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Abstract. Code reviews are a provenly effective technique to find de-
fects in source code as well as to increase its quality. Industrial software
production often relies on code reviews as a standard QA mechanism.
Surprisingly, though, tool support for reviewing activities is rare. Exist-
ing systems help to keep track of the discussion during the review, but do
not support the reviewing activity directly. In this paper we argue that
such support can be provided by formal analysis tools. Specifically, we
use symbolic execution to improve the program understanding subtask
during a code review. Tool support is realized by an Eclipse extension
called Symbolic Execution Debugger. It allows one to explore visually a
symbolic execution tree for the program under inspection. For evaluation
we carefully designed a controlled experiment. We provide statistical ev-
idence that with the help of symbolic execution defects are identified in
a more effective manner than with a merely code-based view. Our work
suggests that there is huge potential for formal methods not only in the
production of safety-critical systems, but for any kind of software and as
part of a standard development process.
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1 Introduction

Writing and reading source code is the daily business of software developers.
Whenever the behavior of a program is not well understood or a program does
not behave as expected, then an interactive debugger becomes an important
tool. In interactive debugging, first concrete input values must be found that
bring program execution to a point of interest, for example, by setting suitable
breakpoints. Now the developer interactively controls execution and studies each
execution step until the program behavior is fully understood.

Suitable input values are sometimes provided by failed test cases or by bug
reports. In general, however, it can be challenging to determine input conditions
under which the code under inspection exhibits faulty behavior. Another limiting
factor in conventional interactive debugging is the fact that only one particu-
lar execution path is inspected per debugging session. To inspect a different
execution path, debugging needs to start over with different input values.

In addition to debugging and testing, source code can be studied in a (static)
code review. Goals of a review include to find defects or to improve design and



code quality. A review can be performed either by a team or by a single person.
An important category of team review is an inspection [1,2] where people with
different roles study the source code according to aspects defined by their role.
Even a single developer can review source code as part of his or her personal
software process (PSP) [3,4] to ensure that he or she is satisfied with the achieved
quality. Checklists are often used to guide a review and to define the criteria
under which the source code is reviewed.

Reviews can be performed on all kinds of documents without the need for
tool support. However, we believe that symbolic execution [5,6,7,8] nurtures pro-
gram understanding and that its use for bug finding is promising. To validate this
claim we take an empirical approach that is standard in experimental software
engineering [9]. We compare source code reviews with and without having a sym-
bolic execution tree available. For tool support we use the Symbolic Execution
Debugger (SED) [10], an Eclipse extension for interactive symbolic execution of
Java into which any symbolic execution engine for Java can be integrated. In
our work we use KeY [11] as the underlying symbolic execution engine.

The SED visualizes a symbolic execution tree representing all possible be-
haviors of a given program until a certain point. The SED’s visual output is a
tree where each node represents an execution step of the program under inspec-
tion. The user can interact with the visualization, for example, one can inspect
and visualize the symbolic state at an execution point to help comprehension of
program behavior. Standard symbolic execution explores only finite fragments of
an execution which is a serious limitation in the presence of loops with symbolic
bounds, method calls with unknown implementations, and recursive calls. The
SED is able to process formal specifications in the form of method contracts and
loop invariants during symbolic execution. This guarantees that the full program
behavior is explored for any possible execution path of the program [12].

The purpose of our experiment is to evaluate the effectiveness and efficiency
of a source code review with and without the SED. Traditional debugging is ex-
plicitly allowed in a direct code review (DCR) without the SED. The experiment
is run from the research perspective to find out if the SED significantly improves
the review quality. During the evaluation Java source code is shown to the par-
ticipants and they are asked questions about it to measure their performance.
Each code example realizes a small, but functionally complete program and is
inspired by the literature or other interesting problems. The expected behavior
is always described by comments and sometimes additionally by Java Modeling
Language (JML) [13] specifications. The questions asked are a form of checklist
used to review the source code. The experiment was performed with engineers at
Bosch Engineering GmbH and was announced in public on the KeY website, also
on the JML and KeY mailing lists. We summarize the scope of the experiment:

Analyze code review with and without the SED
for the purpose of evaluation

with respect to effectiveness and efficiency
from the point of view of the researcher

in the context of Java developers in industry and research.



The paper is organized as follows: Sect. 2 discusses related work. Then we
describe the planning and setup of the experiment. The measured variables are
determined in Sect. 3, the hypotheses to test in Sect. 4. Sect. 5 lays out the
design of the experiment and Sect. 6 presents the instrumentation. We conclude
experiment planning by discussing threats to validity in Sect. 7. The execution
of the experiment is presented in Sect. 8. Collected data are analyzed in Sect. 9
before discussing the results in Sect. 10. We conclude the paper with Sect. 11.

2 Related Work

In [1,2] software inspection is introduced and its impact is confirmed by experi-
ence reports. The effectiveness of inspections has been confirmed in many case
studies and experience reports, for example, [14,15].

Systems like Gerrit1 organize the information that is accumulated during a
review such as comments. A comparison of early computer support systems for
software inspection is in [16]. For some roles assumed during a team review tool
support exists. For instance, the moderator can be assisted by decision support
facilities [17]. The defect detection step itself is targeted by [18]: they realize
learning from the experience encoded in checklists and automatic scans of the
source code for violations of checklist items.

To the best of our knowledge, no tool support targeting the interactive de-
fect detection step in a source code review exists. In addition, the effectiveness of
reviews is usually confirmed by experience reports whereas in this paper a con-
trolled experiment is performed to draw conclusions with statistical relevance.

3 Variable Selection

First we need to determine and classify the variables of the experiment. We
distinguish two kinds of variables: independent variables and dependent variables.
The independent variables are those which can be varied or at least controlled
by us and whose influence and effect on the outcome of the experiment we intend
to study. Dependent variables are those that are measured during the course of
the experiment and which we want to study. A value of an independent variable
that was changed during the experiment is called treatment.

Table 1 lists the variables of our experiment. The independent variables which
can be varied by us are M (with treatments SED and DCR) and S (with the six
code examples to review). The subset of independent variables that are merely
controlled are called EJava|JML|SE|SED. Their values provide an answer to the
question about a participant’s experience level. The separation between less and
more than two years is made to separate beginners from experienced users as-
suming that this is roughly the time needed to master Java, JML and symbolic
execution well enough for the evaluation. As the SED is rather new, it is as-
sumed that participants have not much experience with it. For this reason, the
separation between beginners and experienced users is set to one year.
1 www.gerritcodereview.com

http://www.gerritcodereview.com


Name Value domain Description
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e

M {SED, DCR} The compared methods
S {BankUtil, MathUtil,

IntegerUtil, Stack,
ValueSearch,
ObservableArray}

The reviewed source code example and related
questions

C
on

tr
ol

le
d

Va
ria

bl
e EJava {none, < 2, ≥ 2} Years of experience with Java

EJML {none, < 2, ≥ 2} Years of experience with JML
ESE {none, < 2, ≥ 2} Years of experience with symbolic execution
ESED {none, < 1, ≥ 1} Years of experience with SED

D
ep

en
de

nt
Va

ria
bl

e

Qtm Integer Number of correctly answered questions per treat-
ment tm of M

QS tm Real Correctness score per treatment tm of M
Ctm Integer Confidence score per treatment tm ofM based onQ
CS tm Real Confidence score per treatment tm ofM based on QS
Ttm Integer Time needed to answer questions of a treatment tm

of M in seconds

Table 1: Variables of the experiment

The dependent variables are used to quantify efficiency and effectiveness of
the different methods. Efficiency is measured by the time Ttm spend to answer
the questions using method tm ∈M . Effectiveness is measured in the number of
correctly answered questions and the confidence in the given answers. Questions
are single or multiple choice questions to enable an automatic analysis. Each
question lists a number of correct and wrong answers from which the participant
has to choose. For a given method tm, a multiple choice question is answered
correct (measured by Qtm) if all and only the correct answers are selected.

A correctness score is used to give credit for partially correct answers. The
correctness score QS tm =

∑
q∈tm qs(q) is the sum of the scores over all questions

of treatment tm. For a single question q the score qs(q) is defined as:

qs(q) =


#corSelAnsw(q)−#wrgSelAnsw(q)

#corSelAnswers if #corSelAnsw(q) > #wrgSelAnsw(q)
#corSelAnsw(q)−#wrgSelAnsw(q)

#wrgSelAnswers if #corSelAnsw(q) ≤ #wrgSelAnsw(q)

Intuitively, the question score qs(q) is the difference between the number of
selected correct answers #corSelAnsw(q) and the number of selected wrong an-
swers #wrgSelAnsw(q) of question q. But each question has a different number
of correct (wrong) answers. To achieve comparability between questions, the dif-
ference between correct and wrong answers is divided by the total number of
correct (wrong) answers.

For each question we asked the participants about the confidence in their
answers. Available confidence levels are sure (My answer is correct!), educated
guess (As far as I understood the content, my answer should be correct.) and
unsure (I tried my best, but I don’t believe that my answer is correct.).



Correct answer of q Wrong answer of q
or qs(q) > 0 or qs(q) ≤ 0

Sure 2 -2
Educated Guess 1 -1

Unsure -1 1

Table 2: Confidence ratings c(q), cs(q) of a single question q

For each question q (each question score qs(q)) a confidence rating c(q) (cs(q))
is computed according to Table 2. A participant who is sure the answer is correct
when it is actually correct (the confidence score is positive) obtains maximal
points. If the answer is wrong, but the participant was sure that it is correct
(the confidence score is positive), he or she gets the lowest possible rating. If
the answer is based on an educated guess, which is weaker than certainty, the
participant gets less (or loses less) points. If the participant is unsure and thinks
the answer is wrong, and it is actually wrong (the confidence score is not posi-
tive), then still one score point is assigned, because the intuition was correct. If
the participant thinks the answer is wrong but it is right (the confidence score
is positive), he or she loses one score point for the same reason. Finally, the
confidence score Ctm =

∑
q∈tm c(q) is the sum of the confidence ratings over all

questions answered for treatment tm. The confidence score based on question
scores CStm =

∑
q∈tm cs(q) · qs(q) takes partially correct answers into account.

4 Hypothesis Formulation

From our experiment we want to gain statistical evidence that the SED increases
effectiveness and efficiency of a code review. To this extent we formulate for each
dependent variable (see Table 1) an alternative hypothesis H1Q

–H1T
(see Ta-

ble 3). As usual [9] the claims of these hypotheses are confirmed by ruling out
each corresponding null hypothesis H0Q

–H0T
.

5 Choice of Experiment Design Type

An important design decision of the experiment is to ensure that participants
benefit from their participation. To achieve this, each participant uses both meth-
ods resulting in a paired comparison design (see Table 4). In case participants
are unfamiliar with the SED, this allows them to try it out and to decide whether
it is helpful for their work.

We applied the general experiment design principles randomization, blocking
and balancing [9] to avoid biases, to block out effects in which we are not inter-
ested in, and to simplify and strengthen hypothesis testing. We randomized the
order of code examples presented to the participants to avoid that, for instance,
differences in the level of difficulty can influence the result of the experiment.



Name Hypothesis Def. of µVtm for dependent variable V , treatment tm

H0Q µQSED = µQDCR with µQtm = Qtm
#questionsOfTmnt ∈ {x ∈ Q|0 ≤ x ≤ 1}

H0QS µQSSED
= µQSDCR

with µQStm = QStm
#questionsOfTmnt ∈ {x ∈ Q|0 ≤ x ≤ 1}

H0C µCSED = µCDCR with µCtm = Ctm
#questionsOfTmnt ∈ {x ∈ Q| − 2 ≤ x ≤ 2}

H0CS µCSSED = µCSDCR with µCStm = CStm
#questionsOfTmnt ∈ {x ∈ Q| − 2 ≤ x ≤ 2}

H0T µTSED = µTDCR with µTtm = Ttm
timeOfAllTmnts ∈ {x ∈ Q|0 ≤ x ≤ 1}

H1Q µQSED > µQDCR

H1QS µQSSED
> µQSDCR

H1C µCSED > µCDCR

H1CS µCSSED > µCSDCR

H1T µTSED < µTDCR

Table 3: Hypotheses

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

SED Subjectn Subjectn Subjectn Subjectn+1 Subjectn+1 Subjectn+1
DCR Subjectn+1 Subjectn+1 Subjectn+1 Subjectn Subjectn Subjectn

Table 4: Paired comparison design

The first three code examples are always to be reviewed using the same
method and the next three code examples with the other one (recall that we
have six code examples to review). The decision which method is used for the
first three code examples is random. This avoids multiple switches between meth-
ods which could confuse the participant. Additionally, a participant who is not
familiar with a reviewing method has more experience in the later tasks. The
server used to collect evaluation results guarantees that all possible permutations
of example orders will be evaluated equally often as well as all other constraints.

The performance of the participants may depend on their experience with
Java which is used for blocking. Grouping the participants according to their
experience level with Java allows us to interpret the results for the different
groups separately. Balancing is automatically achieved by the chosen design,
because each participant uses both methods and reviews all six code examples.
Thus the number of participants is the same for each treatment. The number of
participants who reviewed a source code example might be not balanced in case
participants decided not to review all of them.

6 Instrumentation

We did not want to limit the group of participants to people familiar with sym-
bolic execution, JML or the SED. The only hard requirement on the participants
was basic knowledge in Java (or a similar language). To accommodate this de-
cision, the evaluation had to be self-explanatory. We achieved this by showing



three instructional videos: an introduction to the evaluation itself and one to
each method. A brief textual introduction was given on how to read and write
JML specifications (the JML specifications used in the evaluation do not use
advanced concepts).

During the evaluation participants reviewed source code with and without
using the SED. As the SED is available within Eclipse, the evaluation itself is
implemented as an Eclipse wizard which is opened in an additional window so
that the functionality of Eclipse is not impaired.

The evaluation setup consists of two phases during which information is col-
lected and sent to the server. The first phase collects background knowledge on
the participant and determines the order of code examples and the method as-
signment. The actual evaluation is performed in the second phase. A participant
who cancels the evaluation during the second phase is asked to send partial re-
sults to the server. When that participant opens the evaluation wizard the next
time, he or she is offered to recover the previous state to continue the already
started evaluation. The evaluation workflow in detail is as follows:

1. Initialization Phase
(a) Terms of Use: Terms of use need to be accepted.
(b) Background Knowledge: Information about background knowledge is gath-

ered (Java, JML, symbolic execution, SED).
(c) Extent: Participant chooses between reviewing four or six code examples.
(d) Sending Data: Data is sent and order of code examples is received.

2. Evaluation Phase
(a) Evaluation Instructions: A video explaining how to answer questions.
(b) JML: A textual documentation introducing the features of JML neces-

sary for the evaluation.
(c) SED/DCR Instruction: A video explaining needed features and best

practices to review a code example with and without the SED (depend-
ing on order).

(d) Code Examples 1 and 2 (and 3): The first two/three code examples and
the questions that test the understanding.

(e) The complementary SED/DCR Instruction: The remaining video.
(f) Code Examples 4 and 5 (and 6): As above
(g) Feedback about SED and Evaluation: The participant is asked to rate the

usefulness of SED features (mentioned in the videos).
(h) Sending Data and Acknowledgment: Data is sent and the successful com-

pletion of the evaluation is acknowledged.

We summarize the six code examples2 to be reviewed and the defects the
participants were supposed to identify:

BankUtil implements a stair-step table lookup, inspired by [19, page 427]. The
source code does not adhere to its documentation because a wrong value is
returned for an age above 35.

2 Available at www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/examples

http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/examples


IntegerUtil is inspired by [20, page 255]. The challenge is to find the mistake
that in one case y is returned instead of x.

MathUtil can throw an uncaught ArrayIndexOutOfBoundsException caused
by overflow. Such an overflow was present in Java’s binary search implemen-
tation, see bug item JDK-50455823.

ValueSearch contains unreachable code, namely statement return false. The
surrounding method accept is only called within the loop in method search.
The loop guard already ensures that the then branch of accept is never
taken. Such issues are difficult to detect by test case generation tools based
on symbolic execution: when unrolling the loop further there might be a
future loop iteration in which the then branch will be taken after all. Further,
there is a defect in method find. The parameter value is never used. Finally,
in case the array is null, an uncaught NullPointerException is thrown.

ObservableArray is inspired by [21, page 265]. The class constructor and the
method setArrayListeners behave according to the documentation. But
method set has several problems: (i) in case the index is outside the array
bounds an uncaught ArrayIndexOutOfBoundsException is thrown, (ii) in
case the element is not compatible to the component type of the array an
ArrayStoreException is thrown, (iii) not all observers that exist at call
time are informed about the change in case an observer changes the available
observers during the event, and (iv) if an observer sets arrayListeners to
null, an uncaught NullPointerException is thrown.

Stack is inspired by [21, page 24]. The first constructor which creates a new
stack throws an uncaught NegativeArraySizeException if the maximal size
is negative. The second constructor which clones a stack does not behave as
documented, because the clone shares the same elements array and is thus
not independent. Further, it throws a NullPointerException if the existing
stack is null. Method push behaves as documented, but method pop does
not remove the top element from the stack which violates the class invariant.

We designed questions and answers for each code example according to the
following schema: The participant is asked (i) for each method/constructor to
review whether the implementation behaves as documented, (ii) in case a class
invariant is present to review whether it is preserved/established, (iii) for meth-
ods with a return value to choose which claims from a given list are valid and
(iv) to determine which statements can be reached. In case a participant answers
that the source code does not behave as documented, all applicable reasons why
this is the case from a predefined list of potential causes had to be chosen. In
case an undocumented exception is thrown, the participant is asked which one.
When a participant answers that an invariant is violated, the invalid parts have
to be identified. Entering free text with additional reasons is always possible.

For the code examples to be reviewed with the SED we asked participants to
rate the helpfulness of the symbolic execution view. For DCR, we asked whether
the conventional Java debugger was used and if so, how helpful debugging was.
3 bugs.java.com/bugdatabase/view bug.do?bug id=5045582

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=5045582


In every review using the SED the fully explored symbolic execution tree is
shown. Interactive symbolic execution is avoided to ensure that all participants
review the source code under the same conditions. In DCR a main method with a
call of the code to review is provided. Required values of parameters are missing
and have to be provided by the participant. The code is there to help participants
without or little Java experience to start a debugging session.

7 Validity Evaluation

In this section we discuss threats to the validity of our experiments and the
drawn conclusions. For each threat we provide a mitigation strategy.

“Conclusion validity concerns the statistical analysis of results and the com-
position of subjects.” [9, p. 185] The hypotheses of this experiment are tested
with well known statistical techniques. Threats to conclusion validity are the low
number of samples and the quality of the answers. Subjects may fake answers to
compromise the experiment. However, several participants are people we know
(colleagues, project partners, students, etc.), in addition, some were monitored
during the evaluation. We consider the motivation of subjects to compromise
the experiment to be very low.

“Internal validity concerns matters that may affect the independent variable
with respect to causality, without the researcher’s knowledge.” [9, p. 185] Review-
ing source code is time intensive and the participation time is up to 90 minutes;
hence, participants may get tired or bored. There is a risk that participants lack
motivation and thus answer questions not seriously. However, participation is
voluntary and can be done at any time convenient for the subject.

Maturation is a threat to internal validity as each method is applied to three
code examples and participants may learn how to use it, which is desired. We
consider this non-critical as randomization is applied to the order of treatments.
Participants have most likely no experience with the SED which is uncritical as
the instrumentation introduces all relevant features and best practices of both
review methods. There might be a threat that some participants are not willing
to learn how to use the SED. However, SED is designed to support the reviewing
process. A potential bias about the experience with the SED would only con-
tribute against our claim that SED improves upon efficiency and effectiveness
and not in its favor. Other threats are considered to be uncritical.

“Construct validity concerns generalisation of the experiment result to con-
cept or theory behind the experiment.” [9] A threat to construct validity is that
the chosen code examples are not be representative. To mitigate the code exam-
ples were chosen from the standard literature or from widely discussed problems.
Other threats to construct validity are considered uncritical. Even though a par-
ticipant might guess the expected outcome from the general motivation of the
experiment (a comparison between a code review with and without the SED)
and that SED is a new tool, we consider it uncritical as the exact hypotheses
and related measurements are unknown to them. In addition, the participants
do not have any advantage or disadvantage from the outcome of the experiment.



“External validity concerns generalisation of the experiment result to other
environments than the one in which the study is conducted.” [9, p. 185] A threat
to external validity is that the source code is kept to a minimum—in some cases
only one method. This is required to reduce the time participants need to review
the source code and to read its documentation. Real Java code is much more
complex. On the other hand, symbolic execution with specifications is modular,
only a small part of the source code needs to be considered. The participants are
selected randomly and their experience varies from none to expert. Consequently,
the selection of participants is not a threat to external validity.

We state that there are threats to the validity of the experiment, and hence,
the drawn conclusions are valid within the limitations of the threats.

8 Execution

The experiment started in September 2015 with the staff of the Software Engi-
neering group at TU Darmstadt. It included students, PhD students and post-
docs. Each participant was monitored during the evaluation to improve the in-
structions and answers. Questions and answers remained stable after the first
participant. For this reason, the results of the first participant were excluded,
but the others were kept.

The evaluation was then performed with engineers at Bosch Engineering
GmbH. None of the engineers use Java in their daily business and the Java
experience was none or less then a year. However, participants were interested
in new methods and liked to try out the SED. In total, 11 engineers started
the evaluation. One participant canceled the evaluation and three participants
did not submit the answers. Additionally, one participant did not follow the
instructions and used the SED for all code examples. Consequently, the results
of six participants are considered as valid.

The evaluation went public in October 2015. It was announced on the KeY
website, as well as the KeY and JML mailing lists. The evaluation is available
as a preconfigured Eclipse product. Installation instructions and download links
are available on the KeY website.4 Main steps are to download and run the
Eclipse product and to perform the evaluation. An installation is not required,
the participants’ system is unaffected. Until mid January 2016, 27 participants
started the evaluation, of these 19 completed it. Twelve of the participants were
monitored during the evaluation (with their approval).

The distribution of background knowledge of participants is shown in Fig. 1.
The experience of participants with knowledge in JML and symbolic execution
is fairly distributed. Most of the participants had more than two years of Java
experience and none with the SED.

The relation between the Java and the SED experience is shown in Table 5.
It shows that all participants with SED experience have at least two years of
Java experience.
4 www.key-project.org/eclipse/SED/ReviewingCode.html

http://www.key-project.org/eclipse/SED/ReviewingCode.html
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SED (x = 1)

Fig. 1: Knowledge of participants

SED
None < 1 year ≥ 1 year

None 3 0 0
Java < 2 years 6 0 0

≥ 2 years 3 6 1

Table 5: Java vs SED experience

0 0.2 0.4 0.6 0.8 1

SED
DCR

(a) All Participants
0 0.2 0.4 0.6 0.8 1

SED
DCR

(b) No Java experience only

0 0.2 0.4 0.6 0.8 1

SED
DCR

(c) < 2 years of Java experience
0 0.2 0.4 0.6 0.8 1

SED
DCR

(d) ≥ 2 years of Java experience

Fig. 2: Correct Answers

9 Analysis

Now we visualize the collected data to get a first impression about their distri-
bution and to identify possible outliers, before we test our hypotheses. Interpre-
tation and discussion of the results is done in Sect. 10.

To visualize data we use boxplots (Figs. 2–6). The middle vertical bar in the
rectangle of a boxplot indicates the median of the data. The left border represents
the lower quartile lq and the right border represents the upper quartile uq. The
left and right whiskers indicate the theoretical bounds of the data assuming
a normal distribution. Data points outside the whiskers are outliers. The left
whisker is defined as lq−1.5 (uq − lq) and the right whisker as uq +1.5 (uq − lq).
Additionally, whiskers are truncated to the nearest existing value within the
bounds to avoid meaningless values. The constant 1.5 is chosen following [22].

The boxplots in Fig. 2 show the distribution of the correctly answered ques-
tions with the lower bound 0 meaning that no question was answered correctly
and the upper bound 1 attained when all answers were correct. The boxplots
in Fig. 2a show the distribution for all participants for the treatments SED and
DCR, whereas Figs. 2b–2d show the distribution of correct answers broken down
to different levels of Java experience. In all boxplots, the achieved correctness is
better using SED.

The distribution of the measured correctness scores (taking partially correct
answers into account, see Sect. 3) is shown in Fig. 3. In each case the correctness
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(a) All Participants
0 0.2 0.4 0.6 0.8 1
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DCR

(b) No Java experience only

0 0.2 0.4 0.6 0.8 1

SED
DCR

(c) < 2 years of Java experience
0 0.2 0.4 0.6 0.8 1

SED
DCR

(d) ≥ 2 years of Java experience

Fig. 3: Correctness Score
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(a) All Participants
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(b) No Java experience only

−2 −1 0 1 2
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−2 −1 0 1 2

SED
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(d) ≥ 2 years of Java experience

Fig. 4: Confidence Score

score is at least as high as in the distribution of correct answers (Fig. 2). Again,
the achieved correctness is always better using SED. In the class of participants
without Java experience, the achieved correctness using SED varies considerably.

The distributions of the confidence score are similar to those of the correct-
ness score. As Figs. 4–5 show, the confidence is higher with SED. An exception is
the class of participants without Java experience which achieved slightly better
confidence without using the SED. In each case the confidence score increases
(the boxplot “moves right”) when taking partially correct answers into account.

The measured time5 is shown in Fig. 6. A value of 1 means that a partici-
pant spent all the time using one reviewing method. The opposite is 0 when a
participant spent no time with a reviewing method. In all boxplots, the review
time is less using SED.

The null hypotheses of Table 3 can be rejected without assuming a normal
distribution using a one sided Wilcoxon Signed Rank Test or a one sided Sign
Test, see [9]. As basis for the tests we used the results of all participants and did
not test each experience level separately, because there are too few participants
5 The times measured for three of the participants were invalid and, therefore, ex-

cluded.
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Fig. 5: Confidence Score of Partially Correct Answers
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Fig. 6: Time

in each class to apply any test method. The significance level is set to 0.05
meaning that there is a 5% chance at which a hypotheses is wrongly rejected.
The results of the tests are shown in Table 6.

All tests reject the correctness-related hypothesis H0Q
and the Wilcoxon

Signed Rank Test rejects in addition the confidence-related hypothesis H0C
.

Looking at the promising boxplots we expect to reject the other hypotheses as
well once more people participate in the experiment.

10 Interpretation

10.1 Correctness of Answers

The analysis of our experiment permits to conclude that participants performed
significantly better in code reviewing tasks when the SED is used. Also the
participant’s confidence in the given answers is higher when the SED is involved.



Hypothesis Wilcoxon Signed Rank Test Sign Test
W-value p-value rejected p-value rejected

H0Q 176,5 0,0002 true 0,0012 true
H0QS 119,5 0,1660 false 0,5000 false
H0C 151 0,0115 true 0,0835 false
H0CS 119 0,1762 false 0,1796 false
H0T 82 0,1147 false 0,1509 false

Table 6: Results from the One Sided Tests with α = 0.05

To answer the question whether the SED performs universally better or only
in a specific code reviewing situation, we look at how often an expected correct
answer was given using each of the methods. We summarize now the results.6

Questions whether the implementation behaves as documented and whether
a constructor establishes an invariant were answered more often correctly in a
direct code review without using the SED, particularly, in the examples Stack
and ValueSearch. In traditional debugging sessions the explored execution path
shows only symptoms of a defect. This is also true for symbolic execution paths
visualized by the SED. To locate the defect in the program logic causing the
observed symptom (at runtime) the source code needs to be reviewed. This
relation between debugging and reviews is also discussed in [3]. However, the
SED shows source code and symbolic execution tree at the same time.

Questions about the reason for a misbehavior were only answered by partic-
ipants when they had realized before that something is wrong. As participants
using the SED often failed to identify a problem, it is not surprising that the cor-
rect reasons were also more often identified in a direct code review. Interestingly,
participants identified more often that an exception is thrown and the correct
type of the thrown exception using the SED. Thrown exceptions are explicitly
visualized in the SED by special symbolic execution tree nodes.

In addition to the symbolic execution tree, the SED highlights the statements
that were reached during symbolic execution. This seems to be helpful as the
reachable statements were more often correctly identified using the SED.

Participants were also asked to identify valid claims about a method’s return
value from a given list of options. The SED visualizes symbolic values that can
be potentially returned as part of the method return node. In the MathUtil
and ValueSearch example the correct answers were more often selected using
SED, whereas in the BankUtil, Stack and IntegerUtil example the direct code
review achieved better results.

In total correct answers were more often identified in the classes of partici-
pants with Java experience using the SED. In the class without Java experience
correct answers were more often selected in a direct code review. Taking into
account that only three participants are in that class and that many questions
6 Detailed results are available at

www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/results

http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/results


are never answered with both methods, no meaningful conclusions can be drawn.
Overall, a few more correct answers were identified in a direct code review.

We conclude that the SED helps to answer questions about aspects that are
represented in the symbolic execution tree. According to the given answers, the
SED seems not to increase the understanding of the program logic.

10.2 Perceived Usefulness of Features

For the SED, nearly all participants considered the symbolic execution tree view
and the highlighting of source code reached during symbolic execution as helpful
or very helpful. The variable view used to visualize the symbolic state of a
symbolic execution tree node as well as the properties view showing additional
information like path conditions were in many cases not used by the participants.
But those who used them considered them mostly as (very) helpful.

Participants had the opportunity to use the Java debugger in a direct code
review. But the source code required to do so was often not written and if it
was, its helpfulness varies from very to somewhat helpful.

Several participants provided constructive suggestions for improvement: first,
source code reached in the currently selected execution path as well as the cor-
responding symbolic execution nodes should be highlighted. Following further
suggestions we plan to visualize additional information, including the path con-
dition and selected memory locations within symbolic execution tree nodes.

Participants were also asked whether they prefer a code review with or with-
out using the SED (as the SED is designed to support a review and not to replace
it). Our evaluation shows, that the SED effectively helps to discover information
about feasible execution paths. Studying a symbolic execution tree, however, is
not sufficient to understand the program logic. It is, therefore, not surprising
that roughly two thirds of the participants would consider the SED depending
on the nature of the given source code.

11 Conclusion

We described an experiment comparing the effectiveness and efficiency of a code
review with and without using the SED. The result provides statistically signif-
icant evidence for increased effectiveness when a symbolic execution tree view is
used during code reviews.

Very few formal methods are evaluated with user studies. Usually, perceived
advantages are simply claimed or, in the best case, validated against a case study.
As far as we know, this is the first comparative experimental user case study of its
kind. We strongly believe that more work like it is needed to convince industrial
stakeholders about the value of formal methods. The advantages of case studies
are obvious: effectivity claims get empricially substantiated which is a solid basis
for decision makers. In addition, researchers obtain valuable feedback from the
field and can make better usage of resources.



One must also clearly state that user studies mean a lot of work. Statistical
techniques most researchers in formal methods are unfamiliar with have to be
mastered. Designing and carrying out the actual study is very time consuming.
To sustain further studies, participants must be reimbursed. But we think that
the increased credibility of our claims and the insights we gained are well worth
the effort.

Acknowledgment: We thank all participants of the evaluation for their valuable
time and feedback.
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