct measurement of operational and
development inefficiencies.

In order to let resources, such as files or databases or applications or memo-
ries or virtual machines, be deployed in cloud machines, the languages for pro-
gramming the cloud must include explicit operations for creating, deleting, and
moving resources – resource deployment operations – and corresponding software
development kits should include tools for analysing resource usages. It is worth
to observe that the leveraging of resource management to the programming lan-
guage might also open opportunities to implement Service Level Agreements

? Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services.



(SLAs) validation via automated test infrastructure, thus offering the opportu-
nity for third-party validation of SLAs and assessing penalties appropriately.

We study resource deployment (in cloud computing) by extending a sim-
ple concurrent object-oriented model with lightweight primitives for dynamic
resource management. In our model, resources are groups of objects that can
be dynamically created and can be moved from one (virtual) machine to an-
other, called deployment components. We then define a technique for analysing
and displaying resource loads in deployment components that is amenable to be
prototyped.

The object-oriented language is overviewed in Section 2 by discussing in
detail a few examples. In Section 3, we discuss the type system for analysing
the resource deployments. Our technique is based on so-called behavioural types
that abstractly describe systems’ behaviours. In particular, the types we consider
record the creations of resources and their movements among deployment com-
ponents. They are similar to those ranging from languages for session types [7]
to process contracts [17] and to calculi of processes as Milner’s CCS or pi-
calculus [19, 20]. In our mind, behavioural types are intended to represent a
part of SLA that may be validated in a formal way and that support composi-
tional analysis. Therefore they may play a fundamental role in the negotiation
phase of cloud computing tradings.

The behavioural types presented in Section 3 are a simple model that may
be displayed by highlighting the resource load of deployment components using
existing tools. We examine this issue in Section 4. Related works are discussed
in Section 5.

The aim of this contribution is to overview our type system for analysing
resource deployments. Therefore the style is informal and problems and (our)
solutions are discussed by means of examples. The details of the technique, such
as the system for deriving behavioural types automatically and the correctness
results, can be found in the forthcoming full paper.

2 dcABS in a nutshell

Our study targets an ABS-like language. ABS [13] is a basic abstract, executable,
object-oriented modelling language with a formal semantics. In this language,
method invocations are asynchronous: the caller continues after the invocation
and the called code runs on a different task. Tasks are cooperatively scheduled:
every group of objects, called cog, has at most one active task at each time. Tasks
running on different cogs may be evaluated in parallel, while those running on the
same cog must compete for the lock and interleave their evaluation. The active
task of a cog explicitly returns the control in order to let other tasks progress.
Synchronisations between caller and callee is explicitly performed when callee’s
result is strictly necessary by using future variables (see [5] and the references
in there).

In our language, which is called dcABS, programmers may define a fixed num-
ber of (virtual) cloud computing machines, called deployment components (de-
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1 // class C declaration:
2 class C {

3 Bool m (C x) {

4 if (@this != @x) moveto @x else moveto d1;

5 return true; }

6 }

7

8 // available deployment components declaration:
9 data DCData = d0, d1, d2, d3;

10

11 //main statement:
12 C x1 = new cog C( ); moveto d1;

13 C x2 = new cog C( ); moveto d2;

14 C x3 = new cog C( ); moveto d3;

15 Fut<Bool> f1 = x1!m(x2);

16 Fut<Bool> f2 = x2!m(x3);

17 Bool b1 = f1.get;

18 Fut<Bool> f3 = x3!m(x2);

19 Bool b2 = f2.get;

20 Bool b3 = f3.get;

Table 1. A simple dcABS program

ployment component do not scale), and may use a very basic management of
resources that enables cogs movements from one deployment component to an-
other (cogs represents generic resources, such as group of computing entities,
databases, virtual memories and the corresponding management processes). In
dcABS, we also assume that method invocations are synchronised in the same
method body where they occur, except for the main statement. This constraint
largely simplifies the analysis and augment its precision because it reduces the
nondeterminism.

We illustrate the main features of dcABS by means of examples. The details of
the syntax and semantics of dcABS can be found in the (forthcoming) full paper.
Table 1 displays a simple dcABS program. Programs consist of three parts: (i) a
collection of class definitions, (ii) a declaration of the deployment components
that are available, and (iii) a main statement to evaluate. Classes contain field
and method declarations. In the above table, there is one class definition that
covers lines 2–6, the deployment components are declared at line 9, and the main
statement covers lines 12–20. The evaluation of the main statement is performed
in the special cog start that is located on the deployment component that is
declared first; in our example this is d0.

Line 12 contains a definition of dcABS: it creates a new object of class C in
a new cog, locally deployed, and stores a reference to the new object in the
variable x1. The subsequent statement moveto d1 specifies the migration of the

3



21 class D {

22 Bool move ( ) { moveto d1 ; return true ; }

23

24 Bool multi_create (Int n) {

25 if (n<=0) return true ;

26 else { D x = new cog D ( ) ;

27 Fut<Bool> f = x!multi_create(n-1) ;

28 Bool u = f.get ;

29 Fut<Bool> g = x!move( ) ;

30 Bool v = g.get ;

31 return true ; } }

32 }

Table 2. A dcABS recursive program

current cog, i.e. cog start, from the current deployment component d0 to the
deployment component d1.

Lines 15, 16 and 18 display method invocations. As mentioned above, in
dcABS invocations are asynchronous: the caller continues executing in parallel
with the called method, which runs in a dedicated task within the cog where
the receiver object resides. For example, line 15 corresponds to spawning the
instance of the body of method m in a new task that is going to run in the cog
of the object referred by x1. A future reference to the returned value is stored in
the variable f1 that has type Fut<Bool>. This means that the value is not ready
yet and, when it will be produced (in the future), it will have type Bool. Line 17
enforces the retrieval of such value by accessing to the corresponding future
reference and waiting for its availability, by means of the operation get. Since
method invocations are asynchronous, the two invocations in lines 15 and 16 are
executed concurrently. The invocation at line 15 is then synchronised at line 17,
but the one at line 16 may continue concurrently with the invocation of line 18,
until they are both synchronised.

The invocations in the main statement execute three instances of method
m. Every instance verifies if the receiver object is co-located with the argument
object and, in case, it performs either a deployment to let the corresponding cogs
be co-located or a deployment to the component d1. The expression @x of line 4
points to the deployment component where the (cog of the) object referred by x

resides.

Table 2 shows a class definition D with a recursive method multi_create. This
method creates n new cogs co-located with the caller object and moves them to
the deployment component d1.

Analysing the cog-deployment of the programs in Tables 1 and 2 is not
straightforward. For example, significant questions regarding Table 1 are: (i)
what is the cog-load of the component d1 during the lifetime of the main state-
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ment? (ii) Can the component d0 be garbage-collected after a while in order to
optimise resource usages? Let the main statement of Table 2 be

33 // available deployment components declaration:
34 data DCData = d0, d1 ;

35

36 //main statement:
37 D x = new cog D() ;

38 Fut<Bool> f = x!multi_create(10) ;

Then, an important question about Table 2 is: (iii) is there an upper bound to the
number of cogs deployed to d0? The technique we study in the following sections
lets us to answer to such kind of questions in a formal way.

3 Behavioural types for resource deployment

Our technique for analysing resource deployments in dcABS programs is mostly
based on our past experience in designing type inference systems for analysing
deadlock-freedom of concurrent (object-oriented) languages [8–10].

A basic ingredient of every type system is the definition of the association
of types with language constructs. The type system of dcABS associates an ab-
stract deployment behaviour to every statement and expression. Formally, the
association is defined by the typing judgment

Γ;n `c s : b B Γ ′;n′ (1)

to be read as: in an environment Γ and at a timestamp n, the statement s of an
object whose cog is c has a type b and has effects Γ ′ and n′. The pair Γ ′ and n′

is used to type the continuation. To explain (1), consider the line 12 of Table 1:

12 C x1 = new cog C( ); moveto d1;

The statement C x1 = new cog C( ); has two effects: (i) creating a new co-
located cog (with a fresh name, say c1) , and (ii) populating this new cog with a
new object whose value is stored in x1. As regards (i), there is a deployment of
the new cog at the deployment component where the current cog c resides. We
define this behaviour by means of the type

c1 7→ c

As regards (ii), we record (in the typing judgment) the name of the cog of x1.
In particular, variable assignment may propagate cog names throughout the
program and this may affect the behavioural types. That is, our type system
includes the analysis of aliases (c.f. Γ ′ in (1) is an update of Γ ). In particular,
in order to trace propagations of names, we associate to each variable a so-called
future record, ranged over by r and defined in Table 3. A future record may
be either (i) a dummy value -- that models primitive types, or (ii) a record
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r ::= -- | X | [cog :c, x:r] | fut(r) future record

b ::= 0 | 〈c 7→ c′〉n÷n | 〈c 7→ d〉n÷n | 〈C!m(r)→ r
′〉m÷n behavioural type

| b + b | b 8 b | 〈b〉m÷n

Table 3. Future records and behavioural types of dcABS

name X that represents a place-holder for a value and can be instantiated by
substitutions, or (iii) [cog :c, x :r], which defines an object with its cog name c and
the values for fields of the object, or (iv) fut(r), which is associated to method
invocations returning a value with record r. As regards Line 12, since C has no
field, we record in the environment Γ ′ of (1) the binding x1: [cog : c1], where c1
is a fresh cog name.

The statement moveto d1 corresponds to migrating the current cog (i.e. c) to
the deployment component d1. This is specified by the type

c 7→ d1.

The above ones are the basic deployment informations of our type system. We
next discuss the management of method invocations, which is the major difficulty
in the design of the type system. In fact, the execution of methods’ bodies
may change deployment informations and these changes, because invocations
are asynchronous, are the main source of imprecision of our analysis. Consider,
for example, line 15 of Table 1

15 Fut<Bool> f1 = x1!m(x2);

and assume that the environment Γ (and Γ ′) in (1) binds method m as follows

Γ (C.m) = ([cog : c], [cog : c′])→ --

where

– [cog : c] and [cog : c′] are the future records of the receiver and of the
argument of the method invocation, respectively,

– -- is the future record of the returned value (it is -- because returned values
have primitive type Bool).

(This association is defined during the typing of the method body – see below.)
The behavioural type of the invocation x1!m(x2) is therefore C!m([cog : c1], [cog :
c2])→ -- where Γ (x1) = [cog : c1] and Γ (x2) = [cog : c2].

There is a relevant feature that is not expressed by the type C!m([cog :
c1], [cog : c2]) → --. The task corresponding to the invocation x1!m(x2) must
be assumed to start when the invocation is evaluated and to terminate when
the operation get on the corresponding future is performed – cf. line 17. During
this interval, the statements of x1!m(x2) may interleave with those of the caller
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and those of the other method invocations therein – cf. line 16. To have a more
precise analysis, we label the type of line 15 with the (logical) time interval in
which it has an effect on the computation. Namely we write 〈b〉m÷n, where m
and n are the starting and the ending interval points, respectively. Our type
system increments logical timestamps in correspondence of

1. cog creations,
2. cog migrations,
3. and synchronisation points (get operations).

For example, the lines 15–20 of the code in Table 1 have associated timestamps

15 Fut<Bool> f1 = x1!m(x2); // timestamp: n
16 Fut<Bool> f2 = x2!m(x3); // timestamp: n
17 Bool b1 = f1.get; // timestamp: n
18 Fut<Bool> f3 = x3!m(x2); // timestamp: n+ 1
19 Bool b2 = f2.get; // timestamp: n+ 1
20 Bool b3 = f3.get; // timestamp: n+ 2

As a consequence, the behavioural type of the above code is

〈C!m(r1, r2)→ --〉n÷n 8 〈C!m(r2, r3)→ --〉n÷n+1 8 〈C!m(r3, r2)→ --〉n+1÷n+2

where r1, r2 and r3 are the record types of the objects x1, x2, and x3, respectively.
As we will see in Section 4, this will impact on the analysis by letting us to
consider all the possible computations.

The syntax of behavioural types b is defined in Table 3. Apart those types
that have been already discussed, b+b

′ defines the abstract behaviour of condi-
tionals, b 8 b′ corresponds to a juxtaposition of behavioural types, and 〈b〉m÷n
defines a behavioural type b to be executed in the interval m÷n. It is worth to
notice that it is the combination of intervals that models the sequential and the
parallel composition: two disjoint intervals specify two subsequent actions, while
two overlapping intervals specify two (possibly) parallel actions. This complies
with dcABS semantics where parallelism is not explicit in the syntax, but it is
generated by the (asynchronous) invocations of methods.

We next discuss the association of a method behavioural type to a method
declaration. To this aim, let us consider lines 3-5 of the code in Table 1:

3 Bool m (C x) {

4 if (@this != @x) moveto @x else moveto d1;

5 return true; }

The behaviour of m in C is given by (r, r′) {bm} → --, where r and r
′ are the

future records of the receiver of the method and of the argument, respectively,
bm is the type of the body and -- is the future record of the returned boolean
value. The records r and r

′ are formal parameters of m. Therefore, it is always
the case that cog and record names in r and r

′ do occur linearly and bind the
occurrences of names in bm. It is worth to notice that cog names occurring in bm

may be not bound. These free names correspond to new cog instructions.
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In the case of m in C, its type is:

([cog : c], [cog : c′]){〈c 7→ c′〉1÷1 + 〈c 7→ d1〉1÷1} → -- .

The behavioural type for the the main statement of Table 1 is:

〈c1 7→ start〉1÷1 8 〈start 7→ d1〉2÷2
8 〈c2 7→ start〉3÷3 8 〈start 7→ d2〉4÷4
8 〈c3 7→ start〉5÷5 8 〈start 7→ d3〉6÷6
8 〈C!m([cog : c1], [cog : c2])→ --〉7÷7
8 〈C!m([cog : c2], [cog : c3])→ --〉7÷8
8 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

We conclude this section with the typing of the code in Table 2. Method move

in D has type:

([cog : c]) {〈c 7→ d1〉1÷1} → --

Method multi_create in D has type:

([cog : c], --) { (2)

0 +

〈c′ 7→ c〉1÷1 8 〈D!multi create([cog : c′], --)→ --〉2÷2
8〈D!move([cog : c′])→ --〉3÷3

} → --

We notice that the then-branch is typed with 0. In fact, it does not affect the
method behaviour since it does not contain any deployment information nor
method invocation.

4 Analysis of behavioural types

The analysis of behavioural types defined in Section 3 highlights the trend of cog
numbers running in each deployment component over a period of (logical) time.
More specifically, behavioural types are used to compute the abstract states of
a system that record the deployment of cogs with respect to components. The
component load is then obtained by projecting out the number of cogs in a state,
which can be visualised by means of a standard graphic plotter program.

A primary item of this programme is the definition of the semantics of
behavioural types. To this aim we use deployment environments Σ that map
cog names to sets of deployment components. For example [start 7→ {d0}] is
the initial deployment environment. Behavioural types’ semantics is defined by
means of a transition system where states are triples

(
Σ, b, n

)
and transitions

(
Σ, b, n

) m÷m′−→
(
Σ′, b′, n′

)
are defined inductively according to the structure
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of b. The basic rules of the transition relation are

(MoveTo-c)(
Σ, 〈c 7→ c′〉m÷m, n

) m÷m−→
(
Σ[c 7→ Σ(c′)], 0, max (m,n)

)

(MoveTo-d)(
Σ, 〈c 7→ d〉m÷m, n

) m÷m−→
(
Σ[c 7→ {d}], 0, max (m,n)

)

(Invk)

C.m = (r){bm}r′ var(bm) \ var(r, r′) = c c′ are fresh

bm[c
′
/c][s, s

′
/r, r′] = b

′

(
Σ, 〈C!m(s)→ s

′〉m÷m′ , n
) m÷m′−→

(
Σ, 〈b′〉m÷m′ , max (m,n)

)

The rules (MoveTo-c) and (MoveTo-d) update the deployment environment
and return a null behavioural type. Rule (Invk) deals with method invocations
and, apart from instantiating the formal parameters with the actual ones, it cre-
ates fresh cog names that correspond to the new cog operations in the method
body. The inductive rules (that are omitted in this paper) lift the above tran-
sitions to structured behavioural types. In particular, let m ÷ n � m′ ÷ n′ if
and only if n < m′ (� is a partial order). The rule for b1 8 · · · 8 bk enables a

transition
m÷n−→ provided m÷ n is �-minimal in the set of transitions of b1, · · · ,

bk.
In order to illustrate the operational semantics of behavioural types we dis-

cuss the transitions of the type of the main statement in Table 1:

b0 = 〈c1 7→ start〉1÷1 8 〈start 7→ d1〉2÷2
8 〈c2 7→ start〉3÷3 8 〈start 7→ d2〉4÷4
8 〈c3 7→ start〉5÷5 8 〈start 7→ d3〉6÷6
8 〈C!m([cog : c1], [cog : c2])→ --〉7÷7
8 〈C!m([cog : c2], [cog : c3])→ --〉7÷8
8 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

Let Σ0 = [start 7→ d0]. According to the semantics of behavioural types, we have

(
Σ0 , b0, 0

) 1÷1−→
(
Σ1 , b1, 1

) 2÷2−→
(
Σ2 , b2, 2

) 3÷3−→
(
Σ3 , b3, 3

) 4÷4−→
(
Σ4 , b4, 4

)
5÷5−→

(
Σ5 , b5, 5

) 6÷6−→
(
Σ6 , b6, 6

)

where, at each step 1 ≤ i ≤ 6, the type that is evaluated is the one with
interval i÷ i, the deployment environment Σ6 is [start 7→ {d3}, c1 7→ {d0}, c2 7→
{d1}, c3 7→ {d2}], and the type b6 is 〈C!m([cog : c1], [cog : c2]) → --〉7÷7 8
〈C!m([cog : c2], [cog : c3])→ --〉7÷8 8 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

In Figure 1 we have drawn the computations starting at
(
Σ6, b6, 6

)
. Here we

discuss the rightmost computation. In
(
Σ6, b6, 6

)
, the two transitions that are

possible are the method invocations with intervals 7÷ 7 and 7÷ 8. We perform
the one with interval 7 ÷ 8 and, by rule (Invk), we get

(
Σ6, b8, 7

)
, where

b8 = 〈C!m([cog : c1], [cog : c2]) → --〉7÷7 8 〈〈c2 7→ c3〉1÷1 + 〈c2 7→ d1〉1÷1〉7÷8 8
〈C!m([cog : c3], [cog : c2])→ --〉8÷9.
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(
Σ6 , b6, 6

)

(
Σ6, b7, 7

) (
Σ6, b8, 7

)

(
Σ7, b9, 7

) (
Σ6, b10, 7

) (
Σ6, b11, 7

) (
Σ8, b11, 7

)

(
Σ7, b13, 8

) (
Σ7, b12, 7

) (
Σ6, b14, 7

) (
Σ8, b14, 7

)

(
Σ9, b16, 8

) (
Σ7, b15, 8

) (
Σ7, b17, 7

) (
Σ10, b17, 7

) (
Σ11, b17, 7

)

(
Σ9, b18, 8

) (
Σ7, b19, 8

) (
Σ10, b19, 8

) (
Σ11, b19, 8

)

(
Σ9, 0, 8

) (
Σ10, 0, 8

) (
Σ12, 0, 8

) (
Σ11, 0, 8

) (
Σ13, 0, 8

)

7÷7 7÷8

7÷7 7÷8 7÷7 7÷
8

7÷8

8÷9 7÷8 7÷7 7÷
8

7÷8

7÷7
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8

7÷8

7÷7
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8÷9 7÷
8

7÷8

8÷9

8÷9 8÷
9

7÷
8

8÷9
8÷9 8÷9 8÷9 8÷
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Fig. 1. An example of transition system of behavioural types

At this point there are three options: the method invocation with interval
7÷7 or the evaluation of either 〈c2 7→ c3〉1÷1 or 〈c2 7→ d1〉1÷1, both with interval
7÷ 8 because underneath a 〈·〉7÷8 context.

By evaluating 〈c2 7→ c3〉1÷1, one obtains
(
Σ8, b11, 7

)
, where Σ8 is [start 7→

{d3}, c1 7→ {d0}, c2 7→ {d2}, c3 7→ {d2}]. and b11 is 〈C!m([cog : c1], [cog : c2])→
--〉6÷6 8 〈C!m([cog : c3], [cog : c2])→ --〉7÷8.

In
(
Σ8, b11, 7

)
only one transition is possible: the method invocation with

interval 7÷7. Therefore one has
(
Σ8, b14, 7

)
, where b14 = 〈〈c1 7→ c2〉1÷1+〈c1 7→

d1〉1÷1〉7÷7 8 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.
In the state

(
Σ8, b14, 7

)
the possible transitions are those of the type

〈〈c1 7→ c2〉1÷1 + 〈c1 7→ d1〉1÷1〉7÷7. By letting 〈c1 7→ d1〉1÷1 move, one has(
Σ11, b17, 7

)
, where Σ11 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→

{d2}] and b17 = 〈C!m([cog : c3], [cog : c2]) → --〉8÷9. Finally, by performing
two transitions labelled 8÷ 9, one first unfolds the method invocation and then
evaluates the corresponding body 〈〈c3 7→ c2〉1÷1 + 〈c3 7→ d1〉1÷1〉8÷9. By letting
〈c3 7→ d1〉1÷1 move, the computation terminates with a deployment environment
Σ13 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→ {d1}].

Given a transition system T as the one illustrated in Figure 1, it is possible
to compute the abstract trace, i.e. the sequence Σ(0) ·Σ(1) ·Σ(2) · · · where Σ(i)
is the deployment environment

Σ(i) : c 7→ ∪{Σ(c) | there is b such that
(
Σ, b, i

)
∈ T } .
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For example, letting the deployment environments of Figure 1 be

Σ6 = [start 7→ {d3}, c1 7→ {d0}, c2 7→ {d1}, c3 7→ {d2}]
Σ7 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d1}, c3 7→ {d2}]
Σ8 = [start 7→ {d3}, c1 7→ {d0}, c2 7→ {d2}, c3 7→ {d2}]
Σ9 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d1}, c3 7→ {d1}]
Σ10 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→ {d2}]
Σ11 = [start 7→ {d3}, c1 7→ {d2}, c2 7→ {d2}, c3 7→ {d2}]
Σ12 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→ {d1}]
Σ13 = [start 7→ {d3}, c1 7→ {d2}, c2 7→ {d2}, c3 7→ {d1}]

we can compute the cog trend for each deployment component. Let Σ(i)|d def
=

{c | d ∈ Σ(i)(c)}. Then

Σ(i)|d d0 d1 d2 d3

Σ(0) start ∅ ∅ ∅
Σ(1) c1, start ∅ ∅ ∅
Σ(2) c1 start ∅ ∅
Σ(3) c1 c2, start ∅ ∅
Σ(4) c1 c2 start ∅
Σ(5) c1 c2 c3, start ∅
Σ(6) c1 c2 c3 start
Σ(7) c1 c1, c2 c1, c2, c3 start
Σ(8) ∅ c1, c2, c3 c1, c2, c3 start

Graphically (note that d0 starts at level 1, since at the beginning it contains the
“start” cog):
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We conclude our overview by discussing the issue of recursive invocation. To
this aim, consider the type (2) of the method multi_create in Table 2 and the
main statement

D x = new cog D( ); Fut<Bool> f = x!multi_create(4); Bool b = f.get;

whose type is:

b
r
0 = 〈cr1 7→ start〉1÷1 8 〈D!multi create([cog : cr1], --)→ --〉2÷2

Being d0 and d1 the two declared deployment components, we obtain the fol-
lowing computation:
(
[start 7→ {d0}] , br0, 0

)
1÷1−→

(
[start 7→ {d0}, cr1 7→ {d0}] , br1, 1

)
2÷2−→ 2÷2−→

(
[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d0}] , br3, 2

)
2÷2−→ · · · 2÷2−→

(
[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d0}, · · · , crn−2 7→ {d0}] , brn, 2

)
2÷2−→ 2÷2−→

(
[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d0}, · · · , crn−2 7→ {d1}] , brn+2, 2

)
2÷2−→ · · · 2÷2−→

(
[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d1}, · · · , crn−2 7→ {d1}] , 0, 2

)

where

b
r
1 = 〈D!multi create([cog : cr1], --)→ --〉2÷2

b
r
2 = 〈 〈cr2 7→ cr1〉1÷1 8 〈D!multi create([cog : cr2], --)→ --〉2÷2

8〈D!move([cog : cr2])→ --〉3÷3 〉2÷2
b
r
3 = 〈 〈D!multi create([cog : cr2], --)→ --〉2÷2 8 〈D!move([cog : cr2])→ --〉3÷3

〉2÷2
· · ·
b
r
n = 〈 〈〈· · · 〈〈D!move([cog : cr(n−2)])→ --〉3÷3〉2÷2

8〈〈D!move([cog : cr(n−3)])→ --〉3÷3 · · · 〉2÷2
8〈D!move([cog : cr3])→ --〉3÷3〉2÷2 8 〈D!move([cog : cr2])→ --〉3÷3
〉2÷2

b
r
n+2 = 〈 〈〈· · · 〈D!move([cog : cr(n−3)])→ --〉3÷3 · · · 〉2÷2

8〈D!move([cog : cr3])→ --〉3÷3〉2÷2 8 〈D!move([cog : cr2])→ --〉3÷3
〉2÷2

We observe the following two facts: first, every transition, except the initial one,
is at logical timestamp 2, because only the outermost interval is observable, while
the nested intervals are only relevant to specify the order of events at the same
level of nesting; second, in case of recursion the specified behaviour is potentially
infinite and parameterised by the number n of transitions, which depends on the
number of recursive invocations.

In visualising the results of the analysis, these two aspects pose some ques-
tions: the first one may lead us to flatten all the events at timestamp 2 as they
happened in parallel, while if observing carefully the computation we notice the
events follow a strict sequence; the second one may make it difficult to graph-
ically represent the unbounded behaviour. To address the first point, we don’t
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simply rely on the label of the transition to recognise the state of the computa-
tion, but at each interval the visualiser performs a sort of zoom in, so to magnify
the nested behaviour. The result is the sequentialised behaviour depicted below.
To address the second one, we just approximate the behaviour by letting at most
n nested recursive invocations. The corresponding graphs are as follows, fixing
n = 8, (note that d0 starts at level 1, since at the beginning it contains the
“start” cog):
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In this case, the recursive behaviour corresponds to a pick of deployed cogs in
the interval 2 ÷ 3. This pick grows according to the value of n. The interesting
property we may grasp from the graphs for d0 is that, the upward pick in the
interval 1÷ 2 corresponds to a downward pick in the same interval of the same
length. This is due to the property that, for each increment in that interval,
there is a decrement, thus leaving unchanged the number of cogs in d0 (which is
2). A different behaviour is manifested by the graph of the component d1. In this
case, there is a growing increment of deployed cogs according to the increasing
of n. The rightmost function lets us derive that the deployment component d1

may become critical as the computation progresses.

5 Related work

Resource analysis has been extensively studied in the literature and several meth-
ods have been proposed, ranging from static analyses (data-flow analysis and
type systems) to model checking. We discuss in this section a number of related
techniques and the differences with the one proposed in this paper.

A well-known technique is the so-called resource-aware programming [21] that
allows users to monitor the resources consumed by their programs and to express
policies for the management of such resources in the programs. Resource-aware
programming is also available for mainstream languages, such as Java [4]. Our
typing system may integrate resource-aware programming by providing static-
time feedbacks about the correctness of the management, such as full-coverage
of cases, correctness of the policies, etc.

Other techniques address resource management in embedded systems and
mostly use performance analysis on models that are either process algebra [18], or
Petri Nets [23], or various types of automata [24]. It is also worth to remind that
similar techniques have been defined for web services and business processes [6,
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22]. Usually, all these approaches are invasive because they oblige programmers
to declare the cost of transitions in terms of time or in terms of a single resource.
On the contrary, our technique does not assign any commitment to programmers,
which may be completely unaware of resources and their management.

In [1] a quantified analysis targets ABS programs and returns informations
about the different kinds of nodes that compose the system, how many instances
of each kind exist, and node interactions. A resource analysis infers upper bounds
to the number of concrete instances that the nodes and arcs represent. (The anal-
ysis in [1] does not explicitly support deployment components and cog migration;
however we believe that this integration is possible.) An important difference of
this analysis with respect to our contribution is that our behavioural types are
intended to represent a part of SLA that may be validated in a formal way and
that support compositional analysis. It is not clear if these correspondence with
SLA is also possible for the models of [1].

A type inference technique for resource analysis has been developed in [11,12].
They study the problem of worst-case heap usage in functional and (sequential)
object-oriented languages and their tool returns functions on the size of inputs
of every method that highlight the heap consumption. On the contrary, our
technique returns upper bounds disregarding input sizes. However, we think it
is possible to extend our types to enable a transition system model that support
the expressivity of [12] (our current analysis of behavioural types is preliminary
and must be considered as a proof-of-concept). In these regards, we plan to
explore the adoption of behavioural types that depends [3] on the input data of
conditions in if-statements. We observe, anyway, that the generalisation of the
results in [11,12] to a concurrent setting has not been investigated.

Kobayashi, Suenaga and Wischik develop a technique that is very close to
the one in this paper [16]. In particular, they extend pi-calculus with primi-
tives for creating and using resources and verify whether a program conforms
with resource usage declarations (that may be also automatically inferred). A
difference between their technique and the one in this paper is that here the re-
source analysis is performed ex-post by resorting to abstract transition systems
of behavioural types, while in [16] the analysis is done during the type check-
ing(/inference). As discussed in [9], our technique is in principle more powerful
than those verifying resource usage during the checking/inference of types.

6 Conclusions

This work is a preliminary theoretical study about the analysis of resource de-
ployments by means of type systems. Our types are lightweight abstract descrip-
tions of behaviours that retain resource informations and admit type inference.

The analysis of behavioural types that has been discussed in Section 4 is
very preliminary. In fact, in Example 2, the resource analysis depends on the
input value of the method multi_create. In these cases, a reasonable output of
the analysis is a formula that defines the cog-load of deployment components
according to the actual value in input. As discussed in Section 5, we intend to
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investigate more convenient behavioural type analyses, possibly by using more
expressive types, such as dependent ones [3].

One obvious research direction is to apply our technique for defining an in-
ference system for resource deployment in programming languages, such as ABS

or core ABS, and prototyping it with a tool for displaying the load of deployment
components. The programme is similar to the one developed for deadlock analy-
sis [10]. The next step is then the experiment of the prototype on real programs
in order to have assessments about its performance and precision.

We also intend to study the range of application of type system techniques
when resources are either cloud virtual machines, or CPU, or memory, or band-
width. The intent is to replace/complement the simulation techniques used
in [14,15] with static analysis techniques based on types.
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