
Project No: FP7-610582

Project Acronym: ENVISAGE

Project Title: Engineering Virtualized Services

Instrument: Collaborative Project

Scheme: Information & Communication Technologies

Deliverable D6.2
Web Site and Project Presentation

Date of document: T0+2

Start date of the project: 1st October 2013 Duration: 36 months

Organisation name of lead contractor for this deliverable: UIO

Final version

STREP Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Web Site and Project Presentation

This document summarizes deliverable D6.2 of project FP7-610582 (Envisage), a Collaborative Project sup-
ported by the 7th Framework Programme of the EC within the Information & Communication Technologies
scheme. Full information on this project is available online at http://www.envisage-project.eu.

A web site has been established for the Envisage project. Moreover, material for project presentation has
been produced and is available from the web site.

List of Authors

Einar Broch Johnsen (UIO)

2

http://www.envisage-project.eu

Contents

1 The Envisage Web Site
and Project Presentation 4
1.1 Web Site . 4
1.2 Project Presentation . 4

Bibliography 14

3

Chapter 1

The Envisage Web Site
and Project Presentation

We refer to Deliverable D6.1 [2] for an overview of the implementation of the project infrastructure for
Envisage. This deliverable is ocncerned with the external web site and project presentation.

1.1 Web Site

We have opted for a content management system which supports access restriction and roles. Access re-
striction is used to distinguish public and private content. Roles are used to distinguish among the private
content. In particular, there are three roles administrator, editor, and reviewer. These roles are explained as
follows:

• Administrator : this role has the right to create or delete structure and users;

• Editor : this role has the right to edit content; and

• Reviewer : this role has the right to see (some) private content

The menus offered by the web site are dynamically configured, depending on the roles. Figure 1.1 depicts
the public web site, Figure 1.2 depicts the web site as seen by an administrator, Figure 1.3 depicts the web
site as seen from an editor, and Figure 1.4 depicts the web site as seen by a reviewer.

1.2 Project Presentation

The web site presents Envisage in terms of a project abstract (see Figure 1.5), consortium overview (see
Figure 1.6), press overview (see Figure 1.7), and the project Fact Sheet1. From the web site, it is possi-
ble to subscribe to the news update of the web site (an RSS-feed) or to follow Envisage on Twitter (user
@EnvisageProject).

The public web site also includes an overview of Envisage publications (see Figure 1.8), which will be
maintained in downloadable versions to ensure open access to Envisage outcomes as far as possible (see
Figure 1.10).

To present Envisage to the broad audience, the coordinator has written a chronicle which appeared in
the online edition of Norway’s main newspaper2. As part of our dissemination strategy (Deliverable D5.1),
we will explore the possibility to adapt this text for similar publication in other partner countries.

To present the project to the academic audience, the academic project investigators have jointly published
a position paper presenting the ideas behind Envisage [1]. This paper is attached as an appendix to this
deliverable.

1http://envisage-project.eu/wp-content/uploads/2013/10/Envisage_factsheet.pdf
2http://www.aftenposten.no/meninger/kronikker/Lavtrykk-i-dataskyen-7334293.html

4

@EnvisageProject
http://envisage-project.eu/wp-content/uploads/2013/10/Envisage_factsheet.pdf
http://www.aftenposten.no/meninger/kronikker/Lavtrykk-i-dataskyen-7334293.html

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.1: The public web site.

5

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.2: The web site as seen by an administrator.

6

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.3: The web site as seen from an editor.

7

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.4: The web site as seen by a reviewer.

8

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.5: The project abstract, as seen on the public web site.

9

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.6: The consortium, as presented on the public web site.

10

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.7: Envisage in the media, as seen on the public web site.

11

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.8: Envisage publications, as seen on the public web site.

Figure 1.9: Envisage publications detailed per year, as seen on the public web site.

12

Envisage Deliverable D6.2 Web Site and Project Presentation

Figure 1.10: Envisage chronicle in Aftenposten 10 Oct. 2013.

13

Bibliography

[1] Elvira Albert, Reiner Hähnle Frank de Boer, Einar Broch Johnsen, and Cosimo Laneve. Engineering
virtualized services. In M. Ali Babar and Marlon Dumas, editors, 2nd Nordic Symposium on Cloud
Computing & Internet Technologies (NordiCloud’13), pages 59–63. ACM Press, 2013.

[2] Project Infrastructure, November 2013. Deliverable D6.1 of project FP7-610582 (ENVISAGE), available
at http://www.envisage-project.eu.

14

http://www.envisage-project.eu

Engineering Virtualized Services ∗

Elvira Albert
Complutense University of Madrid, Spain

elvira@fdi.ucm.es

Frank de Boer
CWI Amsterdam, The Netherlands

f.s.de.boer@cwi.nl

Reiner Hähnle
TU Darmstadt, Germany

haehnle@cs.tu-darmstadt.de
Einar Broch Johnsen
University of Oslo, Norway

einarj@ifi.uio.no

Cosimo Laneve
University of Bologna, Italy

laneve@cs.unibo.it

ABSTRACT
To foster the industrial adoption of virtualized services, it
is necessary to address two important problems: (1) the
efficient analysis, dynamic composition and deployment of
services with qualitative and quantitative service levels and
(2) the dynamic control of resources such as storage and
processing capacities according to the internal policies of the
services. The position supported in this paper is to overcome
these problems by leveraging service-level agreements into
software models and resource management into early phases
of service design.

1. INTRODUCTION
Cloud computing is an execution environment with elastic
resource provisioning, several stakeholders, and a metered
service at multiple granularities for a specified level of qual-
ity of service (QoS) [10]. A host of cloud computing presents
a number of services to client applications, including infra-
structure and platform functionalities and software services
for virtualizing the deployment of resources. This virtualiza-
tion provides an elastic amount of resources to application-
level services, thus making it possible to, for example, allo-
cate a changing processing capacity to a service depending
on demand. We say that application-level services are virtu-
alized if they can adapt to the elasticity of cloud computing.

For virtualized services, resource provisioning is regulated by
a legal contract between the service owner and the provider
of the virtualized environment, called a service-level agree-
ment (SLA). However, these legal texts are by their very na-
ture not integrated in the software artifacts. Current mod-
eling and analysis techniques make it extremely difficult for
the software developer to realistically predict the resource re-
quirements of the targeted service at an early design stage.
Languages and tools for software development lack high-

∗This position paper is written in the context of the EU
project FP7-610582 ENVISAGE: Engineering Virtualized
Services (http://www.envisage-project.eu).

level support to systematically analyze performance under
varying resource assumptions and to express and compare
different resource management policies. Variations in end-
user scenarios, value-added services, and dynamic service
composition further complicate the picture by extending the
functionalities of an application-level service at the expense
of potentially changing its cost profile.

In traditional engineering processes for services, both the de-
ployment and the SLA regulating the deployment are add-
ons to the software development process. The appropriate
deployment and SLA compliance are determined a posteri-
ori, after the design of the service’s program logic. Virtu-
alization allows deployment and resource provisioning to be
internalized as part of the program’s logic, enabling services
to dynamically scale to accommodate client traffic.

For software development methods to be effective in the en-
gineering of virtualized services, it is our position that

1. SLAs should be part of a design by contract methodol-
ogy for virtualized service engineering and

2. virtualized resources should be managed by explicit
language primitives since the early phases of service
design.

These are key concepts that (i) enable the composition of vir-
tualized services with respect to their quality and (ii) allow
software developers to address the challenges posed by vir-
tualization for the software-as-a-service abstraction already
at early stages of development. Services for virtualized en-
vironments require descriptions of resource-dependent and
resource-aware behaviors that are based on abstract yet de-
tailed executable models. This helps to optimize the usage of
runtime resources, as well as to decrease development costs
and shorten time to market for service developers.

Our position calls for a model-based analysis of quantitative
(non-functional) aspects of SLAs, rather than qualitative as-
pects of SLAs such as security. A major implication of our
position is to enable a coherent tool-based analysis of models
of SLA-aware application-level services in the context of dif-
ferent deployment scenarios. This means that models should

1. capture scalable services through their support for re-
source awareness and resource management, and

2. be analyzed by applying techniques that are based on
scalable methods.

Preprint. To appear in Proc. 2nd Nordic Symposium on Cloud Computing & Internet Technologies (NordiCloud 2013).
ACM DL, 2013.

In the sequel, we detail our position on model-based analysis
of SLAs in a design by contract methodology, and discuss
its consequences for a research agenda in formal methods.

2. DESIGN BY CONTRACT
The term design by contract was coined by Bertrand Meyer
referring to the contractual obligations that arise when in-
voking methods in the object-oriented programming lan-
guage Eiffel [23]: only if a caller can ensure that certain be-
havioral conditions hold before the method is activated (the
precondition), it is assured that the method results in a spec-
ified state when it completes (the postcondition). Design by
contract enables software to be organized as encapsulated
services with interfaces specifying the contract between the
service and its clients. Clients can “program to interfaces”;
they need not know how the service is implemented.

Our position necessitates a design by contract methodology
for SLA-aware virtualized services, which is to be integrated
in industrial software development processes. By investigat-
ing the contractual obligations that are present in a PaaS
environment, specific abstractions can be identified that are
suitable for collaboration between platform provider, service
provider, and service client. We build on work on interface
automata [9], typestates [29], user-defined (i.e., application-
level) scheduling policies [3,12], and process contracts [22] to
define service contracts, a novel model of behavioral inter-
faces that specify the QoS and the resource usage in different
deployment scenarios. The service contracts will be embed-
ded in a modeling language for services and will be amenable
to formal analysis.

Our position also implies the need to provide a range of
tools for the analysis of models, based on formal techniques,
that ensure conformance to application-level services. These
tools enable the application of various analyses on the ex-
ecutable models already during the early design phase of
the targeted service. This allows the developer to improve
resource usage and QoS in deployment scenarios spanning
from virtualized services for mobile users to resource provi-
sioning in data centers. Regarding the analysis of the mod-
els, the design by contract approach ensures scalability of
the analyses by compositionality: the encapsulated modules
need only be checked with respect to their service contracts.
To support a coherent and consistent suite of tools, both
the modeling language and the service contracts will have a
formal semantics. We finally remark that the description of
different quantitative aspects in the service contracts drives
both the horizontal verification of developed services, i.e. be-
tween service contracts themselves, and the vertical verifica-
tion, i.e. between service contracts and the actual cost that
can be reliably and automatically estimated for the models.

3. MODELING VIRTUALIZED SERVICES
General-purpose modeling languages exploit abstraction to
reduce complexity [20]: descriptions primarily focus on the
functional behavior and the logical composition of software.
Industry-strength object-oriented programming and model-
ing languages, however, support different concurrency and
interaction paradigms. The most prominent are multithread-
ing and concurrent objects, using interaction mechanisms
such as method calls, message passing, and shared resources.
Researchers, including the authors of this paper, have de-

veloped a number of techniques to enable the compositional
development of modular systems and the flexible reuse of
components. However these techniques still overlook how
a software’s deployment influences its behavior. This is
highly problematic for modern software targeting, for ex-
ample, cloud computing and reflective middleware, where
virtualization technologies allow an application to modify
resources of its deployment scenario during execution [4].

To fully exploit the potential of virtualization, it is impor-
tant to make services both scalable and cost efficient by
leveraging deployment decisions to the software design. A
major challenge in software engineering today is to find a
tradeoff between the two conflicting requirements of abstrac-
tion and deployment control in the application design phase.
In fact, the introduction of low-level deployment in a high-
level modeling language is potentially disruptive in software
engineering, but it is unavoidable due to the new scenario
that is delineated by cloud computing. It is worth noting
that in software design, no general, systematic means exists
today to model and analyze software in the context of a set
of available virtualized resources, nor to analyze redistribu-
tion of virtualized resources in terms of load balancing or
reflective operations. To the best of our knowledge, no cur-
rent research directly addresses these challenges raised by
virtualization, and in particular, the modeling of quantita-
tive virtualized resources as data inside the software itself,
which is a primary property of virtualized resources.

Our starting point is a separation of concerns between the
application model, which requires resources, and the deploy-
ment scenario, which reflects the virtualized computing en-
vironment and elastically provides resources. This allows
the developer to analyze the performance and scalability of
a service for many different deployment scenarios already
at the modeling level. For example, the model of an ap-
plication may be analyzed with respect to deployments on
virtual machines that may vary in a number of features: the
amount of allocated computing or memory resources, the
choice of application-level scheduling policies for client re-
quests, and the distribution of computation over different
virtual machines with fixed bandwidth constraints. Auto-
mated resource analysis [1] can be used to determine the
most appropriate choice of SLA for the application, and to
validate that the abstract system model complies with the
SLA.

Models of virtualized systems in this context need to be
SLA-aware: the modeling language will include primitives to
express resource modeling and to support the virtualization
of resources at an appropriate abstraction level. This way,
the modeling language can express cloud computing soft-
ware, such as SaaS business applications or PaaS abstrac-
tions, and feature an interface through which the application-
level services can inspect and manipulate the virtualized re-
sources of the platform. We see this interface in relation
with standardization efforts in virtualization and cloud pro-
visioning. The abstraction level of the modeling language
also allows virtualized systems to be mapped to different
deployment scenarios which describe the underlying virtu-
alized architecture and to express dynamic load balancing
policies depending on both the SLA and the current deploy-
ment of the service.

Executable models that describe precisely the control and
data flow of the target service are a necessity for the anal-
ysis of the resource needs in different settings. Such exe-
cutable models also allow code generation from the mod-
eling language to different mainstream implementation lan-
guages, such as Java, Scala, or Erlang. Concrete starting
points for such models are abstract behavioral specification
languages, such as ABS [13]. The ABS language targets
distributed systems based on object-oriented concepts, thus
it may be easily used by software engineers, and service-
level contracts can be naturally integrated into the object-
oriented interfaces. These service contracts follow and ex-
tend the design by contract methodology, and include both
behavioral interfaces and QoS descriptions.

As a proof of concept several models that include deploy-
ment scenarios with parametric resources have been created
in ABS [14, 15]. In these models application-level exchange
of virtualized CPU resources is used to model and compare
load balancing strategies between servers. Recently ABS
has been applied to model dynamic resource management on
the cloud [6,16]. These case studies show that our proposed
formal approach compares favorably to custom simulation
tools and that it scales to industrial problems. However,
the proof of concept does not yet permit ABS models to be
parametrized with resource policies in terms of SLAs, nor
does it extend formal analysis to varying resource models
and dynamic deployment.

4. FORMAL LANGUAGES FOR SLAS
The formalization of SLAs is a prerequisite for developing
formal analysis methods that check whether a service con-
forms to an SLA. For this reason, a number of formal SLA
specifications have been developed [2, 18, 30]. They all de-
fine SLAs in terms of XML schemata. The problem of all
these notations is their lack of a formal semantics: they are
all mark-up languages that rely on an implicit (hence in-
herently ambiguous) understanding of the various concepts
represented. Another problem is that, for virtualized sys-
tems, SLAs will require continuous re-assessment, for the
duration of the SLA, to cope with changing enterprise con-
ditions. It is not clear how this continuous reassessment is
addressed in the above proposals.

Specification languages for SLA are currently being inte-
grated with semantic annotations, e.g., SAWSDL [19] for
service descriptions and SWAPS [25] for WS-Agreement.
Another relevant example is SLAng [21], an object-oriented
language with a precise formal interpretation in terms of
service infrastructure and behaviors. Similarly, Okika for-
malizes BPEL in a rewriting logic framework [24]. These
efforts, however, have limited expressive power and the ex-
tension to elastic resources of virtualized systems has not
been investigated. A different, more abstract SLA formal-
ism is CC-pi [8], a combination of concurrent constraint pro-
gramming and pi-calculus formalisms, which models com-
putational processes for specifying and negotiating QoS re-
quirements, and supports reasoning about resource alloca-
tion. CC-pi only checks for consistency and does not ad-
dress issues as optimization of business values or contrac-
tual norms—topics that are addressed in detail in [27] and
in RBSLA [26].

Today, client-level SLAs do not allow the service’s poten-
tial resource usage to be determined or adapted when un-
foreseen changes to resources occur. This is because user-
level SLAs are not explicitly related to actual performance
metrics and configuration parameters of the services. As
a result the recent EU FP7 project SLA@SOI [28], which
is being continued in the Future Internet PPP project FI-
WARE [11], proposes an informal stepwise mapping between
higher-level SLAs, such as those specified by clients, and
lower-level SLAs and capabilities. This stepwise mapping is
one of the prerequisites to support automated inference of
resource usage from user-level SLAs.

Our position implies to push this line of research further
and provide a modeling approach which incorporates SLA
requirements at the application-level to ensure the QoS ex-
pectations of clients. This modeling approach will build on
and consolidate the existing work to develop a practical,
integrated SLA formalism for virtualized systems. It can
be realized by investigating the contractual obligations that
are present in, for example, a PaaS environment and provide
specific abstractions that are suitable for the collaboration
between platform provider, service provider, and client. The
outcome of this consolidation effort includes a concrete SLA
modeling language with a formal semantics and the formal
description of (at least basic) enterprise level processes for
SLA design and update. Another outcome is a contracts
language that is embedded in an abstract behavioral mod-
eling language such as ABS and thus amenable to formal
analysis.

5. TOOLS FOR VIRTUALIZED SYSTEMS
Based on the formal semantics of an executable modeling
language with integrated SLA, we envisage the development
of a range of techniques for model-based analysis.

Monitoring and Service Contracts
Our position calls for techniques that address the difficulties
of traditional monitoring tools [17], including fragmented
visibility into the application stack, the lack of user-focused
SLAs, and the absence of a budget perspective. The corre-
sponding framework will provide a user-focused model with
both a budget and cost perspective. Monitoring models
must fill the gap between the negotiations with the client
about SLAs, the service contract, and the deployment model.

Code Generation
Code generation for models of virtualized software should be
instantiated to a deployment model. This will require de-
veloping new techniques, since models are rather high-level.
However, automatic code generation will still be feasible, be-
cause models are executable and because of the constraints
imposed by the deployment model. To prove correctness of
the generated code, our position foresees the need for novel
symbolic execution mechanisms that enable automated ver-
ification. Additionally, information about (asymptotic) re-
source consumption, computed by resource analysis of the
high-level models, can be embedded into the profiles of the
generated code. The correctness of such embedded informa-
tion can be checked against the generated code to prove its
validity, i.e., that the generated code preserves the resource
consumption inferred from the model.

Resource Analysis
The cost analysis framework of virtualized services should be
powerful enough to derive the deployment configuration and
the interactions among services, and to automatically infer
the overall cost from the cost of each service. The fact that
this analysis will be developed at the level of the abstract
models, which combine resource modeling with deployment
modeling, allows these analyses to go beyond traditional cost
models. For example, cost models for data size with band-
width restrictions on communication can be developed for
the underlying deployment scenarios. An important am-
bition (that stems from our overall position and that goes
beyond the current existing technology) is to develop a re-
source analysis framework for determining whether certain
resource usages are possible, given the service contracts of
the component services.

Verification
We envisage an automatic deductive verification tool to en-
sure that a distributed, concurrent model respects a ser-
vice contract. The properties stated in SLAs go beyond
wellformedness of call sequences. For example, they involve
limits imposed on storage space. Consequently, a first-order
program calculus for the abstract modeling language is re-
quired. To achieve full automation, appropriate abstrac-
tions for service contracts need to be identified, following
techniques suggested in [7], together with specialized proof
search strategies and decision procedures. In case of a failed
verification attempt, the developer should be supported by
feedback on the kind of property that has been violated and
under which condition. The developer also needs a concise
rule book for modeling practices that help automation. In
cases where automatic verification is still impossible, hybrid
techniques can be considered, as discussed below.

Test Case Generation
Symbolic execution is the central part of most glassbox test
case generation tools, which typically obtain the test cases
from the branches of the symbolic execution tree. For virtu-
alized services, the symbolic execution mechanisms should
be integrated within a test case generation tool to produce
test cases for the high-level models in a fully automatic way.
The main challenge will be on handling distribution aspects
of the services and the variety of deployment configurations
within symbolic execution. Since information on resource
management is explicitly available in our models it is possi-
ble to generate test cases that are aware of resource usage.
A main research problem to be solved is guidance of the test
case generator towards specific behaviors of the model by
means of appropriate heuristics.

6. CONCLUSIONS
This position paper advocates a software engineering ap-
proach to virtualized services where (1) SLAs are part of a
design by contract methodology and (2) virtualized resources
are managed by explicit language primitives since the early
phases of service design. This involves the extension of
descriptions of virtualized services to encompass resource-
dependent and resource-aware behaviors based on abstract
yet detailed executable models. This new software engineer-
ing approach will render application-specific resource man-
agement policies to become fully integrated with the pro-
gram logic of a service and analyzable already at an early

stage in the development of the service. This in turn leads
to a better exploitation of runtime resources, as well as to
lower development costs and shorter time to market for ser-
vice developers.

The scale of the potential economical benefits inherent to our
proposal can be illustrated by the well-known cost increase
to fix defects in later development phases [5]. IBM Systems
Sciences Institute estimates that a defect which costs one
unit to fix in design, costs 15 units to fix in testing (sys-
tem/acceptance) and 100 units or more to fix in production
(see Figure 1, left), and this cost estimation does not even
consider the impact cost due to, e.g., delayed time to mar-
ket, lost revenue, lost customers, bad public relations, etc.
Now, these ratios are for static infrastructure. Consider-
ing the high additional complexity of resource management
for virtualized services, it is reasonable to expect even more
significant differences; Figure 1 (right) conservatively sug-
gests ratios for virtualized software in dynamic infrastruc-
tures. The modeling and analysis approach proposed in this
paper aims at detecting deployment errors such as the im-
possibility to meet an SLA, already in the design phase. The
associated savings potential clearly justifies any additional
cost that might be incurred from formalisation of SLAs.

The research agenda proposed in this position paper forms
the basis of a new EU FP7 project called ENVISAGE that
includes (1) a behavioral specification language for describ-
ing resource-aware models and deployment choices; (2) a
simulator with visualization facilities; and (3) tool support
for automated resource analysis, validation of SLAs, code
generation, and runtime monitoring of SLAs for deployed
services. As argued above, such a methodology and associ-
ated tools will allow services to be delivered in a more effec-
tive, efficient, and reliable manner than today, accelerating
the development cycle and lowering the operational costs for
innovative networked services that make use of cloud com-
puting.

7. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D.

Zanardini. Cost Analysis of Java Bytecode, In 16th
Eur. Symp. on Programming (ESOP), LNCS 4421,
pages 157–172. Springer, 2007.

[2] D. Battré, F. M. T. Brazier, K. P. Clark, M. A. Oey,
A. Papaspyrou, O. Wäldrich, P. Wieder, and
W. Ziegler. A proposal for WS-agreement negotiation.
In 11th IEEE/ACM Intl. Conf. on Grid Computing,
pages 233–241. IEEE CS Press, 2010.

[3] J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte,
and S. L. Tapia Tarifa. User-defined schedulers for
real-time concurrent objects. Innovations in Systems
and Software Engineering, 9(1):29–43, 2013.

[4] G. S. Blair, G. Coulson, P. Robin, and
M. Papathomas. An architecture for next generation
middleware. In IFIP Intl. Conf. on Distributed
Systems Platforms and Open Distributed Processing
(Middleware’98), pages 191–206. Springer, 1998.

[5] B. W. Boehm and P. N. Papaccio. Understanding and
controlling software costs. IEEE Transactions on
Software Engineering, 14(10):1462–1477, 1988.

[6] F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte,

20

40

60

80

100

120

Design

1×
Implementation

6.5×
Testing

15×

Maintenance

100×

20

40

60

80

100

120

Design

1×
Implementation

6.5×
Testing

15×

Deployment

?

40×∼120×

Maintenance

?

100×∼120×

Figure 1: Relative costs to fix software defects for static infrastructure (left, source: IBM Systems Sciences
Institute) and their extension to virtualized systems with dynamic infrastructure (right). The columns
indicate the phase/stage of the software development at which the defect is found and fixed.

and P. Y. H. Wong. Formal modeling of resource
management for cloud architectures: An industrial
case study. In Eur. Conf. on Service-Oriented and
Cloud Computing (ESOCC), LNCS 7592, pages
91–106. Springer, 2012.

[7] R. Bubel, R. Hähnle, and B. Weiss. Abstract
interpretation of symbolic execution with explicit state
updates. In 6th Intl. Symp. on Formal Methods for
Components and Objects (FMCO). Springer, 2009.

[8] M. G. Buscemi and U. Montanari. QoS negotiation in
service composition. J. Log. Algebr. Program.,
80(1):13–24, 2011.

[9] L. De Alfaro and T. A. Henzinger. Interface automata.
In 8th Eur. Software Engineering Conf. & 9th ACM
SIGSOFT Intl. Symp. on Foundations of software
engineering, ESEC/FSE-9, pages 109–120. ACM
Press, 2001.

[10] European Commission Expert Group Report. The
future of cloud computing: Opportunities for
European cloud computing beyond 2010, 2010.

[11] FI-WARE. Web: www.fi-ppp.eu/projects/fi-ware.

[12] M. M. Jaghoori, F. S. de Boer, T. Chothia, and
M. Sirjani. Schedulability of asynchronous real-time
concurrent objects. Journal of Logic and Algebraic
Programming, 78(5):402–416, 2009.

[13] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and
M. Steffen. ABS: A core language for abstract
behavioral specification. In 9th Intl. Symp. on Formal
Methods for Components and Objects (FMCO), LNCS
6957, pages 142–164. Springer, 2011.

[14] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia
Tarifa. Dynamic resource reallocation between
deployment components. In Intl. Conf. on Formal
Engineering Methods (ICFEM), LNCS 6447, pages
646–661. Springer, 2010.

[15] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia
Tarifa. Validating timed models of deployment
components with parametric concurrency. In Intl.
Conf. on Formal Verification of Object-Oriented
Software (FoVeOOS), LNCS 6528, pages 46–60.
Springer, 2011.

[16] E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa.
Modeling resource-aware virtualized applications for
the cloud in Real-Time ABS. In Intl. Conf. on Formal
Engineering Methods (ICFEM), LNCS 7635, pages
71–86. Springer, 2012.

[17] D. Jones. The Definitive Guide to Monitoring the

Data Center, Virtual Environments, and the Cloud.
Realtime publishers, 2010.

[18] A. Keller and H. Ludwig. The WSLA framework:
Specifying and monitoring service level agreements for
web services. Journal of Network and Systems
Management, 11:57–81, 2003.

[19] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell.
SAWSDL: Semantic annotations for WSDL and XML
schema. IEEE Internet Computing, 11:60–67, 2007.

[20] J. Kramer. Is abstraction the key to computing?
Communications of the ACM, 50(4):36–42, 2007.

[21] D. D. Lamanna, J. Skene, and W. Emmerich. SLAng:
A language for defining service level agreements.
Future Trends of Distributed Computing Systems,
IEEE Intl. Workshop, page 100, 2003.

[22] C. Laneve and L. Padovani. The must preorder
revisited. In 18th Intl. Conf. on Concurrency Theory,
LNCS 4703, pages 212–225. Springer, 2007.

[23] B. Meyer. Design by contract: The Eiffel method. In
TOOLS (26), page 446. IEEE CS Press, 1998.

[24] J. C. Okika. Analysis and Verification of Service
Contracts. PhD thesis, Aalborg University, 2010.

[25] N. Oldham and K. Verma. Semantic WS-agreement
partner selection. In In 15th Intl. WWW Conf., pages
697–706. ACM Press, 2006.

[26] A. Paschke. RBSLA a declarative rule-based service
level agreement language based on RuleML. In Intl.
Conf. on Computational Intelligence for Modelling,
Control and Automation and Intl. Conf. on Intelligent
Agents, Web Technologies and Internet Commerce,
pages 308–314. IEEE CS Press, 2005.

[27] J. P. Sauvé, F. Marques, A. Moura, M. C. Sampaio,
J. Jornada, and E. Radziuk. SLA design from a
business perspective. In 16th IFIP/IEEE Intl.
Workshop on Distributed Systems: Operations and
Management (DSOM), LNCS 3775. Springer, 2005.

[28] SLA@SOI. Web: http://sla-at-soi.eu.

[29] R. E. Strom and S. Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE Transactions on Software
Engineering, 12(1):157–171, 1986.

[30] V. Tosic, B. Pagurek, and K. Patel. WSOL - a
language for the formal specification of classes of
service for web services. In Intl. Conf. on Web
Services (ICWS), pages 375–381. CSREA Press, 2003.

	1 The Envisage Web Site and Project Presentation
	1.1 Web Site
	1.2 Project Presentation

	Bibliography

