
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D4.3.1
Initial Modeling of the FRH Case Study

Date of document: T10

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: FRH

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Initial Modeling of the FRH Case Study

This document summarizes deliverable D4.3.1 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC. within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

This deliverable reports on the initial modeling of the structural and functional aspects of the FRH case
study, and details how the case study plans to cover the objectives O1-O5 of Envisage. This deliverable forms
a part of the verification of Envisage project milestone M1.

List of Authors
Stijn de Gouw (FRH)
Peter Y. H. Wong (FRH)

2

http://www.envisage-project.eu

Contents

1 Introduction 4

2 Fredhopper Cloud Services 5
2.1 Building Blocks . 5

2.1.1 Service Endpoints . 5
2.1.2 Service Instances . 6
2.1.3 Load Balancing Service . 6
2.1.4 Platform Service . 6
2.1.5 Deployment Service . 6
2.1.6 Infrastructure Service . 6
2.1.7 Monitoring and Alerting Service . 7

2.2 Object Oriented Design . 7
2.2.1 Service Configuration . 7
2.2.2 Service Endpoints and Instances . 7
2.2.3 Service Architecture . 10
2.2.4 Monitoring . 14

2.3 Summary . 15

3 Planning and Summary 20
3.1 Planning . 20

3.1.1 Objective O1: Foundations of Computation with Virtualized Resources 20
3.1.2 Objective O2: Behavioral Specification Language for Virtualized Resources 20
3.1.3 Objective O3: Design-by-Contract Methodology for Service Contracts 20
3.1.4 Objective O4: Model Conformance Demonstrator . 21
3.1.5 Objective O5: Model Analysis Demonstrator . 21
3.1.6 Objective O6: Demonstration of Impact . 21

3.2 Summary . 21

Bibliography 22

Glossary 23

3

Chapter 1

Introduction

FRH develops the Fredhopper Cloud Services to offer search and targeting facilities on a large product
database to e-Commerce companies as services (SaaS) over the cloud computing infrastructure (IaaS). In
Task 4.3 we conduct a case study on the Fredhopper Cloud Services, in which we aim to investigate the
correspondence between user-level SLAs and lower level performance metrics. In particular, to fulfill user-
level SLAs, our service deployment may offer SLA-aware services, evolve service implementation and configure
cloud resource usage autonomously.

In this deliverable D4.3.1, we study the structural and the functional aspects of the Fredhopper Cloud
Services and provide an initial model in the Abstract Behavioural Specification language (ABS) [1, 3]. This
model forms the basis for the follow-up tasks within Envisage on resource modeling, formal specification and
monitor generation. We discuss the initial model of the Fredhopper Cloud Services in Chapter 2. We highlight
how the FRH case study covers the objectives of Envisage and summarize this deliverable in Chapter 3.

This deliverable forms a part of the verification of Envisage project milestone M1.

4

Chapter 2

Fredhopper Cloud Services

This chapter presents an initial model of the Fredhopper Cloud Services in the ABS language that models
its structural and functional aspects1.

2.1 Building Blocks

Figure 2.1 shows a block diagram of the Fredhopper Cloud Services, where the arrows indicate service
consumption and service provision.

Service EndpointService Endpoint

Infrastructure

Platform Service

Service
Instance

Load Balancing Service

Monitoring/
Alerting
Service

Service Endpoint

Service
Instance

Service
Instance

Service
Instance

Deployment Service

Service APIs

Fredhopper
Cloud
Service

Cloud
Provider

Consumes Provides

CustomersCustomers

Figure 2.1: Block diagram of the Fredhopper Cloud Services

2.1.1 Service Endpoints

Fredhopper Cloud Services provides several SaaS offerings on the cloud. These services are exposed via
endpoints. In practice these endpoints typically are implemented to be RESTful and accept communications
over HTTP. For example, one of the services offered by these endpoints is the Fredhopper query service,

1The complete ABS model described in this chapter can be found at https://envisage.ifi.uio.no:8080/redmine/

projects/abstools/repository/revisions/master/raw/examples/T4.3/D4.3.1/FredhopperCloudServices.abs.

5

https://envisage.ifi.uio.no:8080/redmine/projects/abstools/repository/revisions/master/raw/examples/T4.3/D4.3.1/FredhopperCloudServices.abs
https://envisage.ifi.uio.no:8080/redmine/projects/abstools/repository/revisions/master/raw/examples/T4.3/D4.3.1/FredhopperCloudServices.abs

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

which allows users to query over their product catalogue via full text search2 and faceted navigation3.
Service endpoints are exposed via the Load Balancing Service that distributes requests over multiple service
instances.

2.1.2 Service Instances

The advantages of offering software as a service on the cloud over on-premise deployment include the following:

• to increase fault tolerance;

• to handle dynamic throughputs;

• to provide seamless service update;

• to increase service testability; and

• to improve the management of infrastructure.

To fully utilize the cloud computing paradigm, software must be designed to be horizontally scalable4. Typi-
cally, software services are deployed as service instances. Each instance offers the same service and is exposed
via the Load Balancing Service, which in turn offers a service endpoint (Figure 2.1). Requests through the
endpoint are then distributed over the instances. In the event of increasing/decreasing throughput, more/less
instances may be deployed and be exposed through the same endpoint. Moreover, at any time, if an instance
stops accepting requests, a new instance may be deployed in place.

2.1.3 Load Balancing Service

The Load Balancing Service is responsible for distributing requests from service endpoints to their correspond-
ing instances. Currently at FRH, this service is implemented by HAProxy (www.haproxy.org). HAProxy is
a TCP/HTTP load balancer that also provides HTTP authentication.

2.1.4 Platform Service

The Platform Service provides an interface to the Cloud Engineers [2, Table 3.1] to deploy and manage
service instances and to expose them through service endpoints. The Platform Service takes a service
specification, which includes a resource configuration for the service [2, Section 3.1], and creates and deploys
the specified service. A service specification from a customer determines which type of service is being
offered, the number of service instances to be deployed initially and the amount of virtualized resources to
be consumed by instance.

2.1.5 Deployment Service

The Deployment Service provides an API to the Platform Service to deploy service instances onto specified
virtualized resources provided by the Infrastructure Service. The API also offers operations to control the
lifecycle of the deployed service instances. The Deployment Service allows the Fredhopper Cloud Services to
be independent of the specific infrastructure that underlies the service instances.

2.1.6 Infrastructure Service

The Infrastructure Service offers an API to the Deployment Service to acquire and release virtualized re-
sources. At the time of writing the Fredhopper Cloud Services utilizes virtualized resources from the Amazon
Web Services (aws.amazon.com), where processing and memory resources are exposed through Elastic Com-
pute Cloud instances (https://aws.amazon.com/ec2/instance-types/).

2en.wikipedia.org/wiki/Full_text_search
3en.wikipedia.org/wiki/Faceted_navigation
4en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling

6

www.haproxy.org
aws.amazon.com
https://aws.amazon.com/ec2/instance-types/
en.wikipedia.org/wiki/Full_text_search
en.wikipedia.org/wiki/Faceted_navigation
en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

2.1.7 Monitoring and Alerting Service

The Monitoring and Alerting Service provides 24/7 monitoring services on the functional and non-functional
properties of the services offered by the Fredhopper Cloud Services, the service instances deployed by the
Platform Service, and the healthiness of the acquired virtualized resources.

If a monitored property is not satisfied, Cloud Engineers are alerted via emails and SMS messages
and Cloud Engineers can react accordingly. For example, if the query throughput of a service instance is
below a certain threshold, Cloud Engineers increase the amount of resources allocated to that service. For
broken functional properties, such as a runtime error during service uptime, Cloud Engineers notify Software
Engineers for further analysis.

2.2 Object Oriented Design

In order to apply the Envisage framework, to provide feedback to its ongoing development and to evaluate
its effectiveness, we develop a resource-aware ABS model of the Fredhopper Cloud Services in Task 4.3 on
which evaluation and experiments will be conducted. In this section we provide an overview of the initial
version of the ABS model of the structural and the functional aspects of the Fredhopper Cloud Services.

2.2.1 Service Configuration

data ServiceType = ..;

data DCData = CPU(Int capacity) | InfCPU;

data Config = Config(ServiceType serviceType, List<DCData> instances);

Figure 2.2: Service specification

Figure 2.2 shows the basic data types involved in a service configuration. A service configuration is
modeled as a Config value that consists of the service type (ServiceType) and the number of service
instances and its resource requirement (List<DCData>). Given a configuration c, the value instances(c)

is a list of resource descriptions l such that the length(l) is the number of service instances to be deployed
and the nth DCData value in the list denotes the amount of resources required (the number of CPU units per
clock unit) for the nth instance. At the time of writing, ABS models resources as DeploymentComponent,
where a DeploymentComponent takes a value of the data type DCData as the resource specification. The
value capacity(d) on a finite DCData value d returns the number of CPU unit per clock unit [1].

2.2.2 Service Endpoints and Instances

Figure 2.3 shows the static structure of an endpoint and its implementation and Figure 2.4 presents the
corresponding ABS interface definition. The interface EndPoint models a service endpoint. It can be
invoked (invoke(Request)) with a request of type Request. Currently Request is a type synonym to
Integer to denote the size of the request. The method returns Response value to denote the corresponding
response. Currently Response is a type synonym to Boolean to denote whether the request is successful.
It is True if the invocation is successful, and False otherwise. In the production system of the Fredhopper
Cloud Services, the resource utilization, and the latency of a request may be dependent on the following two
factors:

• the amount of data over which a request queries; and

• the size of the corresponding (HTTP) response.

We use a type synonym to Integer as an argument to invoke(Request) for modeling these factors. The
interface EndPoint is extended by Service and LoadBalancerEndPoint.

7

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

+invoke()

-services

-state

LoadBalancerEndPointImpl

+invoke()

+setStatus()

+getStatus()

«interface»

EndPoint

+getServiceId()

+getServiceType()

+getCustomer()

+getLatency()

+getQueryCount()

+getCPU()

«interface»

Service

Iterate over services

1 1..* +invoke()

+moveTo()

-cost

-service

ServiceImpl

+moveTo()

«interface»

ResourceService

movecogto dc;

+remove()

+add()

«interface»

LoadBalancerEndPoint

Figure 2.3: UML class diagram of the Fredhopper Cloud Services (1)

type Id = Int; def Id init() = 1; def Id incr(Id id) = id + 1;

type Request = Int; def Int cost(Request r) = r;

type Response = Bool; def Response success() = True; def Bool isSuccess(Response r) = r;

interface EndPoint {

Response invoke(Request req);

Unit setStatus(State status);

State getStatus();

}

interface LoadBalancerEndPoint extends EndPoint {

Bool remove(Service service);

Bool add(Service service);

}

interface Service extends EndPoint {

Id getServiceId();

ServiceType getServiceType();

Customer getCustomer();

Int getLatency();

Int getRequestCount();

Int getCPU();

}

interface ResourceService extends Service {

Unit moveTo(DeploymentComponent dc);

}

Figure 2.4: ABS interface of the Fredhopper Cloud Services (1)

The interface Service models a service instance that performs the actual computation for the request
received by its service endpoint. Service is further extended by ResourceService that exposes the ability
of a service instance to be allocated with different resources. In ABS, there are two approaches to model
re-allocation of resources:

8

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

1. execute dc.incrementResources(n) on dc where dc is the DeploymentComponent providing for the
service instance to increase dc’s CPU unit per clock cycle by n unit

2. execute movecogto dc inside the concurrent object group of the service instance to move the service
instance to the DeploymentComponent dc

In this case study, we adopt the second approach as it allows us to model how we might want to implement
resource re-allocation in the production environment.

type Customer = String;

class ServiceImpl(Id id, ServiceType st, Customer c, Int cost) {

Int latency = 0; Int log = 0;

..

Int cost(Request request) {

return max(1, cost(request)) * cost;

}

Response invoke(Request request) {

Int cost = this.cost(request);
Int time = currentms();

[Cost: cost] this.log = this.log + 1;

time = currentms() - time;

this.latency = max(this.latency, time);

return success();

}

..

}

Figure 2.5: Implementation of ServiceImpl.invoke(Int)

Figure 2.5 shows the implementation of ServiceImpl.invoke(Int). The class implementation takes as
arguments at construction its Integer id, its service type st, the name of the customer to which the service
is provided c, and the cost value that denotes the latency of a request when the size of the request is 1. We
use the type synonym Customer to model the customer’s name. The function currentms() is a built-in ABS
function that returns the current clock cycle, and function max(a, b) returns the larger value of a and b.
The method uses the cost annotation [Cost: cost] to denote the required number of CPU units to execute
the annotated statement.

class LoadBalancerEndPointImpl(List<Service> services) implements LoadBalancerEndPoint {

List<Service> current = services;

{ assert this.services != Nil; }

Response invoke(Request request) {

if (this.current == Nil) {

this.current = this.services;
}

Service ser = head(this.current);
this.current = tail(this.current);
return await ser!invoke(request);

}

..

}

Figure 2.6: Implementation of LoadBalancerEndPointImpl.invoke(Request)

The interface LoadBalancerEndPoint extends interface EndPoint with the ability to dynamically as-
sociate service instances to a service endpoint, thereby allowing requests to the endpoint to be dis-

9

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

tributed. The class LoadBalancerEndPointImpl implements LoadBalancerEndPoint and its implemen-
tation of invoke(Request) is shown in Figure 2.6. This method implements a simple round-robin load
balancing strategy to distribute requests. The class implementation LoadBalancerEndPointImpl is para-
metric to a non-empty list of unique Service references.

2.2.3 Service Architecture

Figure 2.7 shows the static structure of the Fredhopper Cloud Services, and Figure 2.8 shows the corre-
sponding interfaces in ABS. We defer the presentation of the initial modeling of the Monitoring and Alerting
Service to Section 2.2.4. The static structure shown in Figure 2.7 models dependencies between various
services in the Fredhopper Cloud Services.

+acquire()

+release()

«interface»

InfrastructureService

+install()

+uninstall()

+start()

+stop()

«interface»

DeploymentService

+enable()

+disable()

+add()

+remove()

+getServiceEndPoint()

+decrease()

+increase()

«interface»

LoadBalancerService

+incrService()

+decrService()

+getEndPoints()

+getService()

+getServiceIds()

+incrResource()

+decrResource()

+createService()

+removeService()

«interface»

PlatformService

-endPoints : Map<Int, List<Int>>

-serviceToEndPoints : Map<Int, Int>

-services : Map<Int, ResourceService>

-customers : Map<Customer, Map<Config, Int>>

-ds : DeploymentService

-ls : LoadBalancerService

PlatformServiceImpl

+install()

-allocations : Map<Service, DC>

-services: Map<Int, Service>

-rp : InfrastructureService

DeploymentServiceImpl

+add()

+remove()

+run()

+execute()

-monitorMap : Map<Int, Map<Int, List<Monitor>>>

MonitoringServiceImpl

+add()

+remove()

«interface»

MonitoringService

while(True) {

 await duration(1,1);

 progress(rules);

 List<Monitor> ready = select(rules);

 reset(rules, ready);

 execute(ready);

}

+interval()

+monitor() : Monitor

«datatype»

Rule

+monitor() : Action

+init()

«interface»

Monitor

+action()

«interface»

Action

1

1

0..*1

Action action = await monitor!monitor();

if (action != null) {

 await action!action();

}

-ps : PlatformService

-maxLatency : Int

LatencyMonitor

1
*

1
1

1

1

1

1

1 1
Fut<DC> fd = r!acquire(r);

DC dc = fd.get;

Fut<Unit> fu = service!moveTo(dc);

fu.get;

Figure 2.7: UML class diagram of the Fredhopper Cloud Services (2)

The interface InfrastructureService is responsible for providing/managing virtualized resources in the
form of DeploymentComponents. This interface is implemented by the class InfrastructureServiceImpl
shown in Figure 2.9. The figure shows the class’s implementation of acquire(Id, DCData). The method
takes as input the id of the DeploymentComponent to be acquired and the required amount of resources from
it. As mentioned earlier, currently virtualized resource in ABS is modeled as the number of CPU units per

10

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

interface InfrastructureService {

DeploymentComponent acquire(Id id, DCData amount);

Unit release(DeploymentComponent component);

}

interface DeploymentService {

Unit install(ResourceService service, DCData res);

Unit uninstall(Id serviceId);

Unit start(Id serviceId);

Unit stop(Id serviceId);

}

interface LoadBalancerService {

Bool enable(Id endPointId);

Bool disable(Id endPointId);

Bool add(List<Service> services, Id endPointId);

Bool remove(Id endPointId);

Maybe<EndPoint> getServiceEndPoint(Id endPointId);

Bool decrease(Id endPointId, List<Service> services);

Bool increase(Id endPointId, List<Service> services);

}

interface PlatformService {

Unit incrService(Id endPoint, List<DCData> instances);

Unit decrService(Id endPoint, List<Id> serviceIds);

List<Id> getEndPoints();

Maybe<Service> getService(Id serviceId);

List<Id> getServiceIds(Id endPoint);

Unit alterResource(Id serviceId, DCData r);

Id createService(Config config, Customer customer);

Unit removeService(Id endPoint);

}

Figure 2.8: ABS interface of the Fredhopper Cloud Services (2)

clock cycle. This method acquire either creates a new DeploymentComponent with the required resource,
or reuses an existing DeploymentComponent. When reusing a DeploymentComponent, the method ensures
it has the required number of CPU units per clock cycle.

The interface LoadBalancerService in Figure 2.8 is responsible for binding requests to service end-
points to their constituent service instances. DeploymentService is responsible for allocating virtualized
resources to service instances. This is implemented by the class DeploymentServiceImpl. Figure 2.10
shows the implementation of method DeploymentServiceImpl.install(ResourceService, DCData) that
acquires the specified amount of virtualized resources via the InfrastructureService in the form of the
DeploymentComponent. The allocation of DeploymentComponent dc to the service instance service is
realized by the method invocation service!moveTo(d).

PlatformService provides the interface to Cloud Engineers to add and to remove services. The interface
also provides operations to the Monitoring and Alerting Service for adding and removing service instances to
an endpoint and for adding and removing resources from a service instance. PlatformService is implemented
by class PlatformServiceImpl, whose definition of method Int createService(Config, Customer) is
shown in Figure 2.11. The method createService takes a service configuration and a customer identifier,
deploys a corresponding service for that customer and returns the identifier of the service endpoint. Figure
2.13 shows how the services in the Fredhopper Cloud Services interact to deploy a service. Specifically, the
method first iteratively creates the specified number of service instances, allocating each with the specified
number of CPU units. Figure 2.13 shows the following:

11

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

class InfrastructureServiceImpl implements InfrastructureService {

Int total = 0; Map<Id, DeploymentComponent> inUse = EmptyMap;

DeploymentComponent acquire(Id id, DCData amount) {

Maybe<DeploymentComponent> md = lookup(this.inUse, id);

DeploymentComponent dc = null;
case md {

Nothing => {

dc = new DeploymentComponent(intToString(id), amount);

this.total = this.total + capacity(amount);

this.inUse = InsertAssoc(Pair(id, dc), this.inUse); }

Just(d) => {

dc = d;

Fut<DCData> cf = dc!available();

DCData cpu = cf.get;
Int cpu = capacity(cpu);

Int amt = capacity(amount);

if (cpu < amt) {

Fut<Unit> inf = dc!incrementResources(amt - cpu); inf.get;
this.total = this.total + amt;

}}}

return dc;

}

}

Figure 2.9: Definition of InfrastructureServiceImpl.acquire(Int, Int)

class DeploymentServiceImpl(InfrastructureService rp) implements DeploymentService {

..

Unit install(ResourceService service, DCData res) {

Id id = await service!getServiceId();

DeploymentComponent dc = await rp!acquire(id, res);

await service!moveTo(dc);

..

}

..

}

Figure 2.10: Definition of DeploymentServiceImpl.install(ResourceService, Int)

1. the PlatformService interacts with the DeploymentService to install
(install(ResourceService, DCData)) and start service instances (start(Id));

2. the DeploymentService interacts with the InfrastructureService to allocate
(acquire(Id, DCData)) the required resources (DeploymentComponent) to the service instances;

3. after all service instances are deployed, the PlatformService interacts with the LoadBalancerService
to bind (add(List<Service>, Id)) the instances to its service endpoint and to enable the endpoint
(enable(Id)).

Figure 2.7 shows how the initial model of the Fredhopper Cloud Services respects the above dependencies.
Specifically, PlatformService depends on DeploymentService and LoadBalancerService via the imple-
mentation PlatformServiceImpl, while DeploymentService depends on InfrastructureService via the
implementation DeploymentServiceImpl. Dependencies are provided via dependency injection.

12

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

class PlatformServiceImpl(DeploymentService ds, LoadBalancerService ls) .. {

Map<Id, ResourceService> services = EmptyMap;

Map<Id, Id> serToEndPoint = EmptyMap; Map<Id, List<Id>> endPoints = EmptyMap;

Map<Customer, Map<Config, Id>> customers = EmptyMap; Id serviceId = init();

Id createService(Config f, Customer c) {

ServiceType st = serviceType(f); List<DCData> instances = instances(f);

//this customer cannot already have the same service deployed
assert lookupCustomerService(this.customers, c, st) == Nothing;

//number of instances must be positive
assert instances != Nil;

//endpoint id
Id endPoint = incr(this.serviceId);

//create service instances
List<Service> currentServices = Nil; List<Id> ids = Nil;

while (instances != Nil) {

this.serviceId = incr(this.serviceId); ids = Cons(this.serviceId, ids);

//base query costs at least 2 time unit
ResourceService service = new ServiceImpl(this.serviceId, st, customer, 2);

//register with deployment service with appropriate resource
Fut<Unit> sf = this.ds!install(service, head(instances)); sf.get;

//start instance
Fut<Unit> uf = this.ds!start(this.serviceId); sf.get;

//update record
this.services = put(this.services, this.serviceId, service);

this.serToEndPoint = InsertAssoc(Pair(this.serviceId, endPoint), this.serToEndPoint);
currentServices = Cons(service, currentServices);

instances = tail(instances);

}

//associate endpoint with service instances
this.endPoints = InsertAssoc(Pair(endPoint, ids), this.endPoints);

//update customer record
Map<Config, Id> existing = lookupDefault(this.customers, c, EmptyMap);

this.customers = put(this.customers, c, put(existing, f, endPoint));

//add services to load balancer
await ls!add(currentServices, endPoint);

//enable service
await ls!enable(endPoint);

return endPoint;

}

}

Figure 2.11: Definition of PlatformServiceImpl.createService()

13

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

2.2.4 Monitoring

The static structure diagram of the Fredhopper Cloud Services shown in Figure 2.7 includes the Monitoring
and Alerting Service. This service is modeled by the interface MonitoringService, which is implemented
by the class MonitoringServiceImpl in ABS. The class MonitoringServiceImpl, shown in Figure 2.12,
has a run method that iteratively checks which monitors in the list of scheduled monitors (monitorMap) are
ready in every clock cycle (await duration(1, 1)).

class MonitoringServiceImpl implements MonitoringService {

Map<Int, Map<Int, List<Monitor>>> monitorMap = EmptyMap;

..

Unit run() {

while (True) {

await duration(1, 1); // advance the clock
this.monitorMap = decr(this.monitorMap); //decrement
List<Monitor> toBeRun = lookupAllSecond(this.monitorMap, 0); //find all to be run
this.monitorMap = reset(this.monitorMap); //reset
//execute monitors
while (toBeRun != Nil) {

this!execute(head(toBeRun));
toBeRun = tail(toBeRun);

}

}

}

Unit execute(Monitor m) {

Action a = await m!monitor();

if (a != null) {

await a!action();

}

}

..

}

Figure 2.12: Definition of MonitoringServiceImpl.run()

The list of scheduled monitors are recorded as a two level map, where the first level key records the
number of clock cycles between each execution of the lists of Monitors in the second level map, and the
second level key records the number of remaining clock cycles until the next execution.

Given a Monitor m, the method invocation m!monitor() returns a possibly null Action object a. The
returned object is null if no further action is required. Otherwise, the corresponding method a!action()

executes the specified action.
Figures 2.14 – 2.16 depict the interactions between services to scale up the underlying resources of service

instances suffering from high latency.
Figure 2.14 shows a sequence diagram of the MonitoringServiceImpl invoking a Monitor object

to check the average latency of requests being served by all service instances (monitor()). The dia-
gram shows that the Monitor collects latency reading (Service.getLatency()) from all service instances
(PlatformService.getServiceIds(Int)) of all end points (PlatformService.getEndPoints()). If the
latency of one or more service instances is too high, the Monitor object returns an Action for scaling up the
virtualized resources underlying the service instances.

Figure 2.15 shows a sequence diagram of scaling up the virtualized resources (CPU unit per clock cycle)
of a service instance. The diagram shows that said instance must be first removed from the load bal-
ancer (LoadBalancerService.decrease(Int, List<Service>)), and uninstalled (uninstall(Int) from
the existing resource via the DeploymentService. Note that the said service instance must no longer be

14

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

serving requests before its removal from the load balancer. The instance is then installed onto a new resource
DeploymentComponent with the specified CPU units per clock cycle (install(ResourceService, DCData))
and then added back to the load balancer (LoadBalancerService.increase(Int, List<Service>)).

Figure 2.16 shows a sequence diagram of scaling up the virtualized resources (CPU unit per clock cycle)
of a service instance when it is the only instance to its service endpoint. In order to keep the service running,
before removing the instance from the load balancer, a new service instance must first be installed onto the
required resource and added to the load balancer. The old instance may then be removed and uninstalled.

2.3 Summary

Properties Values
Lines of code 1230
Functions 30
Classes 13

Interfaces 15
Data types and type synonyms 8

Table 2.1: Statistics

In this chapter we presented an initial model of the Fredhopper Cloud Services in the language of ABS that
models its structural and functional aspects. Table 2.1 shows some statistics on the size of the initial model
of the Fredhopper Cloud Services.

15

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

Figure 2.13: UML sequence diagram of creating a service using the Fredhopper Cloud Services

16

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

Figure 2.14: UML sequence diagram of monitoring service latency

17

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

Figure 2.15: UML sequence diagram of scaling a service with more than one service instance

18

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

Figure 2.16: UML sequence diagram of scaling a service with only one service instance

19

Chapter 3

Planning and Summary

This chapter highlights how the FRH case study covers the objectives of Envisage and summarizes this
deliverable.

3.1 Planning

Here we present the objectives according to the project’s Description of Work and highlight how they may
be covered by the FRH case study.

3.1.1 Objective O1: Foundations of Computation with Virtualized Resources

The outcome of this objective is a semantic framework for scalable architectures, infrastructures, and virtu-
alized resources. The framework provides the means to model and to specify resource-related non-functional
requirements that arise in the context of virtualized resources. This deliverable forms the verification of
milestone M1. Specifically, using the ABS language, we were able to model the Fredhopper Cloud Services.
This initial model focuses on the component structure of the Fredhopper Cloud Services and the functional-
ities of individual components, while abstracting away from the implementation of the services offered. We
were also able to model (re-)allocation of virtualized resources to service instances, and automatic scaling of
resources on instances via runtime monitoring.

3.1.2 Objective O2: Behavioral Specification Language for Virtualized Resources

The outcome of this objective is a resource-aware, abstract behavioral specification language and its prototype
simulator. As this deliverable provides the initial model of the Fredhopper Cloud Services, we envisage that
the model will be extended using that resource-aware, abstract behavioral specification language. We will
conduct simulation exercises on difference deployment scenarios of services provided by the Fredhopper Cloud
Services using the simulator from this objective’s outcome. This will be part of deliverable D4.3.2.

3.1.3 Objective O3: Design-by-Contract Methodology for Service Contracts

The outcome of this objective is a formal specification language for service contracts that will include be-
havioral and QoS description, the definition of compliance of the service contract with the SLA, and a
resource-aware generalization of design-by-contract methodology. Continuing from the initial model, we aim
to first extend the model with resource information. Furthermore we will utilize the formal specification
language from this objective to specify behavioral and QoS description of services as well as the Fredhopper
Cloud Services. We aim to evaluate the practicality of the methodology delivered by this objective. This
specification and evaluation work will be part of deliverable D4.3.2.

20

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

3.1.4 Objective O4: Model Conformance Demonstrator

The outcome of this objective is a demonstrator for the conformance of generated or legacy code to a given
abstract model. Part of the FRH case study is to assess whether we could use the Envisage framework
to automatically generate monitors for runtime checking and alerting. The requirements of this are that
monitors are to be generated correctly with respect to the SLA of services managed by the Fredhopper Cloud
Services [2, Requirements FRH-R003, FRH-R004]. In order to do this, we plan to first extend the initial
model of the Fredhopper Cloud Services with resource-awareness, as well as behavioral and QoS specification
of services according to the production Fredhopper Cloud Services. We will then use the extended model as
a specification for generating runtime monitors and evaluate their correctness against the Fredhopper Cloud
Services model. This exercise will be conducted as in Task 4.5 and will form part of deliverable D4.5.

3.1.5 Objective O5: Model Analysis Demonstrator

The main outcome of this objective is the runtime support for the resource analysis and validation with the
SLA. As part of investigating FRH’s user requirements [2, Requirements FRH-R002, FRH-R006, FRH-R008,
FRH-R010], we plan to assess how the generated monitors (as part of Object O4) may be deployed on the
production Fredhopper Cloud Services. Moreover, we plan to investigate how these monitors may be changed
at runtime, in order to adapt changes to services, their load and their SLAs. This exercise will be conducted
in Task 4.5 and will form part of deliverable D4.5.

3.1.6 Objective O6: Demonstration of Impact

The outcomes of this objective are case studies artifacts from Work Package 4 and their formal verification,
the Envisage framework being made available as a service, and dissemination. The initial modeling of the
Fredhopper Cloud Services provided in this deliverable, which is part of the verification of milestone M1, and
the overall assessment of the Envisage framework in deliverable D4.5, which will be part of the verification
of milestone M5, will be used to partly assess the outcome of this objective.

3.2 Summary

This deliverable presented the initial modeling of the structural and functional aspects of the FRH case study,
and discussed how the case study plans to cover the objectives O1-O6 of Envisage.

21

Bibliography

[1] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth
Tapia Tarifa, and Peter Y. H. Wong. Formal modeling of resource management for cloud architectures:
An industrial case study using Real-Time ABS. Journal of Service-Oriented Computing and Applications,
2013.

[2] Initial User Requirements, January 2014. Deliverable D4.1 of project FP7-610582 (ENVISAGE), available
at http://www.envisage-project.eu.

[3] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer, and Marcello M.
Bonsangue, editors, Proc. 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), volume 6957 of Lecture Notes in Computer Science, pages 142–164. Springer-Verlag, 2011.

22

http://www.envisage-project.eu

Glossary

Terms and Abbreviations

Cloud Engineer A Cloud Engineer handles the day-to-day operation of the Fredhopper Cloud Services.
She deploys/updates services through PaaS and IaaS according to incomplete service requirements
from Consultants, diagnoses issues at service-level and either resolves them at real time or informs the
Support Engineers and/or the Software Engineers. She manages the up and down scaling of service
resources according to alerts and metric visualizations provided by the monitoring system. She also
performs any necessary infrastructural changes to the Fredhopper Cloud Services

Consultant A Consultant manages the technical setting that enables Customer to use the APIs offered by
the Fredhopper Cloud Services. She provides service requirements to Cloud Engineers

Customer A Customer is a business entity that powers her online shop using the APIs provided by the
Fredhopper Cloud Services

Faceted Navigation Faceted navigation is a technique for accessing information organized according to a
faceted classification system, allowing users to explore a collection of information by applying multiple
filters. Facets correspond to properties of the information elements

Fredhopper Cloud Services A set of services managed by FRH through cloud computing that allows the
offering of search and targeting facilities on a large product database to e-Commerce companies

Full Text Search In text retrieval, full-text search refers to techniques for searching a single computer-
stored document or a collection in a full text database

IaaS Infrastructure as a Service

Infrastructure as a Service A provision model in which an organisation outsources the equipment used
to support IT operations, including storage, hardware, servers and networking components. The service
provider owns the equipment and is responsible for housing, running and maintaining it. The client
typically pays on a per-use basis

PaaS Platform as a Service

Platform as a Service A category of cloud service offerings that facilitates the deployment of applications
without the cost and complexity of buying and managing the underlying hardware and software and
provisioning hosting capabilities

QoS Quality of Service

Quality of Service Generic term encapsulating all the non-functional aspects of a service delivery

Resource Configuration A description of the number of service instances initially required for a service
offered to a Customer and the virtualized resource to be allocated initially to those service instances

SaaS Software as a Service

23

Envisage Deliverable D4.3.1 Initial Modeling of the FRH Case Study

Service Level Agreement A legal contract between a service provider and his customer. It records a
common understanding about services, priorities, responsibilities, guarantees, and warranties

Service Requirement A service requirement consists of the agreed SLA and the Customer’s specific con-
figuration such as expected query throughput based on historical data in terms of monthly and peak
page views.

SLA Service Level Agreement

Software as a Service A software delivery model in which software and associated data are centrally
hosted on the cloud. SaaS is typically accessed by users using a thin client via a web browser

Software Engineer A Software Engineer develops and maintains the Fredhopper Cloud Services. She pro-
vides technical support to Cloud Engineers and Support Engineers. She fixes bugs on the Fredhopper
Cloud Services and continuously improves the Fredhopper Cloud Services by either adding new features
or improving existing ones

Support Engineer A Support Engineer receives and coordinates issues identified either by Customers or
Cloud Engineers. She receives questions from Customer. She interacts with Customer, and either
addresses them directly or informs the Software Engineers

24

	1 Introduction
	2 Fredhopper Cloud Services
	2.1 Building Blocks
	2.1.1 Service Endpoints
	2.1.2 Service Instances
	2.1.3 Load Balancing Service
	2.1.4 Platform Service
	2.1.5 Deployment Service
	2.1.6 Infrastructure Service
	2.1.7 Monitoring and Alerting Service

	2.2 Object Oriented Design
	2.2.1 Service Configuration
	2.2.2 Service Endpoints and Instances
	2.2.3 Service Architecture
	2.2.4 Monitoring

	2.3 Summary

	3 Planning and Summary
	3.1 Planning
	3.1.1 Objective O1: Foundations of Computation with Virtualized Resources
	3.1.2 Objective O2: Behavioral Specification Language for Virtualized Resources
	3.1.3 Objective O3: Design-by-Contract Methodology for Service Contracts
	3.1.4 Objective O4: Model Conformance Demonstrator
	3.1.5 Objective O5: Model Analysis Demonstrator
	3.1.6 Objective O6: Demonstration of Impact

	3.2 Summary

	Bibliography
	Glossary

