I-, NVISAGE.

Project N°: FP7-610582
Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services
Instrument: Collaborative Project
Scheme: Information & Communication Technologies

Deliverable D1.1
D1.1 Modeling of Systems

Date of document: T12

SEVENTH FRAMEWORK
PROGRAMME

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: CWI

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU

Public

PP

Restricted to other programme participants (including Commission Services)

RE

Restricted to a group specified by the consortium (including Commission Services)

CcO

Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
D1.1 Modeling of Systems

This document summarises deliverable D1.1 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eul

D1.1 is about modeling basic features of systems of distributed services, and addresses work package
objective O1.1: Formal models of scalable service infrastructures and service discovery.
This deliverable describes extensions of the ABS modeling language along the following directions:

1. We add fault models, exceptions and fault recovery to ABS.
2. We introduce basic service discovery mechanisms based on object-oriented interfaces.

3. We introduce explicit modeling support for scalable service infrastructure such as the dynamic creation
and management of virtual machines, the (re-)allocation of services, and the management of failures
based on abstract failure models.

This deliverable further involves the development of flexible communication, synchronization and composition
mechanisms which provide extension points for the integration of resource models (as developed in Task T'1.2).

The deliverable focusses on consolidating and documenting the ABS language as it exists today, and
mapping out the design space for the above extensions. The implementation process is guided by the needs
of the case studies in Work Package 5.

List of Authors

Frank de Boer (CWI)
Nikolaos Bezirgiannis (CWI)
Vlad Serbanescu (CWI)
Einar Broch Johnsen (UIO)
Gianluigi Zavattaro (BOL)

http://www.envisage-project.eu

Contents

|1 Technical Summary|

|2 Introduction: The ABS Language]

I3 Service-Oriented Concepts and Object Orientation|

3.1 Introduction|.
[3.2 Groups and Services|
2. ntax|. e e
[3.2.2 Examplel.
[3.3 Integration into ABS|
|4 Fault Model Design Space for Cooperative Concurrency|
[4.1 How Are Faults Represented?|
|1|2 !! llill 1'{; l11§: Bg:lli!!iszl !2t I“Llll!{i‘fl
[4.3 How Do Faults Propagate?]
[4.4 Erlang-Style Error Recovery|o oo oo
5 _ABS Extensions|
[>.1 Faults and recovery|.
[>.2 Deployment Components|. oo
[5.3 Service Discovery| e
6 ABS Documentationl

ossar

[A.1 A Formal Model of Service-Oriented Dynamic Object Groups|
[A.2 Fault Model Design Space for Cooperative Concurrency|
[A.3 Erlang-style Error Recovery for Concurrent Objects with Cooperative Scheduling]

E

13
13
14
15

17

17

19

20
20
65

99

Chapter 1

Technical Summary

The main technical contents of D1.1 consists of the three main appendices:

1. Service-Oriented Concepts and Object Orientation, based on one paper [9], included in Appendix .

2. Fault models for concurrent objects, based on two papers: Fault Model Design Space for Cooperative
Concurrency [10], included in Appendix and Erlang-style Error Recovery for Concurrent Objects
with Cooperative Scheduling [4], included in Appendix

3. ABS Documentation, included in Appendix [B]

The first two appendices describe the general design space of language features modeling service dis-
covery mechanisms and fault generation and recovery mechanisms. The last appendix provides a detailed
documentation of the the ABS language and its current available backends.

The remaining chapters of this deliverable provide a general overview of these appendices and the actual
extensions to ABS language. In the next chapter of this deliverable we first provide an informal high-
level introduction into the core ABS language. Chapter [3] provides a general overview of appendice [A]
Chapter [provides a general overview of appendices and Chapter [5| describes the actual choices
made in extending the ABS language with service discovery, fault generation and recovery, and deployment
components for the dynamic creation of virtual machines. Finally, chapter [6] briefly describes the ABS
documentation.

Chapter 2

Introduction: The ABS Language

We present a brief overview of the core ABS language ABS [7]. This language is based on concurrent
objects which communicate by means of asynchronous method calls and which internally support cooperative
scheduling. The language consists of a functional and an imperative layer, described below.

Imperative layer. The imperative layer is used to describe the distributed control flow of the concurrent
objects in terms of communication, synchronization, and internal computation. A program P consists of
data type definitions, function definitions, interface definitions, class definitions, and a main block. Interface
and class definitions, as well as method signatures have a standard syntax, resembling Java. Interfaces may
extend other interfaces, in which case they include the signatures of their super-interfaces. Statements have
access to the attributes of the current class, locally defined variables, and the formal parameters of the
method they describe. Types and implementations are kept distinct: only interfaces can be used to type
object references; classes are not types and are used to create object instances. ABS interfaces ensure strong
encapsulation of implementation details so the language does not need any other mechanism for hiding.

Concurrent objects execute processes from a process queue. These processes stem from method acti-
vations. The concurrent objects we consider support cooperative scheduling, which means that inside the
object’s monitor an active process can choose to explicitly suspend its execution to allow another process
from the queue to execute. This way, the interleaving of processes inside a concurrent object is textually
controlled by the programmer, yet flexible and state-dependent interleaving is supported; for example, a
process may suspend its execution while waiting for a reply to a method call. So-called "concurrent object
groups" (gocs) define dynamic groups of objects which share control.

Asynchronous method calls generate futures [2] which are dynamically generated entities used to store
the return value. Guards describe the conditions for state-dependent suspension, these are conjunctions
of Boolean expressions and reply guards which check a future for the presence of a return value. Await
statements suspend the current process if their guard evaluates to false (otherwise execution continues
normally).

Functional layer. This layer provides a high-level declarative way to describe computation which ab-
stracts from possible imperative implementations of data structures. The ground types are the basic types
(Booleans, numbers, strings), interfaces, and data types which may have type parameters. Types may be
type variables (i.e., uninterpreted type names [12]), ground types, or polymorphic data types. Data type
definitions associate a type name to constructors. Function definitions associate a name and a return type
to an expression. The expression is evaluated in the scope where the typed local variables are bound to the
function’s arguments. Functions may be polymorphic and require that the types are instantiated to ground
types. Expressions may be expressions of the basic types, ground constructor terms, or the application of a
constructor or a function to a list of expressions. The functional language further supports pattern matching
with a case-expression which matches an expression against a list of branches and can introduce new local
variables.

Chapter 3

Service-Oriented Concepts
and Object Orientation

3.1 Introduction

Services are autonomous, self-describing, technology-neutral software units that can be published, discovered,
queried, and composed into software applications at runtime. Designing and composing software services to
form applications or composite services, require abstractions beyond those found in typical object-oriented
programming languages. UlO has studied the integration of service-oriented concepts in an object-oriented
kernel language [9].

This chapter gives an overview of one possible solution in the design space for service discovery semantics
in object-oriented languages. We are interested in service-oriented concepts such as dynamically replacing
the implementations of an announced service by another implementation, allowing the client to dynamically
discover service providers and to query a service about its supported interfaces, etc.

3.2 Groups and Services

We investigate these concepts by developing a formal model of dynamic object-oriented groups which offer
services to their environment. These groups fit directly into the object-oriented paradigm in the sense that
they can be dynamically created, they have an identity, and they can receive method calls. In contrast to
objects, groups are not used for structuring code. A group exports its services through interfaces and relies
on objects to implement these services. Objects may join or leave different groups. Groups may dynamically
export new interfaces, they support service discovery, and they can be queried at runtime for the interfaces
they support. We define an operational semantics and a static type system for this model of dynamic object
groups, and show that well-typed programs do not cause method-not-understood errors at runtime.

We study an integration of service-oriented abstractions in an object-oriented setting by defining a kernel
object-oriented language with a Java-like syntax, in the style of Featherweight Java [5]. In contrast to
Featherweight Java, types are different from classes in this language: interfaces describe services as sets of
method signatures and classes generate objects which implement interfaces. By programming to interfaces,
the client need not know how a service is implemented. For this reason, the language has a notion of group
which dynamically connects interfaces to implementations. Groups are first-class citizens; they have identities
and may be passed around. An object may dynamically join a group and thereby add new services to this
group, extending the group’s supported interfaces. Objects may belong to several groups. Both objects and
groups may join and leave groups, thereby migrating their services between groups. Groups offer distribution
of work between the implementations of the group’s services, because a request to the group can be handled
by any object in the group.

Envisage Deliverable D1.1 D1.1 Modeling of Systems

Syntactic Categories. Definitions.

C : Class name P ==IF CLB

I :Interface name T ::=Void | Bool | Any | I | Group(I)

T : Type name IF ::=interface] extends I {Sg}

Zl I\\//laertizglde name CL ::=classC(T w)implements [{Tw; B M}

z :Local variable g/gf o gné([T)

w : Field n=wo8h

f :Field reference B u={T7%sr; }

e :Expression e u=v|xz|this

v :Value [n=thisw

s :Statement list r n=flz B . B
rhs :=e|new C(€) | newgroup | [yield] z.m(€)
trial ::= z subtypeOf I | x = acquire [in exceptZ | x leavesz as]
s u=skip|x =rhs| s;s|whilee{s;} |ife{s; }else {s;}

| try trial {s; } else {s; } | x joins z as I | spawn z.m/(€)

st u=]s;]returne

Figure 3.1: Kernel language syntax. Square brackets [| denote optional elements, and overline denotes
repetition (e.g., lists).

3.2.1 Syntax

The syntax of the studied language is given in Figure A group is a dynamically created abstraction to
which interfaces may be added over time. This way, its type may change during execution. Objects may
make method calls to either other objects or to groups (in fact, the client need not know that it is calling on
a group). We omit the detailed explanation of the kernel language (all details are provided in the attached
paper [9]), and focus on the language primitives studied in this work:

e The group creation expression newgroup dynamically creates a new, empty group which does not offer
any service to the environment.

e The optional keyword yield to a method call indicates a delegation mechanism such that the caller
releases its lock for the duration of the method call.

e The trial z subtypeOf I is used to query a known group z about its supported interfaces. The query
succeeds if z offers I (or a better interface), in which case the expanded knowledge of the group z
becomes available.

e The trial y = acquire I in x except T tries to find some group g or object o which is in the group z
and which offers a service better than I (in the sense of subtyping) and which is not in the set .

e Objects and groups x1 may try to withdraw services I from a group xo by the statement try z; leaves
x9 as I {s1;} else {s9; }. The withdrawal only succeeds if x5 continues to offer all the interfaces of I,
exported by other objects or groups.

The paper details the formalization of these abstractions in terms of a type system and an operational
semantics, and shows type soundness for the kernel language.

3.2.2 Example

We illustrate the dynamic organization of objects in groups by an example of software which provides text
editing support (inspired by [I3]). This software provides two interfaces: SpellChecker allows the spell-
checking of a piece of text and Dictionary provides functionality to update the underlying dictionary with
new words, alternate spellings, etc. Apart from an underlying shared catalog of words, these two interfaces
need not share state and may be implemented by different classes. Let us assume that the overall system
contains several versions of Dictionary, some of which may have an integrated SpellChecker. Consider a class

Envisage Deliverable D1.1 D1.1 Modeling of Systems

Group(SpellChecker,Dictionary) makeEditor() {
Group() editor; SpellChecker s; Dictionary d;
editor = newgroup;
try d = acquire Dictionary except Nil {skip;} else {d = new Dictionary;};
try d subtypeOf SpellChecker {

d joins editor as Dictionary, SpellChecker;
} else {

d joins editor as Dictionary;

s = new SpellChecker();

s joins editor as SpellChecker;
i
return editor;

}

Void replaceDictionary(Group(SpellChecker,Dictionary) editor, Dictionary nd){
Dictionary od;
nd joins editor as Dictionary;
try od = acquire Dictionary in editor except nd {skip;} else {skip;};
try od leaves editor as Dictionary {skip;} else {skip;};
return void;

implementing a text editor factory, which manages groups implementing these two interfaces. The factory has
two methods: makeEditor dynamically assembles such software into a text editor group and replaceDictionary
allows the Dictionary to be dynamically replaced in such a group. These methods may be defined as follows:

The method makeEditor acquires a top-level service d which exports the interface Dictionary (by omitting
the in-clause of the acquire statement, we mean that the service discovery happens in the global system).
If d also supports the SpellChecker interface, we let d join the newly created group editor as both Dictionary
and SpellChecker. As a consequence, the group editor will now support the two interfaces Dictionary and
SpellChecker. Otherwise d joins the editor group only as Dictionary, and at this point only the interface
Dictionary is supported by the group editor. In this case a new SpellChecker object is created and added to
the group as SpellChecker, such that the group also supports both interfaces in this execution branch.

The method replaceDictionary will replace a Dictionary service in a text editor group. First we add a new
Dictionary service nd to the editor group and then fetch an old service od in the group by means of an acquire,
where the except-clause is used to avoid binding to the new service nd. Finally the old service od is removed
as Dictionary in the group by a leaves statement. The example illustrates group management by joining and
leaving mechanisms as well as service discovery.

3.3 Integration into ABS

Whereas this work has studied service-oriented mechanisms in a multithreaded setting, the adaptation of
these concepts into ABS [7] does not result in particular challenges. However, to maintain the conceptual
focus of ABS, we do not initially propose to include the concept of groups into the language. In order to
support service discovery without the additional group-construct, we propose to support service discovery
by querying the deployment components which reflect the abstract locations of the architecture in an ABS
model. This is currently being implemented in the ABS backends and will be tested in the case studies.

Chapter 4

Fault Model Design Space
for Cooperative Concurrency

ABS is a modeling language targeting distributed systems [7]; the language combines concurrent objects
and asynchronous method calls with cooperative scheduling of method invocations. In ABS the basic unit of
computation is the concurrent object group (cog): a cog provides to a group of objects a shared processor.
Method invocations on an object of a cog instantiate a new task that requires the cog’s processor in order to
execute. Cooperative scheduling allows tasks to suspend in a controlled way at explicit points in the code, so
that other tasks of the object can execute. The suspend and await statements are used to explicitly release
the processor: the difference between the two statements is that await has an associated boolean guard
expressing under which condition the task should be re-activated by the scheduler. Asynchronous method
invocations are used among objects belonging to different cogs; at each asynchronous method invocation a
future is instantiated to store the return value. Futures are first class citizens in ABS and are accessed via a
get expression; get is blocking because a task, executing get on a future of a method invocation which has
not yet completed, blocks and keeps the processor until the future is written. To avoid keeping the processor,
one can use an await £7? to ensure that future £ contains a value.

It is common in the literature to distinguish errors due to the software design (sometimes called faults)
from random errors due to hardware (sometimes called failures). For software deployed on a single machine,
such hardware failures entail a crash of the program. A characteristic of distributed systems is that failures
may be partial [14]; i.e., the failure may cause a node to crash or a link to be broken while the rest of
the system continues to operate. In our setting, a strict separation between faults and failures may seem
contrived, and we will refer to unintended behavior caused by the software or hardware as faults. A fault is
masked if the fault is not detected by the client of the service in which the fault occurs. In hierarchical fault
models, faults can propagate along the path of service requests; i.e., a fault at the server level can result in a
(possibly different) fault at the client level. In a synchronous communication model, a client object can only
send one method call at the time whereas in an asynchronous communication model, the client may spawn
several calls. Thus, it may not be clear for a client object which of the spawned calls resulted in a specific
fault in the asynchronous case. However, asynchronous method calls in ABS allow results to be shared before
they are returned: futures are first-class citizens of ABS and may be passed around. First-class futures give
rise to very flexible patterns of synchronization, but they further obfuscate the path of service requests and
thus of fault propagation.

We consider how faults can be introduced into ABS in a way which is faithful to its native characteristics,
and discuss the appropriate introduction of faults along three dimensions: fault representation, fault behavior,
and fault propagation.

Envisage Deliverable D1.1 D1.1 Modeling of Systems

4.1 How Are Faults Represented?

Exceptions are the language entities corresponding to faults in an ABS program’s execution. ABS includes
two kinds of entities which in principle can be used to represent faults: objects and datatypes (datatypes [6]
are part of the functional layer of ABS, and abstract simple, common structures like lists and sets).

Exceptions as Objects. Representing exceptions as objects allows for a very flexible management of
faults. Indeed, in this setting exceptions would have both a mutable state and a behavior. Also, one could
define new kinds of exceptions using the interface hierarchy. Finally, exceptions would have identities allowing
to distinguish different instances of the same fault. However, most of these features are not needed for faults:
faults are generated and consumed, but they are static and with no behavior. Representing them as objects
would allow a programming style which does not match the intuition and is therefore difficult to understand.
Furthermore, in ABS static verification is a main concern and semantic clarity is more needed than in other
languages. For this reason we think that in the setting of ABS exceptions should not be objects.

Exceptions as Datatypes. User-defined exceptions could be added by simply defining new datatypes.
When the programmer wants to catch an exception, he has to specify which types of exceptions he can catch,
and do a pattern matching both on the type and on its constructor to understand which particular fault
happened. This produces a syntax like:

try { ... }
catch(List e) {
case(e) {
| Empty => ...
| Cons(v,e2) => ...
13
catch(NullPointerException e) { ... }
catch(_ e) { ... /* capture all exceptions x/ }

where a special syntax _ is needed to catch exceptions of any type, since there is no hierarchy for datatypes
in ABS.

4.2 What is the Behavior of Faults?

Faults interrupt the normal control flow of the program. A first issue concerning faults is how they are
generated. Concerning fault management, it is a common agreement that faults are manipulated with a
try/catch structure, and we do not see any reason to change this approach in our design for ABS. However,
after this choice has been taken, the design space is still vast and many questions still need to be investigated.

Fault Generation. In programming languages, faults can be generated either by an explicit command
such as throw f, where f is the raised fault, or by a normal command. For instance, when evaluating the
expression x/y a Division by Zero exception may be raised if y is 0. A third kind of exception may be
considered in ABS; due to distribution, an asynchronous method invocation could fail due to a failure of the
callee or of the communication medium. In these cases, the get statement (when executed on the future
corresponding to the failing asynchronous call) should raise the fault, since no return value is available. The
behavior of await depends on its intended semantics: if executing the statement await £? means that the
process whose result will be stored in f has successfully finished, then the await should generate a fault,
otherwise if executing await f7 gives only the guarantee that a subsequent f.get will not block, then all
faults can be raised by get exclusively.

Fault Effects. ABS supports modular correctness proofs based on object invariants which should hold

whenever a process releases the lock of the object. An uncaught fault releases the lock by killing the running
process; in this case the invariant is not guaranteed to hold, thus the object is no longer in a valid state.

10

Envisage Deliverable D1.1 D1.1 Modeling of Systems

For this reason the object executing the method could be killed (or restarted from an initial “correct” state
if one wants to avoid to propagate null ponter exceptions).

Effect Declaration. In classic programming languages, the only effect of an uncaught fault is to kill the
running process. However, we just discussed that also killing the whole object is a possible effect. One
may want to have different effects for different faults. One can have a keyword deadly specifying that a
given exception will kill the whole object if uncaught, while the behavior of just killing the process can be
considered the default behavior. We can see three possibilities here. Properties may be specified:

when an exception is declared: for instance, one may write

deadly exception NullPointerException

when an exception is raised: for instance, one may write

throw deadly NullPointerException

in the signature of the method raising the exception: for instance, one may write

Int calc(Int x) deadly: NullPointerException {...}

Notice that this last approach integrates well with the declaration of which faults a method may raise,
useful to statically verify that all exceptions are caught. In fact, one could write

Int calc(Int x) throws: DivisionByZero,
deadly NullPointerException {...}

More in general, this approach is useful also for the programmer, in particular when using methods he
did not write himself.

The current implementation uses the second approach: the statement abort (e) aborts the current process
only, resulting in a proof obligation for the object invariant at the point of execution. The statement die(e),
on the other hand, kills the object denoted by this; all other processes scheduled to be executing on the same
object are aborted as well, and future calls to the same object will result in a failure. Trying to read the
value of a future containing a fault e is equivalent to executing die(e).

Note that an enclosing try/catch block can decide to handle e in all the above cases, in which case no
process abort or object death will occur.

4.3 How Do Faults Propagate?

We have discussed in the previous section the effect of a fault on the process or object where it is raised.
However, in case of fault, in particular of uncaught fault, it is reasonable to propagate the exception also to
other processes/objects related to it. In particular, possible targets for propagation are processes interested
in the result of the computation.

Propagation through the Return Future. In a language with synchronous method invocation the
only process that can directly access the result of the computation is the caller. However, in languages
with asynchronous method invocation any process receiving the future can directly access the result of the
computation. The caller may be or may not be one of them, and indeed may even terminate before the result
of the computation becomes ready. Thus we discuss here notification of faults to the processes synchronizing
with the future. We have two possibilities: processes may synchronize with the future either with a get
or with an await statement. The case of get is clear: those processes are interested in the result of the
computation, in case of fault no correct result is available and those processes need to be notified so that
they can decide how to proceed. The natural way of being notified is that the same exception is raised by
get. A process doing an await is just interested in waiting for the computation to terminate, but not in

11

Envisage Deliverable D1.1 D1.1 Modeling of Systems

knowing its result. Thus we claim that, if the computation terminated, either with a normal value or with
an exception, the await should not block and the exception, if any, should not be raised. The exception
would be raised only if later on a get on the future is performed. This approach requires to put the fault
notification inside the future, and has been explored in the context of ABS in [§]. Indeed, this is also the
approach of Java future library (asynchronous computation with futures has been standardized in a Java
library since Java SE 5 [3]). In contrast to ABS, Java’s API does not distinguish between waiting for a
future to become available, and retrieving the results. In fact, no primitive like await is available in Java.
In addition, Java’s futures do not faithfully propagate exceptions: the get method on a faulty future always
raises the same exception ExecutionException.

4.4 Erlang-Style Error Recovery

One example of a robust (in the sense of fault-tolerant) distributed system implementation is the Erlang
OTP framework, exemplified in its gen_server module. The behavior of an OTP server w.rt. failures is
described as follows([1, pg. 362]):

This code provides “transaction semantics” in the server—it loops with the original value of
State if an exception was raised in the handler function. But if the handler function succeeded,
then it loops with the value of NewState provided by the handler function.

This transaction semantics is enabled by Erlang’s functional nature: servers handle requests in a serialized,
side-effect free manner (persistent side effects are encapsulated, e.g., in a database with its own transaction
semantics), and return both a result value to the client and an updated server state to the framework.

The paper [4] describes an operational semantics and implementation of Erlang-style rollback semantics
for the ABS language. The semantics are enabled by the key characteristic of ABS concurrency, namely that
processes that share state can never run at the same time. This means that a cog’s state can safely be rolled
back to the last scheduling point after the executing process crashes, preserving the local invariant. After
discussing the advantages and disadvantages of this approach, it was decided to implement conventional,
i.e., manual error recovery via the familiar try/catch/finally construct instead. The main reasons for this
decision were that rollback complicates the proof theory and thus places an undue burden on other parts of
the project; and that manual error recovery and correcting actions are necessary in general to preserve global
invariants, for example canceling the effects of asynchronous method calls to other parts of the system.

Another result of [4] — a description of Erlang-style process supervision and restarting of subsystems —
still applies to the language and will be investigated in the case studies. In brief, supervision in ABS makes
use of failure propagation through first-class futures to implement supervisors that detect crashes of other
parts of the model and implement appropriate recovery strategies.

12

Chapter 5

ABS Extensions

In this chapter we describe briefly the main extensions of the ABS related to fault generation and recovery,
deployment components and service discovery.

5.1 Faults and recovery

A feature that was previously lacking and recently added to the ABS language is the capability to generate
program faults and recover from them. This language extension came as a prerequisite to the support
for real-world deployments of ABS software. Faults commonly appear in real-world systems, especially in
distributed settings. Therefore, a robust mechanism in the form of exceptions was designed in place.

As a starting point for adding exceptions to ABS, the project undertook a survey of the design space; a
summary can be found in Chapter[d This section describes the extension that was subsequently implemented.

To be compatible with the functional core of the language, the exception type is modelled as an Algebraic
Data Type (ADT). A single open data type is introduced with the name Exception. The programmer can
extend this basic data type by augmenting it with user-specific exceptions (data constructors). The ABS
standard library also comes bundled with certain predefined system-level exceptions. The language, how-
ever, makes no distinction between system and user exceptions, synchronous and asynchronous exceptions.
Exceptions, similar to ADTs, take 0 or more arguments as exemplified:

exception MyException;

exception AnotherException(Int, String, Bool);

Furthermore, the language treats exceptions as first-class citizens; the user can construct exception-values,
assign them to variables or pass them in expressions. An exception can be explicitly raised with the throw
statement as:

{
throw AnotherException(3, "mplo");

}

When an exception is raised the normal flow of the program will be aborted. In order to resume ex-
ecution in the current process, the user has to explicitly *handle* the exception. This is achieved with a
try-catch-finally compound statement. Statements in the try block will be executed and upon a raised
exception the flow of execution will be transferred to the catch block, so as to handle (catch) the exception.

The catch block behaves similar to the case statement, with the only difference that the patterns can
only have the type Exception. Every exception pattern is tried in order and if there is a match, its associated
statements will be executed.

The catch block is followed by an optional finally block of statements, that will be executed regardless
of an exception happening or not.

The syntax is the following:

try {
stmt1l;

13

Envisage Deliverable D1.1 D1.1 Modeling of Systems

stmt2;

}

catch {
exception_patternl => stmt_or_block;
exception_pattern2 => ... ;

=> ...

}

finally {
stmt3;
stmt4;

}

If case there is no matching exception pattern, the optional "finally" block will be executed and the
exception will be propagated in turn to the parent caller, and so forth, until a match is made. In the case
that the propagation reaches the top-caller in the process call-stack without a successful catch, the process
will be abruptly exited. Processes that were waiting on the future of the exited process will be notified with
a ProcessExitedException.

The associated object where the exited process was operating on will remain live. That means, all other
processes of the same object will not be affected. There is, however, a consideration to introduce a special
exception case (named die) where the object and all of its processes are also exited.

5.2 Deployment Components

This section deals with extensions to ABS that model the deployment of a system onto (physical or virtual)
machines. As Envisage progresses, these deployment scenarios will also serve to model resource availability,
resource distribution and usage, runtime load patterns, etc.

A Deployment Component (DC) is a minimal description of the computing resources available to an ABS
application. We propose to extend this notion to allow any cloud resource that can properly be quantified
(for example memory, disk, network, etc). On the other hand, and in contrast to the original specification,
we restrict a DC to correspond solely to a Platform Virtual Machine (VM) — indeed, the terms DC and VM
are used interchangeably by our extension. We call each deployed ABS application of a separate DC/VM,
an ABS node. A running ABS program on the cloud will effectively form a distributed network of multiple
inter-communicating ABS nodes.

The most intuitive way to introduce the DC construct into the ABS language is by modeling it as an
object. An interface, named DC allows the dynamic creation of new DC objects. By having a common
interface, the different cloud backends can agree on a base service, while still being able to provide additional
functionality through distinct DC-interfaced classes. What follows is the DC interface, as declared in our
extension:

interface IDC {

Unit shutdown();

Triple<Rat,Rat,Rat> load();
}

Minimal implementation of DC is (1) shutting down the corresponding virtual machine and (2) probing
for its average system load, i.e. a metric for how busy the system stays in a period of time. We use the
Unix-style convention of returning 3 average values of 1, 5 and 15 minutes. In the case of (1), a VM
shutdown implies that its cloud resources are eventually freed. Each class interfacing DC implements a
different connection to a cloud-backend (IaaS platform). The intention is that the user will not have to
provide such class implementations since the implementation of deployment components will come bundled
with class libraries for common cloud-backend technologies (Amazon, OpenStack, Azure, etc). An example
of such a class is given leaving out its concrete implementation:

class DC(Int cpu, Int memory) implements IDC {

14

Envisage Deliverable D1.1 D1.1 Modeling of Systems

}

The above DC class corresponds to a cloud backend where the VM is parameterized by the number of cpu
cores and main RAM memory. We create an object of this class by passing the number of cores and memory
measured in MBs as class parameters.

After calling shutdown (), the DC object will point to null. Similar to “this” identifier, a method context
contains the “thisDC” (with type DC) that points to the DC host of the current executing object. An ABS
running node can thus control itself, getting its system load or shutting down its own machine. After creating
a new DC the user has to assign new running object in it. This is achieved with the infix keyword “spawns”,
as in the example:

Interfl ol = dcl spawns Clsl(params..);

ol ! methodl(params..);
this.method2(o1) ;

The newly-created object will “live” in the specified DC. The spawns behaves similar to the new keyword:
it creates a new COG, initializes the object, and optionally calls its run method. The ol identifier in the
above example is a so-called remote object reference, that can be called for its methods and passed around
in parameters as normal. Every remote object reference is a single “address” uniquely identified across the
whole network of nodes. It should be noted that a spawns call will block until the VM is up and running.

5.3 Service Discovery

Service discovery, the dynamic acquisition of a computing resource suitable to fulfill a specific task or group
of tasks, serves to decouple parts of a large distributed system. As such, service discovery is of interest to
the Envisage case studies since certain large, distributed system architectures can be modeled naturally in
this way. This section first briefly explains the basics of service discovery and lays out the design criteria for
integrating service discovery into the ABS language.

At its most basic, we see a service as a computing resource suitable to fulfill one or more specific tasks.
Since in ABS tasks are modeled via method calls, it makes sense to model services as ABS interfaces and
implement them using ABS objects. Note that in conventional object-oriented languages, objects and in-
terfaces might not be sufficient, but the ABS concepts of asynchronous calls, distribution via deployment
components, and safe parallel execution make ABS objects powerful enough to serve as services.

We augment the feature of “Deployment Components” with the ability of discovering available services
offered by a DC. As in (Appendix A.1) we adopt the notion of a service being represented by an ABS
interface. In a similar fashion, the “Object Group” is translated to a DC object.

The acquire , expose, and unexpose methods are added to the DC interface. Thus, the DC interface
becomes:

interface IDC {
Unit shutdown();
Triple<Rat,Rat,Rat> load();
A acquire<A>(4);
Unit expose<A>(A);

Unit unexpose<A>(A);
}

Both of the newly-introduced methods are parametrically-polymorphic; the programmer will instantiate
their types when using them, as the following example:

{

DC dcl = new NebulaDC(...);

MailService mail_server;

Fut<MailService> f = dc ! acquire(mail_server);
mail_server = f.get();

mail_server ! send_mail(...);

}

15

Envisage Deliverable D1.1 D1.1 Modeling of Systems

The acquire method takes as input a “phantom object”. The object is called phantom since the object’s
contents or reference are not actually send; the object is there only to give hints to the ABS compiler of what
is the Interface we want the acquired object to comply with. The phantom object can also be introduced
with a (nullary) declaration, as in the second line above: MailService mail_server;

The call to acquire makes a request to the DC, asking for a reference to an (possibly remote) object that
complies to such an interface/service. Upon processing the request, the DC searches through its directory
facility for object subscriptions that support such an interface. If there is no search match, the DC will raise
the ServiceNotFoundException and recorded in the future as a fault. If the match succeeds a reference to
a complying object is returned. The returned object reference from the call to acquire can then be assigned
back to the phantom object or any other object. This returned object reference is typed exclusively by the
mentioned Interface and the user cannot normally know which is the actual class name (class implementation)
behind it, unless this can be guessed through a method implementation.

An object can be subscribe to any DC’s directory facility through the expose method. For example:

WebService ws = this;
dc ! expose(ws);

Accordingly, an object can be unsubscribed for some of its services/interfaces with the unexpose method:

AdminService a = admin_object;
MyInterface m = this;

dc ! unexpose(m);

dc ! unexpose(admin_object);

Following the approach of phantom objects, the arguments to expose and unexpose are appropriately
type-checked against the available interfaces that the object (class) implements. If the programmer omits
such a phantom definition, the compiler will compute the object’s principal interface (the object passed
to acquire,expose,unexpose) through type-checking. If the ABS compiler cannot compute such a principal
interface, it will yield a type-checking error.

This peculiar design choice (of phantom objects) was made so as to not introduce any backwards-
incompatibilities (adding interfaces as first-class citizens) and further more builtin keyword-statements. A
further advantage is that the implementations of acquire and (un)expose methods can vary between DCs
and thus be specific to the underlying service discovery technology of the cloud provider.

Two-times (un)exposing will not yield a runtime exception and will be silently suppressed. Each DC keeps
track of its own subscribed objects and automatically unsubscribes them in case they fall out of context, i.e.
they have normally or erroneously exited.

16

Chapter 6

ABS Documentation

The ABS Documentation provides a clear well structured and easy to use description of the main features
introduced by the language in order to achieve the outcome of Task 1.1. We present the language similar to
a tutorial with examples associated with every new feature, starting from basic programming techniques to
features that control design and implementation of cloud applications or fault tolerance and recovery.

The documentation first presents the syntax for writing simple ABS programs, introducing names and
types for all variables. Second the documentation is structured based on the different programming paradigms
available in ABS with syntax and examples for every construct allowing the reader to follow and test their
own code straight away. Finally the backends implemented to run ABS programs are presented along with
the clear sequence of steps required to run compile and run a program in a specific backend. The live version
of the ABS Documentation is available at http://docs.abs-models.org/.

17

http://docs.abs-models.org/

Bibliography

[1]

2]

3]

4]

15]

[6]
7]

18]

19]

[10]

[11]

[12]

[13]

[14]

Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf, 2 edition,
2013.

Frank de Boer, Dave Clarke, and Einar Johnsen. A complete guide to the future. In Progr. Lang. and
Systems, volume 4421 of Lecture Notes in Computer Science, pages 316-330. Springer-Verlag, 2007.

Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.

Georg Gori, Einar Broch Johnsen, Rudolf Schlatte, and Volker Stolz. Erlang-style error recovery for
concurrent objects with cooperative scheduling. In Margaria and Steffen [11], pages 6-22. To appear.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396-450, 2001.

Barry Jay. Algebraic data types. In Pattern Calculus, pages 149-160. Springer, 2009.

Einar Broch Johnsen, Reiner Hahnle, Jan Schéfer, Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer, and Marcello M.
Bonsangue, editors, Proc. 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), volume 6957 of Lecture Notes in Computer Science, pages 142-164. Springer-Verlag, 2011.

Einar Broch Johnsen, Ivan Lanese, and Gianluigi Zavattaro. Fault in the future. In COORDINATION,
volume 6721 of Lecture Notes in Computer Science, pages 1-15. Springer, 2011.

Einar Broch Johnsen, Olaf Owe, Dave Clarke, and Joakim Bjgrk. A formal model of service-oriented
dynamic object groups. Science of Computer Programming, 2014. To appear.

Ivan Lanese, Michael Lienhardt, Mario Bravetti, Einar Broch Johnsen, Rudolf Schlatte, Volker Stolz,
and Gianluigi Zavattaro. Fault model design space for cooperative concurrency. In Margaria and Steffen
[11], pages 23-37. To appear.

Tiziana Margaria and Bernhard Steffen, editors. 6th International Symposium On Leveraging Appli-
cations of Formal Methods, Verification and Validation (ISOLA’14), volume 8803 of Lecture Notes in
Computer Science. Springer-Verlag, 2014. To appear.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Riccardo Pucella. Towards a formalization for com part I: the primitive calculus. In Mamdouh Ibrahim
and Satoshi Matsuoka, editors, Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’02), pages 331-342. ACM, 2002.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A note on distributed computing. In
MOS’96), volume 1222 of Lecture Notes in Computer Science, pages 49-64. Springer, 1997.

18

Glossary

19

Appendix A

Papers

A.1 A Formal Model of Service-Oriented Dynamic Object Groups

20

A Formal Model of Service-Oriented
Dynamic Object Groups

Einar Broch Johnsen®*, Olaf Owe?, Dave Clarke®, Joakim Bjgrk®

@ University of Oslo, Norway
b Uppsala University, Sweden €& KU Leuven, Belgium

Abstract

Services are autonomous, self-describing, technology-neutral software units
that can be published, discovered, queried, and composed into software ap-
plications at runtime. Designing and composing software services to form ap-
plications or composite services, require abstractions beyond those found in
typical object-oriented programming languages. This paper explores service-
oriented abstractions such as service adaptation, discovery, and querying in
an object-oriented setting. We develop a formal model of dynamic object-
oriented groups which offer services to their environment. These groups fit
directly into the object-oriented paradigm in the sense that they can be dy-
namically created, they have an identity, and they can receive method calls.
In contrast to objects, groups are not used for structuring code. A group ex-
ports its services through interfaces and relies on objects to implement these
services. Objects may join or leave different groups. Groups may dynami-
cally export new interfaces, they support service discovery, and they can be
queried at runtime for the interfaces they support. We define an operational
semantics and a static type system for this model of dynamic object groups,
and show that well-typed programs do not cause method-not-understood er-
rors at runtime.

*Partly funded by the EU projects FP7-610582 ENVISAGE: FEngineering Virtual-
ized Services (http://www.envisage-project.eu) and FP7-612985 UpPSCALE: From
Inherent Concurrency to Massive Parallelism through Type-based Optimizations
(http://www.upscale-project.eu).

*Corresponding author

Email addresses: einarj@ifi.uio.no (Einar Broch Johnsen), olaf@ifi.uio.no
(Olaf Owe), dave.clarke@it.uu.se (Dave Clarke), joakimbj@ifi.uio.no (Joakim
Bjork)

To appear in Science of Computer Programming September 10, 201}

Keywords: Object orientation, Object groups, Service orientation,
Multithreading, Concurrency, Types, Semantics, Type safety

1. Introduction

Good software design often advocates a loose coupling between the classes
and objects making up a system. Various mechanisms have been proposed to
achieve this, including programming to interfaces, object groups, and service-
oriented abstractions such as service discovery. By programming to inter-
faces, client code can be written independently of the specific classes that
implement a service, using interfaces describing the services as types in the
program. Object groups loosely organize a collection of objects that are
capable of addressing a range of requests, reflecting the structure of real-
world groups and social organizations in which membership is dynamic [1];
e.g., subscription groups, work groups, service groups, access groups, location
groups, etc. Service discovery allows suitable entities (such as objects) that
provide a desired service to be found dynamically, generally based on a query
on some kind of interface. An advantage of designing software using these
mechanisms is that the software is more readily adaptable. In particular, the
structure of the groups can change and new services can be provided to re-
place old ones. The queries to discover objects are based on interface rather
than class, so the software implementing the interface can be dynamically
replaced by newer, better versions, offering improved services.

This paper explores service-oriented abstractions such as service adap-
tation, discovery, and querying in an object-oriented setting. Designing
software services and composing services in order to form applications or
composite services require abstractions beyond those found in typical object-
oriented programming languages. To this end, we develop a formal model of
dynamic object-oriented groups that also play the role of service providers
for their environment. These groups can be dynamically created, they have
identity, and they can respond to methods calls, analogously with objects in
the object-oriented paradigm. In contrast to objects, groups are not used
for executing code. A group exports its services through interfaces and re-
lies on objects to implement these services. From the perspective of client
code, groups may be used as if they were objects by programming to inter-
faces. However, groups support service-oriented abstractions not supported
by objects. In particular, groups are self-describing in the sense that they

may dynamically export new interfaces, they support service discovery, and
they can be queried at runtime for the interfaces they support. Groups
are loosely assembled from objects: objects may dynamically join or leave
different groups. Mechanisms for one-to-many communication and service
replication for robustness are not the main focus of our model, but are to
some degree supported. In this paper we develop an operational semantics
and a static type system for a kernel language which captures this model of
dynamic object groups, based on interfaces, interface queries, groups, and
service discovery. The type system ensures that well-typed programs do not
cause method-not-understood errors at runtime.

This paper extends a paper which appeared at FOCLASA 2012 [2]. In
the extended version of the paper, the formalized kernel language includes a
multithreaded concurrency model with reentrant method calls and a release
mechanism which makes the language more expressive. These were not part
of the language considered in [2|. The extended paper further expands on
the use of inner groups for group management and discusses the diversity of
object groups in object-oriented systems, and how different usages fit with
the proposed kernel language.

The paper is organized as follows. Section 2 presents the language syntax
and a small example. A type and effect system for the language is proposed
in Section 3 and an operational semantics in Section 4. Section 5 defines a
runtime type system and shows that the execution of well-typed programs is
type-safe. Section 6 discusses different notions of groups from the perspec-
tive of the proposed kernel language. Section 7 discusses related work and
Section 8 concludes the paper. The details of the type preservation proof are
given in Appendix A.

2. A Kernel Language for Dynamic Object Groups

We study an integration of service-oriented abstractions in an object-
oriented setting by defining a kernel object-oriented language with a Java-like
syntax, in the style of Featherweight Java [3]. In contrast to Featherweight
Java, types are different from classes in this language: interfaces describe
services as sets of method signatures and classes generate objects which im-
plement interfaces. By programming to interfaces, the client need not know
how a service is implemented. For this reason, the language has a notion of
group which dynamically connects interfaces to implementations. Groups are
first-class citizens; they have identities and may be passed around. An object

Syntactic Categories. Definitions.

C : Class name P :=IF CLB
I :Interface name T ::=Void | Bool | Any | I | Group(7)
T : Type name IF ::=interface I extends I {Sg}
m: Me?hOd name CL ::=class C(T w)implements [{Tw; B M}
x :Variable . Sg u=Tm(Tz])
z :Local variable M :=SgB
w: F!eld B ={Tzsr;}
f :Field reference e u=uv|z|this
e :Expression f u=this.w
v :Value x u=f|z
s :Statement list rhs ::=e|new C(e) | [yield] z.m(€) | newgroup
trial ::= z subtypeOf I | z = acquire [inz exceptT |z leaves as |
s u=skip|x =rhs|s;s|whilee{s;}|ife{s; } else {s; }
| try trial {s; } else {s; } | joins z as I | spawn 2.m/(€)
st u=[s;] returne
Figure 1: Kernel language syntax. Square brackets [| denote optional elements, and

overline denotes repetition (e.g., lists).

may dynamically join a group and thereby add new services to this group,
extending the group’s supported interfaces. Objects may belong to several
groups. Both objects and groups may join and leave groups, thereby migrat-
ing their services between groups. Groups offer distribution of work between
the implementations of the group’s services, because a request to the group
can be handled by any object in the group. To study the integration of these
service-oriented abstractions, we consider a concurrent kernel language. For
a seamless integration with standard object-oriented languages, the kernel
language supports multithread concurrency (e.g., [4, 5]), but without shared
access to objects. However, this concurrency aspect is largely orthogonal
to the group abstraction, which would work equally well with the actor-like
concurrency of active objects (e.g., |6, 7]).

2.1. The Syntax

The syntax of the kernel language is given in Figure 1. A type T is either
a basic type, an interface describing a service, or a group of interfaces. The
types T are the Null type with the value null, the unit type Void with the
value void, the basic type Bool of Boolean expressions, the empty interface
Any, the names I of the declared interfaces, and group types Group(I) which
state that a group supports the set I of interfaces. The use of types is further

detailed in Section 3, including the subtyping relation and the type system.

A program P consists of a list IF of interface declarations, a list CL of
class declarations, and a main block {T Z; s; return void; }. We assume that
classes and interfaces have distinct names. The main block introduces a scope
with local variables Z typed by the types T, and a sequence s of program
statements. We conventionally denote by Z a list or set of the syntactic
construct z (in this case, a local program variable), and furthermore we
write T Z for the list of typed variable declarations T} 21:...: T, z, where we
assume that the length of the two lists 7 and Z is the same.

Interface declarations IF associate a name I with a set of method signa-
tures. These method signatures may be inherited from other interfaces I or
may be declared directly as Sg. A method signature Sg¢ associates a return
type T with a name m and method parameters Z with declared types 7.

Class declarations CL have the form class C(T; w,) implements I { T’y Ws;
B M} and associates a class name C' to the services declared in the interfaces
1. In C, these services are realized using methods to manipulate the fields @3
of types Ty. The constructor block B has the form {T Z; s; return void; } and
initializes the fields, based on the actual values of the formal class parameters
w, of types T;. The methods M have a signature S¢ and a method body
{T Zz; s; return e; } which introduces a scope with local variables % of types T
where the sequence of statements s is executed, after which the value of the
expression e is returned to the client. The value void is returned for methods
with return type Void, reflecting a trivial return value. Class parameters are
treated like fields with both read and write access. There is read-only access
to the special variable this which refers to the current object. We use the
syntax this.w to refer to fields. Thus references to local variables z and
fields f are syntactically distinct.

Expressions e of the kernel language consist of program variables = and
Java-like expressions for constant values v, including void as well as the
Boolean values true and false. Right-hand-side expressions (rhs) cover ob-
ject creation new C(E) where the actual constructor parameters are given
by €, and method calls [yield| z.m(€) where the actual method parameters
are given by €. The optional keyword yield is attached to a method call to
indicate a release mechanism such that the caller releases its lock for the
duration of the method call. Method calls are synchronous and in contrast
to Java all method calls are synchronized; i.e., a caller blocks until a method
returns, and a callee will only accept a remote call when it is idle. In ad-
dition, we consider an expression related to service-oriented software: the
group creation expression newgroup dynamically creates a new, empty group

which does not offer any service to the environment.

The statements s of the kernel language include standard statements such
as skip, assignments x = e, sequential composition si;s,, conditionals, and
while-loops. Trial statements are statements that may fail. A trial is em-
bedded in a try-else construct such that success in the trial selects the first
branch and a fail selects the else branch. The trial z subtypeOf I is used to
query a known group z about its supported interfaces. The query succeeds
if z offers I (or a better interface), in which case the expanded knowledge of
the group z becomes available. For typing reasons, we here require that z is
a local variable (as discussed in Section 3.3).

Service discovery is localized to a named group x: The trial y = acquire
I in x except T tries to find some group g or object o which is in the group
x and which offers a service better than I (in the sense of subtyping) and
which is not in the set 7.

Service interfaces I are dynamically exported through a group z by the
statement x joins z as I, which states that an object or group x is used to
implement the interfaces I in the group z. Consequently, z will support the
interfaces I after z has joined the group. Objects and groups x; may try to
withdraw service interfaces I from a group z, by the statement try z; leaves
w9 as I {s1;} else {s5;}. The withdrawal succeeds if 2, continues to offer all
the interfaces of I, exported by other objects or groups. Thus, removals do
not affect the type of x5. If the removal is successful then branch s; is taken,
otherwise sy is taken.

Concurrency is obtained by new and spawn statements. The former cre-
ates a new object of a given class and a new thread performing the main
block of the class, whereas a spawn statement makes a new thread perform-
ing the given method, which must be a void method. Thus a spawn statement
executes the call asynchronously.

2.2. FExample

We illustrate the dynamic organization of objects in groups by an exam-
ple of software which provides text editing support (inspired by [8]). This
software provides two interfaces: SpellChecker allows the spell-checking of a
piece of text and Dictionary provides functionality to update the underlying
dictionary with new words, alternate spellings, etc. Apart from an underlying
shared catalog of words, these two interfaces need not share state and may
be implemented by different classes. Let us assume that the overall system
contains several versions of Dictionary, some of which may have an integrated

SpellChecker. Consider a class implementing a text editor factory, which man-
ages groups implementing these two interfaces. The factory has two methods:
makeEditor dynamically assembles such software into a text editor group and
replaceDictionary allows the Dictionary to be dynamically replaced in such a
group. These methods may be defined as follows:

Group(SpellChecker, Dictionary) makeEditor() {
Group(0) editor; SpellChecker s; Dictionary d;
editor = newgroup;
try d = acquire Dictionary except Nil {skip;} else {d = new Dictionary;};
try d subtypeOf SpellChecker {

d joins editor as Dictionary, SpellChecker;
} else {

d joins editor as Dictionary;

s = new SpellChecker();

s joins editor as SpellChecker;
s

return editor;

}

Void replaceDictionary(Group(SpellChecker,Dictionary) editor, Dictionary nd){
Dictionary od;
nd joins editor as Dictionary;
try od = acquire Dictionary in editor except nd {skip;} else {skip;};
try od leaves editor as Dictionary {skip;} else {skip;};
return void;

}

The method makeEditor acquires a top-level service d which exports the inter-
face Dictionary (by omitting the in-clause of the acquire statement, we mean
that the service discovery happens in the global system). If d also supports
the SpellChecker interface, we let d join the newly created group editor as both
Dictionary and SpellChecker. As a consequence, the group editor will now sup-
port the two interfaces Dictionary and SpellChecker. Otherwise d joins the editor
group only as Dictionary, and at this point only the interface Dictionary is sup-
ported by the group editor. In this case a new SpellChecker object is created
and added to the group as SpellChecker, such that the group also supports
both interfaces in this execution branch.

The method replaceDictionary will replace a Dictionary service in a text
editor group. First we add a new Dictionary service nd to the editor group and
then fetch an old service od in the group by means of an acquire, where the
except-clause is used to avoid binding to the new service nd. Finally the old

7

(T-NEw) (T-SuB)

(T-Exp) (T-Group) _
I' € : ptypes(C) T<T' Ttre:T

I'ke:T'(e T - newgroup : Group()
(©) group p(0) I'-new C(e): C 'te:T"

Figure 2: The type system for expressions and for the creation of objects and groups.

service od is removed as Dictionary in the group by a leaves statement. The
example illustrates group management by joining and leaving mechanisms as
well as service discovery.

3. A Type and Effect System

The language distinguishes behavior from implementations by using an
interface as a type that describes a service. Classes are not types in source
programs. A class can implement a number of different service interfaces, so
its instances can export these services to clients. A program variable typed
by an interface can refer to an instance of any class that implements that
interface. A group typed by Group(I) exports the services described by the
set I of interfaces to clients, so a program variable of type I may refer to the
group if I € I. We denote by Void the unit type and by Any the “empty”
interface, which extends no interface and declares no method signatures. A
service described by an interface may consist of only some of the methods
defined in a class that implements the interface, so interfaces lead to a natural
notion of hiding for classes. In addition to the source program types used by
the programmer, class names are used to type the self-reference this in the
context of the specific class; i.e., a class name is used as an interface type
which exports all the methods defined in the class.

Subtyping. The subtyping relation applies to interfaces, classes and groups,
with a top element Any and bottom element Null. For interfaces, the sub-
type relation < is defined as the transitive closure of the extends-relation on
interfaces: if I extends J' and J' < J or J' = J, then I < J. We let a class
be a subtype of all its implemented interfaces. We have Null < X < Any
where X is an interface, class, or group type. A group type Group(S) is a
subtype of I if there is some J € S such that J < I. We also extend the
subtype relation to lists of types in the second argument, such that J < T
if J < I for each I € I. The reflexive closure of < is denoted <. We let
Group(S) = Group(Y’) if for all J € S’ there is some I € S such that I < J.

Finally, Group(S) < Group(S’) expresses that Group(S) < Group(S’) but not
Group(S’) =X Group(S5).

Function types T — T are used to type methods with parameter types T
and return type T. Subtyping for function types is defined as follows: T -
T <T STiHT<T and T < T. We let m,, € I denote that interface
I declares a method m with function type w; and we let m, < I denote
w =W Amy € I (for some w'). Similarly, I < m,, denotes W' < wAm, €
(for some w'). The same notation applies to classes. Finally C' < I denotes
that C' < m,, for each m, € I. Thus C' < [expresses that C offers all
methods of I with the same or better function types.

Typing Contexts. A typing context I' binds variable names to types. If I is
a typing context, x a variable, and T" a type, we denote by dom(T") the set of
names that are bound to types in I' (the domain of I') and by I'(z) the type
to which z is bound in I'. Define the update I'[z +— T] of a typing context
I'by 'z — T)(x) = T and 'z — T(y) = I'(y) if y # x. By extension, if
7 and T denote the lists z1,..., 2, and Ty,...,T,, we may write I'[T + T
for the typing context I'[z; + Ti]...[r, + T, and L@y — 11,75 +— T3
for I'[z7 — T1|[@2 +— Ts]. For typing contexts I'; and I'y, we define I'; + T’y
such that 'y + I'y(z) = Iy(x) if © € dom(T'y) and I'y + Iy(x) = T'y(z) if
x & dom(I'y). A typing context I is better than a typing context A, denoted
[' <A, if dom(T") = dom(A) and I'(z) < A(z) for all z.

The Type and Effect System. Let I'g denote the basic typing environment,
providing types for the language constants (e.g., I'g(null) = Null, I'g(void) =
Void and I'p(true) = Bool). Programs in the kernel language are analyzed
in the context of 'y by means of a type and effect system (e.g., [9-11]).
Our effects deal with changes in the typing of local group variables only,
dynamically modifying their type, depending on the program point. We do
not consider changes in the typing of non-local group variables as this could
cause the following soundness problem: if a field Group(S) w could get a
smaller type at the point of a local call then the called method may contain
an assignment this.w = e where e is of type Group(S) but not the smaller
type. To obtain a simple type system, we do not here allow changes in the
typing of fields. A possible extension is discussed at the end of the section.
The inference rules for expressions are given in Figure 2 and for statements,
methods, classes, and programs in Figure 3. Following standard conventions,
variables appearing in a single premise of a rule are implicitly existentially
quantified.

(T-AssigN) (T-COMPOSITION) (T-WEAKEN)

(T-Skrp)
. T+ rhs: I'(z) T'Fs A1 A1 Fs Ag T'Fs A A=A/
I'+skip T
I'txz=rhs T 'k s;s’ Ag Ns A/
(T-CONDITIONAL) (T-WHILE)
(T-CaALL)
I'y) < I' e : Bool I' e : Bool
Y) = r(E) ~T(2) Fksi A Thss A TksA
'z = [yield]y.m(e) I " "
Tkif e{s1;}else{s2;} A '+ while e{s;} T
(T-Join) (T-Try)
I'(z) = Group(S) T'(z) <X 1T Pktrial IV TVEs1 A Thsa A
Ttz joins z as T T'[z +— Group(S UT)] Tk try trial {s1;} else {so;} A
(T-INsPECT) (T-ACQUIRE) (T-LeAVE)
I'(z) = Group(S) 't a:Group(S) I =T(y) I'(z) =1
I' z subtypeOf 1 'y = acquirelinz I'(y) = Group(S)
T'[z +— Group(S U {I})] exceptz T' I'ta2 leaves y as T T
(T-RETURN) (T-Spawn) (T-MeTHOD)
ks A Abe:T [(z) < M) Void =T, = T]ksr: T
'k s;return e: T ' spawnz.m(e) T’ THT m(T 2){T’ 7';sr;} ok
(T-Cuass) (T-PrROGRAM)
IV = T[this — C,this.wy > T1, this.wy — T] Tz~ T]F sr: Void
I'[Z+— T]F sr: Void VM eM - T'"+M ok C=<I VOL € CL-T+ CL ok
't class C(T; wy) implements T{Ty wo;{T z;sr;} M} ok I'+TF CL {T z;sr;} ok

Figure 3: The type and effect system for statements, trials, methods, classes, and pro-
grams. Note that z and y denote variables and z local variables.

3.1. Expressions

Expressions are typed by the rules in Figure 2. Let I" be a typing context.
The typing judgment I' - e : T states that the expression e has the type T
if the variables in e are typed according to I'. By T-Exp, constants and
variables must be typed in I'. By T-NEw, new C' has type C if the types of
the actual parameters to the class constructor can be typed to the declared
types of the formal parameters of the class, as captured by the auxiliary
function ptypes:

ptypes(class C(T w) implements I{T w;B M})=T.

10

Note that an expression new C' may only appear as the right-hand-side of
an assignment statement; thus the type of the left-hand-side variable z will
restrict C' by the requirement C' < I'(x). By T-GrouP, a new group has
the empty group type (with no exported interfaces). Rule T-SuB captures
subtyping in the type system.

3.2. Statements

Statements are typed by the rules in Figure 3. Let I' and A be typing
contexts. The typing judgment I' = s A expresses that the statement or
trial s is well-typed if the variables in s are typed according to I' and that
the effect A is the resulting typing context to be used for further analysis.
The typing judgment I' = sr : T expresses that the body sr is well-typed
according to I' with 7" as the resulting type. For a program, class, or method
p, the typing judgment I' - p ok means that p is well-typed according to I,
and that the effect will not be needed in further analysis.

The typing of standard statements is conventional, but illustrates the
effect systems. The statements skip and z = e are typed by the rules T-
Skip and T-AssIGN, respectively, and have no effects. The use of effects
can be seen clearly in rule T-ComMmPosITION, where the second statement is
type checked in the typing context resulting from the first statement, and
the effects are accumulated in the conclusion of the rule. Rule T-WHILE has
no effect, since no traversal of the loop is guaranteed. Rule T-CONDITIONAL
propagates effects from the branches; the resulting effect is approximated by
taking the intersection of the effects of the branches. Rule T-WEAKEN allows
information to be discarded in the effect of a typing judgment; e.g., the two
branches of a conditional can be unified by means of weakening.

Rule T-TRry is similar to T-CONDITIONAL except that the effect of the
trial is only propagated to the then branch, reflecting the effects of success in
the trial. Rule T-SpawN is similar to T-CALL except that the method must
have Void as return type, since the new thread is executed asynchronously.
The new thread has no effect on the current typing context.

By T-CaLL, a call to a method m on a variable y is well-typed if y offers
an interface, say I, in which m has a function type w such that w < T — T,
where T are the types of the actual parameters and 7' is the type of the
left-hand-side variable. Using the keyword yield, a caller may release its lock
for the duration of the method call. For both kinds of calls, the callee may
be a group, in which case several interfaces I may satisfy the conditions
above. The rule requires that there is at least one such interface I. To

11

ensure a type-correct binding at runtime, the static type analysis of a call
y.m(€) can associate the function type T — T with the call, transforming
it to y.mg_r(€). This function type gives the least type information needed
to ensure well-typedness. Other forms of overloading can be considered, but
these are not the focus here.

The typing of the group manipulation statements is as follows. By T-
ACQUIRE, service discovery is allowed on groups, with the obvious typing
constraint on y. By T-JoIN, when an object joins a group z and contributes
interfaces I to z, the type of z is extended with the interfaces I in the effect.
The variable z referencing the group must be locally declared. Without this
restriction, a field could dynamically extend its type, resulting in an unsound
system; e.g., an assignment f = e in a statically well-typed method could
become unsound if the type of f were extended. However extending the type
T of a local variable that copies the value of f to a type T’ and assigning the
result back to a field [’ is allowed, as f’ would need to be of the extended
type T and f would remain of type T" as required by the other method. Rule
T-LEAVE checks that the type of x is I (or better) and that y is a group, with
no overall effect. Rule T-INSPECT extends the typing context with the added
information about the type of the local variable 2z, which must be a group.

Programs, classes, methods, and the main method of a program, are typed
in the standard way. Methods do not have effects; this reflects that effects
are constrained to local variables inside methods. By rule T-RETURN, the
type of the body s; return e is the type of e, with no effect, but the effect
of type checking s extends the typing environment for type checking of the
returned expression. Likewise, classes and programs do not have effects. (For
simplicity, we omit the standard type checking of interface declarations.)

Remarks. Since we associate function types with method calls, overloading
is possible, and a class may even contain different implementations for the
same method signature. In this case an implementation can be chosen non-
deterministically, provided that the function type of the call is less than that
of the chosen method.

The type system is non-deterministic due to the T-WEAKEN and T-SuB
rules. However there is a least derivable type. The type rules may be used to
define an algorithm to compute the least type. The type system in Figure 2
defines a least type for every expression and right-hand-side, ignoring T-SuB.
Thus one may associate the least function type w with each call. The type
system in Figure 3 defines a best effect for every trial and statement, if T-

12

WEAKEN is removed and the effects of the rules for if and try statements are
replaced by A1NA, where A is the effect of the then branch and A, the effect
of the else branch. We define A;NA; by dom(A;1NA,) = dom(A;)Ndom(As)
and by (A; N Aq)(z) = Aq(x) N Ay(x), letting Group(S;) N Group(Sy) =
Group(S) where S is the set {/ | Group(S;) < I A Group(S;) < I} without
redundant interfaces (i.e., those that extend other subtypes in the set). This
is sufficient as only the typing of local group variables may change.

The least type of a local group variable is initially the declared type and
it may be improved by queries and by join statements. The other basic
statements maintain the type, except branching statements (if and try)
which make the least type worse, but not worse than the declared type, and
not worse than the type prior to the branching construct. Thus, if z € dom(T")
and I' - s A, where A reflect least types, then z € dom(A) and A(z) <X T'(2).

3.8. Discussion

The type and effect system presented above does not allow changes in the
typing of fields. Changes in the typing of fields may give an unsound typing
system as illustrated by the example below (where the type of a field w is
strengthened in method m):

interface I1 extends | { ... }

interface I2 extends | { ... }

class UnSound() { | w;

Void m1(11 x){ this.w = x; return void; }

Void m(I1 x){ try this.w subtypeOf 12 { this.m1(x); } else { ... }; return void; }

Here method m1 is type correct. In method m, the trial will improve the
type of w to 12, but when m1 is executed, w will get a value of type I1,
violating type soundness since 1 and I2 are unrelated types. As a non-local
call may implicitly lead to a local call, the problem illustrated here applies
to calls in general, not only local calls, i.e, a call to a method n on another
object may lead to a call on method m1 on the current object.

However, it would be possible to allow inspect, join, and query statements
on local as well as non-local variables. The typing of such statements may
then extend the typing of fields in the same way as local variables, and such
changes could be exploited inside a method. We would obtain a type sound
system if we weaken the type of each field to that of its declared type after
a call. This would for instance allow us to do a subtype check on a field and

13

then call a method of the added interface in the first branch, resuming with
the declared type of all fields after the call. In the example above the type of
w would be I after the call. Remark that the same call is allowed with the
given type system by copying the field to a local variable before the subtype
check.

Another way of achieving type soundness is to require that all local meth-
ods can be retyped in the current environment (possibly weakened as ex-
plained below). We may add a new type rule for calls and adjust the rule for
methods so that it exports the non-local effects of the body:

(T-CaLL) (T-METHOD’)
F(y) j mr(g)_,p(z) T j F, AtFe:T
VMeC-T'FM A T=<A rz—T,2 »T|Fs A
'+ x = [yieldly.m(e) A I'HT m(T 2){T’ Z';s;return ¢;} A\ {Z,7'}

where C'is the enclosing class, and A\ {Z,Z'} is A without the local variables
{z,Z'}. In rule T-CALL’ the second last premise must hold for all declared
methods in this class (thereby ensuring type soundness in case of call-backs).
With this approach, a method in C' must be type checked again for each call
in C', using the typing environment I' of the respective call. It could happen
that I" is too strong (too good) for the body B to be well-typed. One may
then use weakening to obtain a weaker environment I, in which case some of
the effects prior to the call may be lost in the environment A after the call. A
successful weakening is always possible since the method must be well-typed
in the typing environment given by rule T-CLaAss’. Thus one may weaken to
that environment if no better environment applies. We assume here that I,
[, and A have the same domains. Note that A cannot be stronger than the
current environment I' since there may not be any call-back. In the example
of class UnSound one must weaken the type of w to I. (We may add a
stronger rule for local calls this.m(€), allowing the resulting environment A
to be stronger than I' provided the body of m takes I to A.)

A somewhat similar discussion applies to class initiator blocks. The effect
of the initiator block on fields, without local variable bindings, is used to type
the methods. Thereby each method may rely on this effect. This gives the
following modification of the class rule:

14

Syntactic Categories. Definitions.

o0: Object name en == e|o(o,8)]| glexport) | t(pr; p) | t(idle) | en cn
g : Group name c = z—=(T)v)|o+o
t : Thread name é = free|(t,n)
v u= ol|g]|...
ezport = 0|{o:I}| exportU export
p == idle|{o|block(z);sr};p
pr u= {o|sr}|error

lock(n) | ...

Figure 4: The runtime syntax, extending the language syntax for values v and statements
s. We let n denote a number greater than zero.

(T-Curass’)
I = T'[this + C, this.wy +> T, this.wy — To)

MVz—TlFs A VMeEM - (A-{z})FM A’ c=<I

I'tclass C(T1 w;) implements T{T> wa; {T Z;s;returnvoid;} M} ok

4. Operational Semantics

The runtime syntaz is given in Figure 4. A runtime configuration is seen
in the context of the classes and interfaces defined by the given program.
These definitions are fixed in our setting and give rise to auxiliary look-up
functions depending on the class table, see Figure 5. A runtime configuration
cn is either the empty configuration € or a multiset of objects, groups, and
threads. Objects o(o,0) have an identity o, a state o defining the fields and
class parameters, and a lock . We assume that the class name of an object
is embedded in the object identity, such that classOf (0) denotes the class of
object o and classOf (null) is undefined. A state o maps program variables
x to their types T and runtime values v. The update notation of typing
environments is reused for states; thus o[z — (T, v)] updates the binding of
x in 0. At runtime, values v include object and group names, in addition to
the language constants. The lock ¢ of an object is either free or a thread ¢
has taken the lock n times, denoted (t,n). We let the predicate 6(t) denote
that ¢ has the form (¢,n), expressing that the thread ¢ holds the lock 0.
Groups g(export) have an identity g and contain a set export of interfaces

15

I associated with the objects o implementing them, denoted o : I. Threads
t(p) have an identity ¢ and a stack p of processes pr. When a thread has
processes to execute, it executes the process at the top of its stack. The stack
grows with method calls and shrinks at method returns. The empty stack is
denoted idle.

A process pr has a local state o, defining the local variables and method
parameters, and a sequence sr of statements to be executed in that state, or
it is the error process which denotes that the computation has gone wrong.
To easily distinguish local states from object states, we let | denote the local
state of a process, and a the state of an object. Thus (a 4 [) represents the
total state obtained from an object state a and a local state [. The look-up
function for program variables x in a state o is defined by o(z) = (T,v),
with the corresponding projections ¢’ (z) = T and o¥(x) = v to types and
values, respectively. Thus, for a state o, 7 gives the associated mapping
of program variables to their current types and ¢¥ the mapping of program
variables to their current values. The look-up function is extended to values
v, such that 0¥ (v) = v and o7 (v) is the corresponding type. We reserve the
name block for bookkeeping in the runtime typing rules (cf. Section 5), and
assume that it is not in use as a variable name.

The runtime syntax extends the syntax of the surface language as follows.
The runtime statement block(z) encodes that the process is waiting for the
return value of another process (which is above it on the stack); this return
value will be assigned to variable x. Observe that the syntax enforces every
frame below the executing frame on a non-idle stack to start with a block
statement, these are the only possible occurrences of block statements. At
runtime, the statements lock(n) and return e are used to manipulate locks.
As a simplifying assumption in this paper, a thread ¢ will always lock the
object in which it will execute a method activation, and unlock the object
when the method activation returns. This is captured in the semantics by the
premises [V(this) = o and &(¢) when [is the local state of thread ¢ and § is
the lock of object o. This assumption corresponds to synchronized methods
in Java.

Structured operational semantics. The operational semantics is given by rules
in the style of SOS [12], reflecting small-step semantics. Each rule describes
one step in the execution of a thread. Concurrent execution is given by

16

5(t) _ { true if § = ('t,n)
false otherwise
init(C,0) = {[Z — (T,default(T)), this — (C,0)]| sr; }
atts(C,v) = [this.wy — (T1,0), this.wa > (T2,default(T2))]
CcT(C) = [this.wi — Ti,this.wg — TQ}
export X I=3 v:J € export-J X I
export < I =V I €1 - export < I
export —v ={v:J|v:JE export N\v g T}

Figure 5: Auxiliary definitions in the operational semantics. Here C is
class C(T; wy) implements I{T, wy;{T Z;sr;} M}. In addition, we use the predicate
fresh(t) to denote that thread (or group) name ¢ is globally fresh, and fresh~(0) to denote
that o is a globally fresh object name such that classOf (fresh(0)) = C, and default(T)
to denote some value of type T. A fresh name is not null.

standard SOS context and concurrency rules

(INTERLEAVE) (PARALLEL)
cny — en) cny — en) cng — cnl
cny cng — cnfy eng cny cng — cnfy cn

We assume associative and commutative matching over configurations (as in
rewriting logic [13]). Thus threads can execute in parallel in distinct parts
of the configuration, which leads to the following restrictions on concurrent
execution: Two threads which require the same object cannot execute in
parallel. In a thread-based setting, a thread must take the lock of an object
to access its state, and explicitly release this lock when it no longer requires
the object’s state. Two partial functions inc, and dec, capture the locking
and unlocking discipline for a thread t; inci(n, d) is applied whenever ¢ wants
to grab a lock ¢ (and grabs the lock n times) and dec,(d) is applied whenever
t wants to release a lock §. These functions are defined as follows:

ince(n,free) =(t,n) dect((t,1)) =free
inci(n, (t,n"))=(t,n +n’) dec((t,n + 1)) = (t,n)

In the rules, if the function is undefined, then the rule cannot be applied.

The transition rules are given in Figures 6 and 7. All rules which make use
of the object state require that the thread ¢ has already taken the object
lock 0, expressed by the auxiliary predicate §(¢). Rules involving a group
will lock the group in question for one reduction step, thereby disallowing
concurrent execution of other threads which require access to the interface

17

(WHILE)
t({l|vhilee {s; };sr}; p)
— t({l | if e {s;whilee {s; } }else {skip}; sr}; p)

(Skip)
t({l | skip; sr}; p) = t({l | s7}; p)

(Conbpl) (Conp2)

Y(this) =0 4&(t) (a+1)Y(e) = true Y(this) =0 4(t) (a+1)Y(e) = false
t({l|if e{s1; } else{sa; };sr};p) o(a,d) t({l]|if e{s1; } else {sa; };sr};p) o(a,d)
S ({1 | 513 57}:9) 0(a,0) ({1 | 533 57}) 0(a,6)
(AssiaNl) (AssiaN2)

V(this) =0 4(t) V(this) =0 4(t)

T(z)=T (a+DV(e)=v a()=T (a+DV(e)=v
t{l|z=e;sr};p) o(a,d) — t{l| f =e;sr};p) ola,d) —

H({1lz > (T,0)] | 57}) o(a,6) ¢({1] sr}:p) olalf > (T,0)],8)

(Lock-OBJECT) (NEw-GRoOUP)

V(this) =0 4&(t) & =inci(n,d) fresh(g) 46(t)
6({1| Lock(n); sr}; p) o(a,9) ¢({1] @ = newgroup; sr}; p)
S U({l | sr}i) ofa, &) S ULz = g;srhip) 9(0)

(NEw-OBJECT)

(NEW-THREAD) fresho(o') fresh(t')
§t) (a+DVY(x)=0 classOf(d') = C V(this) =0 pr = nit(C,0o")
IV(this) =0 fresh(t') pr= bind(my,o,C, (a+1)V(e)) 5(t) o = atts(C, (a+ 1)V (e))
t({l | spawnz.me, (€); sr}; p) o(a,d) t({l| x =new C(€);sr};p) o(a,d)
— t({l|sr};p) ¢/ (pr;idle) o(a,d) —t({l|z = 0';s7};p) ofa,d)

t'(pr;idle) o' (a/, (¢, 1))

(CaLLl) (CaLL2)
5t) (a+DV(y) =0 classOf(o') =C §=(t,n) (a+DV(y)=0 classOf(o’) =C
V(this) =0 pr= bind(my,o,C, (a+1)V(e)) IY(this) = o pr= bind(mw,o,C, (a+ 1)V (e))
t({l| =z =y.mw(€); st} p) ofa,d) t({l| z = yield y.mw(€); st};p) ofa,d)
— t(pr; {l | block(x); sr}; p) o(a,d) — t(pr; {l | block(z); lock(n); sr}; p) o(a, free)

Figure 6: The operational semantics (1).

18

(CaLL3)
IV(this) =0 (a+1)(y) = (Group(S),9) I€S
o0(t) wv:I€export I<mgy

t({1] [yield] = = ymu(e); 57}) 0(a:6) gleaport)
— t({l] [yield] = = v.mw(€);sr}; p) o(a,d) g(export)

(RETURN)

V(this) =0 () & =dect(d) (a+DV(e)=w

t({l| return e}; {l’ | block(y); sr};p) o(a,d)
= t({l" |y = v;sr};p) o(a,d’)

(AcqQuirel)
a(t) (@a+DV() =g
(v:J) € export—(a+1)V(z) J =< 1T

1V (this) = o

(JoIN)
l(z) = (Group(5), 9)
T = Group(S U T)

(a+)V(@) =v
IV (this) = o

5(t) emport’ = U ep{v: I} U eaport

t({l |z joins zas T; sr}; p) o(a,d) g(export)
= t({l[z = (T, g)] | st}; p) o(a,d) g(export’)

(EnD)
§(t) & =dect(d)

t({l | return e};idle) o(a,d) — o(a,d’)

IV (this) = o

(AcQUIRE2)
5(t) M(this)=o (a+DY(y)=g
export’ = export—(a+1)V(Z) export’ AT

t({l|try = = acquire] inyexcept T {s1}
else {s2};sr};p) o(a,d) g(export)
— t({l| z =v;s1;sr}; p) o(a,d) g(export)

(Leavel)
@+ =g (a+DV(x)=v
6(t) export’ = export \ U;cp{v: I}

V(this) =0 export’ < T

t({l|try x = acquire]inyexcept T {s1}
else {s2};sr};p) o(a,d) g(export)
— t({l| s2;57}; p) o(a,8) g(ezport)

(LEAVE2)
@+’ =9 (a+)¥(@)=v
3(t) export’ = export \ Uycg{v: I}
IV(this) =0 export’ AT

t({l|try = leaves y as I {s1}
else {s2};sr};p) o(a,d) g(export)
S t({ | 51357} p) olay5) gleaport’)
(QuERY1)
§(t) 1V(this) =o
I(2) = (6roup(S), 9)
t({l|try z subtypeOf I {s1}
else {s2};sr};p) g(ezport) o(a,d)
— t({l[z = (Group(S U {I}, 9))] | s1;s7};p)
o(a,d) g(export)

export < I

t({l|try = leavesy as] {s1}
else{sa2};sr}; p) o(a,d) g(ezport)

— t({l] s2; sr};p) o(a,d) g(export)

(QUERY2)
§(t) 1V(this) =o
WV(z)=g export AT

t({l|try z subtypeOf I {s1}
else {s2};sr}; p) o(a,d) g(export)
— t({l] s2;57};p) o(a,d) g(export)

Figure 7: The operational semantics (2).

19

information of that group. This is crucial in the rules JoiN and LEAVEL,
which may actually modify the interface information of the group.

The Skip rule is standard; being independent of the object, it expresses
that a skip has no effect on the object state. The two rules Conpl and
ConD2 handle the two cases of the conditional statement by evaluating the
condition in the object state. The effect of assignment is described by two
rules, AssigN1 for the assignment to local variables, updating [, and AssIGN2
for the assignment to fields, updating a. A loop unwinds into a conditional, by
rule WHILE. In rule NEw-GRoOUP, a globally unique group identifier is ensured
by the auxiliary predicate fresh(g). An empty group with this identifier is
added to the configuration. Rule NEw-THREAD similarly adds a new thread
to the configuration, with a globally unique identifier. The new thread gets
a stack which consists of a single process frame, corresponding to the called
method.

The new statement is handled by the NEw-OBJECT rule, where freshq(0')
and fresh(t') assert that o’ and ¢’ do not previously occur in the global config-
uration and that classOf (o') = C'. An object with this name is created. The
auxiliary function atts(C,v) maps the declared fields of C' to their declared
types and default values, and class parameters to declared types and actual
values. (The default value of an interface or group type is null.) The auxil-
iary function init(C,o’) returns the process corresponding to the init-block
of C', binding this to type C and value o’. This process is executed in a new
thread with identity ¢', which holds the lock to o'.

Method calls are handled by rule CaLL1 for calls to objects, rule CALL2
for releasing calls. and rule CALL3 for calls to groups. We assume that the
function type w of the call has been added during static analysis, as explained
in Section 3. Let the auxiliary function bind(m,, o0, C,v) return the process
resulting from the activation of a method m of class C' in object o such that
the function type of m is equal or better than w.

bind(my,,0,C,v) = error if C' A m,

The function bind(m,,, 0, C,) is error unless C defines a method T m(T %)
{T' #'; sr;} such that T — T < w; and in this case we define

bind(me, 0,C,v) = {[z+ (T, v), 7'+ (T, default (T)), this — (C, 0)]|lock(1); sr; }

The local state maps the parameters of m to their declared types and values
v, the local variables to their declared types and default values, and this to

20

C and o. The bind function is deterministic if each class has distinct names
for methods with a given number of arguments.

For simplicity, we assume that all methods are synchronized in the sense
of Java and let the method body in the method activation be preceded by
a runtime statement lock(n); i.e., the actual method body can only be ex-
ecuted once the thread has taken the lock to the object o n times. In rule
LocKk-OBJECT a thread t takes the lock ¢ of an object n times by means
of incy(n,d). This operation succeeds if the lock is either free or already
taken by t. When a call is made to an object in CALL1, the new process
bind(m,,,o0,C, (a+1)Y(€)) is added to the stack of the thread, where C is the
class of the callee. Rule CALL2 implements the release mechanism associated
with yield, which allows a thread to make a method call without keeping the
lock of the caller object. The caller remains on the stack, and the thread must
compete for the lock before it can execute when control returns. Although
the thread may have taken the lock n times, the lock is free when the thread
leaves the object, and the lock is taken n times upon return. In CALL3, a call
to a group is reduced to a call to a group or an object inside the callee which
exports an appropriate interface to the original group in the sense that the
called method is supported by the interface. The rules CaLL1 and CALL3 are
selected depending on the actual value of the callee y, which may be either
an object or a group. Rule RETURN handles returns from method calls. Here
the block(y) statement in the frame below the active frame (on the top of
the stack) is replaced by y = v, assigning the value returned from the active
frame to y, and the active frame is removed from the stack. Rule RETURN
decrements the lock § once by means of dec,(d). This operation succeeds if
the lock counter is positive, if the lock counter is 1 then the decrement makes
the lock free. Rule END is similar to rule RETURN, handling the completion
of initialization blocks, main programs, and spawned threads. The associ-
ated thread is terminated, in which case the thread no longer holds any locks.
This rule takes care of the garbage collection of threads.

The rule JoiN dynamically extends a group z with support for the services
described in the interfaces I. From the perspective of the thread, the type of
the variable referencing the group is extended. From the group’s perspective,
the export set is extended. Observe that in the join statement, x may itself
be a group; well-typedness ensures that x offers at least I. Service discovery
is handled by the AcQUIRE rules. In AcQUIRE] the acquire statement is
replaced by a value v, which is an object or group identifier satisfying the
in and except clauses. The notation export < I means that the export list

21

has an interface J such that J < I. If this condition is not satisfied the
else branch is taken as defined in ACQUIRE2. An acquire statement which
is not restricted to searching a specific group could be added, but requires
constructing a “global” group, e.g., global(U; export;) where g;(export;) are
all the groups in the configuration.

The leaves statement is handled by the rules LEAVE] for a successful leave
and LEAVE2 for an unsuccessful one. A group or object x succeeds in leaving a
group if the group continues to provide the same interface support without x.
To determine this, we use the subtype relation lifted to group export lists as
defined in Figure 5. An entry is redundant if a subtype of the entry is present
in the set. The type of the group does not change by a leaves statement and
hence the object does not need to update information about the group. The
branches s; or s, are chosen depending on whether the interfaces remain
supported. The rules QUERY1 and QUERY2 handle the branching determined
by a query. If the local group z exports a given interface, the query succeeds
and the s; branch is taken, updating z with the new interface information.
If the query fails the sy branch is chosen by QUERY2.

The initial configuration. For a program P = IF CL {T %;sr}, we define
the initial configuration to be o(e, (¢,1)) t({[z + (T,default(T)), this
(C,0)]| sr; };idle) where o, t, and C are fresh names such that classOf(o) is
C and Null < C' < Any. The fresh name C' plays the role of a Main class.

Remarks. Our semantics covers runtime errors resulting from method bind-
ing. Runtime errors caused by null pointers are indirectly captured in the
sense that execution of the process stops because no more rules can be ap-
plied to it. This is the case when a call is made to a null object or group, when
joining, leaving, or querying a null group, and when acquiring an interface in
a null group. We could add rules explicitly generating the error process in
these cases; however, as these kinds of errors do not play a role in the results
on type safety, we do not need them for our purposes. Static checks ensuring
non-null pointer values would be a way to solve these kinds of errors (our
semantics guarantees that this is not null).

The configurations defined by the operational semantics have state in-
formation for each object and thread, and these states include explicit type
information. As for the static type system, the types of fields do not change,
and the types of local variables that are not group variables do not change.
The basic statements have the same effect on the types as in the static type

22

system. The typing effect of if, try, and while statements is different from
that of the static type system, as it uses the typing effect from the chosen
branch, whereas the static typing of if and try statements uses weakening,
and the static typing of while ignores the effect of the loop. As a consequence
the types at runtime are better than (or equal to) than the corresponding
types defined by the static type system, which again are better than (or equal
to) the declared types.

Notice that all lock handling is managed by the operational semantics,
letting lock statements be inserted by bind and the rule for yield, and letting
return statements decrease the lock. The initial block of a thread takes the
lock of this object and releases it by rule END. Assuming we start from an
initial configuration, the lock of this object is continuously held by the thread,
and with the same lock value. Under this assumption, the premise §() is
redundant in all rules except the rule for lock statements.

5. Type Safety

This section extends the type system of Section 3 to runtime configura-
tions and shows type preservation for the execution of well-typed programs.

5.1. Well-Typed Configurations

The extension of the type system to runtime configurations is given in
Figure 8. The typing context I" contains the types of all constant values (in-
cluding object, group, and thread identities) at runtime. By RTT-CoNFIG,
a configuration is well-typed if all objects, groups, and threads are well-
typed. By RTT-GRroup, a group is well-typed if all the objects which export
interfaces through the group implement these interfaces and that each in-
terface supported by the group according to the type system is exported by
an object in the group (checked by RTT-Exps and RTT-Exp). We denote
by CT(C) the typing context which maps the fields of C' to their declared
types. By RTT-OBJECT, an object o is well-typed if its fields a are well-typed
in I' + CT(I'(0)) and its lock is well-typed. This means that the typing of
fields is invariant over execution. Substitutions (the state of fields and local
variables) are checked by RTT-SuBs and RTT-SuB. By RTT-OBJECTLOCK,
the object’s lock is well-typed if a thread ¢ holds the lock n times, where n
is an integer.

A thread is well-typed by RTT-THREAD] if its stack is well-typed and by
RTT-THREAD? if it is idle. A stack is well-typed by RTT-IDLE if it is idle

23

and by RTT-Stack if all its processes are well-typed by RTT-FrRaMEL and
RTT-FRAME2; i.e., the state of local variables, the block statement if the
stack is not active, and the method body sr are well-typed. The runtime
syntax enforces the usage of the block statement only once in a frame, at
the head of the frame. Observe that due to the query-mechanism of the
language, the types of local program variables in two processes which stem
from activations of the same method, may differ at runtime. This is in
contrast to the typing of fields. For this reason, the typing context used for
typing runtime configurations cannot rely on the statically declared types
of program variables. This explains why RTT-FrRaME]L and RTT-FRAME2
extend I' with the locally stored typing information 17 to type check [V,
sr, and block(z). The effects of the static type system are not needed
here, as they are reflected by how the operational semantics updates this
local type information. The additional runtime statement lock(n) is well-
typed by RTT-Lock. The rules from the static type checking are reused as
appropriate. The remaining rules RTT-EmpTY, RTT-FREE, RTT-DEF, and
RTT-EMPTYGROUP are straightforward.

5.2. Subject Reduction

The type system guarantees that the type of fields in an object never
changes at runtime. The static typing of methods in well-typed programs
allows us to establish as Lemma 1 that method binding, if successful, results
in a well-typed process at runtime. To show that the error process cannot
occur in the execution of well-typed programs, it suffices to show that sub-
stitutions are always well-typed. Lemma 2 shows that this is the case for the
initial configuration and Lemma 3 shows that one execution step preserves
runtime well-typedness. Together, these lemmas establish a subject reduction
theorem for the language, expressing that well-typedness is preserved during
the execution of well-typed programs and in particular that method binding
always succeeds. Here, —* denotes the reflexive and transitive closure of the
reduction relation —.

Lemma 1. Let mz_ ., € C be declared in a well-typed program and let o be
an object of that program such that classOf(o) = C. IfT + v : T,, T = T,
and T <T', then I' + CT(C) - bind(mz_7,0,C,0) : T".

Lemma 2. Let P be a program such that I' = P ok and let cn be the initial
configuration of P. Then there is a I" such that T'+ ¢n ok and ' C 1.

24

(RTT-Lock)

(RTT-EmPTY) (RTT-FREE) (RTT-DEF) Natl
n : Na
'k e ok '+ free ok 't default(T) : T —_—
't lock(n) I'
(RTT-Exps)
(RTT-Groupr) (RTT-Exp)
'+ export : Group(S)
'+ export : T'(g) T'o) X1
_ T+ export’ : Group(S’)
T'+ g(export) ok T't{o:I}:Group(I)

I' - ezport U exzport’ : Group(S U S”)

(RTT-ConrIG) (RTT-OBuECT) (RTT-SuB) (RTT-Suss)
T'tcn ok I'(o)=C T+ ok Ftov:T 't o ok
'k cn' ok CT(C)=I" T+I"Fo ok x)=T I'ko’ ok

't cn cn’ ok 't o(o,8) ok 'z~ (T,v) ok I'to+o0' ok
(RTT-StACK) (RTT-THREADL) (RTT-OBiecTLOCK)

(RTT-THREAD2)
Lkpr:T I'(t) = Thread I'(t) = Thread
I'(t) = Thread
I'[block — T] + p ok 'k {o|sr};p ok ' n: Natl
I' k- t(idle) ok
'k pr;p ok '+ t({o|sr}; p) ok 'k (¢,n) ok
(RTT-IDLE)
(RTT-FraMEL) (RTT-FrRAME2)
I' - idle ok
IMtook I'bFsr:T IV(block) <I'"(z) T'k{o|sr}:T
I" =T+ CT(c7 (this)) + o7 Y =T+ CT(c7 (this)) + o7

(RTT-EmPTYGROUP)

PH{o|sr}:T 't {o | block(z);sr}: T I'+ 0 - Group(D)

Figure 8: The runtime type system. Natl denotes the natural numbers greater than zero.

Lemma 3. IfT' - cn ok and cn — cn’ then there is a IV such that T' F cn’ ok
and T' C TV,

The proofs of the lemmas are found in Appendix A.

Theorem 1 (Subject reduction). Let I' F P ok and let cn be the initial
runtime configuration of P. If cn —* cn’ then there is a I such that "
en' ok and T CTV.

Proof. The proof is by induction over the length of the reduction sequence.
The two cases follow directly from Lemmas 2 and 3.]

Notice that unsuccessful method binding gives the special process error,
which is not well-typed since there is no type rule for error. Thus our notion
of subject reduction implies that error may not occur, i.e., method binding

25

will succeed. However, the execution of a thread may stop if the thread is
blocked, in the sense that it does not have the lock to the object on top of the
process stack, or is accessing a null pointer. A statement s is said to be null-
free in a given state if no variable in the statement has the value null apart
from left-hand-side variables and actual parameters, ignoring inner blocks.
A list of statements sr is null-free if the first statement (which may be the
return statement) is null-free. For example, a try statement is null-free if the
trial is null-free. We prove a notion of local progress, expressing that a thread
can proceed when it is not blocked and the next statement is null-free.

Lemma 4 (Local progress). Consider a well-typed configuration containing
a thread t({l | sr}; p) and an object o(c,), such that I¥(this) = o and §(t).
If sr is null-free in the state (o + 1), there will be exactly one applicable
operational rule modifying the thread.

Together, Theorem 1 and Lemma 4 ensure that “well-typed programs
do not cause method-not-understood errors at runtime” in the sense of [14].
Our language deals with concurrent execution and deadlocks may occur. The
type system does not restrict deadlocks, but ensures that each non-blocked
process in a well-typed configuration can make a transition, and in particular,
method binding will succeed, provided the callee is not null. The condition
of null-freeness may be extended to cover well-defined expressions, i.e., the
absence of errors in expressions such as division by zero, and then the progress
property would assume well-defined expressions. (Alternatively an exception
mechanism could be added to the language.)

6. Diversity in Object Groups

The kernel language formalized in this paper proposes a lightweight no-
tion of dynamic object groups in which the main emphasis is on how service-
oriented abstractions combine with groups to allow service discovery, migrat-
ing a service from one service provider to another, etc. In our model, objects
seen as service providers may offer their services through several groups. The
proposed mechanisms are lightweight in that the required additional machin-
ery to handle the groups is very small.

Object groups in object-oriented systems are not a uniform concept, but
have been used for a variety of purposes. In this section, we consider an ad-
ditional construct for communication in object groups and discuss how these
constructs fit with different ways of using object groups. For simplicity, we

26

have not opted for integrating the additional construct in the kernel language.
However, the extension of the kernel language is fairly straightforward and
does not lead to complications from the typing perspective. For convenience,
variable names in the examples will be kept disjoint and we refer to fields
without dot-notation; e.g., we write publicGroup rather than this.publicGroup.

6.1. Unicast vs. Broadcast

The dynamic object group model considered in the kernel language of
this paper is based on unicast communication following the standard call and
return structure of object-oriented languages. A different notion of dynamic
object group can be obtained by considering broadcast communication. In
such a scenario, all objects in a group who provide the service, receive the
call from the group’s client. Our model can be adapted to such a scenario,
for example by introducing an explicit primitive into the language to express
broadcast communication: broadcast y.m(€). Dynamic object groups allow
concurrent activities between their objects, so in the multithread setting
broadcast is most naturally captured by spawning new threads for the calls
to each object. The main issue here is how to handle the reply values from
multiple calls. An interesting solution is to collect the replies from the group
into a list: if the return type from a method m is type T then the return
type to a broadcast to method m would be List<T>. If we assume that the
compiler introduces an auxiliary method broadcast,,, for every broadcasted
method m,,, this would lead to the following rule in the semantics:

(BroaDCAST)
Pis) =0 () (a+)V() =g
S={d|o": J € export NJ 2 mz_pt (a+1)7 () = List<T>

o(a,d) t({l | x = broadcast y.mg_,.(€);s7};p) g(export)
— o(a,0) t({l| z = broadcastm,, . (5,€);sr}t;p) g(ezport)

The auxiliary method broadcast,,, unwraps method calls to m to a set S
of receivers:

List<T> broadcast,, (Set<J> S, T} z1,..., Ty xn){
T tmp; J o; List<T> replies;
if S==0 {
replies = Nil;
1} else {
o = some(S);
tmp = yield 0.m(Z);

27

replies = broadcast,,, (S\{o}, z1,...,zy);
replies = Cons(replies,tmp);

return replies;

|
|
|
|
K
Here, some(S) denotes some value in the set .S, Nil denotes the empty list, and
Cons(l,e) denotes the list constructor which appends an element e to the list I.
The auxiliary method uses yield to invoke concurrent execution of m for the
different members of S. Observe that with this approach to broadcast, one
cannot access a partial response from the group as the replies to all method
calls need to be returned before the broadcast succeeds. This restriction
would be naturally circumvented in a concurrent object setting with futures
(e.g., [6]) rather than with the standard multithreaded concurrency model.

6.2. Channels

Groups can be seen as channels, reminiscent of stubs for remote method
calls (RMI); the type system of our kernel language guarantees that the
service described by the type of the group is implemented by (at least) one
object inside the group. A channel provides an abstraction of who is at either
end, but enables communication. There may be more than one sender, and
more than one possible receiver. The client makes calls to the group, the
receiver is in the group. The group provides anonymity for the receiver end
of the channel. The example below illustrates how the receiver in a channel
can be dynamically replaced in a way which is transparent to the client, using
the kernel language of this paper.

Void replace(Service receiverl, Service receiver2, Group(Service) channel){
receiver2 joins channel as Service;
try receiverl leaves channel as Service { skip; } else { skip; };
return void;

}

Channel names are here represented by interface names, and the receiver
identity is hidden and may even change dynamically. The two communication
models for group communication discussed above, result in different channel
behavior. With unicast, only one server will receive the call. With broadcast,
all servers will receive the call.

28

6.3. Roles

One way of managing groups is through different roles, which define avail-
able services without specifying the specific implementation of these services.
In a type system, roles can be captured through nominal types. Objects may
adopt roles or be assigned roles, which associate different nominal types with
the object. Roles can be managed at the group level, so an object may have
one role in one group and a different role in a different group. Lea [1] distin-
guishes public and private roles in a group, and relates these to the public
and private parts of an object.

In the model of this paper, roles are naturally captured by means of
interfaces. These may be dynamically associated with groups. Hence, a
group which distinguishes private and public interfaces may be modeled in the
kernel language by means of two groups, one which exports public interfaces
and another which exports private (group-level) interfaces. In particular,
inner groups provide a means to distinguish public calls from intra-group
calls. By adding different interfaces to the two groups, an object may provide
different services to the group’s clients and to the group’s members.

The example below illustrates how policies for group membership can be
achieved in the kernel language of this paper. In the example, we see how a
group administrator may create a group with an inner group which functions
as a private channel for intra-object communication. In this structure, the
inner group has different interfaces from the public group. The two groups
are linked via the GroupManager.

class GroupManager(Servicel ol, Service2 02) implements Administrator {
Group(Servicel) publicGroup;
Group(Administrator,Service2) privateGroup;

{ // Initialization block
Group(()) g1; Group(0) g2;
gl = newgroup; g2 = newgroup;
ol joins gl as Servicel; publicGroup = gl;
02 joins g2 as Service2;
this joins g2 as Administrator;
privateGroup = g2;
g2 joins gl as Any; return void,;

}

Group(Administrator,Servicel,Service2) joinGroup(Servicel 0){
Group(0) g1; Group(Administrator,Service2) g2;
gl = publicGroup; g2 = privateGroup;

29

| o joins gl as Servicel;
| o joins g2 as Servicel;
| return g2;
|
|

3.
¥

Whereas publicGroup only makes the methods of the Servicel interface available
to clients, the inner group has objects providing the interfaces Administrator,
Servicel, and Service2. Any object which joins the group publicGroup gets the
identity of the inner group privateGroup and may use the inner group for
intra-group communication. By modifying the joinGroup method such that
the state of the GroupManager determines whether the caller may join the
group, the GroupManager can seal a group to prevent new members.

6.4. Group Variants

The following list illustrates the diversity of group usage in object-oriented
systems [1]. We relate these to the proposed kernel language and to the
discussion in Section 6.1 of unicast and broadcast communication in groups.

e Subscription Groups: Groups where all calls from clients are broadcast
to all group members, without imposing a restriction on how calls are
handled. This can be modeled in our setting using the broadcast model
discussed in Section 6.1 and a group manager that only accepts objects
as members if they implement the particular interface.

o Work Groups: Groups where the different members provide different
interfaces, such that work tasks and subtasks can be distributed among
the members of the group. This is directly supported by unicast in the
kernel language.

e Service Groups: Groups where any member can handle a call from a
client. These are directly supported by unicast in the kernel language
where all group members implement the same interface, and similar to
subscription groups except that they use unicast instead of broadcast.

e Resource Groups: Groups of functionally identical services that may
be acquired and released by clients. These are unicast groups, similar
to subscription and service groups. They differ in that the intention
is that members of a resource group are held by the respective client
while the client is using the resource. In the approach of this paper,

30

7.

resources would leave the group when acquired by a client and rejoin
the group when released.

Access Groups: Groups where the members have special privileges.
These groups may be either based on unicast or broadcast commu-
nication. Access groups based on unicast are directly supported by
the kernel language, as illustrated by the GroupManager example which
grants group members access to the internal group.

Replication Groups: Groups where all members receive the request,
typically to ensure fault tolerance. Replication groups are based on
broadcast, but they may require that a reply is returned even if some
members fail. Replication groups can be achieved by adapting the
broadcast mechanism of Section 6.1 to use, e.g., a list of future variables
or a shared return variable instead of a list.

Transaction Groups: Groups where the members follow a particular
protocol. These are unicast groups and may in principle be encoded in
the kernel language by a group manager for an internal group. Trans-
action groups are not particularly supported by the approach taken in
this paper.

Property Groups: Groups where objects are added or removed based on
a particular property (for example a location). In the kernel language,
this would require a proactive group controller which monitors objects
for the particular property. Property groups are not particularly sup-
ported by the approach taken in this paper.

Related Work

Object orientation is well-suited for designing small units that encapsu-

late state with behavior, but it does not directly address the organization of
more complex software units with rich interfaces. Two approaches to build-
ing flexible and adaptive complex software systems involve, independently,
object groups and service discovery. Two main uses of groups appear in the
literature: group communication and groups as components. In the first case,
a group is used to facilitate one-to-many communication, and to provide sup-
port for, e.g., load balancing. Members of such groups tend to offer the same
interface. In the second case, the members of a group typically offer different,

31

complimentary interfaces and the group acts as a means for composition of
objects beyond what standard classes and objects offer. Service discovery
allows the binding of a client and a service object via an interface, rather
than requiring that the two objects know each others’ identity. Our work
unifies these approaches in a formal, type-safe setting.

The most common use of object groups is to provide replicated services in
order to offer better fault tolerance. Communication to members of a group is
via multicast. This idea originated in the Amoeba operating system [15]. The
component model Jgroup/ARM [16] adopts this idea to provide autonomous
replication management using distributed object groups. In this setting,
members of a group maintain a replicated state for reasons of consistency.
The ProActive active object programming model [17] supports abstractions
for object groups, which enable group communication—via method calls—
and various means for synchronizing on the results of such method calls.
ProActive is formalized in Caromel and Henrio’s Theory of Distributed Ob-
jects |7]. A core difference with our work is that ProActive’s groups lacks a
notion of service discovery.

Another early work on groups is ActorSpaces [18|, which combine Actors
with Linda’s pattern matching facility, allowing both one-to-one communi-
cation, multicast, and querying. Unlike our approach, groups in ActorSpaces
are intensional: all actors with the same interface belong to the same group.
No formalisation is given, nor is typing discussed.

Object groups have been investigated as a modularization unit for ob-
jects which is complementary to components. Groups meet the needs of
organizing and describing the statics and dynamics of networks of collabo-
rating objects [1]; groups can have many threads of control, they support
roles (or interfaces), and objects may dynamically join and leave groups.
Lea [1] presents a number of common usages for groups and discusses their
design possibilities, inspired from CORBA. Groups have been used to pro-
vide an abstraction akin to a notion of component. For example, in Oracle
Siebel 8.2 [19], groups are used as units of deployment, units of monitoring,
and units of control when deploying and operating components on Siebel
servers. Our approach abstracts from most of these details, though groups
are treated as first class entities in our calculus.

ProActive’s components |7| are similar to our notion of group in that
they consist of a collection of active objects working together, that objects
can be accessed via interface and that communication can be performed in
a one-to-one or many-to-one fashion. One key difference is that ProActive

32

relies on client and server ports to connect components, whereas our model
lacks ports and instead regular interfaces and service discovery are used to
connect objects.

Object groups have further been used for coordination purposes. For ex-
ample, CoLaS [20] is a coordination model based on groups in which objects
may join and leave groups. ColLaS goes beyond the model in our paper by
allowing very intrusive coordination of message delivery based on a coordi-
nator state. In our model, the groups do not have any state beyond the state
of their objects. Similar to our model, objects enroll to group roles (similar
to our interfaces). However, unlike our model, objects may leave a group
at any time and the coordinator may access the state of participants. The
model is implemented in Smalltalk and neither formalization nor typing are
discussed [20].

Concurrent object groups have been proposed to define collaborating ob-
jects with a single thread of control in programming and modeling languages
[21, 22|. In contrast to our dynamic object groups, these concurrent object
groups do not have identity and function as runtime restrictions on concur-
rency rather than as a linguistic concept.

Microsoft’s Component Object Model (COM) allows querying a compo-
nent to check whether it supports a specific interface, similar to the query-
mechanism considered in this paper. A component in COM may also have
several interfaces, which are independent of each other. In contrast to the
model presented in our paper, COM is not object-oriented and the interfaces
of a component are stable (i.e., they do not change). COM has proven dif-
ficult (or perhaps, uninteresting) to formalize. Pucella develops A““M [8], a
typed A-calculus which addresses COM components in terms of their inter-
faces, and discusses extensions to the calculus to capture subtyping, querying
for interfaces, and aggregation.

A wide range of service discovery mechanisms exist [23]. The program-
ming language AmbientTalk [24] has built-in service discovery mechanisms,
integrated in an object-oriented language with asynchronous method calls
and futures. In contrast to our work, AmbientTalk is an untyped language,
and lacks any compile time guarantees. Various works formalise the notion of
service discovery [25], but they often do so in a formalism quite far removed
from the standard setting in which a program using service discovery would
be written, namely, an object-oriented setting. For example, Fiadeiro et al.’s
model of service discovery and binding takes an algebraic and graph-theoretic
approach [26], but it lacks the concise operational notion of service discovery

33

formalized in our model. No type system is presented either.

Some systems work has been done that combines groups and service dis-
covery mechanisms, such as group-based service discovery mechanisms in
mobile ad-hoc networks [27, 28]. In a sense our approach provides language-
based abstractions for such a mechanism, except that ours is also tied to
interface types to ensure type soundness and includes a notion of exclusion
to filter matched services.

Our earlier work [29] enabled objects to advertise and retract interfaces
to which other objects could bind, using a primitive service discovery mech-
anism. A group mechanism was also investigated as a way of providing
structure to the services. In that work services were equated with single ob-
jects, whereas in the present work a group service is a collection of objects
exporting their interfaces. In particular, this means that the type of a group
can change over time as it comes to support more functionality.

The key differences with most of the discussed works is that the model
in this paper remains within the object-oriented approach, multiple groups
may implement an advertised service in different ways, and our formalism
offers a transparent group-based service discovery mechanism with primitive
exclusion policies. Furthermore, our notion of groups has an implicit and
dynamically changing interface.

8. Conclusion

This paper has proposed a formal model for adaptive service-oriented
systems, based on a notion of object-oriented groups. We develop a kernel
object-oriented language in which groups are first-class citizens in the sense
that they may play the role of objects; i.e., a reference typed by an interface
may refer to an object or to a group. A main advantage is that several objects
may be collected into a group, thereby obtaining a rich interface reflecting
a complex service, which can be seen as a single object from the outside.
Although objects in our language are restricted to executing one method
activation at the time, the language itself is multithreaded and a group may
serve many clients at the same time due to inner concurrency.

In contrast to objects, our groups may dynamically add support for an
increasing number of interfaces. Group formation is dynamic; join and leave
primitives allow the migration of services provided by objects and inner
groups as well as software upgrade, provided that interfaces are not removed
from a group. An object or group may be part of several groups at the same

34

time. This gives a very flexible notion of group. By combining inner groups
and release using yield, the language allows complex group behavior to be
expressed in a simple and elegant way, including inner encapsulation and
intra-object communication, access control, and mechanisms for intercepting
and filtering messages.

In this paper, dynamic object groups are combined with service discovery
by means of acquire and subtypeOf primitives. This allows a programmer to
discover services in an open and unknown environment or in a known group,
and to query interface support of a given object or group. These mechanisms
are formalized in a general object-oriented setting, based on experiences from
a prototype implementation of the group and service discovery primitives
in Maude [13|. The presented model provides expressive mechanisms for
adaptive services in the setting of object-oriented programming with modest
conceptual additions. We have developed an operational semantics and type
and effects system for the kernel language, and shown the soundness of the
approach by a proof of type safety.

The combination of features proposed in this paper suggests that our no-
tion of a group can be made into a powerful programming concept. The work
presented may be further extended in a number of directions. The overall goal
of our work has been to study an integration of service-oriented and object-
oriented paradigms based on a formal foundation. In this paper, we have
explored an approach to groups in the setting of multithread concurrency.
However, the yield mechanism proposed for release takes inspiration from
asynchronous method calls with implicit futures in the context of coopera-
tively scheduled concurrent objects [30]. To better support groups based on
broadcast communication and different ways to collect and use results from
an unknown number of objects in the group, it would be a natural extension
of our work to introduce asynchronous method calls, futures, and cooperative
scheduling into the language (e.g., [6, 30]). It is also interesting to study the
integration into the kernel language of more service-oriented concepts such
as for example error propagation and handling, as well as high-level group
management operations such as group aggregation.

Acknowledgement. We thank the anonymous reviewers for their detailed
comments, which contributed to a significant improvement of the paper.

35

References

1]

2]

3]

[4]

[5]

6]

7]

9]

[10]

D. Lea, Objects in Groups, available at http://gee.cs.oswego.edu/
dl/groups/groups.html, 1993.

J. Bjork, D. Clarke, E. B. Johnsen, O. Owe, A Type-Safe Model of Adap-
tive Object Groups, in: N. Kokash, A. Ravara (Eds.), Proc. 11th Intl.
Workshop on Foundations of Coordination Languages and Self Adap-
tation (FOCLASA’12), vol. 91 of FElectronic Proceedings in Theoretical
Computer Science, 1-15, 2012.

A. Igarashi, B. C. Pierce, P. Wadler, Featherweight Java: a minimal
core calculus for Java and GJ, ACM Transactions on Programming Lan-
guages and Systems 23 (3) (2001) 396-450.

C. Flanagan, S. N. Freund, Type-based race detection for Java, in: M. S.
Lam (Ed.), Proceedings Conference on Programming Language Design
and Implementation (PLDI), ACM, 219-232, 2000.

J. Ostlund, T. Wrigstad, Welterweight Java, in: J. Vitek (Ed.), 48th
International Conference on Objects, Models, Components, Patterns
(TOOLS), vol. 6141 of Lecture Notes in Computer Science, Springer,
97-116, 2010.

F. S. de Boer, D. Clarke, E. B. Johnsen, A Complete Guide to the Fu-
ture, in: R. de Nicola (Ed.), Proc. 16th European Symposium on Pro-
gramming (ESOP’07), vol. 4421 of Lecture Notes in Computer Science,
Springer, 316-330, 2007.

D. Caromel, L. Henrio, A Theory of Distributed Objects - Asynchrony,
Mobility, Groups, Components, Springer, 2005.

R. Pucella, Towards a formalization for COM part I: the primitive calcu-
lus, in: M. Ibrahim, S. Matsuoka (Eds.), Proceedings of the 2002 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’02), ACM, 331-342, 2002.

J.-P. Talpin, P. Jouvelot, Polymorphic Type, Region and Effect Infer-
ence., Journal of Functional Programming 2 (3) (1992) 245-271.

T. Amtoft, H. R. Nielson, F. Nielson, Type and effect systems - be-
haviours for concurrency, Imperial College Press, 1999.

36

[11] J. M. Lucassen, D. K. Gifford, Polymorphic effect systems, in: Proceed-
ings of the 15th Symposium on Principles of Programming Languages
(POPL’88), ACM Press, 47-57, 1988.

[12] G. D. Plotkin, A structural approach to operational semantics, Journal
of Logic and Algebraic Programming 60-61 (2004) 17-139.

[13] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
C. L. Talcott (Eds.), All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, vol. 4350 of Lecture Notes in Computer Science, Springer, 2007.

[14] B. C. Pierce, Types and Programming Languages, The MIT Press, 2002.

[15] M. F. Kaashoek, A. S. Tanenbaum, K. Verstoep, Group communication
in Amoeba and its applications, Distributed Systems Engineering 1 (1)
(1993) 48-58.

[16] H. Meling, A. Montresor, B. E. Helvik, O. Babaoglu, Jgroup/ARM: a
distributed object group platform with autonomous replication manage-
ment, Software: Practice and Experience 38 (9) (2008) 885-923.

[17] L. Baduel, F. Baude, D. Caromel, Efficient, flexible, and typed group
communications in Java, in: J. E. Moreira, G. Fox, V. Getov (Eds.),
Proc. Joint ACM-ISCOPE Conference on Java Grande, ACM, 28-36,
2002.

[18] G. Agha, C. J. Callsen, ActorSpaces: An Open Distributed Program-
ming Paradigm, in: M. C. Chen, R. Halstead (Eds.), Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), ACM, 23-32, 1993.

[19] Oracle Corporation, Siebel Business Applications Documentation, 2010.

[20] J. C. Cruz, S. Ducasse, A Group Based Approach for Coordinating
Active Objects, in: P. Ciancarini, A. L. Wolf (Eds.), Third Interna-
tional Conference on Coordination Languages and Models (COORDI-
NATION’99), vol. 1594 of Lecture Notes in Computer Science, Springer,
355-370, 1999.

37

[21] J. Schéfer, A. Poetzsch-Heffter, JCoBox: Generalizing Active Objects to
Concurrent Components, in: T. D’'Hondt (Ed.), Proc. European Con-
ference on Object-Oriented Programming (ECOOP 2010), vol. 6183 of
Lecture Notes in Computer Science, Springer, 275-299, 2010.

[22] E. B. Johnsen, R. Héhnle, J. Schéfer, R. Schlatte, M. Steffen, ABS: A
Core Language for Abstract Behavioral Specification, in: B. Aichernig,
F. S. de Boer, M. M. Bonsangue (Eds.), Proc. 9th International Sympo-
sium on Formal Methods for Components and Objects (FMCO 2010),
vol. 6957 of Lecture Notes in Computer Science, Springer, 142-164, 2011.

[23] P. Hasselmeyer, On Service Discovery Process Types, in: B. Benatallah,
F. Casati, P. Traverso (Eds.), Proceedings of the Third International
Conference on Service-Oriented Computing (ICSOC 2005), vol. 3826 of
Lecture Notes in Computer Science, Springer, 144-156, 2005.

[24] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, W. D. Meuter,
Ambient-Oriented Programming in AmbientTalk, in: D. Thomas (Ed.),
Proc. 20th European Conference on Object-Oriented Programming,
(ECOOP’06), vol. 4067 of Lecture Notes in Computer Science, Springer,
230-254, 2006.

[25] A. Lapadula, R. Pugliese, F. Tiezzi, Service Discovery and Negotiation
With COWS, Electronic Notes in Theoretical Computer Science 200 (3)
(2008) 133-154.

[26] J. L. Fiadeiro, A. Lopes, L. Bocchi, An abstract model of service discov-
ery and binding, Formal Aspects of Computing 23 (4) (2011) 433-463.

[27] D. Chakraborty, A. Joshi, Y. Yesha, T. W. Finin, GSD: a novel group-
based service discovery protocol for MANETS, in: Proceedings of The
Fourth IEEE Conference on Mobile and Wireless Communications Net-
works, TEEE, 140144, 2002.

[28] Z. Gao, L. Wang, M. Yang, X. Yang, CNPGSDP: An efficient group-
based service discovery protocol for MANETSs, Computer Networks
50 (16) (2006) 3165-3182.

[29] D. Clarke, E. B. Johnsen, O. Owe, Concurrent Objects & la Carte, in:
D. Dams, U. Hannemann, M. Steffen (Eds.), Concurrency, Composition-

38

ality, and Correctness, vol. 5930 of Lecture Notes in Computer Science,
Springer, 185-206, 2010.

[30] E. B. Johnsen, O. Owe, An Asynchronous Communication Model for
Distributed Concurrent Objects, Software and Systems Modeling 6 (1)
(2007) 35-58.

Appendix A. Proof of Type Preservation

This appendix includes proofs of the lemmas from Section 5.2.

Lemma 1. Let mg_ € C be declared in a well-typed program and let o be
an object of that program such that classOf(o) = C. IfT'F v : T, T <T,
and T <T', then T' + CT(C) - bind(mz_,7,0,C,0) : T".

Proof. Since classOf(o) = C', o cannot be null. Since mz_,. € C, bind(mz_,p, 0, C,7)
must give a non-error process {/|lock(1);s;return e} such that C has

the method 7" m(T, z) {T., Z’;s;return e; } where [is [z — (T},7),Z
(T./,default(T.)), this (C,0)]. So the local typing context is I7 = [z >

T.,z' + T, this — C]. We need to show that T' - {I|lock(1); s; returne; } :
T.Let I'=T+ CT(C)+1".

We first show I - [ok. By assumption, I' - 7 : T, and I'(0) = C.
Thus 7 : T, since T < T,. Since T, 0 are values, I" - @ : T, and [(o) = C.
Since I'(2) = T, and I'(v) = T,, by RTT-Sus and RTT-SuBs we have
I"t %+ (T.,7) ok. By RTT-DEF, [V - default(7.:) : T.s, so by RT'T-SuB
and RTT-SuBs we have I'" - 2/ + (T, default(7./)) ok. Since I'(this) = C
and V(o) = C, by RTT-SuB we have I'' - this — (C,0) ok, and by RTT-
Suss IV I [ok follows by composition.

We next show IV F lock(1l);s;return e : T. Since m is well-typed in
C' we have from T-Crass, T-METHOD, and RTT-Lock that I'[this — C] +
CT(C) + [z v T,,7 + T.] F lock(1);s;return e : T'. Since I7 = Z
T., 2 + T.,this — C, we get I' + CT(C) + 17 F lock(1);s;return e : 1"
By RTT-FraMEL we get I' - {l|1lock(1); s;return e} : T, since 7" < T. [

Lemma 2. Let P be a program such that I' = P ok and let cn be the initial
configuration of P. Then there is a I" such that I+ ¢n ok and I' C 1.

Proof. Let us assume that P = @ COL {T 7z sr;}, then the initial state
is o(e, (t, 1)) t([{Zz — (T,default(T)),this — (C,0)]|sr; };idle) for fresh

39

names o, t, and C. By assumption, C' < Any. We assume that CT(C) = ¢.
Let IV =T'[o — C,t + Thread|.

Obviously, by RTT-OBJECT, I - 0(¢, (¢,1)) ok. By T-PrROGRAM, I"[Z —
T) F sr : Void. By RTT-DEr, I"[z + T| F z + (T;,default(7;)). By
RTT-SuB, I'[this — (C,0)] F this — (C,0) ok. Then by RTT-Suss, RTT-
FrRAMEL, RTT-STACK, RTT-THREADI, and RTT-ConFIG, [V F ¢n ok.]

Lemma 3. IfT'F cn ok and cn — cn’ then there is a I such that T+ cn/ ok
and ' C I".

Proof. The proof is by cases over the reduction rules of the semantics. To
help readability, we let o denote the typing context CT(I'(this)), i.e., the
declared types of the fields of the current object. We use the notation I' - s ok
instead of I' = s A when the effect A is uninteresting.

Case Skip. Let cn = cny t({l|skip;sr;};p) and cn’ = cny t({l|sr; }; p).
By assumption, I' = ¢n ok, so I' = ¢ng ok and I' F ¢({l|skip; s7; };p) ok.
Then, by RTT-THREAD1, RTT-STACK, RTT-FRAMEL, RTT-FRAME2, and T-
ComPOSITION, we know that I' = ¢({l|sr; }; p) ok, and I' F ¢n’ ok.

Case WHILE. Let cn = cny o(a,0) t({l{|whilee{s;};sr;};p) and cn’ =
cng o(a,d) t({l|if e {s;whilee{s; }} else {skip};sr; };p). By assumption,
' cnok,sol'+0+1T Fe:Booland I' + 0 + 17 I s ok. It follows
that I' + 0 + 7 I ife{s;whilee {s;}}else {skip} ok, and we get that
' cn’ ok.

Case ConD1. Let cn = cny o(a,d) t({l|if e {s1; } else {sq; };sr; }; p) and
en' = eng o(a, 8) t({l|s1; sr; }; p). By assumption, I' - en ok, so '+ o +17 -
spokand I' +0 + 17 I sr ok . Then, I' + o + 17 F s1;sr ok and it follows
that I' = ¢n’ ok.

Case ConD2. Let ¢cn = cng o(a,) t({l|if e {s1; } else {sq; }; 57 }; p) and
en' = cng o(a, 8) t({l|sz; sr; }; p). By assumption, I' - cn ok, so '+ o +17 -
spokand I' + 0 + 17 sr ok . Then, I' + o + 17 F sy; 57 ok and it follows
that I' - ¢n’ ok.

Case AssiaNl. Let e¢n = c¢ng o(a,d) t({llx = e;sr;};p) and en’ =
cng ofa, 8) t({l[x — (T,v)]|sr;}; p), where [7(x) = T and (a +1)¥(e) = v.
By assumption, I' - cn ok, so I' + 0 + 17 - 2 = e ok. Since I' - o(a,d) ok
and T' - t({l|z = e;sr;};p) ok, we know that ' + o + 17 v : T. Then
C+o+17Faxw (T,v) ok, so T+ t({l[x — (T,v)]|sr; };p) ok, and finally
' cn’ ok.

Case AssiaN2. Let c¢cn = cng o(a,d) t({llx = e;sr;};p) and cn' =
cng o(alz — (T,v)],8) t({l|sr; }; p), where o(x) =T and (a+1)(e) = v. By

40

assumption, I' - ¢n ok, so ' + o + 17 -z = e ok. Since I' - o(a, §) ok and
[+ t({llx = e;sr; }; p) ok, we know that T+o+17 v : T. Then T'+o+17 F
x — (T,v) ok, so I' - o(a[z — (T,v)],0) ok. Since I' - t({{|sr; }; p) ok, we
get I' F en/ ok.

Case Lock-OBJECT. Let cn = cny o(a, d) t({l|Lock(n); sr; }; p) and cn’ =
cng o(a,d") t({l|sr; }; p). By assumption, I' - ¢n ok, so ' + ¢ a ok and
'+ o0+ 17 F lock(n);sr : T for some T. Since I' - § ok, we get from
RTT-OBJECTLOCK that ¢ = inc,(1,0) = (¢,n) for some n, so I' - ¢’ ok and
it follows that I' F ¢n’ ok.

Case NEw-GROUP. Let cn = cny o(a,d) t({l{|x = newgroup; sr; }; p) and
en’ = eng o(a,d) t({l|lx = g;sr; };p) g(0). By assumption, T’ F en ok, so
I'+ 0 +417 - x = newgroup; sr : T. In particular, by T-AssiGN, I'+o +17 F
x : Group(). Since g is fresh, g € dom(T"). Let T” = I'[g + Group(()]. Then
IV eng o(a,d) ok, IV + o +1" Fox=gok,and IV + o+ 17 - sr:T. It
follows that I = ¢({l|x = g; sr; }; p) ok. By RTT-Group, I I g(0) ok, and
it follows that I'' - ¢n’ ok.

Case NEW-THREAD. Let cn = cny o(a,d) t({l|spawnz.m(e); sr; }; p) and
en' = eng o(a,8) t({l|sr; };p) t'(pr;idle). Let I/ =T+ o +17 and I =
[[t' — Thread|]. By assumption, I'+ o + {l|spawnz.m(€);sr; } : T, so'+o F
{l|sr;} : T and by T-SpawN we have I"(z) < mp(— Void. By Lemma 1
we then get I' - pr: T, and by RTT-Stack I' - pr;idle ok. We have
[= t'(pr;idle) ok and I F ¢n' ok follows.

Case NEw-OBJECT. Let ¢cn = cny o(a,d) t({llz = new C(€);sr;};p)
and cn’ = cng o(a,d) t({llx = o;sr;};p) o(d,(',1)) t'(pr;idle), where
pr = {z = (T,default(T)),this — (C,0')|sr’;} where Z of type T are
the local variables of the initiator of C'. By assumption, I' F ¢n ok, so
I'+0+1" - 2 = new C(e);sr : T. From T-NEw, we can assume that
['(z) = I such that C < I, and I' + o + 17 € : ptypes(C). Since o' is fresh,
o & dom(T"). Let I" =T'[o — C]. Then I'" I eng o(a, §) ok. We need to show
that ¢, ¢, and o' are well-typed in I".

It follows from the induction hypothesis that IV + ¢ + 17 F 2 = o ok and
consequently I"+o+{7 2 = o';sr : T. Then, I"+o {l|z = newC(e); sr; } :
T and t is well-typed in I". Since ' + 0 F a ok and I' + ¢ + {7 F [ok,
we have that T' + o + [T F (a + 1)V(e) : ptypes(C). It follows that T" +
atts(C, (a+1)Y(€)) ok and o' is well-typed in I”. Since C' is well typed in I”,
we have [V + CT(C)[Z — T)] I sr' : Void. It follows that I' - pr ok and the
thread t' is well-typed in I".

Case CaLLl. Let cn = cny o(a,d) t({l|lz = y.m,(€);sr; };p) and cn’ =

41

cng o(a,d) t(pr;{l|olock(x); sr;}; p). By assumption, I' - {l|sr}; p ok. Let
IV denote I' + o + 17 and assume that I'(x) = T. By assumption, I' - cn ok,
so by T-CaLL we have I''(y) < mp(g)—p. By Lemma 1 we then get I' = pr: T,
and it follows from RTT-Stack that I' - pr; {i{|block(z); sr}; p ok.

Case CaLL2. By RTT-OiectLock, I' F (¢,n) ok. The case is then
similar to Case CALLI.

Case CALL3. Let cn = cng o(a,0) t({l|x = y.my(€); sr; }; p) g(export) and
en' = eng o(a, 8) t({l|z = v.my,(€); s7; }; p) g(export). Let I denote I'+o+17.
By assumption, I' = ¢n ok, so by T-CALL we have [V F =z = y.m(€) ok
where I'"(y) =< mp @ -r(e). Since v : I € export we know by RTT-Exp that
[M(v) < I. Hence, I" F v : [and IV F = = v.m(€) ok. It follows that
['F cen' ok.

Case JoIN. Let en = cng o(a, d) t({l|x joins z as I; sr; }; p) g(export) and
en' = eng o(a,8) t({l[z — (T, g)]|sr; }; p) g(export’), where T = Group(SUI).
By assumption, I' - ¢n ok, so T'+o0+17 - z joins zas I; sr : T. Assume that
I(z) = (Group(S), g) and that (a+1)¥(z) = o’. By T-Join, ([+o+17)(x) =
I, and since T'+ o + {7 F [ok, we know that ['(¢’) < I. It follows from
T-JoiN and T-ComposITION that '+ o + {7 [z — Group(T)] sr : T. Let
export’ = |J;ep{0’ « I} U export. By assumption, I' = exzport ok and since
I'(¢o/) = I we know by RTT-Exp that I' - g(export’) ok. It follows that
['F en' ok.

Case RETURN. Let cn = cny o(a,d) t({l|return e}; {I'|block(y); sr; }; p)
and cn’ = cng o(a,d’) t({l'|ly = v;sr; };p). By assumption, I' = ¢n ok, so
by RTT-Stack I' + 0 + 17 - e : T for some T such that I'[block — T] F
{l'block(y); s; }; p) ok. Since I' + o a ok and T'+ o + 17 I [ok, we have
that T+ o + 17 F v : T. It follows that T' - {lI'ly = v;sr;};p) ok. Since
decy(9) is well-defined, either ¢’ = free, which is well-typed by RTT-FREE, or
d = (t,n + 1) which is well-typed by RTT-OBJECTLOCK since I'(t) = Thread
by assumption. It follows that I' - ¢n’ ok.

Case END. Follows directly from the induction hypothesis.

Case LEAVEL. Let cn = cng o(a,) t({l|try = leaves y as I {s,} else {s};
sr; };p) glexport) and en’ = cng o(a,d) t({l|s1; sr; };p) glexport’). By as-
sumption, I' - cn ok, so I' - g(eaport) ok and '+ F {I|try = leaves y as [
{s1} else{sy};sr;} : T It is obvious that I' + o F {l|sy;sr; } : T and that
' - g(export’) ok where export’ C export. Since export’ < I, we know that if
It g : I with g(export) then I' - g : I still holds with g(export’). It follows
that ' = cn g(export’) ok.

42

Case LEAVE2. Follows directly from the induction hypothesis.

Case QUERYL. Let cn = cng o(a,0) t({l|try 2 subtypeOf [{s,} else {s2};
sty b p) g(export) and en’ = cng o(a,) t({l[z — (Group(SU{I}, g))]|s1; s7; };p)
g(export). By assumption, I' - cn ok, so '+o F {l|try z subtypeOf I {s;} else
{so};sm;} « T. Let (I)7(2) = Group(S). By T-INsPECT, we know that
[+ o0+ 17[z — Group(SUI)| F s; ok, and consequently I' + o + 7 [z
Group(S U I)|F sy;sr: T. It follows that I' - ¢n’ ok.

Case QUERY2. Follows directly from the induction hypothesis.

Case AcQuUIRELl. Let e¢n = cny o(a,d) t({l|try = = acquireliny
except T; {s1 } else {sa};sm;}; p) g(export) and cn’ = cny o(a,d) t({l|z =
v; s1; 8135 }; p) g(export), where (v : J) € export . By assumption, I' - cn ok,
so '+ o F {l|try x = acquire] iny exceptZ;{s;}else {sa};sr;}: T and
I'Fg((v: J)Uexport) ok. It follows from RTT-Exp that I'(v) < J and since
J = I, we have I' + o - {l|z = v;s1;sr; } : T and consequently I' - ¢n’ ok.

Case AcQUIRE2. Follows directly from the induction hypothesis. O

Lemma 4. Consider a well-typed configuration containing a thread t({l|sr}; p)
and an object o(c,0), such that IV (this) = o and §(t). If sr is null-free in the
state (o + 1), there will be exactly one applicable operational rule modifying
the thread.

Proof. The proof is by cases over the first statement of the statement list sr,
which may be the return statement. We may assume that sr is well-typed.
In our core language a well-typed expression e can be evaluated to a well-
defined value, using (o +)Y (e). If we were to consider errors in expressions,
we would need a strengthened notion of null-free, so that we could assume
error-free expressions in the proof.

Case skip. When sr starts with skip, the Skip rule can be applied applied
since there are no premises on the rule.

Case while. When sr starts with a while statement, the WHILE rule can
be applied applied since there are no premises on the rule.

Case if statement. A well-typed Boolean expression (in our core language)
will evaluate to true or false. In either case, one rule will apply.

Case z=e. Rule AssiaN1 applies. (Here null-freeness is not needed.)

Case f=e. Rule AssiGN2 applies. (Again null-freeness is not needed.)

Case lock(n) statement. The Lock-OBJECT rule can be applied since 6(t)
implies that inc,(n,d) is well-defined.

43

Case newgroup, spawn, and new object. The corresponding rule can be
applied, given that fresh names (of each category) can be generated. For
spawn, the callee is not null by the assumption of null-freeness.

Case method call 1: a normal call on an object. By null-freeness, the
callee is not null and Rule CALL1 applies.

Case method call 2: a yielding call on an object. By null-freeness, the
callee is not null and Rule CaLL2 applies.

Case method call 3: a call on a group. By null-freeness, the callee is a
non-null group, say (Group(.S), g), and by well-typedness of the call, the callee
supports an interface I with a method m of the function type w generated
during typing. Since the configuration is well-typed (o +1)(g) must contain
an object v of type (better than) /. Thus the premises of Rule CALL3 can
be satisfied, and the rule can be applied.

Case x joins z as I. By null-freeness and well-typedness, z is a non-null
group, and rule JoiN applies.

Case return. Observe that in a well-typed configuration, a stack consists
of an active process at the top of the stack and of (suspended) frames below
the active process such that the frame at the bottom of the stack is idle.
A return may only occur as the last statement in the active process or in
a frame on the stack. The active frame cannot contain a block statement,
whereas a frame below the active process must begin with a block statement
or it is idle. Thus, it suffices to consider these two cases for return and the
rules RETURN or END will apply, respectively. (d(¢) implies that dec;(d) is
defined.)

Case x= acquire | in y except 7. By null-freeness and well-typedness, y
will bind to a group. This group may or may not have an object exporting [
(other than objects in Z). Rule AcQUIRE] and rule ACQUIRE2 cover the two
cases.

Case x leaves y as I. By null-freeness and well-typedness, y will bind to a
group. The group may or may not have objects exporting each of I (ignoring
the object z). Rule LEAVE] and rule LEAVE2 cover the two cases.

Case z subtypeOf |. By null-freeness and well-typedness, z will bind to a
group. The group may or may not export I. Rule QUERY1 and rule QUERY2
cover the two cases. O

44

Envisage Deliverable D1.1 D1.1 Modeling of Systems

A.2 Fault Model Design Space for Cooperative Concurrency

65

Fault Model Design Space
for Cooperative Concurrency *

Ivan Lanese!, Michael Lienhardt!, Mario Bravetti', Einar Broch Johnsen?2,
Rudolf Schlatte?, Volker Stolz?, and Gianluigi Zavattaro!

! Focus Team, Universita di Bologna/INRIA, Ttaly
{lanese, lienhard, bravetti, zavattar}@cs.unibo.it
2 Department of Informatics, University of Oslo, Norway
{einarj, rudi,stolz}@ifi.uio.no

Abstract. This paper critically discusses the different choices that have
to be made when defining a fault model for an object-oriented program-
ming language. We consider in particular the ABS language, and an-
alyze the interplay between the fault model and the main features of
ABS, namely the cooperative concurrency model, based on asynchronous
method invocations whose return results via futures, and its emphasis
on static analysis based on invariants.

1 Introduction

General-purpose modeling languages exploit abstraction to reduce complexi-
ty [20]: modeling is the act of describing a system succinctly by leaving out
some aspects of its behavior or structure. Software models primarily focus on
the functional behavior and the logical composition of the software. Modeling
formalisms can have varying levels of detail and can express structural prop-
erties (for example UML diagrams), interactions (m-calculus), or the effects of
functions or methods (pre- and post-conditions), etc.

Concurrent and distributed systems demand flexible communication forms
between distributed processes. While object-orientation is a natural paradigm
for distributed systems [15], the tight coupling between objects traditionally en-
forced by method calls may be criticized. Concurrent (or active) objects have
been proposed as an approach to concurrency that blends naturally with object-
oriented programming [1,22,32]. Several slightly differently flavored concurrent
object systems exist for, e.g., Java [3,30], Eiffel [5,26], and C++ [25]. Concur-
rent objects are reminiscent of Actors [1] and Erlang processes [2]: objects are
inherently concurrent, conceptually each object has a dedicated processor, and
there is at most one activity in an object at any time. Thus, concurrent objects
encapsulate not only their state and methods, but also a single (active) thread of
control. In the concurrent object model, asynchronous method calls may be used
to better combine object-orientation with distributed programming by reduc-
ing the temporal coupling between the caller and callee of a method, compared

* Partly funded by the EU project FP7-610582 ENVISAGE

to the tightly synchronized (remote) method invocation model (of, e.g., Java
RMI [27]). Intuitively, asynchronous method calls spawn activities in objects
without blocking execution in the caller. Return values from asynchronous calls
are managed by futures [14,23,32]. Asynchronous method calls and futures have
been integrated with, e.g., Java [11,19] and Scala [13] and offer a large degree of
potential concurrency for deployment on multi-core or distributed architectures.

ABS is a modeling language targeting distributed systems [17]; the language
combines concurrent objects and asynchronous method calls with cooperative
scheduling of method invocations. In ABS the basic unit of computation is the
concurrent object group (cog): a cog provides to a group of objects a shared
processor. Method invocations on an object of a cog instantiate a new task that
requires the cog’s processor in order to execute. Cooperative scheduling allows
tasks to suspend in a controlled way at explicit points in the code, so that other
tasks of the object can execute. The suspend and await commands are used to
explicitly release the processor: the difference between the two commands is that
await has an associated boolean guard expressing under which condition the task
should be re-activated by the scheduler. Asynchronous method invocations are
used among objects belonging to different cogs; at each asynchronous method
invocation a future is instantiated to store the return value. Futures are first class
citizens in ABS and are accessed via a get command; get is blocking because
a task, executing get on a future of a method invocation which has not yet
completed, blocks and keeps the processor until the future is written. To avoid
keeping the processor, one can use an await f? to ensure that future £ contains
a value.

ABS has a formal, executable semantics; ABS models can be run on a variety
of backends and can be verified using the KeY proof checker [4]. In particular,
asynchronous method calls and cooperative scheduling allow the verification of
distributed and concurrent programs by means of sequential reasoning [8]. In
ABS this is reflected in a proof system for local reasoning about objects where
the class invariant must hold at all scheduling points [9]. Although ABS tar-
gets distributed systems, a notable abstraction of the language design is that
faults are currently not considered part of the behavior to be modeled. On the
other hand, dealing with faults is an essential and notoriously difficult part of
developing a distributed system; this difficulty is exacerbated by the lack of clear
structuring concepts [7]. A well-designed model is essential to understand poten-
tial faults and reason about robustness, especially in distributed settings. Thus,
it is interesting to extend a modeling language such as ABS in order to model
faults and how these can be resolved during the system design.

It is common in the literature to distinguish errors due to the software design
(sometimes called faults) from random errors due to hardware (sometimes called
failures). For software deployed on a single machine, such hardware failures
entail a crash of the program. A characteristic of distributed systems is that
failures may be partial [31]; i.e., the failure may cause a node to crash or a
link to be broken while the rest of the system continues to operate. In our
setting, a strict separation between faults and failures may seem contrived, and

we will refer to unintended behavior caused by both the software and hardware
as faults. A fault is masked if the fault is not detected by the client of the service
in which the fault occurs. In hierarchical fault models, faults can propagate
along the path of service requests; i.e., a fault at the server level can result in
a (possibly different) fault at the client level. In a synchronous communication
model, a client object can only send one method call at the time whereas in an
asynchronous communication model, the client may spawn several calls. Thus,
it need not be clear for a client object which of the spawned calls resulted in
a specific fault in the asynchronous case. However, asynchronous method calls
in ABS allow results to be shared before they are returned: futures are first-
class citizens of ABS and may be passed around. First-class futures give rise to
very flexible patterns of synchronization, but they further obfuscate the path of
service requests and thus of fault propagation.

This paper discusses an extension of the semantics of the ABS modeling
language to incorporate a robust fault model that is both amenable to formal
analysis and familiar to the working programmer. The paper considers how faults
can be introduced into ABS in a way which is faithful to its syntax, semantics,
and proof system, and discusses the appropriate introduction of faults along
three dimensions: fault representation (Section 2), fault behavior (Section 3),
and fault propagation (Section 4).

2 How Are Faults Represented?

Exceptions are the language entities corresponding to faults in an ABS program’s
execution. ABS includes two kinds of entities which in principle can be used to
represent faults: objects and datatypes (datatypes [16] are part of the functional
layer of ABS, and abstract simple, common structures like lists and sets).

Exceptions as Objects. Representing exceptions as objects allows for a very flex-
ible management of faults. Indeed, in this setting exceptions would have both a
mutable state and a behavior. Also, one could define new kinds of exceptions us-
ing the interface hierarchy. Finally, exceptions would have identities allowing to
distinguish different instances of the same fault. However, most of these features
are not needed for faults: faults are generated and consumed, but they are static
and with no behavior. Representing them as objects would allow a program-
ming style not matching the intuition and difficult to understand. Furthermore,
in ABS static verification is a main concern, and semantic clarity is more needed
than in other languages. For this reason we think that in the setting of ABS
exceptions should not be objects.

FEzceptions as Datatypes. Datatypes fit more with the intuition of exceptions as
described before: they are simple values with no identity nor behavior. However,
in ABS datatypes are closed, meaning that once a datatype has been declared,
it is not possible to extend it with new constructors. This is a potential problem
in using them to represent exceptions. Indeed, we would like the datatype for

exceptions to include system-defined exceptions such as Division by Zero or Ar-
ray out of Bound, and to be extended to accommodate user-defined exceptions.
Also, for modularity reasons, programmers of an ABS module should be able to
declare their own exceptions, thus exception declaration cannot be centralized.
User-defined exceptions are not only handy for the programmer, but may also
help the definition of invariants by tracking the occurrence of specific condi-
tions. We discuss below a few possible design choices related to the definition of
user-defined exceptions.

Allow open datatypes in ABS. In this setting exception would be an open dataty-
e [24], and other ABS datatypes could be open as well. The declaration of
system-defined exceptions can be done as:

open data Exception = NullPointerException
| RemoteAccessException

where the keyword open specifies that the datatype is open (in principle open
and closed datatypes may coexist). Then one can add user-defined exceptions
as:

open data Exception = ... | MyUserDefinedException

However, this is a major modification of datatypes, a key component of ABS,
and introducing this additional complexity only to accommodate exceptions may
not be a good choice. In fact, handling open datatypes is in contrast with the
fact that ABS type system is nominal. One would need to resort to a structural
type system (similar to, e.g., OCaml’s variants [29]) to ensure that a pattern
matching is complete, which is far less natural.

Allow any datatype to be an exception. In this setting any value of any datatype
may be used as an exception (the fact of declaring which datatypes are actually
used as exceptions does not change too much the setting). User-defined datatypes
can be added by simply defining new datatypes. When the programmer wants to
catch an exception, he has to specify which types of exceptions he can catch, and
do a pattern matching both on the type and on its constructor to understand
which particular fault happened. This produces a syntax like:

try { ... }
catch (List e) {
case (e) {
| Empty =>
| Cons(v,e2) =>
bl
catch (NullPointerException e) { ... }
catch(_ e) { ... /x capture all exceptions %/ }

where a special syntax _ is needed to catch exceptions of any type, since there is
no hierarchy for datatypes in ABS. Note that in case the exception has type List
a case is done to analyze its structure. A difficulty in applying this approach to
ABS is due to the fact that in ABS values do not carry their type at runtime,
but adding such an information seems not to have relevant drawbacks.

FEzceptions as a new kind of value. In this setting exceptions are a separate kind
of value, at the same level of objects and datatypes. The type Exception is open.
New exceptions (both system- and user-defined) can be declared as follows:

exception NullPointerException
exception RemoteAccessException

exception MyUserDefinedException (Int, String)
Pattern matching can be used to distinguish different exceptions:

try { ... }

catch (e) {
NullPointerException =>
MyUserDefinedException(n,s) =>
ez =>

}

Structural typing can be used if one wants to check that all exceptions possibly
raised are caught, as, e.g., in Java.

Discussion. The simplest approach is to model exceptions as a closed datatype.
However, if open exceptions are desired to increase the expressive power, the
last solution is the one with minimal impact on the existing ABS language.
Allowing any datatype as an exception also seems a viable option, but with a
more substantial impact on the existing structure of ABS.

3 Which is the Behavior of Faults?

Faults interrupt the normal control flow of the program. A first issue concerning
faults is how they are generated. Concerning fault management, it is a common
agreement that faults are manipulated with a try/catch structure, and we do
not see any reason to change this approach in our design for ABS. However, after
this choice has been taken, the design space is still vast and many questions still
need to be investigated.

Fault Generation. In programming languages, faults can be generated either
by an explicit command such as throw f where f is the raised fault, or by a
normal command. For instance, when evaluating the expression x/y a Division
by Zero exception may be raised if y is 0. In this second case, which exception is
raised is not explicit, but defined by the semantics of the command. After having
been raised, the two kinds of exceptions are indistinguishable. A third kind of
exception may be considered in ABS. Indeed, ABS is currently evolving towards
having an explicit distribution, and in this setting localities or links may break.
The only remote interaction in ABS is via asynchronous method invocation,
and the corresponding await/get on the created future. In principle, network
problems could be notified either during invocation, or during the await/get.

However, invocation is asynchronous, and will not check for instance whether the
callee will receive and/or process the invocation message. For the same reason,
it is not reasonable that it checks for network problems. Clearly, the get should
raise the fault, since no return value is available.

The behavior of await depends on its intended semantics. If executing the
statement await f£? means that the process whose result will be stored in f
has successfully finished, then the await needs to synchronize with the remote
computation and should raise a pre-defined fault upon timeout and network
errors. In this setting thus network faults are raised by both await and get. On
the other hand, if executing await f? gives only the guarantee that a subsequent
f.get will not block, then all faults, including network- and timeout-related
faults, can be raised by get exclusively.

Fault Management. As discussed in the beginning of the section, we use the
common try/catch structure to manage faults. This structure sometimes also
features an additional block finally. The finally block specifies some code that
must be executed both if no exception is raised and if it is. A common use of the
finally block is to release resources which need to be freed whatever the result
of the computation is.

try { ...}
catch (MyFirstException e) { ... }
catch(MySecondeException e) {... }
finally { P }

For instance, P may close a file used inside the try block. The finally block is
very convenient for programming, but may not be needed in the core language.
Indeed, in many cases it can be encoded. The encoding instantiated on the
example above is as follows:

try {
try { ... }
catch (MyFirstException e) { ... }
catch (MySecondeException e) { ... }
} catch(_ e) {
P
throw e;

}
P

Essentially, one has to catch all the exceptions, do P and rethrow the same excep-
tion. P also needs to be replicated at the end, so to be executed if no exception is
raised. Note that this encoding relies on always having exactly one return state-
ment per method, at its end (this is the recommended style of programming in
ABS), and on the ability to catch all exceptions and to be able to rethrow them
identically. Actually, in principle, one can also consider some uncatchable faults,
but this seems not particularly relevant in practice.

For resource management, an alternative to the finally block is the autorelease
mechanism of Java 7 [28], which automatically releases its resource at the end of

the block. Encoding such a mechanism in ABS could be done using an approach
similar to the one above for the finally block.

Fault Effects. We have discussed how to catch faults. However, it may happen
that a fault is not caught inside the method raising it. Then, as already said, the
fault should interrupt the normal flow of computation, i.e. killing the running
process. However, one may decide to kill a larger entity. Suitable candidates in
ABS are the object where the fault has been raised, or its cog. Now, remember
that in ABS there is a strong emphasis on correctness proofs based on invariants,
and that whenever a process releases the lock of an object the class invariant must
hold. An uncaught fault releases the lock by killing the running process. This
means that whenever an uncaught fault may be raised, the invariant must hold.
Since faults may be raised by many constructs, including expressions and get,
ensuring this may be particularly difficult, and may require in practice to manage
all the faults inside the method raising them. However, this is undesirable since
a method may not have enough information to correctly manage a given fault.
One can try to define a weaker invariant, but this may be difficult. A solution is
to decide that a fault may not only kill the process, but also the object whose
invariant may be no more valid. An even more drastic solution is to kill the
whole cog. This may be meaningful if invariants involving different objects (of
the same cog) are considered. However, this kind of invariant is currently not
considered in ABS, thus the introduction of mechanisms for killing a whole cog
seems premature.

Effect Declaration. In classic programming languages, the only effect of an un-
caught fault is to kill the running process. However, we just discussed that also
killing the whole object (or cog) is a possible effect. One may want to have
different effects for different faults. More in general, different faults may have
different properties. Another possible property may describe whether a fault can
be caught or not. Whatever the set of possible properties is, an important issue
is where those properties are associated with the raised fault. One can have a
keyword deadly specifying that a given exception will kill the whole object if
uncaught, while the behavior of just killing the process can be considered the
default behavior. We can see three possibilities here. Properties may be specified:

when an exception is declared: for instance, one may write
deadly exception NullPointerException

A main drawback of this approach is that the same exception will behave
the same everywhere. Intuitively, an exception may be deadly for an ob-
ject where the invariant cannot be restored, and not for another one where
the fault has no impact on the invariant. Note also that if any datatype
can be an exception, then one has to specify properties for each datatype,
e.g. deadly Int. Actually, this second drawback is mitigated by choosing
suitable default values for properties.
when an exception is raised: for instance, one may write

throw deadly NullPointerException

or also shorten it into die NullPointerException. Clearly, this ap-
proach is only reasonable for exceptions raised by an explicit throw (unless
one wants to write something like x=y/0 deadly). The approach is also
less compositional, thus less suitable for static analysis. In fact, to under-
stand the behavior of an exception it is not enough to look at declarations.
For instance, the same exception may be either deadly or not for the same
method, depending on how it has been raised. Note also that this approach
would break the encoding of finally above, since there is no way to rethrow
an exception with the exact same properties.

in the signature of the method raising the exception: for instance, one
may write

Int calc(Int x) deadly: NullPointerException {...}

Clearly, this approach is viable only for properties relevant when the ex-
ception exits the method, such as deadly. It would not work for instance
to specify whether an exception can be caught or not. Notice that this ap-
proach integrates well with the declaration of which faults a method may
raise, useful to statically verify that all exceptions are caught. In fact, one
could write

Int calc(Int x) throws: DivisionByZero,
deadly NullPointerException {...}

More in general, this approach is suitable for static analysis, since a method
declaration also provides the information on the behavior of exceptions raised
by the method itself. The same information is useful also for the programmer,
in particular when using methods he did not write himself.

Discussion. We think that in the context of ABS, a fault may have two different
effects: either killing the process or the whole object, depending on whether the
object invariant holds or not. Whether a fault should kill the whole object or not
should be declared at the level of method signature to enhance compositionality.
Note that in the most used object-oriented languages, objects are never killed
as a result of an exception: indeed such a feature is relevant in ABS because of
its emphasis on analysis based on invariants, and no widespread object-oriented
language has been developed according to this philosophy. A possible alternative
to kill the object would be to roll back state changes. A transparent rollback [10]
in our setting could lead to the last release point, where one is sure the invari-
ant holds. However such an approach, discussed in [12], is not always satisfying.
Indeed, rolling back only locally may easily lead to inconsistencies between dif-
ferent local states (what corresponds to break invariants concerning multiple
objects). On the other hand, global rollback as in [21] results in an overly com-
plex semantics. Furthermore, if local rollback is needed in particular cases, it can
usually be encoded. Similarly, the finally construct is not strictly needed, since
with the choices we advocate it can be encoded.

4 How Do Faults Propagate?

We have discussed in the previous section the effect of a fault on the process or
object where it is raised. However, in case of fault, in particular of uncaught fault,
it is reasonable to propagate the exception also to other processes/objects related
to it. In particular, possible targets for propagation are processes interested in
the result of the computation, processes that have been invoked by the failed
one, processes in the same object/cog of the failed one, processes trying to access
an object after it died.

Propagation through the Return Future. In a language with synchronous method
invocation the only process that can directly access the result of the computation
is the caller. However, in languages with asynchronous method invocation any
process receiving the future can directly access the result of the computation. The
caller may be or may not be one of them, and indeed may even terminate before
the result of the computation becomes ready. Thus we discuss here notification of
faults to the processes synchronizing with the future. We have two possibilities:
processes may synchronize with the future either with a get or with an await
statement. The case of get is clear: those processes are interested in the result of
the computation, in case of fault no correct result is available and those processes
need to be notified so that they can decide how to proceed. The natural way
of being notified is that the same exception is raised by get. A process doing
an await is just interested in waiting for the computation to terminate, but not
in knowing its result. Thus we claim that if the computation terminated, either
with a normal value or with an exception, the await should not block and the
exception, if any, should not be raised. The exception would be raised only if
later on a get on the future is performed. This approach requires to put the
fault notification inside the future, and has been explored in the context of ABS
in [18]. Indeed, this is also the approach of Java future library (asynchronous
computation with futures has been standardized in a Java library since Java SE
5 [11]). In contrast to ABS, Java’s API does not distinguish between waiting for
a future to become available, and retrieving the results. In fact, no primitive like
await is available in Java. In addition, Java’s futures do not faithfully propagate
exceptions: the get method on a faulty future always raises the same exception
ExecutionException.

An additional problem is related to concurrency. Indeed, in ABS, one may
have multiple concurrent get and/or await statements on the same future con-
taining an exception. Let us consider the case of multiple get statements. In
this case, one has to decide whether they all raise the fault contained in the
future or just one of them does. This second solution is more troublesome since
to this end, the first process accessing the future would receive the exception
and remove the fault from the future. The only possibility is to replace it with
some default value, and this requires locking the future. However, this in turn
changes the behavior of futures in a relevant way: Futures are understood as
logical variables that change at most once, and this would no longer be true.
Additionally, this creates a weak synchronization point between two processes

accessing the same future. Indeed, if a process knows that a future originally
contains an exception, by accessing it he will know if another process accessed
it before. These weak synchronization points between processes that would be
independent otherwise make the concurrency model and thus the analysis more
difficult. Note that concurrent await statements are not a problem, since they
do not locally raise the fault, but just check whether the future is empty or not.

Propagation through Method Invocations. It may be the case that the failed
computation has invoked methods in other objects, whose execution is no more
necessary after the failure. Indeed, it may even be undesired. For instance, if you
are planning a trip and the booking of the airplane fails, you do not want to
complete the booking of the hotel. Thus a mechanism to cancel a computation
originated by a past method call may be useful. Actually, cancel may have differ-
ent meanings according to the state of the invocation. If the invocation has not
started yet, one can simply remove the invocation message itself. If the invoked
process is running, one may raise the exception. If the execution already com-
pleted, one may do nothing or execute some code to compensate the terminated
execution. This second option has been explored in [18]. The most interesting
case is the one where the invoked process is running. Indeed, in this case the
fault may be raised in any point of the execution, thus dealing with it using a
try-catch would require to have the whole method code, including the return
command, inside the try block. A better approach is to define specific points in
the code where the running process checks for exceptions from its invoker, and
specifying there the code to be executed in this case. A more modular way is
to separate the two issues. One may have a statement check to specify when
to check for faults, and a statement setHandler H establishing that H is the
handler to be used to deal with faults from the invoker from now on. H can be
a simple piece of code, or a function associating pieces of code to exceptions.
Pieces of code may have a return statement, to communicate the result of the
fault management to the invoker. If the execution of the handler terminates suc-
cessfully, the execution of the method code restarts. One may also decide that
the last handler has to be used to compensate the execution if the cancellation
occurs after the termination of the invoked process.

We have described the effect of propagation to invoked processes. However,
one has to understand which invoked processes to consider. The simplest possi-
bility is to let the programmer decide. We call this approach programmed prop-
agation. This can be done through a statement £1 = f.cancel (e) where f is
the future corresponding to the invocation to be canceled, e the exception to be
raised and £1 the future storing the result of exception management. Note that
the future £ is the right entity to individuate the invocation, since each invoca-
tion corresponds to a different future. Note also that with programmed cancel
one may cancel twice the same invocation, and that cancel can be executed by
any process on any future he knows of. Future £1 may contain different values
according to the outcome of the cancel. If the exception sent by the cancel is
correctly managed, the handler returns a specific value to fill that future (po-
tentially different from the value returned as a result of the method, which is in

10

future £). In all the other cases a system-defined exception is put inside future
£1 (one cannot put there a normal value, since this should depend on the type
of the future):

— an exception not Started if the cancel arrives before the invocation started
(while the future £ contains an exception canceled);

— an exception terminated if the cancel arrives after method termination,
and compensations are not used (future £ keeps its value);

— an exception noCompensation if the cancel arrives after method termi-
nation, compensations are allowed, but no compensation is specified for the
target method (future f keeps its value);

— an exception CancelNotManaged if the exception arrives when the method
is running, but it is not managed since there is no handler for it (while the
future £ stores the exception e).

In case of multiple cancellations, cancellations behave as above according to the
state of the method when they are processed. Note also that the future f is not
changed if it already contains the result of the method invocation.

An alternative approach is to have an automatic propagation of exceptions to
invoked processes. First, one should decide whether to propagate only uncaught
faults, or also managed faults. This last solution is not desirable in general, since
most managed faults should not affect other processes, and can be dealt with
by programmed propagation in case of need. Propagation of uncaught faults,
if desired, should be necessarily done automatically. Now, the problem is to
understand to which method invocations the fault needs to propagate. An upper
bound is given by the futures known by the dying process. One may also consider
that futures on which a get has already been performed are no more relevant.
However, there is no fast and easy answer to this question. We think that a
reasonable solution is to choose the futures which have been created by the
current method execution and on which no get has been performed yet by the
same method. One may also want to check whether the reference to the future
has been passed to another method, and whether this method has performed
a get on the future, but this would make the implementation and the analysis
much more tricky. Similarly, one may want to consider also futures received as
parameters, but again this needs to propagate the information on whether a
future has been accessed or not from one method to the other. Note that in
case of automatic propagation, no information on the result of the cancellation
is needed, since the caller already terminated.

One may want to ensure that children can manage all the faults from their
parent. To this end, each child should declare the exceptions that he can manage
(at any point, since it may be the case that some exceptions can be managed only
at some check due to handler modifications). Then, one can check that these
include all the exceptions the parent may send to him. For automatic propaga-
tion, these coincide with the exceptions the parent may raise. For programmed
propagation, these are the arguments of the various cancel of the corresponding
future in the parent or in methods to which the future is passed.

11

Propagation to Other Processes in the same Object/Cog. We already discussed
the fact that it is important for processes to restore the invariant of the object
or cog before releasing the lock, and in particular before terminating because of
an uncaught exception. In case the invariant cannot be restored, we proposed as
a solution the possibility of killing the whole object/cog. An alternative solution
is to terminate only the process P that first raised the fault, and notifying the
other processes about the uncaught fault, since they may be able to manage it.
Note that when process P is terminated, there is no other running process in
the same cog. Thus the other processes will get the fault notification when they
will be scheduled again. This means that they may get a fault, either when they
start, or when they resume execution at an await or suspend statement. The
fault may then be managed, or propagated as discussed above. In particular, if
not managed, will be propagated to the next process to be scheduled. In this
setting objects never die, but method calls may receive an exception as soon as
they start. If we raise the same exception that was raised by P, then it may be
difficult to track which exceptions may be raised inside any method. A simpler
solution is to have a dedicated exception, e.g., InvariantNotRestored. What said
above for objects holds similarly for cogs, concerning cog invariants. However,
as already said, they are not a main concern in ABS at the moment.

Propagation through Dead Objects/Cogs. Some of the approaches we discussed
involve the killing of an object or cog. We have not yet discussed what hap-
pens when a dead object is accessed (through method invocation). An exception
should be raised. We can follow either the approach discussed above for network
errors, or the one for normal faults. In practice the only difference is whether also
the await will raise such a fault or not. We do not see any particular advantages
or disadvantages for the two approaches: which is the best solution depends on
which one better fits the programmer intuition, which may be different from one
programmer to the other. In both the cases, using a standard exception such as
DeadObject, instead of propagating the exception that caused the death of the
object, simplifies the management. Also, it allows the caller to know whether
the object is dead because of its invocation or it was already dead before.

Discussion. Among the propagation strategies above, propagation through the
return future is nowadays standard, since it is used, e.g., in Java and C#. The
possibility of canceling a running process via a future is also available in Java
and C#, but the possibility of doing it automatically and/or of defining handlers
and compensations for managing cancel requests while the process is running are
not considered. Indeed, these strategies are quite complex, and it is not yet clear
how useful they are in real programming. Also propagation of the fault to other
processes in the same object is not considered in mainstream languages as far
as we know, but we think this is a viable strategy in ABS. In fact, when a
process is not able to restore the object invariant, there are two possibilities:
either destroying the whole object or leave to another method call the task of
restoring it. This second strategy seems also less extreme.

12

5 Conclusion

We have discussed the design space for fault models to be included in the ABS
modeling language. As future work, we will extend the formal semantics of ABS
with appropriate datatypes for the representation of faults, primitives to raise
and catch faults, and mechanisms to distribute faults to other objects and cogs.

We complete the paper with a review of related fault models (the comparison
with Java has been already discussed throughout the paper).

Functional programming languages, like OCaml or Haskell, also include prim-
itives for faults modeled as exceptions. Both languages allow user-defined excep-
tions, but they implement them in different manners. OCaml uses a special type
(called exn) to type exceptions, and new exceptions can be declared using the
syntax exception e of data. In [24], the introduction of open datatypes in Haskell
to encode exceptions is discussed. However, the current implementation of GHC
uses typeclass [6], which allow one to register new datatypes as being exceptions.

Message-Passing Interface (MPI) is a cross-language standard, used, e.g., for
C and Fortran, to program distributed applications. MPI expresses communi-
cation via so-called MPI functions, the basic ones being SEND and a blocking
RECV. The SEND can work with three modalities: (buffered send) buffering
the data to be sent, thus returning immediately as we assumed in this paper;
(synchronous send) waiting for a corresponding RECV to be posted by the des-
tination before terminating; or (ready send) failing in the case a corresponding
RECYV has not yet been posted by the destination. Dealing with the network,
MPI functions represent communication at a lower level than we do: in MPI also
the process of data delivering is taken into account. SEND (in all its modali-
ties) and RECV have asynchronous variants, called ISEND and IRECV (where
the “I” stands for “initiation”), which indicate a buffer where to fetch/put data
and return immediately. For each such asynchronous send/receive, functional-
ities similar to some of the ones considered in this paper can be used: WAIT
makes it possible to wait for the completion of data sending/receiving (in addi-
tion in MPI there is also a function TEST which returns immediately the status
of the data sending/receiving without waiting); failures (e.g., in the communica-
tion while sending/receiving data) are detected by calling WAIT or TEST; and
it is possible to cancel a send/receive by a call to CANCEL. The semantics of
the latter, however, is the removal of the send/receive, supposing that it has not
completed yet, as if it never occurred (a matching receive/send would perceive,
as well, the canceled send/receive as if it never occurred). By combining the
mechanisms above it is possible to obtain the waiting and canceling mechanisms
considered in this paper. For example an asynchronous method invocation can
be modeled by executing both ISEND and IRECV, and cancellation by execut-
ing CANCEL both on the send and the receive in the case the data is still under
transmission or just on the receive in the case the send has completed. In the
latter case, if the invoked method performs a ready send at the end of method
execution, it will be notified of the matching IRECV having been canceled.

In web applications the HT'TP protocol is used to realize service invocations
by means of request/response pairs over a TCP/IP connection, as happens in

13

the popular approaches of Java and Javascript, i.e. Asynchronous Javascript and
XML (AJAX) invocations. In Java a method is used to initiate the HTTP re-
quest/response, which differently from the approach considered in this paper,
may yield an error in the case the connection with the HTTP server cannot be
established (timeout based). Then the client goes through a two phase process,
where he first sends data over an output-stream and then, similarly, receives
data. At the server side a symmetric process is followed. Java methods for read-
ing pieces of response data are blocking as for the waiting function used in MPI
and considered in this paper. Similarly, failures are notified via exceptions when
reading response data (or while sending request data). Finally concerning can-
cellation, the HTTP request/response can be aborted as a whole by the client
and this causes the server to detect the failure (an exception is raised) when it is
in the phase of inserting data in the response, i.e. when returning data (or while
reading request data). In Javascript (AJAX) request data are preliminarily put
into memory (as in MPI) and then the request/response is initiated (again this
can fail if connection cannot be established). Such an initiation function also
installs a user-defined function which is expected to manage the data received
once the response is completed (including also managing the case of failure).
This mechanism is an alternative to the waiting function used in MPI and con-
sidered in this paper. Concerning cancellation, it is possible, as in Java, to abort
the HTTP request/response (with the same effect at server side).

References

1. G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent object-
oriented programming. In Research Directions in Object-Oriented Programming,
pages 49-74. MIT Press, 1987.

2. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

3. L. Baduel et al. Grid Computing: Software Environments and Tools, chapter Pro-
gramming, Composing, Deploying, for the Grid. Springer, 2006.

4. B. Beckert, R. Héhnle, and P. H. Schmitt. Verification of Object-oriented Software:
The KeY Approach. Springer, 2007.

5. D. Caromel. Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
ented Programming, pages 12-22, 1989.

6. K. Chen, P. Hudak, and M. Odersky. Parametric type classes. In Proc. of LFP’92,
pages 170-181. ACM, 1992.

7. F. Cristian. Understanding fault-tolerant distributed systems. Communications of
the ACM, 34(2):56-78, 1991.

8. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
ESOP, volume 4421 of LNCS, pages 316-330. Springer, 2007.

9. C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. Journal of Logic
and Algebraic Programming, 81(3):227-256, 2012.

10. E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375-408, 2002.

14

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.

G. Gori, E. B. Johnsen, R. Schlatte, and V. Stolz. Erlang-style error recovery for
concurrent objects with cooperative scheduling. In ISoLA, LNCS. Springer, 2014.
To appear.

P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202-220, 2009.

R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Trans. Prog. Lang. Syst., 7(4):501-538, 1985.

International Telecommunication Union. Open Distributed Processing — Refer-
ence Model parts 1-4. Technical report, ISO/IEC, Geneva, July 1995.

B. Jay. Algebraic data types. In Pattern Calculus, pages 149-160. Springer, 2009.
E. B. Johnsen, R. Héhnle, J. Schifer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Proc. of FMCO 2010, volume
6957 of LNCS, pages 142-164. Springer, 2011.

E. B. Johnsen, I. Lanese, and G. Zavattaro. Fault in the future. In COORDINA-
TION, volume 6721 of LNCS, pages 1-15. Springer, 2011.

JSR166: Concurrency utilities. http://java.sun.com/j2se/1.5.0/docs/
guide/concurrency.

J. Kramer. Is abstraction the key to computing? Communications of the ACM,
50(4):36-42, 2007.

I. Lanese, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Controlling reversibility
in higher-order pi. In CONCUR, volume 6901 of LNCS, pages 297-311. Springer,
2011.

R. G. Lavender and D. C. Schmidt. Active object: an object behavioral pattern
for concurrent programming. In Pattern languages of program design 2, pages
483-499. Addison-Wesley Longman Publishing Co., Inc., 1996.

B. H. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In PLDI, pages 260-267. ACM Press, 1988.
A. Loh and R. Hinze. Open data types and open functions. In Proc. of PPDP’06,
pages 133-144. ACM, 2006.

B. Morris. CActive and Friends. Symbian Developer Network, Novem-
ber 2007. http://developer.symbian.com/main/downloads/papers/
CActiveAndFriends/CActiveAndFriends.pdf.

P. Nienaltowski. Practical framework for contract-based concurrent object-oriented
programming. PhD thesis, Department of Computer Science, ETH Zurich, 2007.
E. Pitt and K. McNiff. Java.Rmi: The Remote Method Invocation Guide. Addison-
Wesley Longman Publishing Co., Inc., 2001.

J. Ponge. Better resource management with Java SE 7: Beyond syntactic
sugar, May 2011. http://www.oracle.com/technetwork/articles/java/
trywithresources-401775.html.

D. Rémy. Type checking records and variants in a natural extension of ml. In
Proc. of POPL’89, pages 77-88. ACM, 1989.

J. Schéfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In ECOOP, volume 6183 of LNCS, pages 275-299. Springer,
2010.

J. Waldo, G. Wyant, A. Wollrath, and S. C. Kendall. A note on distributed
computing. In M0S’96), volume 1222 of LNCS, pages 49-64. Springer, 1997.

A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

15

Envisage Deliverable D1.1 D1.1 Modeling of Systems

A.3 FErlang-style Error Recovery for Concurrent Objects with Coopera-
tive Scheduling

81

Erlang-style Error Recovery for Concurrent
Objects with Cooperative Scheduling *

Georg Gori!, Einar Broch Johnsen?, Rudolf Schlatte?, and Volker Stolz?

! University of Technology, Graz, Austria
goeri@student.tugraz.at

2 University of Oslo, Norway
{einarj,rudi,stolz}@ifi.uio.no

Abstract. Re-establishing a safe program state after an error occurred
is a known problem. Manually written error-recovery code is both more
difficult to test and less often executed than the main code paths, hence
errors are prevalent in these parts of a program. This paper proposes a
failure model for concurrent objects with cooperative scheduling that au-
tomatically re-establishes object invariants after program failures, thereby
eliminating the need to manually write this problematic code. The pro-
posed model relies on a number of features of actor-based object-oriented
languages, such as asynchronous method calls, co-operative scheduling
with explicit synchronization points, and communication via future vari-
ables. We show that this approach can be used to implement Erlang-style
process linking, and implement a supervision tree as a proof-of-concept.

1 Introduction

Crashes and errors in real-world systems are not always due to faulty program-
ming. Especially but not only in distributed systems, error conditions can arise
that are not a consequence of the logic of the running program. Robust systems
must be able to deal with and mitigate such unexpected conditions. At the same
time, error recovery code is notoriously hard to test.

An influential approach to more robust systems is “Crash-Only Software” [4],
i.e., letting system components fail and restarting them. Erlang [2,19] is a widely-
used functional language which successfully adopts these ideas. However, inher-
ent in such subsystem restarts is the accompanying loss of state. This is much less
a problem with programs written in a functional style than with programs writ-
ten using object-oriented techniques, where the objects themselves hold state.
This paper describes an approach to crash-only software which can keep objects
alive without explicit code to restore object invariants.

The approach of this paper is based on concurrent objects which communi-
cate by means of asynchronous method calls; the caller allocates a future as a
container for the forthcoming result of the method call, and keeps executing until
the result of the call is needed. Since execution can get stuck waiting for a reply,

* Partially funded by the EU project FP7-610582 ENVISAGE: Engineering Virtual-
ized Services (http://www.envisage-project.eu).

we allow process execution to suspend by introducing processor release points
related to the polling of futures. Scheduling is cooperative via release-points in
the code, awaiting either a condition on the state of the object, or the availabil-
ity of the result from a method call. To concretize the approach, we use some
features from the abstract behavior specification language ABS [11], a statically
typed object-oriented modeling language targeting distributed systems. ABS has
a formal semantics implemented in the rewriting logic tool Maude [7], which can
be used to explore the runtime behavior of specifications.

This paper introduces linguistic means to both abort a single computation
without corrupting object state and to terminate an object with all its pending
processes. We provide a formal semantics for how those faults propagate through
asynchronous communication. Callers may decide to not care about faults and
fail themselves when trying to access the result of a call whose computation
aborted, or use a safe means of access that allows them to explicitly distinguish
a fault from a normal result and react accordingly. We show the usefulness of
the new language primitives by showing how they allow us to implement process
linking and supervision hierarchies, the standard recovery features of Erlang.

The rest of the paper is organized as follows. Section 2 describes the ABS
language, Section 3 the novel failure model. Section 4 presents an operational
semantics of a subset of the language, and illustrates the new functionality by
modeling Erlang’s well-known supervision architecture, and Section 5 discusses
related and future work.

2 Behavioral Modeling in ABS

ABS is an abstract, executable, object-oriented modeling language with a formal
semantics [11], targeting distributed systems. ABS is based on concurrent ob-
jects [5,13] communicating by means of asynchronous method calls. Objects in
ABS support interleaved concurrency based on explicit scheduling points. This
allows active and reactive behavior to be easily combined, by means of a co-
operative scheduling of processes which stem from method calls. Asynchronous
method calls and cooperative scheduling allow the verification of distributed
and concurrent programs by means of sequential reasoning [8]. In ABS this is
reflected in a proof system for local reasoning about objects where the class
invariant must hold at all scheduling points [9].

ABS combines functional and imperative programming styles with a Java-
like syntax. Objects execute in parallel and communicate through asynchronous
method calls. However, the data manipulation inside methods is modeled using a
simple functional language based on user-defined algebraic data types and func-
tions. Thus, the modeler may abstract from the details of low-level imperative
implementations of data structures while maintaining an overall object-oriented
design close to the target system.

The Functional Layer. The functional layer of ABS consists of algebraic data
types such as the empty type Unit, booleans Bool, and integers Int; parametric

T:=1I|D|D(T) P:=1F CL{[T =] s}

Au=X|T| D(A) IF ::=interface I {[Sg|}
Dd := dataP[(Z)] = [Cons]; CL ::=class CKT z)] [implements 7] { [T z;] M}

Cons == Co[(A)] Sgu=T m ([T 7])

Fu=def A fn[(A)](AT) =¢; _ M:=x=Sg{[T'z;]s}

ex=z|v]| Col(€)] | fn(e) |case e {br} gu=blx?|gAhg

v == Co[(v)] | null su=s;s|skip|ifb{s}[else{s}]|whileb{s}

br i=p=e; | suspend | await g | x = rhs | return e

pu=_|z|v]| Co[(p)] rhs:=e|cm | new C (e)

cm = [e]!m(€) | z.get

Fig. 1. ABS syntax for the functional (left) and imperative (right) layers. The terms
€ and T denote possibly empty lists over the corresponding syntactic categories, and
square brackets [] optional elements.

data types such as sets Set<X> and maps Map<X> (for a type parameter X); and
functions over values of these data types, with support for pattern matching.

The syntax of the functional layer is given in Figure 1 (left). The ground
types T are interfaces I, type names D, and instantiated parametric data types
D(T). Parametric data types A allow type names to be parameterized by type
variables X . User-defined data types definitions Dd introduce a name D for a new
data type, parameters A, and a list of constructors Cons. User-defined function
definitions F' have a return type A, a name fn, possible type parameters, a list
of typed input variables x, and an expression e. Expressions e are variables x,
values v, constructor, functional, and case expressions. Values v are constructors
applied to values, or null. Case expressions match an expression e to a list of case
branches br on the form p = e which associate a pattern p with an expression
e. Branches are evaluated in the listed order, the (possibly nested) pattern p
includes an underscore which works as a wild card during pattern matching;
variables in p are bound during pattern matching and are in the scope of the
branch expression e. ABS provides a library with standard data types such as
booleans, integers, sets, and maps, and functions over these data types.

The functional layer of ABS can be illustrated by considering naive polymor-
phic sets defined using a type variable X and two constructors EmptySet and
Insert:

1I data Set<X> = EmptySet | Insert(X, Set<X>);
L

Two functions contains, which checks whether an item el is an element in a
set set, and take, which selects an element from a non-empty set set, can be
defined by pattern matching over set:

def Bool contains<X>(Set<X> set, X el) =
case set {
EmptySet => False ;
Insert(el, _) => True;
Insert(_, xs) => contains(xs, el); };

NG A W N e

def X take<X>(Set<X> set) = case set { Imsert(e, _) => e; };

The Imperative Layer. The imperative layer of ABS addresses concurrency, com-
munication, and synchronization at the level of objects, and defines interfaces,
classes, and methods. In contrast to mainstream object-oriented languages, ABS
does not have an explicit concept of threads. Instead a thread of execution is
unified with an object as the unit of concurrency and distribution, which elim-
inates race conditions in the models. Objects are active in the sense that their
run method, if defined, gets called upon creation.

The syntax of the imperative layer of ABS is given in Figure 1 (right). A
program P lists interface definitions IF' and class definitions CL, and has a
main block {[T" T;] s} where the variables = of types T are in the scope of
the statement s. Interface and class definitions, as well as signatures S¢g and
method definitions M are as in Java. As usual, this is a read-only field of an
object, referring to the identifier of the object; similarly, we let destiny be a
read-only variable in the scope of a method activation, referring to the future
for the return value from the method activation. Below we focus on explaining
the asynchronous communication and suspension mechanisms of ABS.

Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments f=olm(e) where
f is a future variable, o an object expression, and e are (data value or object)
expressions. After calling f=olm(e), the caller may proceed with its execution
without blocking on the method reply. Two operations on future variables con-
trol synchronization in ABS. First, the statement await £? suspends the active
process unless a return value from the call associated with £ has arrived, allow-
ing other processes in the same object to execute. Second, the return value is
retrieved by the expression f.get, which blocks all execution in the object un-
til the return value is available. Inside an object, ABS also supports standard
synchronous method calls o.m(e).

Objects locally sequentialize execution, resembling a monitor with release
points but without explicit signaling. An object can have at most one active
process. This active process can be unconditionally suspended by the statement
suspend, adding this process to the queue of the object, from which an en-
abled process is then selected for execution. The guards g in await g control
suspension of the active process and consist of Boolean conditions b conjoined
with return tests £7 on future variables £ and with time-bounded suspensions
duration(el,e2) which become enabled between a best-case el and a worst-
case e2 amount of time. Just like functional expressions, guards g are side-effect
free. Instead of suspending, the active process may block while waiting for a
reply as discussed above, or it may block for some amount of time between a
best-case el and a worst-case e2, using the syntax duration(el,e2) [3]. The
remaining statements of ABS are standard; e.g., sequential composition si; so,
assignment x=rhs, and skip, if, while, and return constructs. Right hand side
expressions rhs include the creation of an object new C(e), method calls, and
future dereferencing £ .get, in addition to the functional expressions e.

Ezxzample. To illustrate the imperative layers of ABS, let us consider an interface
Account, with methods deposit and withdraw, which is implemented by a class

1| interface Account {

2 Unit deposit (Int amount);

3 Unit withdraw (Int amount);

a|}

5

6| class Account implements Account {

7 List<Int> transactions = Nil; // log of transactions
8 Int balance = 0; // current balance

9 Unit deposit (Int amount) {

10 transactions = Cons(amount, transactions);

11 balance = balance + amount;

12 }

13 Unit withdraw (Int amount) {

14 transactions = Cons(-amount, transactions);
15 if (balance < amount) abort "Insufficient funds";
16 balance = balance - amount;

17 ¥

18|}

Fig. 2. Bank account with history in ABS

BankAccount (as shown in Figure 2). We see that expressions from the functional
layer are used inside the method implementations; e.g., the constructor Cons is
used in the right hand side of an assignment to extend the list of transactions,
and infix functions + and - are similarly used to adjust the balance.

To approach the theme of the next section, the example does not resolve the
case of negative balance on the account (ignoring the issue of a better design
which checks the condition before updating the history). A call to withdraw will
only succeed if the balance is sufficient; if the balance is less than amount it is
unclear what would be meaningful behavior in order to restore a class invariant
like balance>0, and the method activation will abort: the previous state of the
object will be restored, and the future storing the implicit return value of Unit
type will be filled with a value indicating that an error occurred.

3 Failure Models and Error handling

Apart from user-specified aborts, it is very common for programs to run into
so-called runtime errors, i.e., abnormal termination in a case where the oper-
ational semantics does not prescribe how the system can proceed. Prominent
representatives of this class of faults are division by zero, null pointer accesses in
languages that allow pointer dereferences, and errors that are propagated from
the runtime system in managed languages, like out of memory errors when no
more objects can be allocated.

In the semantics of the ABS language, behavior in those situations is un-
derspecified, even though those situations can be encountered by the backends
when running the code generated from an ABS model. For example, in the Maude
semantics, a division by zero does not allow further reduction of that process,
which may go unnoticed in the overall system, or lead to a deadlock when other
processes wait on the object. In the Java backend, the underlying Java runtime

will generate a Java exception through the primitive math operations, which will
terminate the current (ABS) process, and lead to similar effects as in Maude.

3.1 Design considerations

Invariants and the system. On abrupt termination of a computation, we need
to establish which reaction would be required. In a distributed, loosely coupled
system, a local error should not affect the complete system. So clearly here the
guiding point must be that we have to keep the effects local. In our actor-based
setting, we can take the locality even further: Although a computation failed,
we can limit the effects to the current process. The object may still be able to
process pending and future requests (although the caller of the failing process
needs to be notified). But what should be the basis for further executions within
this object?

The underlying motivation for the explicit release points in the language
are of course the class invariants that developers rely on when designing their
programs. As such, each method call expects that its respective object invariant
holds upon entry (and upon awakening). This is clearly not the case under abrupt
termination, before which the fields of the object may have been arbitrarily
manipulated—the next release point may not have been reached.

Error handling in an object system. The mechanism we propose, defines the
behavior in case of an error:

— Propagate errors through futures. The caller receives an error when reading
the future.

— Default to having no explicit error handling, in which case a process is ter-
minated, yet the object stays alive.

— Revert any partial state modifications to the current object up to the last
release point.

These concepts are introduced by extending futures to propagate a possible
error in the callee to the caller, providing a method to detect and handle an
error contained in a future, and to terminate the caller in the case an error in a
future is accessed by the default mechanism.

Linguistic support for error handling. We consider the following linguistic sup-
port to enable the envisaged error handling:

— a notion of user-defined error types

— a generalization of futures to either return values or propagate errors

— a statement abort e, which raises an error e and terminates the process

— a statement f.safeget, which can receive errors and values from a future f
— a statement die, which terminates the current object and all its processes

The occurrence of an error is represented in the model by means of the statement
abort e, where e is an user defined error. These errors are represented by a
special data type (see [15] for an extensive discussion of the potential design
decisions). Such an abort can either be explicit in the model or can occur implicit
either in internals of the execution, to represent distribution, system (e.g. out of
memory) or runtime (e.g. division through zero) errors.

The semantic interpretation is dependent on the kind of ABS process the
evaluation occurs in:

Active Object processes, represent the object’s implicit execution of its run
method. If in that process an abort e statement is evaluated, all current
asynchronous calls to this object will abort with the error e and the references
to this object will become invalid. Further synchronous or asynchronous calls
to this object are equivalent to an abort DeadObject on the caller side. This
mechanism was chosen, as the object behavior (its run method) is seen as
an integral part of its correctness, and like an invalid state also an invalid
termination of this behavior leads to an inconsistent object and therefore
the object cannot be further used.

Asynchronous Call processes evaluated a method call in the called object. An
abort e statement will terminate the process and return the error e to the
associated future. Moreover, the callee will perform a rollback (see below).

Main Process. The main process (similar to Java’s main-method entry point)
represents the begin of the execution, and an abort there will, by convention,
lead to the runtime system being terminated (in principle, this could be han-
dled uniformly like the normal case, but in practice we prefer termination).

An automatic rollback discards all changes to the object’s values since the last
scheduling point, which can be either an await or suspend. This guarantees that
objects only evolve from one state at a scheduling point to another, and not leave
in case of an error an object in a state, which could violate the object invariant.

FEzxtending futures to contain either the computed value or a potential error
raised either by an abort on the callee side (or from the runtime in a distributed
setting), enables error propagation over invocations. Following this, also the
semantics of the Future.get statement needs to be adjusted: a get will, in
presence of an error e in the future, lead to an implicit abort e on the caller
side.

The newly introduced Future .safeget stops this propagation and allows one
to react on errors. safeget returns a value of the algebraic data type Result<T>,
which is defined as Result<T> = Value(T val) |Error(String s). In case the
future contains an error e, the same is returned, otherwise the constructor
Value(T v) wraps the result value v. Note that due to the lack of subtyping
in the type system, currently the only way to communicate an error indication
is through a value of type String, as we cannot define a common type for all
possible (incl. user-defined) errors.

The die e statement allows in asynchronous calls to terminate the active object.
Its semantic meaning is the same as an abort e in the execution context of an
active object process or init block. In other words, all pending asynchronous
calls and the active object’s process are terminated. This statement allows to
implement linking (see below), and can be used in distributed models to simulate
a disconnect from an object.

Discussion. We come back to the banking example in Listing 2 to illustrate the
point of rollbacks. The general contract is that the list of transactions should
accurately reflect the current total in the account. As the body of withdraw
needs to modify two fields, we clearly benefit from ABS’s semantics of explicit
release points which guarantees that only one process is executing within the
object (e.g. in Java, we would be required to explicitly declare the method as
synchronized to achieve the same effect).

Nonetheless, even though if only by construction of the example, an abort
would leave the object in an undesired state, as after the modification of the list
of transactions the balance is no longer in sync with the banking transaction
history. If an abort would simply terminate execution of the current process,
and start processing another pending call on the current state of the object, we
would observe invalid results. But with the rollback before processing another
call, this assumption can easily be re-established.

Note that the ABS methodology is only concerned with object invariants,
and this mechanism does not give us totality in the sense that a method either
completes successfully or not at all: a rollback will not undo changes in other
objects that have (transitively) occurred as the result of method calls during
execution of the current process, unlike e.g. in work on a higher-order 7-calculus
[16]. This means on the one hand that the developer still has to actively take
into account the workings of error recovery when designing the system, but on
the other hand allows us to implement this feature efficiently by only keeping
track of fields in the current object that are actually touched.

Compared to traditional object-oriented programming, we note that this im-
plicit error handling strategy frees the developers from restoring state explicitly
in an exception handler. However, through the safeget mechanism, they still
have this option open.

3.2 A practical application of error propagation: process linking

The previously presented primitives enable an implementation of Erlang-style
linking between two objects in ABS. These links are part of the foundation for
Erlang’s well known and successful error handling [1]. Erlang’s communication
model is even more loosely coupled than ABS, in that it is based on asynchronous
message passing. As such, there are no method calls or explicit returns, but rather
the callee has to send back a response, which will be queued in the recipient until
extracted from the mailbox. Thus, a failure in the recipient process will either
go unnoticed if no response messages are used or otherwise lead to an expected

message not being sent /received, and in turn a corresponding potential blockage
can occur in the initial sender.

Erlang’s links enable mutual observation of processes. A process can link itself to
another process. If one of the two processes terminates, the runtime environment
sends an EXIT message to the other process, which contains an exit reason. Un-
less this exit reason is normal (termination because the process reached the end
of the function), the linked process will terminate as well, and in consequence
propagate its own FXIT message to its linked processes. With this error propa-
gation, it is possible to let groups of processes up to the whole system terminate
automatically and clean up components consisting of multiple processes.

To enable processes to observe exit messages or react on them, a process
can be marked to be a system process with the trap_exit process flag. Such
processes will not terminate when receiving an EXIT message, but can retrieve
this message from their inbox.

Implementation in the concurrent object model. The implementation idea is to
represent a link by two asynchronous calls, one to each of the objects. Each call
will only terminate upon termination of the object, and thus enables the caller
to take an action.

In Figure 3 a sample implementation is shown, which assumes that each
class implements code similar to the Linkable class. A link can be established by
creating a new object of class Link, where the link gets initialized with references
to both objects (referred to as s and), and then calling setup on this new link.
The setup method will initiate the calls between the objects, by calling wait0On
and then wait until both calls are processed, where finished calls can be seen by
the counter done.

The waitOn method implemented in the Linkable class places the normally
non-terminating asynchronous call in line 3 to the other Linkable it should link
to. The non-termination is achieved by a simple await false, as can be seen in
the wait method. After those calls are made, the waitOn method reports back
to the Link that it succeeded, and will afterwards await the termination of the
call in line 3. The only possibility for a call to wait to return is when the object
dies. Should now this future ever contain a value it must be an error, where
in line 7 we can now take an action in case that the other object terminated,
which will be in the default case a subsequent termination of the local object,
by executing die e.

Linking in a producer consumer environment can be used to bind both objects
together, so that a termination of the producer or consumer leads to the termi-
nation of the other party as well. In Figure 4 we see a Producer and Consumer,
modeled as ABS classes, where the Producer sends a new input to the Consumer
via an asynchronous call. Both classes have to implement the Linkable interface
and include the shown default implementation of wait and waitOn.

Setting up a Link between Producer and Consumer is performed by the first
two lines in the Producer’s run method. We construct the Link object and ini-

1| class Link(Linkable f,Linkable s) 1| class Linkable() implements Linkable{
2 implements Link{ 2 Unit waitOn(Link 1,Linkable la){
3 Int done=0; 3 Fut<Unit> fut=la'wait();

4| Unit setupO{ 4 1'done();

5 flwaitOn(this,s); 5 await fut?;

6 s!waitOn(this,f); 6 case fut.safeget {

7 await done==2; 7 Error(e) => die e;

s| } 8 }

9 9| }

10| Unit done(){ 10| Unit wait(){

11 done=done+1; 11 await false;

12 } 12| }

13|} 13|}

Fig. 3. Implementation of links in ABS

1| class Producer(Consumer c) 1| class Consumer ()

2 implements Linkable{ 2 implements Linkable{

3| Unit run(){ 3

4 Link 1lConsumer= new Link(this,c); 4| Unit consume(String x){
5| await 1Consumer!setup(); 5 // consume

6| // produce 6| }

7 c!consume (X) ; 7

8| ¥ 8| // include wait and waitOn,
9| // include wait and waitOn 9

10|}

Fig. 4. Links between a Producer and a Consumer

tialize the link via the setup method. A more detailed view of asynchronous calls
and their lifetime is presented in the sequence diagram in Figure 5, arrows repre-
sent an invocation and a possible return value, and boxes represent the duration
of the call on the callee side. First, the link is setup, two inputs are produced,
and after that the Consumer aborts, which also terminates the Producer.

Before the consume calls, all necessary invocations to establish the wait calls,
which can be seen as a monitor if the object is still alive, are shown. After that
we see that two inputs from the Producer are sent to the Consumer, where the
wait calls are still pending. In the end, the Consumer, and in consequence also
the wait call, terminate. The termination leads to the retrieval of the exit reason
(in form of an error) by the Producer from the associated future, which results
in its termination as well.

One of the current limitations of this design is that due to the lack of sub-
classing, the boiler-plate implementation of the methods wait and waitOn in
any class needs to be replicated (such as Producer and Consumer above). ABS
offers so-called deltas to support assembly of software product lines. Although
this feature can be used here in principle to inject code into a class, according to
the current syntax of deltas, the method bodies would still have to be replicated
in each delta. A potential improvement would be an extension of ABS which
would allow injecting code into all classes implementing a particular interface.

10

Producer Link Consumer

setup
»
waitOn
d
wait]
»
| ____done ___
waitOn
wait]
___done]|
consume
[
consume
[
L <Reason>

Fig. 5. Asynchronous calls in the Producer-Consumer example

Such functionality is well-known in aspect-oriented programming, and the ABS
compiler should be easy to extend with a similar feature.

4 Operational Semantics and Application

A complete operational semantics of the core ABS language can be found in [11].
This section presents an operational semantics of the new language elements
discussed in Section 3, omitting or simplifying parts that are not necessary for
understanding the new error model. Figure 6 presents the runtime syntax of the
language, while Figure 7 contains the operational semantics rules for the new
rollback behavior, abort and die statements, and error propagation via futures.

The runtime state is a collection ¢n of objects, futures and method invoca-
tions. Objects are denoted o(a, d’, p, q), where a is the object state, a’ the safe
state at the previous suspension point. Dead objects are represented by their
identifier o only. Object and process states a are mappings from identifiers to
values, p is the currently running process or the symbol idle (denoting an object
not currently running any process), and ¢ is the process queue. A process p is
written as {a|s} with a a mapping from local variable identifiers to values and
s a statement list.

In Figure 7 we elide the step of reducing expressions to values — evaluation
is standard and can be seen in [11]. The SUSPEND rule saves the current state a,
while the ABORT rule reinstates a saved state while also removing the current
process and filling the future f with an error term. The DIE rule deactivates

11

cn = €| fut | object | invoc | cn cn

fut = f | f(val) ax:=Tzvl|aa
object ::= o(a,a’,p,q) | o p ::= process | idle
process ::= {a | s} val := v | error
q = ¢ | process | q q vi=o| f| data
invoc := m(o, f,D) error := e(val)

Fig. 6. Runtime syntax. Overall program state is a set cn of futures, objects and
invocation messages. Literals v are object identifiers o, future identifiers f, and number
and string literals data.

the object and fills all futures of the object’s processes with an error term. The
DEAD-CALL rule provides a default error term as the result of a method call to
a dead object. The other rules show the behavior of normal execution for these
cases.

4.1 Discussion

From an implementation perspective, we note that the rollback mechanism ap-
pears reasonably cheap, as only that part of the state of the current object needs
to be duplicated which is actually modified. This is easy to implement since ABS
does not have destructive modification of data structures.

How to make best use of the rollback-mechanism is still up to the developer.
We note that compared to traditional exception handling, a single method essen-
tially corresponds to a try-block, whereas the caller specifies through a safeget
and a subsequent case-distinction the possible catch-blocks, or decides to prop-
agate any exceptions through get.

4.2 Application: Supervision

In Erlang the idea to let processes observe each other was taken further by con-
structing trees, where so called supervisors start, observe and restart their child
processes. Supervision is one of the very important concepts, which is part of
Erlang’s highly regarded error handling capabilities [19]. Plugging in a super-
visor as child of another supervisor generates a tree structure, which describes
a structural view on components of a system. This tree structure enables both
restarting of faulty leaves and of larger subtrees in case of repeated errors in a
subsystem. So a faulty system with a supervisor tries to restart larger and larger
parts of the whole system until enough faulty state is discarded and it is able to
continue its operation.

Supervision for concurrent objects. Through linking, we can now apply the con-
cept of supervision to concurrent objects. This enables modeling of a statically
typed supervision tree that maintains active objects.

12

(SUSPEND)
o(a,a’, {l | suspend; s}, q)
— o(a,a,idle, {l | s} oq)

(AWAIT-INCOMPLETE)
o(a,a’, {l | await f?;s},q) f
— o(a,d’,{l | suspend; await f?;s},q) f

(RETURN)
f = l(destiny)
o(a,a’,{l | return(v); s}, q) f
— o(a, a,idle, q) f(v)

(AsyNc-CALL)

fresh(f)
o(a,a’,{l | = = o'!m(v); s}, q)
- 0(0‘7(7‘/7{[‘ T = f;3}7Q) m(O/vai) f

(D1E)
f = l(destiny) cn/ = abort-futures(cn, g, v)

o(a,a’,{l | die(v);s},q) f cn
— o f(e(v)) en’

(ACTIVATE)
p = select(q, a, cn)

o(a,d’,idle, q) cn
— ofa,a’,p, (g \p)) cn

(AWAIT-COMPLETE)
o(a,a’,{l | await f?;s},q) f(val)
—o(a,a’,{l| s}, q) f(val)

(ABORT)
f = l(destiny)

o(a,a’, {l | abort(v);s},q) f
— o(d’,d’,idle, q) f(e(v))

(BIND-MTD)
v = bind(m, 0,7, f)

0(a7 a,7p7 q) m(o’ f7 z_})
— o(a,a’,p,p’ 0q)

(DEAD-CALL)
o f m(o, f,)
— o f(e("dead object"))

(READ-FUT) (READ-FUT-ERROR)
o(a,a’,{l| = = f.get; s}, q) f(v) o(a,a’,{l| = = f.get; s}, q) f(e(v))
—o(a,a’ {l |z =v;s},q) f(v) — o(a,a’,{l | abort(v); s},q) f(e(v))

(SAFE-READ)

o(a,d’,{l | x = f.safeget; s}, q) f(val)
— o(a,a’,{l | x = val; s},q) f(val)

Fig. 7. Operational semantics. The following helper functions are assumed: bind creates
a new process given a method name m, object o, arguments v and future f; abort-futures
transforms a configuration, filling all futures f referenced from processes in queue ¢
with an error term e(v) while returning all other parts of the configuration unchanged;

select chooses a process from a queue ¢ that is ready to run.

13

1| Unit start(SupervisibleStarter child){ 1| Unit died(SupervisibleStarter ss,
2| SupervisorLink sl= 2 String error){
3 new SupervisorLink(this,child); 3| case strategy {
4| Link l=new Link(sl,this); 4 RestartAll => this.restart();
5| await 1l!setup(); 5 RestartOne => this.start(ss);
6| links=Cons(sl,links); 6 Prop => die error;
7| sl.startQ; 7| }
8|} s|}
(a) Start a child (b) Handle a deceased child

Fig. 8. Key methods of the Supervisor

To achieve a very generalized supervisor implementation we want to separate
it from the concrete way of starting and linking children and want to be able to
define different restart strategies. These strategies define the actions taken if a
child terminates. Therefore we implemented a class Supervisor with following
parameters: a list of SupervisorStarter objects, each of which specifies one
child and implements the start and linking of this child; a strategy, which can
be one of the following:

Restart one: Only the terminated child is restarted.

Restart all: If a child dies, it and all its siblings will be restarted.

Propagate: The supervisor and all children will terminate and the error will
be thereby propagated to the next supervisor, ending at the root node of the
runtime system.

This can be easily extended with other interesting strategies like rate limiting,
e.g. propagating an error if a certain frequency of crashes is exceeded.

The implementation of the supervisor requires special considerations, as a su-
pervisor has to start a list of children, keep track of them, has to detect a link
failure and be able to forcefully terminate a child (for the restart all strategy).
As the standard implementation of the link mechanism, shown in Figure 3, has
on the error receiving side no indication about the source of the link error, ev-
ery link to a child is represented by an object of class SupervisorLink. This
object keeps the reference of the child specification (the SupervisibleStarter
object) and passes it along to the Supervisor’s died method, which is depicted
in Figure 8b. Furthermore this design allows one to forcefully kill one child, by
terminating the associated SupervisorLink, which will—via linking—terminate
the child.

For starting a child, a new SupervisorLink has to be created and linked
to, so that in case the supervisor itself terminates (e.g. when the strategy is
to propagate) all SupervisorLinks and children are terminated as well. This
method is shown in Figure 8a.

5 Conclusion and Related Work

We have presented an extension to a concurrent object language, which incor-
porates automatic rollback to a “safe” (as conceptually defined by the developer

14

through a class invariant) state for the object that encountered an abort. Aborts
either occur in the form of runtime errors, through an explicit call similarly to
throwing an exception, or from accessing a future which holds the result of an
aborted computation.

The propagation- and detection mechanism for such faults allows us to model
Erlang-like process linking, and the safe way of accessing futures corresponds
roughly to exception handling with a distinction on the return result (normal
return value vs. fault plus description).

We have implemented the proposed extension in a straight-forward manner
in the prototypical (non-distributed) Erlang backend for ABS, and in the Maude
simulator: The sources are publicly available in the ENVISAGE git repository
at http://envisage-project.eu.

Related Work. Asynchronous computation with futures has been standardized
in the Java API since Java SE 5 [10]. Due to the limitations of the so-called
generics in the type system, no subtyping on futures is possible: this leads to
the situation that (synchronous) method calls may make use of covariant return
types, but for a type B extending A, a Fut cannot be assigned to a Fut<A>.
Our futures, based on ABS, do not have this limitation as futures stem from
the functional data types and thus subtyping over parameterized types is safe
due to the lack of destructive updates/writes. As first-class citizens, the ABS
futures do not offer any cancellation and a process cannot affect another process
except through sending messages (the Java API offers advisory cancellation,
and—discouraged—forceful termination of threads).

Compared to Java futures, the ABS futures are intended to scale massively:
while due to the limitations in Java’s thread model only a restricted (by memo-
ry/stack requirements) number of threads can be effectively active (the standard
reference [10] gives a limit in the “few thousands or tens of thousands”, usually
scheduled by an execution service); their intended use in ABS clearly follows
Erlang’s notion of virtually unbounded, light-weight, disposable threads.

A related failure model for an ABS-like language has also been discussed
n [12]. To enable coordinated rollbacks, compensations are attached to method
returns, in case a later condition indicates that a rollback across method calls
should be necessary. The authors illustrate however that the distributed nature
of compensation still does not make it easier to maintain distributed invariants
involving several objects. Rollbacks in a concurrent system and their intricacies
have also been discussed in the context of a higher-order m-calculus by Lanese
et al. [16]. The entire design space of fault handling in a loosely coupled system
is discussed in [15], but focuses on a more traditional approach of exception
handlers to give developers an explicit means of recovery, instead of the implicit
rollbacks presented here.

Unlike JAVA CARD’s transactions [6] our extension does not allow selective
non-atomic updates, where a persistent value is modified within a transaction
and not rolled back with the transaction. Our implementations do not store the
entire heap upon method activation, but only the state of the current object.

15

A corresponding proof-theory as developed by Mostowski [17] for JAvA CARD-
support in the KeY system should likewise be feasible for our approach.

Future work: The current rollback mechanism should also be easy to extend to
transactions through a combination of versioning the object state and specula-
tive execution. Also, rollbacks for a group of objects should at least semantically
be easy to model, yet maintaining object graphs as additional state may make
this approach too costly: every method invocation on another object would make
this object a member of the transaction, and all objects would have to reach
release points simultaneously to commit. Additionally, a distributed implemen-
tation of checking for such a commit would most likely be prohibitive. Instead of
arbitrary object groups derived again following the discussion in [15], one may
instead take advantage of so-called concurrent object groups (which are already
present in ABS, but not discussed in this paper). They are used in ABS to model
groups of objects running e.g. on the same node or hardware. Because of the
intentionally tight coupling, one consideration is that a die-statement may even
have the consequence of terminating the processes of an entire group, instead of
the limited effect on the local object only that we discussed here.

Although the asynchronous communication mechanism together with the in-
troduced failure mechanisms allows us to describe the communication behavior
in a distributed system, the current semantics treats all calls—whether remote or
local—the same. While this location transparency is also a feature of the Erlang
language, it would be useful to reflect the topology of the system and resource
aspects (such as processing power and communication latency) of the different
nodes in a model. To this end, in [14] deployment components were introduced,
which give the modeler the possibility to specify where objects are created and
consequently where their processes run. Note that in contrast to Erlang, objects
are allocated at creation-time, whereas Erlang allocates processes. On top of
deployment components, resource costs and capabilities can be modeled and ex-
ecution times can be estimated under different resource and deployment models.
Simulation can then be used to examine the behavior of the (distributed) system
wrt. artificially injected faults and deadline misses.

With respect to the supervision trees, we note that in the Erlang commu-
nity, since the tree structure is specified through code, there was an interest in
reverse-engineering the actual hierarchy for purposes of static analysis from the
source code [18]. We hope that for top-down development, specification of the
hierarchy can be made independent of the code, and is conversely more amenable
to verification.

References

1. J. Armstrong. Erlang—a survey of the language and its industrial applications. In
Proc. INAP, volume 96, 1996.

2. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

16

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

J. Bjork, F. S. de Boer, E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering, 9(1):29-43, 2013.

G. Candea and A. Fox. Crash-only software. In M. B. Jones, editor, HotOS, pages
67-72. USENIX, 2003.

D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer, 2005.

Z. Chen. Java Card Technology for Smart Cards. Addison-Wesley, 2000.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of LNCS.
Springer, 2007.

F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316-330. Springer, 2007.

C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. Journal of Logic
and Algebraic Programming, 81(3):227-256, 2012.

B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.

E. B. Johnsen, R. Hahnle, J. Schifer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and
M. M. Bonsangue, editors, Proc. 9th Intl. Symp. on Formal Methods for Compo-
nents and Objects (FMCO 2010), volume 6957 of LNCS, pages 142-164. Springer,
2011.

E. B. Johnsen, 1. Lanese, and G. Zavattaro. Fault in the future. In W. D. Meuter
and G.-C. Roman, editors, COORDINATION, volume 6721 of LNCS, pages 1-15.
Springer, 2011.

E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35-58, Mar. 2007.

E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. Modeling application-level
management of virtualized resources in ABS. In Proc. 10th Intl. Symp. on Formal
Methods for Components and Objects (FMCO 2011), volume 7542 of LNCS, pages
89-108. Springer, 2013.

I. Lanese, M. Lienhardt, M. Bravetti, E. B. Johnsen, R. Schlatte, V. Stolz, and
G. Zavattaro. Fault model design space for cooperative concurrency. In Submitted
to ISoL A1/, 2014.

I. Lanese, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Controlling reversibility
in higher-order Pi. In J.-P. Katoen and B. Koénig, editors, CONCUR, volume 6901
of LNCS, pages 297-311. Springer, 2011.

W. Mostowski. Formal reasoning about non-atomic Java Card methods in dynamic
logic. In J. Misra, T. Nipkow, and E. Sekerinski, editors, F'M, volume 4085 of LNC'S,
pages 444-459. Springer, 2006.

J. Nystrom and B. Jonsson. Extracting the process structure of Er-
lang applications. In FErlang Workshop, Florence, Italy, Sept. 2002.
http://www.erlang.org/workshop/nystrom.ps.

S. Vinoski. Reliability with Erlang. IEEE Internet Computing, 11(6):79-81, 2007.

17

Appendix B

ABS Documentation

99

ABS Documentation

ABS Development Team —1.0-SNAPSHOT

Table of Contents

Introduction
1. Abstract Behavioural Specification Language
Getting Started

2. Lexical Structure

3. Names and Types
3.1. Built-in Types
3.2. Algebraic Data Types
3.3. The Exception Type
3.4. Interface Types

Functional Sublanguage

4. Pure Expressions
4.1. Patterns
4.2. Type Checking
5. Functions

Object Model

6. Interfaces
7. Classes
8. Deployment Components

Imperative Sublanguage

9. Control Statements
10. Expressions with Side Effects

Modules

11. Defining a Module
12. Exporting Identifiers
13. Importing Identifiers
13.1. Exporting Imported Names

Feature Modelling

14. Deltas

15. Feature Modelling
15.1. Specifying the Product Line
15.2. Specifying Products

15.3. The Feature Model
ABS-Backends

16. Maude Backend

16.1. How to run the Maude backend
17. Erlang Backend

17.1. How to run the Erlang backend
18. Haskell Backend

18.1. How to obtain and install

18.2. How to run the Haskell backend

INntroduction

1. Abstract Behavioural Specification Language

The ABS language is a class-based object-oriented language that features
algebraic data types and side effect-free functions. Syntactically, the ABS language
tries to be as close as possible to the Java language, so that programmers that are
used to Java can easily use the ABS language without much learning effort.

ABS offers programmers several features such as asynchronous method calls,
futures to control these calls, interfaces for encapsulation and cooperative
scheduling of method invocations inside concurrent (active) objects. Specifically
any objectcreated in ABS represents an actor with encapsulated data. Similar to
JAVA, their behaviour and state is defined by implementing interfaces with their
corresponding methods. Thus they interact by making asynchronous calls to these
methods which generate messages that are pushed into a queue specific to each
actor. An actor progresses by taking a message out of its queue and processing it
by executing its corresponding method. This feature combination results in a
concurrent object-oriented model which is inherently compositional. The
simplicity of ABS results from the fact that each actor is viewed as a separate
processor making it very suitable for modeling distributed applications similar to
MPI, with the added benefit of specifying a distinct behaviour for each actor
without the connectivity issue.

(Getting Started

2. Lexical Structure

This section describes the lexical structure of the ABS language. ABS programs are
written in Unicode.

Line Terminators and White Spaces

Line terminators and white spaces are defined as in Java.

Comments

Comments are code fragments that are completely ignored and have no semantics
in the ABS language. ABS supports two styles of comments: end-of-line comments
and traditional comments.

End-Of-Line Comments
An end-of-line comment is a code fragment that starts with two slashes, e.g., //
text. All text that follows // until the end of the line is treated as a comment.

Syntax

// this 1s a comment
module A; // this i1Is also a comment

Traditional Comments
A traditional comment is a code fragment that is enclosed in /* */,e.g., /* this
is a comment */.Nested traditional comments are not possible.

/* this
Is a multiline
comment */

Identifiers

ABS distinguishes identifier and type identifier. They differ in the first character,
which must be a lower-case character for identifiers and an upper-case character
for type identifiers.

Keywords
The following words are keywords in the ABS language and are not regarded as
identifiers.

adds core export hasMethod let product this

after class features if local productline type

assert data from implements modifies removes when

await def get import module return while

builtin delta hasField in new skip case
Literals

A literal is a textual representation of a value. ABS supports three kinds of literals,
integer literals, string literals, and the null literal.

Separators

The following characters are separators:

Operators

The following tokens are operators:

[] && == 1= < > & > + - * [0§ ~ &

3. Names and Types

Names

A name in ABS can either be a simple identifier as described above, or can be
qualified with a type name, which represents a module. Examples for
syntactically valid names are: head, X, ABS.StdLib.tail. Examples for type names
are: Unit, X, ABS.StdLib.Map.

Types
Types in ABS are either plain type names or can have type arguments. A type
name can refer to a data type, an interface, a type synonym, and a type
parameter. Note that classes cannot be used as types in ABS. In addition, only
parametric data types can have type arguments. Examples for syntactically valid
types are: Bool, ABS.StdLib.Int, List<Bool>, ABS.StdLib.Map<Int,Bool>.

Type Synonyms
Type Synonyms define synonyms for otherwise defined types. Type synonyms
start with an uppercase letter.

Syntax

type Filename = String

type Filenames = Set<Filename>

type Servername = String

type Packet = String

type File = List<Packet>

type Catalog = List<Pair<Servername,Filenames>>

3.1. Built-in Types

The most basic of built-in types is the Int type, which represents integers of
arbitrary size. Values of type Int can be constructed by using integer literals or
arithmetic expressions:

0 has type Int
1 has type Int
3 has type Int
3+1 has type Int

A related type is the Rat for representing rational numbers. Rational values are
obtained via the division (/) operator and have arbitrary precision. An example of
such values:

1/4 has type Rat
5/2/4 has type Rat

The Int type is a subtype of Rat; this means that Int expressions are automatically
converted to Rat expressions, whenever a Rat type is expected. Some examples of
Rat expressions:

0 can also have type Rat
1 can also have type Rat
4+3 can also have the Rat

The adverse does not work. The user that wants to convert from
0 Rat to Int types have to explicitly use the truncate(number)
function.

The String built-in type represents String values, constructed either by string
literals or by string-specific operators coming from the ABS standard library.
Examples of Strings:

"hello world\n" 1is a string literal
"standard" + "library" is a string expression (concatenation)

According to other functional languages, Strings in ABS are

immutable data. Desimilar to other function languages, ABS Strings
0 are not represented as list of characters; instead they have a

hidden-to-the-user, efficient, internal representation.

The Fut type is a special built-in type to signal an ABS value that will become
available (evaluated) in the future. Fut is a so-called parameterized type, written
as Fut<T>, where T is its type parameter. The value that a future holds and will
return can be of any concrete type, as in the example:

Fut<String> is the type that will return a string
Fut<List<Rat>> is the type that will return a list of rational numbers

3.2. Algebraic Data Types

Algebraic Data Types make it possible to describe data in an immutable way. In
contrast to objects, data types do not have an identity and cannot be mutated.
This makes reasoning about data types much simpler than about objects. Data
types are built by using Data Type Constructors (or constructors for short), which
describe the possible values of a data type.

Syntax

data IntList = NoInt | Cons(Int, IntList);
data Bool = True | False;

Parametric Data Types

Parametric Data Types are useful to define general-purpose data types, such as

lists, sets or maps. Parametric data types are declared like normal data types but
have an additional type parameter section inside broken brackets (< >) after the
data type name.

data List<A> = Nil | Cons(A, List<A>);

Predefined Algebraic Data Types

The following Algebraic Data Types are predefined and come bundled with the
ABS standard library:

e data Bool = True | False;++ The boolean type with constructors True and False
and the usual Boolean infix and prefix operators.

e data Unit = Unit;++ The unit type with only one constructor Unit (for methods
without return values).

e data Int; An arbitrary integer (Z) for which values are constructed by using
integer literals and arithmetic expressions.

e data Rat;. A rational number (Q). Rational values are obtained via the division
(/) operator and have arbitrary precision. Assigning rational values to variables
of type Int, either explicitly or implicitly by passing them to a function or
method expecting an integer, rounds towards zero.

e data String;. A string for which values are constructed by using string literals
and operators.

e data Fut<T>;. Representing a future. A future cannot be explicitly constructed,
but it is the result of an asynchronous method call. The value of a future can
only be obtained by using the get expression.

e data List<A> = Nil | Cons(A, List<A>)++ Where Nil is the empty list, and Cons
appends an element of type A in the front of the list.

N-ary Constructors

For data types of arbitrary size, like lists, maps and sets, it is undesirable having
to write them down in the form of nested constructor expressions. For this
purpose, ABS provides a special syntax for nary constructors, which are
transformed into constructor expressions via a user-supplied function.

Syntax

def Set<A> set<A>(List<A> 1) = case 1 {
Nil => EmptySet;
Cons(hd, tl) => Insert(hd, set(tl));

i
{
Set<Int> s = set[1, 2, 31;
}

An expression type[parameters*] is transformed into a literal by handing it to a
function named type which takes one parameter of type List and returns an
expression of type Type. (It is desirable, although not currently enforced, that
type and Type are the same word, just with different capitalization.)

Abstract Data Types

Using the module system it is possible to define abstract data types. For an
abstract data type, only the functions that operate on them are known to the
client, but not its constructors. This can be easily realized in ABS by putting such a
data type in its own module and by only exporting the data type and its functions,
without exporting the constructors.

3.3. The Exception Type

In higher-level programming languages, exceptions are generally used to signal
an erroneous or abnormal runtime behaviour of the program, that should be
treated (handled) separately compared to normal values.

The Exception type is a special built-in data type that looks similar to an Algebraic
Data Type (immutable, no identity) but with a notable difference: the exception
data type can be extended with new (user-provided) data constructors. Based on
this fact, the user has the ability to, besides using the predefined exceptions of the
ABS standard library, write arbitrary exceptions specific to the user’s program.

To define a new exception (data constructor) the user has to write:

exception MyException;

An exception can also take any number of arguments as:

exception AnotherException(Int, String, Bool);

In ABS, exceptions are first-class citizens of the language; the user can construct
exception-values, assign them to variables or pass them in expressions. All these
exception-values are typed by the type Exception . However, an exception-value
can only acquire the special meaning of abnormal behaviour when the user
explicitly says so with a throw keyword. We will visit the throw keyword together
with how to recover from exceptions (catch keyword) in a later section.

Predefined exceptions in the Standard Library

DivisionByZeroException

Raised in arithmetic expressions when the divisor (denominator) is equal to O,
asin 3/0

AssertionFaiException

The assert keyword was called with False as argument

PatternMatchFailException

The pattern matching was not complete. In other words all ¢ catch-all clause

NullPointerException

A method was called on a null object

StackOverflowException

The calling stack has reached its limit (system error)

HeapOverflowException

The memory heap is full (system error)

KeyboardInterruptException

The user pressed a key sequence to interrupt the running ABS program

3.4. Interface Types

Interfaces in ABS are similar to interfaces in Java. Unlike Java, objects in ABS are
typed exclusively by interfaces, and not classes.

To introduce an interface:

interface Animal {

}

Interfaces can be extended from (multiple) base interfaces:

interface Bird extends Animal, Flying {

b

Let’s consider the example of an object that represents a "seagull". Suchseagull
object can have either the type of a Bird, Animal or Flying, depending on the
object’s particular usage in the program. In terms of type theory, this feature is
called nominal subtyping. An example of well-typed expressions that make use of
Interface types:

seagull can be typed by: Bird or Animal or Flying
list[seagull, bee] can be typed by: Animal or Flying
set[seagull, bee, boeing] can be typed by: Flying

Functional Sublanguage

4. Pure Expressions

Pure Expressions are side effect-free expressions. This means that these
expressions cannot mod- ify the heap.

Let Expressions

These expressions bind variable names to pure expressions.

Syntax

let (Bool x) = True in ~x

Data Type Constructor Expressions

They are expressions that create data type values by using data type constructors.
Note that for data type constructors that have no parameters, the parentheses are
optional.

Syntax
True

Cons(True, Nil)
ABS.StdLib.Nil

Function Applications

Function Applications apply functions to arguments.

Syntax

tail(Cons(True, Nil))
ABS.StdLib.head(list)

If-Then-Else Expression
ABS has a standard if-then-else expression.

Syntax

if 5 == 4 then True else False

Case Expressions / Pattern Matching

ABS supports pattern matching by the Case Expression. It takes an expression as
first argument, which a series of patterns is matched against. The value of the
case expression itself is the value of the expression on the right-hand side of the
first matching expression. It is an error if no pattern matches the expression.

4.7, Patterns

There are five different kinds of patterns available in ABS:

Pattern Variables (e.g., X, where x is not bound yet)

Bound Variables (e.g., X, where x is bound)

Literal Patterns (e.g., 5)

Data Constructor Patterns (e.g., Cons(Nil,x))

Underscore Pattern ()

Pattern Variables

Pattern variables are simply unbound variables. Like the underscore pattern,
these variables match every value, but, in addition, bind the variable to the
matched value. The bound variable can then be used in the right-hand-side

expression of the corresponding branch. Typically, pattern variables are used
inside of data constructor patterns to extract values from data constructors. For
example

def A fromJust<A>(Maybe<A> a) =
case a {

Just(x) => x;

b

Bound Variables

If a bound variable is used as a pattern, the pattern matches if the value of the
case expression is equal to the value of the bound variable.

def Bool contains<A>(List<A> list, A value) =
case list {
Nil => False;
Cons(value,) => True;
Cons(_, rest) => contains(rest, value);
Jr :

Literal Patterns

Literals can be used as patterns. This is similar to bound variables, because the
pattern matches if the value of the case expression is equal to the literal value.

def Bool isEmpty(String s) =

case b {

"" => True;
_ => False;
I

Data Constructor Patterns

A data constructor pattern is like a standard data constructor expression, but
where certain sub expressions can be patterns again.

def Bool negate(Bool b) =
case b {

True => False;

False => True;

%

def List<A> remainder(List<A> list) =
case b {

Cons(_, rest) => rest;

bo

Underscore Pattern

The underscore pattern () simply matches every value. It is generally used as the
last pattern in a case expression to define a default case. For example:

def Bool isNil<A>(List<A> list) =
case list {

Nil => True;

_ => False;

4.2. Type Checking

A case expression is type-correct if and only if all its expressions and all its
branches are type-correct and the right-hand side of all branches have a common
super type. This common super type is also the type of the overall case
expression. A branch (a pattern and its expression) is type-correct if its pattern
and its right-hand side expression are type-correct. A pattern is type-correct if it
can match the corresponding case ex-pression.

Operator Expressions

ABS has a number of predefined operators which can be used to form Operator
Expressions.

The following table describes the meaning as well as the associativity and the
precedence of the different operators. They are grouped according to precedence,
as indicated by horizontal rules, from low precedence to high precedence.

Expression Meaning Associativity = Argument Result type
types

el || e2 logical or left Bool, Bool Bool

el && e2 logical and left Bool, Bool Bool

-e integer right number number

negation

Expression

el ==e2
el !=e2

el <e2

el e2

el > e2

el >=e2

el +e2

el +e2

el -e2

el *e2

el/e2

el % e2

Meaning

equality
inequality

less than

less than or
equal to

greater than
greater than
or equal to
concatenation

addition

subtraction

multiplication

division

modulo

logical

negation

integer
negation

Associativity

left
left

left

left

left

left

left

left

left

left

left

left

right

right

Argument
types

compatible
compatible

number,
number

number,
number

number,
number

number,
number

String, String

number,
number

number,
number

number,
number

number,
number

number,
number

Bool

number

Result type

Bool
Bool

Bool

Bool

Bool

Bool

String

number

number

number

Rat

Int

Bool

number

5. Functions

Functions in ABS define names for parametrized data expressions. A Function in
ABS is always side effect-free, which means that it cannot manipulate the heap.

Syntax

def Int length(IntList list) =
case list {

Nil => 0;
Cons(n, 1ls) => 1 + length(ls);
Jr ;

Parametric Functions

Parametric Functions allow to work with parametric data types in a general way.
For exam- ple, given a list of any type, a parametric function head can return the
first element, regardless of its type. Parametric functions are defined like normal
functions but have an additional type parameter section inside angle brackets (<
>) after the function name.

Syntax

def A head<A>(List<A> list) =
case list {
Cons(x, Xs) => X;

}i

(Note that head is a partial function.)

Object Model

6. Interfaces

Interfaces in ABS are similar to interfaces in Java. They have a name, which
defines a nominal type, and they can extend arbitrary many other interfaces. The
interface body consists of a list of method signature declarations. Method names
start with a lowercase letter.

The interfaces in the example below represent a database system, providing
functionality to store and retrieve files, and a node of a peer-to-peer file sharing

system. Each node of a peer-to-peer system plays both the role of a server and a
client.

Syntax

interface DB {

File getFile(Filename fId);

Int getLength(Filename fId);

Unit storeFile(Filename fId, File file);
Filenames listFiles();

}
interface Client {
List<Pair<Server,Filenames>> availFiles(List<Server> slList);

Unit reqFile(Server sId, Filename fId);

b
interface Server {

Filenames inquire();

Int getLength(Filename fId);

Packet getPack(Filename fId, Int pNbr);

}
interface Peer extends Client, Server {

List<Server> getNeighbors();

by

7. Classes

Like in typical class-based languages, classes in ABS are used to create objects.
Classes can implement an arbitrary number of interfaces. Classes do not have
constructors in ABS but instead have class parameters and an optional init block.
Class parameters actually define additional fields of the class that can be used like
any other declared field.

Syntax

class DataBase(Map<Filename,File> db) implements DB {
File getFile(Filename fId) {
return lookup(db, fId);
}

Int getLength(Filename fId){
return length(lookup(db, fId));
}

Unit storeFile(Filename fId, File file) {
db = insert(Pair(fId,file), db);
}

Filenames listFiles() {
return keys(db);
¥

}

class Node(DB db, Peer admin, Filename file) implements Peer {

Catalog catalog;
List<Server> myNeighbors;
// Implementation. ..

Active Classes

A class can be active or passive. Active classes start an activity on their own upon
creation. Passive classes only react to incoming method calls. A class is active if
and only if it has a run method:

Unit run() {
// active behavior ...

i

The run method is called after object initialization.

8. Deployment Components

A Deployment Component (abbreviated as DC) is the abstraction of a
computational unit which is responsible for running ABS computations
(programs). Such a computational unit can either be realised by an OS process,
physical machine, virtual machine or a multitude of machines. By using DCs, the
programmer can write ABS programs that span across multiple computational

units, similar to a distributed setting.

Based on the fact that a DC is a singleunit that (pro)actively behaves (runs ABS
code), it is modelled as an active object, discussed in the previous section. All DC
objects are typed by the DC interface, defined in ABS as:

interface IDC {
Unit shutdown();
Triple<Rat,Rat,Rat> load();
}

With the shutdown method, a DC can safely be brought down, subsequently
freeing its occupied resources. The load method permits the user to probe for
the average load of the computational unit, that is how much utilized (busy) was
the unit in the last 1, 5 and 15 minutes of execution. The following example is
self-explanatory:

DC dc1 = new MyDC();

Fut<Triple<Rat,Rat,Rat>> f_avgs = dc1 ! load();
Triple<Rat,Rat,Rat> avgs = f_avgs.get();

dc1 ! shutdown();

The ABS language specification does not define any built-in DC
classes. It is in the discretion of the ABS backends to provide with
suitable DC classes (implementations).

After a new DC object is created, its associated computational unit is started and
sits waiting to execute ABS computations. To start ABS computations, the user
must create (active) objects inside the remote computational unit. This is called
object spawning, illustrated by the example:

Interf1 o1 = dc1 spawns Class1(params..);
o1 ! method1(params ..);
this.method2(o1);

The spawns keyword creates a new object in the given DC. It behaves similar to
the new keyword, in the sense that the created object will be also placed in a new
COG. The returned object reference (o1 in the example) is treated as normal (can
be passed to arguments, called for its methods, etc.).

The keyword thisDC is provided that can be put anywhere inside an ABS
program to return the computational unit where the calling code executes in.

{

DC whereami = thisDC;

}

Imperative Sublanguage

9. Control Statements

Similar to Java, a statement is each of the individual instructions of a program,
like the variable declarations and expressions seen in previous sections. They
always end with a semicolon (;), and are executed in the same order in which they
appear in a program. ABS provides flow control statements that serve to specify
what has to be done by our program, when, and under which circumstances.
Statements in ABS are not evaluated to a value. If one wants to assign a value to
statements it would be the Unit value.

Block
This statement is also known as acompound statement and consists of a group
of statement grouped together defining a name scope for variables.

a+ 1;
n% 10;

Q
I

Selection statement

if (5 < x) {
y =6;

b

else {

y =7;

}

if (True)
X =5;

Iteration statement (Loop)

while (x < 5)
X =X+ 1;

Variable Declaration Statements

A variable declaration statement is used to declare variables. A variable has an
optional initialization expression for defining the initial value of the variable. The
initialization expression is mandatory for variables of data types. It can be left out
only for variables of reference types, in which case the variable is initialized with
null.

Bool b = True;

Assign Statement

The Assign Statement assigns a value to a variable or a field.

this.f = True;
X = 5;

Await Statement

Await Statements suspend the current task until the given guard is true [7]. The
task will not be suspended if the guard is already initially true. While the task is
suspended, other tasks within the same COG can be activated. Await statements
are also called scheduling points, because they are the only source positions,
where a task may become suspended and other tasks of the same COG can be
activated.

Fut<Bool> f = x!m();
await f?;

await this.x == True;
await f? & this.y > 5;

Suspend Statement

A Suspend Statement causes the current task to be suspended.

suspend;

Assert Statement

An Assert Statement is a statement for asserting certain conditions.

assert x != null;

Return Statement

A Return Statement defines the return value of a method. A return statement
can only appear as a last statement in a method body.

return x;

Case Statement

The case statement, like the case expression, takes an expression as first
argument, which is matched against a series of patterns. The effect of executing
the case statement is the execution of the statement (which can be a block) of the
first branch whose pattern matches the expression. An example follows:

Pair<Int, Int> p = Pair(2, 3);
Int x = 0;
case p {

Pair(2, y) => { x = y; skip; }

_=>x = -1;

Exception-signaling statement

The keyword-statement throw is used to signal exceptions (runtime errors). It
takes a single argument which is the exception-value to throw. For example:

{
Int x = -1;
if (x<0) {
throw NegativeNumberException(x);

}

else {
if (x==0) {
throw ZeroNumberException;

}
else ...

The 'throw' statement can only be used inside imperative code.

o Throwing user-exceptions inside functional code is considered bad
practice: the user’s function must be written instead to return an
Either<Exception, A> value, as in the example:

def Either<Exception, Int> f(x,y) = if (y < 0)
then Left(NegativeNumberException)
else Right(...)

Despite this, there are certain built-in system-exceptions (see Section 3.3) that can
originate from erroneous functional code. Examples of these are
DivisionByZeroException and PatternMatchFailException, implicitly
signaled by the ABS system.

When an exception is raised (signaled), the normal flow of the program will be
abrupted. In order to resume the normal flow, the user has to explicitly handle
the exception.

Exception-handling Statement

To handle an exception --- either explicitly signaled using the throw keyword or
implicitly by a system exception --- the user has to surround the offending code
with a try block. The statements in the try block will be executed in sequence
until an exception happens. Upon an exception, the execution of the try block will
stop and the exception will be matched against the exception-patterns defined in
the catch block.

The catch block behaves similar to the case statement, with the only difference
that the patterns can only have the type Exception. When the exception-pattern
is matched, the statements associated with its catch clause will be executed.

After defining the catch block, the user canoptionally supply a finally block of
statements, that will be executed regardless of an exception happening or not.

The syntax is the following:

try {
stmt1;
stmt2;

ks

catch {
exception_patternl => stmt_or_block;
exception_pattern2 => ...

B2 500

}

finally {
stmt3;
stmt4;

by

If there are no matching catch-clauses, the finally block will first be accordingly
executed, before re-throwing the exception to its parent caller. Conversely, if the
parent caller does not (correctly) handle the re-thrown exception, the exception
will be propagated to its own parent caller, and so forth and so on.

Expression Statement

An Expression Statement is a statement that only consists of a single expression.
Such statements are only executed for the effect of the expression.

new C(x);

10. Expressions with Side Effects

Beside pure expressions, ABS has expressions with side effects. However, these
expressions are defined in such a way that they can only have a single side effect.
This means that subexpressions of expressions can only be pure expressions
again. This restriction simplifies the reasoning about ABS expressions.

New Expression

A New Expression creates a new object from a class name and a list of arguments.
In ABS objects can be created in two different ways. Either they are created in the
current COG, using the standard new local expression, or they are created in a
new COG by using the new expression.

Syntax

new local Foo(5)
new Bar()

Standard Object Creation

When using the new local expression, the new object is created in the current
COG, i.e., the COG of the current receiver object.

COG Object Creation

The concurrency model of ABS is based on the notion of COGs [?]. An ABS system
at runtime is a set of concurrently running COGs. A COGs can be seen as an
isolated subsystem, which has its own state (an object-heap) and its own internal
behavior. COGs are created implicitly when creating a new object by using the
new expression.

Synchronous Call Expression

A Synchronous Call consists of a target expression, a method name, and a list of
argument expressions.

Bool b = x.m(5);

Asynchronous Call Expression

An Asynchronous Call consists of a target expression, a method name, and a list of
argument expressions. Instead of directly invoking the method, an asynchronous
method call creates a new task in the target COG, which is executed
asynchronously. This means that the calling task proceeds independently after the
call, without waiting for the result. The result of an asynchronous method call is a
future (Fut<V>), which can be used by the calling task to later obtain the result of
the method call. That future is resolved by the task that has been created in the
target COG to execute the method.

Fut<Bool> f = x!m(5);

Get Expression

A Get Expression is used to obtain the value from a future. The current task is
blocked until the value of the future is available, i.e., until the future has been
resolved. No other task in the COG can be activated in the meantime.

Bool b = f.get;

Await Expression

A common pattern for asynchronous calls is:

e Execute an asynchronous call expression, store the future in a variable
e await on the future

e Assign the result to a variable

Fut<A> fx = o!m();
await fx?;
A x = fx.get;

The await expression is a shorthand for this pattern. The preceding example can
be written as follows, without the need to introduce a name for the future:

A x = await o!m();

Modules

11. Defining a Module

For name spacing, code structuring, and code hiding purposes, ABS offers a
module system. The module system of ABS is very similar to that of Haskell. It
uses, however, a different syntax that is similar to that of Java and Python.

ModuleDecl ::= 'module' TypeName ';' [ExportList] [ImportList] Decl* [Block]
ExportList ::= Export*

ImportList ::= Import*

Export "export' AnyNamelList ['from' TypeName] ';'

"export' '*' ['from' TypeName] ';

Import "import' AnyNamelList ['from' TypeName] °';
"import' '*' 'from' TypeName ;

AnyNameList ::= AnyName [, AnyName]

AnyName = Name | TypeName

Decl ::= FunDecl | TypeSynDecl | DataTypeDecl | InterfaceDecl | ClassDecl

A module with name MyModule is declared by writing

module MyModule;

This declaration introduces a new module name MyModule which can be used to
qualify names. All declarations which follow this statement belong to the module
MyModule . A module name is a type name and must always start with an upper
case letter.

The module ABS.StdLib contains the standard library and is automatically
imported by every module.

12. Exporting Identifiers

By default, modules do not export any names. In order to make names of a
module usable to other modules, the names have to be exported. For example, to
export a data type and a data constructor, one can write something like this:

module Drinks;
export Drink, Milk;
data Drink = Milk | Water;

Note that in this example, the data constructor Water is not exported, and can
thus not be used by other modules. By only exporting the data type without any of
its constructors, one can realize abstract data types in ABS.

A special export clause export *; exports all names that aredefined in the
module. In particular, this means that imported names are not exported (but can
be re-exported via additional export clauses).

export *;

13. Importing Identifiers

In order to use exported names of a module in another module, the names have
to be imported. In a module definition, an optional list of import clauses follows

the list of export clauses. For example, to write a module that imports the Drink
data type of the module Drinks one can write:

module Bar;
import Drinks.Drink;

After a name has been imported, it can be used inside the module in a fully
qualified way.

To use a name from another module in an unqualified way requires an
unqualified import. For example, to use the Milk data constructor inside the Bar
module, without having to qualify it with the Drinks module each time, the
following unqualified import statement is used:

module Bar;
import Milk from Drinks;

(Note that this kind of import also imports the qualified names.) In this example,
the names Milk and Drinks.Milk can be used inside the module Bar .

To use all exported names from another module in an unqualified way one can
write:

import * from SomeModule;

13.1. Exporting Imported Names

It is possible to export names that have been imported. For example,

module Bar;
export Drink;
import * from Drinks;

exports data type Drink that has been imported from Drinks .

To export all names imported from a certain module one can write

export * from SomeModule;

In this case, all names that have been imported from module SomeModule are

exported. For example,

module Bar;
export * from Drinks;
import * from Drinks;

exports all names that are exported by module Drinks .

However, in this example:

module Bar;
export * from Drinks;
import Drink from Drinks;

only Drink is exported as this is the only name imported from module Drinks .
Note: only names that are visible in a module can be exported by that module.

To only export some names from a certain module one can write, for example:

module Bar;
export Drink from Drinks;
import * from Drinks;

This only exports Drink from module Drinks .

Feature Modelling

14. Deltas

ABS supports the delta-oriented programming model, an approach that aids the
development of a set of programs simultaneously from a single code base,
following the software product line engineering approach. In delta-oriented
programming, features defined by a feature model are associated with code
modules that describe modifications to a core program. In ABS, these modules are
called delta modules. Hence the implementation of a software product line in ABS
is divided into a core and a set of delta modules.

The core consists of a set of ABS modules that implement a complete software

product of the corresponding software product line. Delta modules (or deltas in
short) describe how to change the core program to obtain new products. This
includes adding new classes and interfaces, modifying existing ones, or even
removing some classes from the core. Delta modules can also modify the
functional entities of an ABS program, that is, they can add and modify data types
and type synonyms, and add functions.

Deltas are applied to the core program by the ABS compiler front end. The choice
of which delta modules to apply depends on the selection of a set of features, that
is, a particular product of the SPL. The role of the ABS compiler front end is to
translate textual ABS models into an internal representation and check the
models for syntax and semantic errors. The role of the back ends is to generate
code for the models targeting some suitable execution or simulation environment.

DeltaDecl

: 'delta' TypeId [DeltaParams] ';' [ModuleAccess] ModuleModifier®*
ModuleModifier ::

= 'adds' ClassDecl

| 'removes' 'class' TypeName ';'

| 'modifies' 'class' TypeName

['adds' Typeld (',' Typeld)*] ['removes' TypeIld (',' Typeld)*]
'{' Modifier* '}'

'adds' InterfaceDecl

‘removes' 'interface' TypeName ';'

'modifies' 'interface' TypeName '{' InterfaceModifier* '}’
'adds' FunctionDecl

'adds' DataTypeDecl

'modifies' DataTypeDecl

'adds' TypeSynDecl

'modifies' TypeSynDecl

'adds' Import

'adds' Export

InterfaceModifier ::= 'adds' MethSig ';'
| 'removes' MethSig ';'

'adds' FieldDecl
'removes' FieldDecl
'adds' MethDecl
'removes' MethSig
'modifies' MethDecl

Modifier ::

DeltaParams ::= '(' DeltaParam (',' DeltaParam)* ')’

Identifier HasCondition*

DeltaParam ::=
| Type Identifier

ModuleAccess ::= 'uses' Typeld ';'
'hasField' FieldDecl
"hasMethod' MethSig
"hasInterface' Typeld

HasCondition ::

The DeltaDecl clause specifies the syntax of delta modules, consisting of a
unique identifier, a module access directive, a list of parameters and a sequence
of module modifiers. The module access directive gives the delta access to the
namespace of a particular module. In other words, it specifies the ABS module to
which modifications using unqualified identifiers apply by default. A delta can
still make changes to several modules by fully qualifying the TypeName of module
modifiers.

While delta modelling supports a broad range of ways to modify an ABS model,
not all ABS program entities are modifiable. These unsupported modifications are
listed here for completeness. While these modifications could be easily specified
and implemented, we opted not to overload the language with features that have

not been regarded as necessary in practice:

Class parameters and init block

Deltas currently do not support the modification of class parameter lists or
class init blocks.

Deltas

currently only support adding functions, and adding and modifying data types
and type synonyms. Removal is not supported.

Modules

Deltas currently do not support adding new modules or removing modules.

Imports and Exports

While deltas do support the addition of import and export statements to
modules, they do not support their modification or removal.

Main block

Deltas currently do not support the modification of the program’s main block.

15. Feature Modelling

ABS provides language constructs and tools for modelling variable systems
following Software Product Line (SPL) engineering practices.

Software variability is commonly expressed using features which can be present
or absent from a product of the product line. Features are organised in a feature
model, which is essentially a set of logical constraints expressing the
dependencies between features. Thus the feature model defines a set of legal
feature combinations, which represent the set of valid software products that can
be built from the given features.

15.1. Specifying the Product Line

The ABS configuration language links feature models, which describe the
structure of a SPL, to delta modules, which implement behaviour. The
configuration defines, for each selection of features satisfied by the product
selection, which delta modules should be applied to the core. Furthermore, it

guides the code generation by ordering the application of the delta modules.

Configuration ::= 'productline' Typeld ';' Features ';' DeltaClause*
Features ='features' FName (',' FName)¥*
DeltaClause = 'delta' DeltaSpec [AfterCondition] [ApplicationCondition] ';'
DeltaSpec = DeltaName ['(' DeltaParams ')']
DeltaName ::= Typeld
DeltaParams = DeltaParam (',' DeltaParam)*
DeltaParam = FName | FName'.'AName
AfterClause = 'after' DeltaName (',' DeltaName)*
WhenClause = 'when' AppCond
AppCond ::= AppCond '&&' AppCond
| AppCond '||' AppCond
| '~" AppCond
| *(" AppCond ')’
| FName

Features and delta modules are associated through application conditions, which
are logical expressions over the set of features and attributes in a feature model.
The collection of applicable delta modules is given by the application conditions
that are true for a particular feature and attribute selection. By not associating
the delta modules directly with features, a degree of flexibility is obtained.

Each delta clause has a DeltaSpec, specifying the name of a delta module name
and, optionally, a list of parameters; an AfterClause, specifying the delta
modules that the current delta must be applied after; and an application condition
AppCond, specifying an arbitrary predicate over the feature names (FName) and
attribute names (AName) in the feature model that describes when the given delta
module is applied.

productline DeltaResourceExample;

features Cost, NoCost, NoDeploymentScenario, UnlimitedMachines, LimitedMachines,
Wordcount, Wordsearch;

delta DOccurrences when Wordsearch;

delta DFixedCost(Cost.cost) when Cost;

delta DUnboundedDeployment(UnlimitedMachines.capacity) when UnlimitedMachines;
delta DBoundedDeployment(LimitedMachines.capacity, LimitedMachines.machinelimit)
when LimitedMachines;

15.2. Specifying Products

ABS allows the developer to name products that are of particular interest, in
order to easily refer to them later when the actual code needs to be generated. A
product definition states which features are to be included in the product and sets
attributes of those features to concrete values.

Selection ::= 'product' TypeIld '(' FeatureSpecs ')' ';
FeatureSpecs ::= FeatureSpec (',' FeatureSpec)*
FeatureSpec ::= FName [AttributeAssignments]
AttributeAssignments ::= '{' AttributeAssignment (',' AttributeAssignment '}’
AttributeAssignment ::= AName '=' Literal

Here are some product definitions for the DeltaResourceExample productline:

product WordcountModel (Wordcount, NoCost, NoDeploymentScenario);

product WordcountFull (Wordcount, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordsearchFull (Wordsearch, Cost{cost=10},
UnlimitedMachines{capacity=20});

product WordsearchDemo (Wordsearch, Cost{cost=10}, LimitedMachines{capacity=20,
machinelimit=2});

15.3. The Feature Mode|

The FeatureModel clause specifies a number of "orthogonal” root feature models
along with a number of extensions that specify additional constraints, typically
cross-tree dependencies. Its grammar is as follows:

FeatureModel ::= ('root' FeatureDecl)* FeatureExtension¥*
FeatureDecl = FName ['{' [Group] AttributeDecl* Constraint* '}' 1]
FeatureExtension ::= 'extension' FName '{' AttributeDecl* Constraint* '}’
Group ::= 'group' Cardinality '{' ['opt'] FeatureDecl (',' ['opt'] FeatureDecl)*
e
Cardinality ::= 'allof' | 'oneof' | '[' IntLiteral '..' Limit ']'
AttributeDecl ::= "Int' AName ';'
| '"Int' AName in '[' Limit '..' Limit ']' ';°'
| 'Bool' AName ';'
| 'String' AName ';'
Limit ::= IntLiteral | '*'
Constraint ::= Expr ';'
| *ifin"'':" Expr ';'
| '"ifout'':' Expr ';'
| 'require'':' FName ';'
| 'exclude'':' FName ';'
Expr ::= 'True'
| 'False'’
| IntLiteral
| StringlLiteral
| FName
| AName
| FName '.'AName
| UnOp Expr
| Expr BinOp Expr
| "(" Expr ")’
UnOp ::= '~' | "-"'
BinOp ::= '||' | '&8' | '->' | '<->' | ==
IR IR IR BRI B
R B L AR B

Attributes and values range over integers, strings or booleans.

The FeatureDecl clause specifies the details of a given feature, firstly by giving it
a name (FName), followed by a number of possibly optional sub-features, the
feature’s attributes and any relevant constraints.

The FeatureExtension clause specifies additional constraints and attributes for
a feature, and if the extended feature has no children a group can also be
specified. This is particularly useful for specifying constraints that do not fit into
the tree structure given by the root feature model.

Here is an example feature model for the DeltaResourceExample productline,
defining valid combinations of features and valid ranges of parameters for cost,
capacity and number of machines:

root Calculations {
group oneof {
Wordcount,
Wordsearch

}
by

root Resources {
group oneof {
NoCost,
Cost { Int cost in [O .. 10000] ; }
b
2

root Deployments {
group oneof {
NoDeploymentScenario,
UnlimitedMachines { Int capacity in [O .. 10000] ; },
LimitedMachines { Int capacity in [0 .. 10000] ;
Int machinelimit in [O .. 100] ; }

ABS-Backends

16. Maude Backend

The Maude backend is a high-level, executable semantics in rewriting logic of the
ABS language. Due to its relatively compact nature, it serves as a test-bed for new
language features.

Executing a model on the Maude backend results in a complete snapshot of the
system state after execution has finished.

The main drawback of the Maude backend is its relatively poor performance,
making it not very suitable to simulate large models.

Features:

e CPU and bandwidth resources
e Simulation of resource usage on deployment components

e Timed semantics

e Executable formal semantics of the ABS language

16.1. How to run the Maude backend

Running a model on Maude involves compiling the code, then starting Maude
with the resulting file as input, with the file abs-interpreter.maude accessible
to Maude.

Compiling all files in the current directory into Maude is done with the following

command:

$ absc -maude *.abs -o model.maude

The model is started with the following commands:

$ maude
Maude> in model.maude
Maude> frew start .

This sequence of commands starts Maude, then loads the compiled model and
starts it. The resulting output is a dump of the complete system state after
execution of the model finishes.

In case of problems, check the following:

e absc should be in the path; check the PATH environment variable.
e absfrontend.jar should be in the environment variable CLASSPATH .

e abs-interpreter.maude should be in the same directory as the compiled
model, or in a directory listed in the environment variable MAUDE_LIB.

17. Erlang Backend

The Erlang backend runs ABS models on the Erlang virtual machine by
translating them into Erlang and combining them with a small runtime library
implementing key ABS concepts (cogs, futures, objects, method invocations) in

Erlang.

Executing an ABS model in Erlang currently returns the value of the last

statement of the main block; output via ABS.Meta.println is printed on the
console. More introspective and interactive capabilities are planned and will be
implemented in the future.

17.1. How to run the Erlang backend

Running a model in Erlang involves compiling the ABS code, then compiling and
running the resulting Erlang code.

Compiling all files in the current directory into Erlang is done with the following
command:

$ absc -erlang *.abs

The model is started with the following commands, where /Modulename/ should
be the name of the module containing the main block:

$ erl

1> code:add_path("gen/erl/ebin").
2> cd ("gen/erl").

3> make:all([load]).

4> runtime:start("/Modulename/").

This sequence of commands starts Erlang, then compiles the generated Erlang
code and starts it.

18. Haskell Backend

The Haskell backend translates ABS models to Haskell source code, consequently
compiled through a Haskell compiler and executed by the machine. The backend,
albeit a work in progress, already supports most ABS constructs and, above that,
augments the language with extra features, such as Type Inference, Foreign
Imports and real Deployment Components .

Type Inference

With the feature of Type Inference enabled, the user can optionally leave out
the declaration of types of certain expressions; the backend will be responsible to
infer those types and typecheck them in the ABS program. The type inference is
safe, in the sense that it will not infer any wrong types (soundness property).

To make use of this feature, the user puts an underscore _ in place of where a
type would normally be, as in this ABS block of code:

{_x=3;
Int y = 4; // type inference is optional
X = X+y;

ons(x, Cons(y, Nil));

ength(l) + 4; }

n =
|
= 0

At the moment, the type inference cannot infer interface types as in

0 _ 0 = new Class(); .Itcan however infer all the other types, that
is Builtin, Algebraic, and Exception data types. There is a plan to
support this in the future.

Foreign Imports
The Haskell backend extends the ABS module system with the ability to include
Haskell-written code inside the ABS program itself. This feature is provided by the
foreign_import keyword, which syntactically follows that of the normal
import keyword. To illustrate this:

module Bar;

foreign_import Vertex from Data.Graph;
foreign_import vertices from Data.Graph;

the programmer has imported the Vertex algebraic datatype and the vertices
function from the Data.Graph Haskell library module into an ABS module
named Bar . Any imported Haskell term will be treated as its ABS counterpart. In
the example case, the programmer may re-export the foreign terms or use them
as normal ABS terms:

{
Graph g = empty_graph();
List<Vertex> vs = vertices(g);

i

At the moment, the ABS programmer can reuse (with
foreign_import) Haskell’s Algebraic Data types and Pure

0 functions, but not monadic IO code (Haskell code with side-effects).
This restriction is planned to be lifted in a later release of the
backend.

Deployment Components

The Haskell backend implements the ABS feature of Deployment Components,
faithfully as described in Chapter 8. The backend follows the view that
Deployment Components are virtual machines running in the Cloud. As such, each
single DC corresponds to one Cloud virtual machine (VM).

Two DC classes (implementations) are provided to support theOpenNebula and
Microsoft Azure cloud computing platforms accordingly:

class NebulaDC(CPU cpu, Mem memory) implements DC {

i

class AzureDC(CPU cpu, Mem memory) implements DC {

i

The CPU and Mem datatypes are passed as arguments when creating the DC to
parameterize its computing resources. These datatypes are simple defined as type
synonyms to Int, but you can expect more sophisticated resource encodings for a
future backend release.

type CPU
type Mem

Int; // processor cores
Int; // RAM measured in MB

The backend has only been developed on and tested against the
A OpenNebula platform. This hopefully will change when more cloud
providers will be supported.

18.1. How to obtain and install

The compiler itself is written in Haskell and distributed as a normal Haskell
package. Therefore to build abs2haskell you need either

1) a recent release of the Haskell platform (version >= 2013.2.0.0),

2) the GHC compiler accompanied by the Cabal packaging system:

e GHC compiler (version >=7.6)
e (Cabal package (version >=1.4)

e cabal-install program. The compiler depends on other community
packages/libraries. This program will automatically fetch and install any
library dependencies.

Downloading, building and installing the compiler

Clone the repository with the command:

$ git clone git://github.com/bezirg/abs2haskell

To build and install the abs2haskell bakend run inside the abs2haskell/
directory:

sudo make install

18.2. How to run the Haskell backend

After installing the compiler, you should have the program abs2haskell under
your PATH.

Examples of running:

$ abs2haskell Example.abs

An ABS program may have multiple main blocks in different modules.
So you have to specify in which module is the main block you want to build with

$ abs2haskell --main-is=Example.abs Example.abs

$ abs2haskell examples/ # will compile all ABS files under examples directory

The compiler will generate ".hs" files for each compiled ABS module. No other
runtime system libraries and dependencies will be generated.

The final step before running the ABS program is to compile the generated

Haskell code to machine code, as the example:

ghc --make -threaded Example.hs # put the generated haskell file that has the main
block here

Running the final program

./Example -0 # means run it on 1 core with default optimizations
./Example -0 +RTS -N1 # the same as the above

./Example -0 +RTS -N2 # run it on 2 cores

./Example -0 +RTS -N4 # run it on 4 cores

./Example -0 +RTS -NK # run it on K cores

Last updated 2014-09-04 23:11:48 CEST

	1 Technical Summary
	2 Introduction: The ABS Language
	3 Service-Oriented Concepts and Object Orientation
	3.1 Introduction
	3.2 Groups and Services
	3.2.1 Syntax
	3.2.2 Example

	3.3 Integration into ABS

	4 Fault Model Design Space for Cooperative Concurrency
	4.1 How Are Faults Represented?
	4.2 What is the Behavior of Faults?
	4.3 How Do Faults Propagate?
	4.4 Erlang-Style Error Recovery

	5 ABS Extensions
	5.1 Faults and recovery
	5.2 Deployment Components
	5.3 Service Discovery

	6 ABS Documentation
	Bibliography
	Glossary
	A Papers
	A.1 A Formal Model of Service-Oriented Dynamic Object Groups
	A.2 Fault Model Design Space for Cooperative Concurrency
	A.3 Erlang-style Error Recovery for Concurrent Objects with Cooperative Scheduling

	B ABS Documentation

