
Fully Abstract Operation Contracts?

Richard Bubel, Reiner Hähnle, and Maria Pelevina

Department of Computer Science
Technical University of Darmstadt

bubel|haehnle@cs.tu-darmstadt.de · m.pelevina@gmail.com

Abstract. Proof reuse in formal software verification is crucial in pres-
ence of constant evolutionary changes to the verification target. Contract-
based verification makes it possible to verify large programs, because each
method in a program can be verified against its contract separately. A
small change to some contract, however, invalidates all proofs that rely
on it, which makes reuse difficult. We introduce fully abstract contracts
and class invariants which permit to completely decouple reasoning about
programs from the applicability check of contracts. We implemented tool
support for abstract contracts as part of the KeY verification system and
empirically show the considerable reuse potential of our approach.

1 Introduction

A major problem in deductive verification of software is to keep up with changes
of the specification and implementation of the target code. Such changes are
inevitable, simply because of bug fixes, but also because in industrial practice
requirements are constantly evolving. The situation is exacerbated when, as it
is often the case, software systems possess a high degree of variability (e.g., in
product line-based development).

To redo most proofs and, in the process of doing this, to re-examine most
specifications is expensive and slow, even in the ideal case when no user in-
teraction with the verification tool is required. Therefore, a research question
in formal verification that is of the utmost practical relevance is how to mini-
mize the amount of verification effort necessary after changes in the underlying
specification and implementation of the target code.

Like most state-of-art formal verification approaches, we assume to work in
a contract-based [1] setting, where the granularity of specification units is at
the level of one method. The most important advantage of method contracts is
the following notion of compositionality : assume a program consists of methods
m ∈ M , each specified with a contract Cm. Now we prove that each method m
satisfies its contract. During this proof, calls inside m to other methods n are
handled by appying their contract Cn instead of inlining the code of n. This
works fine as long as there are no recursive method calls.1 This contract-based

? This work has been partially supported by EC FP7 Project No. 610582 Envisage
1 There are ways to extend this methodology to recursive method calls, but to keep

the presentation simple, we explicitly exclude recursion in this paper. It is an issue
that is orthogonal to the techniques discussed here.

verification approach is implemented in many state-of-art verification systems,
including KeY [2].

In the context of contract-based verification, the problem of keeping up with
target code changes can be formulated as follows: assume we have successfully
verified a given piece of code p. Now, one of the methods m called in p is changed,
i.e., m’s contract Cm in general is no longer valid. Therefore, Cm cannot be used
in the proof of p which is accordingly broken and must be redone with the new
contract of m. If m occurs in many places in p, this becomes very expensive.

In previous work [3] we presented a novel approach to mitigate the problem
by introducing the notion of an abstract contract. Abstract contracts do not pro-
vide concrete pre- or postconditions, but only placeholders for them. At the same
time, abstract contracts can be used in a verification system exactly in the same
manner as standard concrete contracts. Even though the proofs resulting from
abstract contracts can (most of the times) not be closed, we still end up with par-
tial proofs whose open goals are pure first-order. These open proofs (or just the
open goals) can be cached, reused, and then verified for different instantiations
for the placeholders. In the present paper we make three contributions:

1. A crucial part of each method contract is its assignable clause, a list of refer-
ences to memory locations whose value might be affected by the execution of
that method. Obviously, the assignable clause is necessary for sound usage of
contracts. In [3] we imposed the restriction that assignable clauses could not
be abstract, they had to be explicitly given. This is a serious restriction, be-
cause it assumes that the changeable locations of a method cannot increase
when its specification is changed. In the present paper we lift this restriction
and, therefore, arrive at a notion of fully abstract method contracts.

2. The specification of a software system usually consists not only of contracts,
but also of class invariants.2 We extended our approach to cover abstract
invariants.

3. The evaluation done in [3] was limited by the fact that we had no native
implementation of our approach, but had to simulate the effects with suit-
ably hand-crafted inputs. Now we have native tool support, integrated into
the KeY verification system for the full Java fragment supported by KeY.
Specifically, we evaluate our approach with two case studies. One of them
was taken unaltered from a different project [4] to demonstrate that our
approach works well in situations not “tailored” to it.

The paper is structured as follows: Section 2 introduces the necessary notions
and theoretical background. Section 3 introduces fully abstract contracts and
explains their usage. We evaluate our approach with two case-studies in Section 4
and conclude the paper with a discussion about related work (Section 5) and a
conclusion (Section 6).

2 Invariants can be simulated by contracts, but specifications become much more suc-
cinct with them, so it is well worth to support them directly.

2 Background

Here we present the background required to understand our specification and
verification approach. Our programming language is sequential Java without
floats, garbage collection or dynamic class loading. The specification approach
follows the well-known design-by-contract paradigm [1].

Example 1. Our running example is a software fragment that computes whether
a student passed a course. The concrete passing criteria give rise to different
program versions. The basic version, where a student passes when she has passed
the exam and all labs, is shown in Fig. 1.

The program consists of a single class StudentRecord which implements
two methods. Method passed() is the main method determining whether the
student has passed. It contains a loop to determine whether all labs were finished
successfully and it invokes method computeGrade() to access the exam grade.

class StudentRecord {
2 int exam; // exam result

int passingGrade ; // minimum grade necessary to pass the exam
4 boolean [] labs = new boolean[10] ; // labs

6 //@ public invariant exam>= 0 && passingGrade >= 0 && ;
//@ public invariant labs . length == 10;

8

/∗@ public normal behavior
10 @ requires true ;

@ ensures \result == exam;
12 @ assignable \nothing; @∗/

int computeGrade(){ return exam; }
14

/∗@ public normal behavior
16 @ ensures \result ==> exam>= passingGrade ;

@ ensures \result ==> (\forall int x; 0 <= x && x < 10; labs [x]) ;
18 @ assignable \nothing; @∗/

boolean passed() {
20 boolean enoughPoints = computeGrade() >= passingGrade ;

boolean allLabsDone = true ;
22 for (int i = 0; i < 10; i++) {

allLabsDone = allLabsDone && labs [i] ;
24 }

return enoughPoints && allLabsDone ;
26 }
}

Fig. 1. Implementation and specification of class StudentRecord in its basic version

As specification language we use the Java Modeling Language (JML) [5]. JML
allows one to specify instance invariants and method contracts. Instance invari-
ants express properties about objects which are established by the constructor
and must be preserved throughout the lifetime of an object. More precisely, if an
instance invariant holds at the beginning of a method, then it must hold again
when it returns, even though it may be violated during its execution.

Example 2. In JML invariants are specified following the keyword invariant

and a boolean expression. The class StudentRecord has two invariants on line 6–
7. The first specifies lower bounds for the grade of an exam and the minimum
grade required to pass the exam. The second invariant fixes the number of labs
to ten. In addition, there are implicit invariants, because JML has a “non-null by
default” semantics: for each field with a reference type there is an invariant spec-
ifying that it is non-null. All invariants are implicitly conjunctively connected
into a single instance invariant (per class).

JML method contracts are specified as comments that appear just before
the method they relate to. A JML method contract starts with the declaration
of a specification case such as normal_behavior or exceptional_behavior.
For ease of presentation we consider only method contracts specifying the nor-
mal behaviour, i.e., normal termination of the method without throwing an un-
caught exception. The generalisation to exceptional behaviour specification cases
is straightforward. We introduce JML method contracts by way of example:

Example 3. The contract for method computeGrade() has one normal behaviour
specification case which consists of a precondition (keyword requires) and a
postcondition (keyword ensures). The actual condition is a boolean expression
following the keyword. JML specification expressions are boolean Java expression
plus quantifiers and a few extra operators. For instance, in postconditions it is
possible to access the return value of the method using the keyword \result or
to refer to the value of an expression e in the prestate of the method by \old(e).

Also part of the specification case definition is the assignable clause (also
called modifies clause) which determines the set of locations that may be changed
at most by the method to which the contract applies.

In the contract of computeGrade() the precondition is simply true which
is the default and can be omitted. By default the invariant for the callee object
(i.e., the object referred to by this) is implicitly added as a precondition. The
postcondition states that the return value of the method equals the value of the
field containing the exam grade and the assignable clause specifies the empty
set of locations which expresses that the method is not allowed to modify any
object field or array element. A method may have several specification cases of
the same kind with the obvious semantics.

Definition 1 (Program location). A program location is a pair (o, f) con-
sisting of an object o and a field f .

A program location is an access point to a memory location that a program
might change. Next we formalize method contracts and invariants:

Definition 2 (Method contracts, invariants). Let B denote a Java class.
An (instance) invariant for B is a formula invB(v_this, v_heap) where v_this,
v_heap are program variables that refer to the current this object and the heap
under which the invariant is evaluated.

Let T m(S1 a1, . . . , Sn an) be a method with return type T and parameters ai
of type Si. A method contract

Cm = (pre, post ,mod)

for m consists of

– a formula pre specifying the method’s precondition;
– a formula post specifying the method’s postcondition;
– an assignable clause mod which is a list of terms specifying the set of program

locations that might be changed by method m.

Each constituent of a contract may refer to method parameters ā = (a1, . . . , an),
the callee using the program variable v_this, and the current Java heap using the
program variable v_heap. In addition, the postcondition can refer to the result
value of a method using the program variable result as well and to the value
of a term/formula in the methods prestate by enclosing it using the transformer
function old.

When verifying whether a method satisfies its contract, we ensure that, if a
method is invoked in a state where the invariant of the this object as well as the
method’s precondition holds, then in the final state after the method execution,
both, its postcondition and the instance invariant are satisfied. Stated as a Hoare
triple [6] it looks as follows:

{inv ∧ pre} o.m(ā) {inv ∧ post}

If the method under verification invokes another method n of class B with con-
tract (pre, post,mod), then, during the deductive verification process, we reach
the point where we need to use n’s contract and we need to apply the corre-
sponding operation contract rule:

useMethodContractCn

` inv(heap, o) ∧ pre(heap, o, ā)
` P (heap) ∧ post(U(heap), heap, o, ā)→ Q(U(heap))

{P (heap)} o.n(ā) {Q(heap)}
,

where U(heap) := U(mod)(heap) is a transformer that rewrites the heap rep-
resentation such that all knowledge about the values of the program locations
contained in mod is removed and everything else is unchanged.

The method contract rule generates two proof obligations: the first ensures
that the precondition of n and the invariant of o hold. The second checks whether
the information in the poststate is sufficient to prove the desired property.

A few words on practical issues concerning the transformer U . Such a function
can be realized in different ways, depending on the underlying program logic.

In our implementation we use an explicit heap model which is formalized as a
theory of arrays. The transformer U is then realized with the help of a function
anon(h1,mod, h2) which is axiomatized to return a heap that coincides with h1
for all program locations not in mod and with h2 otherwise. The transformer
then introduces a new skolem constant hsk of the heap datatype and returns the
new heap anon(heap,mod, hsk).

3 Abstract Operation Contracts

Abstract operation contracts have been introduced in [3] for the modeling lan-
guage ABS [7] by some of the co-authors of this paper. The original version
required the assignable clause to be concrete. This section presents a fully ab-
stract version of operation contracts for the Java language including an abstract
assignable clause and abstract instance invariants. We introduce first the notion
of placeholders which are declared and used by abstract operation contracts:

Definition 3 (Placeholder). Let B be a class and let T m(T1 p1, . . . , Tn pn)
denote a method declared in B. A placeholder is an uninterpreted predicate or
function symbol of one of the following four types:

Requires placeholder is a predicate R(Heap, B, T1, . . . , Tn) which depends on
the heap at invocation time, the callee (the object represented by this in m),
and the method arguments.

Ensures placeholder is a predicate E(Heap,Heap, B, T, T1, . . . , Tn) which de-
pends on the heap in the method’s final state, the heap at invocation time
(to be able to refer to old values), the callee, the result value of m, and the
method arguments.

Assignable placeholder is a function A(Heap, B, T1, . . . , Tn) with return type
LocSet representing a set of locations; the set is dynamic and may depend
on the heap at invocation time, the callee and the method arguments.

(Instance) invariant placeholder is a predicate I(Heap, B) which may de-
pend on the current heap and the instance (the this object) for which the
invariant should hold.

Placeholders allow to delay the actual instantiation of a contract or invariant.
We extend the notion of invariant and contract from the previous section by
introducing placeholders for the various constituents.

Definition 4 (Extended invariant). An extended instance invariant InvB :=
(IB,Decls, defI) of class B consists of

– a unique invariant placeholder IB for class B;
– a list Decls declaring the variables v_heap of type Heap and v_this of type B;
– a formula defI which specifies the semantics of IB and that can make use of

the two variables declared in Decls.

We refer to formula IB(v_heap, v_this) as an abstract invariant.

Definition 5 (Extended operation contract). An extended operation con-
tract Cm = (Decls, Ca, defs)m for a method m consists of

– Decls a list of variable and placeholder declarations;
– Ca := (prea, posta,moda) the abstract operation contract where the different

constituents adhere to Def. 6;
– defs a list of pairs (P, defP) with a formula defP for each declared placeholder

P ∈ Decls.

Definition 6 (Abstract clauses). The clauses for abstract preconditions prea ,
abstract postconditions posta , and abstract assignable clauses moda are defined
by the following grammar:

prea ::= R | I ∧ prea | prea ∧ prea

posta ::= E ∧ I | E ∧ prea | I ∧ prea

moda ::= A | moda ∪moda

where R,E,A and I are atomic formulas with a requires, ensures, assignable or
invariant placeholder as top level symbol.

To render extended invariants and operation contracts within JML we added
some keywords which we explain along our running example:

Example 4. The following method contract for computeGrade() expresses se-
mantically the same as the one shown in Fig. 1:

/*@ public normal_behavior

@ requires_abs computeGradeR;

@ ensures_abs computeGradeE;

@ assignable_abs computeGradeA;

@

@ def computeGradeR = true;

@ def computeGradeE = \result == exam;

@ def computeGradeA = \nothing;

@*/

The contract is divided into two sections: the abstract section is in the upper sec-
tion and uses the keywords requires_abs, ensures_abs, and assignable_abs.
They are mainly used to declare the placeholders’ names. The concrete section
of the contract consists of the last three lines which provide the definition of the
placeholders.

For invariants we do not modify the syntax at all. The placeholder name is
generated automatically and the specified invariant expression is used as its
definition. In our logical framework based on KeY, invariants are modelled as
JML model fields and the specified invariants have been interpreted as represents
clauses. Hence, adding support for abstract invariants was straightforward.

The advantage of having extended invariants and operation contracts is that
the abstract contract can be used instead of a concrete contract when applying

the operation contract rule. It is also not necessary to modify the operation
contract rule which guarantees the soundness of our approach as long as the
original calculus was sound.

By using only abstract contracts, we can construct a proof for the correctness
of a method m without committing to any concrete instantiation of an abstract
contract neither for m itself nor for any of the methods it invokes. Once the
verification conditions for the whole program are computed (e.g., by symbolic
execution, constraint propagation, etc.), possibly followed by additional simpli-
fication steps, the open proof (goals) can be saved and cached.

To support abstract assignable clauses the underlying calculus must provide
means to represent the modified locations within its logic. As mentioned in the
previous section, our formalisation uses the explicit function anon which takes
a location set as argument. Instead of providing a concrete set we use simply its
placeholder.

To finish the proof that a method m adheres to its concrete specification
we can reuse the cached proof (goals) without the need to redo the program
transformation and simplification steps (as long as the implementation of m has
not changed). It suffices to replace the introduced placeholders by their actual
definitions and then continue proof search as usual. Replacing the placeholders by
their definitions can be achieved, for example, by translating each placeholder
definition into a rewrite rule of the underlying calculus which is added as an
axiom.

The saving potential of our approach is particularly strong when verifying
software with a high variability. In addition, our approach does not necessarily
require to adhere to the Liskov principle [8] for specification but allows for a more
flexible approach. We discuss the advantages in detail in the following Section.

4 Evaluation

We evaluate empirically the benefits offered by abstract contracts by measuring
the amount of possible proof reuse. The evaluation is based on an implementation
of our ideas in KeY. Our conjecture is that using abstract contracts results in
considerable savings in terms of proof effort.

We evaluated our approach using two case studies of which each is imple-
mented in several variants. The different variants have a common top-level in-
terface, but differ in the implementation as well as in the concrete specification
of called sub-routines. The abstract specification of each sub-routine, however,
stays the same.

4.1 Description

The first case study Student Record has been already introduced before as a run-
ning example. We implemented several variants which differ in the implementa-
tion and specification of method computeGrade(), but keep method passed()

unchanged. The three variants differ in whether and how bonus credits are con-
sidered when computing the final exam grade. Version 3 is the version which
supports no bonus points at all.

The second case study is taken from [4] and implements two classes, Account
and Transaction. It is implemented in five versions. The most basic variant
is shown in (Fig. 2). The class Account implements a simple bank account
with method boolean update(int x) for deposit/withdrawal operations (de-
pending on the sign of parameter x). In addition, there is an inverse operation
boolean undoUpdate(int x). Both methods signal whether the operation was
successful with their return value. In the basic variant these methods perform
the update unconditionally (for instance, it is not checked whether the account
has enough savings).

The bank account can also be locked to prevent the execution of any opera-
tion. Locking is supported by methods lock(), unLock() and isLocked(). The
behavior of these methods is not varied among the different variants.

Transactions between accounts are performed by calls to method transfer

implemented by class Transaction. Method transfer() performs a number
of pre-checks to ensure that the transaction will be successful before actually
performing the transfer. For instance, it is checked that the balance of the source
account is not negative, none of the accounts is locked, etc.

The versions differ in specification and/or implementation. The second ver-
sion keeps the implementation of all classes unchanged, but simplifies the con-
tract of method transfer() to cover only the case where a transaction is un-
successful because of a negative amount to be transferred. In the third version
an overdraft limit for accounts is supported, i.e., accounts are only allowed to be
in the negative until a certain limit. This feature requires changes in the imple-
mentation and specification of methods update() and undoUpdate(). Method
transfer() needs not to be modified with respect to the basic version. The
fourth version extends the third version by adding a daily withdrawal limit.
Again changes are necessary for the methods update() and undoUpdate(). The
fifth version is again an extension of the third adding a fee to account opera-
tions. The changes affect the implementation and specification for the methods
update(), undoUpdate() and the specification of method transfer().

4.2 Results

For each program in the case studies we conducted three experiments with (i)
fully abstract contracts, (ii) partially abstract contracts (the assignable clause is
concrete, this correpsonds to the setup in [3]), and (iii) concrete contracts.

In each run where the specification was fully or partially abstract, the first
step was to construct a partial proof that eliminates the verified programs and
only uses abstract contracts and abstract invariants. This partial proof was then
cached and reused to actually verify that the different variants satisfy their
specifications. In each experiment with concrete contracts only, we directly ran
the verification process on each program version.

public class Account {

int balance = 0;

boolean lock = false;

/*@ public normal_behavior

@ ensures (balance == \old(balance) + x) && \result;

@ assignable balance;

@*/

boolean update(int x) { balance = balance + x; return true; }

/*@ public normal_behavior

@ ensures (balance == \old(balance) - x) && \result;

@ assignable balance;

@*/

boolean undoUpdate(int x) { balance = balance - x; return true; }

/*@ public normal_behavior

@ ensures \result == this.lock;

@*/

boolean /*@ pure @*/ isLocked() { return lock; }

}

public class Transaction {

/*@ public normal_behavior

@ requires dest != null && source != null && source != destination;

@ ensures \result ==> (\old(dest.balance) + amount == dest.balance);

@ ensures \result ==> (\old(source.balance) - amount == source.balance);

@ assignable \everything;

@*/

public boolean transfer(Account source, Account dest, int amount) {

if (source.balance < 0) amount = -1;

if (dest.isLocked()) amount = -1;

if (source.isLocked()) amount = -1;

int take, give;

if (amount != -1) { take = amount * -1; give = amount; }

if (amount <= 0) { return false; }

if (!source.update(take)) { return false; }

if (!dest.update(give)) {

source.undoUpdate(take);

return false;

}

return true;

}}

Fig. 2. Implementation and specification of the classes Account and Transfer (Ver. 1)

We measured the complexity of the cached proof and the final proofs in
terms of nodes and branches (given in parenthesis). The results for the case

Version Completely abstract Partially Abstract Concrete

Partial Full Savings Partial Full Savings Full
proof proof proof proof proof

v1
514 (9)

1191 (25) 43%
519 (9)

1145 (25) 45% 919 (21)

v2 1806 (40) 28% 1782 (40) 29% 1419 (36)

v3 1009 (24) 51% 937 (24) 55% 904 (22)

Total 2978 2826 3242

Table 1. Results for StudentRecord example

studies are shown in Table 1 and 2. The column Savings shows the amount
of proof effort that has been saved (in terms of nodes) by reusing the cached
proof. The row Total shows the aggregated proof effort (in nodes) for all program
versions. For the experiments using concrete contracts the total equals the sum
of the number of nodes for the different versions, i.e., total =

∑n
i=1 #nodesvi

with n being the number of program versions. In case of the experiments using
partially or completely abstract contracts, we compute the total as for concrete
contracts, but subtract n − 1 times the size of the partial proof, i.e., total =
(
∑n

i=1 #nodesvi)− (n− 1) · nodespartial , to account for the proof reuse.

Version Completely abstract Partially Abstract Concrete

Partial Full Savings Partial Full Savings Full
proof proof proof proof proof

v1

1390 (55)

2066 (57) 67%

1408 (55)

1865 (55) 75% 1035 (63)

v2 1882 (57) 74% 1723 (55) 82% 972 (63)

v3 2435 (59) 57% 1896 (55) 74% 1352 (68)

v4 2719 (59) 51% 1975 (55) 71% 1461 (68)

v5 2701 (61) 51% 2073 (57) 68% 1601 (69)

Total 6243 3900 6421

Table 2. Results for Account example

The results show that we achieve a reduced overall effort for fully abstract
contracts as well as for partially abstract contracts. For the considered examples,
the savings are most significant for partially abstract contracts. The reason is
that here assignable clause is concrete, so the application of the contract rule
keeps more information about the heap, while in the fully abstract case almost all

Version Symbolic execution Full proof Ratio

v1 442 (11) 919 (21) 48%

v2 494 (11) 1419 (36) 35%

v3 410 (11) 904 (22) 45%

Table 3. Analysis of the StudentRecord example (specified with concrete contracts)

information about the heap is wiped out. As a consequence, branches checking
for NullPointerExceptions, etc., cannot be closed in the abstract proofs.

Another reason why fully abstract contracts save perhpas less than expected
is that in the case studies the assignable clauses in the concrete case contain only
few locations and are mostly stable among the different versions. In the final
version of this paper we will include a case study that shows more variability
with respect to the set of assignable locations to illustrate the savings potential
of fully abstract contracts.

Tables 3 and 4 show the ratio of proof nodes concerned with symbolic execu-
tion (i.e., program transformation) as compared to first-order reasoning. It can
be directly seen that this ratio and the observed savings are strongly correlated.

Version Symbolic execution Full proof Ratio

v1 842 (53) 1035 (63) 81%

v2 818 (53) 972 (63) 84%

v3 1037 (56) 1352 (68) 77%

v4 1147 (56) 1461 (68) 79%

v5 1141 (56) 1601 (69) 71%

Table 4. Analysis of the Account example (specified with concrete contracts)

Fig. 3 illustrates the amortized proof complexity of the Account example:
the proof effort spent for the partial proof is distributed uniformly among the
proofs of all five program versions (in case of partial and fully abstract contracts,
respectively). We can see that using partial contracts perform best, while using
fully abstract contracts leads in most cases to a total proof effort comparable to
concrete ones. The reason is that when using abstract assignable clauses most
knowledge about the heap after a method invocation is lost, prohibiting certain
simplifications and creating more complex first-order problems. Currently, we
investigate whether using SMT solvers for first-order goals (instead of the built-in
KeY prover) can help. This should definitely be the case, provided that by using
SMT solvers one can achieve a considerable speed-up for first-order inference.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

co
mp
let
ely
"ab
str
ac
t"

pa
r4
all
y"a
bs
tra
ct"

sta
nd
ard
"

co
mp
let
ely
"ab
str
ac
t"

pa
r4
all
y"a
bs
tra
ct"

sta
nd
ard
"

co
mp
let
ely
"ab
str
ac
t"

pa
r4
all
y"a
bs
tra
ct"

sta
nd
ard
"

co
mp
let
ely
"ab
str
ac
t"

pa
r4
all
y"a
bs
tra
ct"

sta
nd
ard
"

co
mp
let
ely
"ab
str
ac
t"

pa
r4
all
y"a
bs
tra
ct"

sta
nd
ard
"

v1 v2 v3 v4 v5

Fig. 3. Amortized proof complexity (in nodes) for the Account example

5 Related Work

As our work builds upon previous work [3] of some of the co-authors this is also
the closest related work. As stated in the introduction, in the present paper we
added abstract assignable clauses, abstract invariants, a proper implementation
in KeY, plus an evaluation.

Proof reuse has been studied, for instance, in [9, 10] where proof replay is
proposed to reduce the verification effort. The old proof is replayed and when this
is no longer possible, a new proof rule is chosen heuristically: in [9] a similarity
measure is utilized, while in [10] differencing operations are applied. The proof
reuse focusses only on the proof structure and does not take the specification
into account like our work.

In [11], a set of allowed changes to evolve an OO program is introduced. For
verified method contracts, a proof context is constructed which keeps track of
proof obligations. Program changes cause the proof context to be adapted so
that the proof obligations that are still valid are preserved and new proof goals
are created. Earlier work along the same lines in the context of VCG is [12].

Reasoning by analogy is applied in [13] to reuse problem solving experience
in proof planning. Generalization of proofs [14, 15] facilitates to reuse proofs in
different contexts.

For formal software development in the large [16], evolving formal specifi-
cations are maintained by representing the dependencies between formal spec-
ifications and proofs in a development graph. For each modification, the effect
in the development graph is computed such that only invalidated proofs have
to be re-done. In [17], proofs are evolved together with formal specifications. A
set of basic transformation operations for specifications induces the correspond-
ing transformations of the proofs which may include the creation of new proof
obligations.

In [18] it is assumed that one program variant has been fully verified. By
analyzing the differences to another program variant one obtains those proof

obligations that remain valid in the new product variant and that need not
be reestablished. In [19] methods are verified based on a contract which makes
assumptions on the contracts of the called methods explicit.

In [20] abstract predicates are defined as abbreviations for specific properties
to enforce modular reasoning in the sense of information hiding. Inside a module
the definition of the abstract properties can be expanded while outside a module
only the abstract predicates can be used. The paper does not use these abstract
predicates to decouple symbolic execution from the application check of contracts
and an application to proof reuse through caching is not considered.

We are not aware of any specification approach that keeps the used contracts
fully abstract by using placeholder functions and predicates, as done here.

6 Conclusion and Future Work

We introduced fully abstract method contracts and class invariants in the context
of contract-based verification. We showed that this idea can be simply realized
with the help of placeholders. We do not assume any specific specification lan-
guage, target language, or program logic. Any sufficiently expressive program
logic can be used for an implementation. We instantiated and implemented the
framework as part of the KeY verification system with Java as target language,
JML as specification language, and dynamic logic as the program logic. An ex-
perimental evaluation showed that considerable proof reuse in the presence of
changes and variations to specifications and code is possible.

In future work, we intend to investigate amount of savings that is achievable
when using mixed contracts, where abstract contracts are enriched with certain
concrete expressions that can be assumed to be stable across different versions
of a program. Examples are formal parameters or field values can never be null,
system values and boundaries, etc. Using this kind of information should allow
us to simplify the cached proofs even further and increase the savings ratio.
Further, we will investigate whether an inverse assignable clause (which lists the
fields a method must not change) makes sense. Such a clause would enable us to
retain more information after a method invocation and allow for a better reuse
potential.

References

1. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10) (1992) 40–51
2. Beckert, B., Hähnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Soft-

ware: The KeY Approach. Volume 4334 of LNCS. Springer-Verlag (2007)
3. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract

method calls. In Bonacina, M.P., ed.: Proc. 24th Conference on Automated De-
duction (CADE), Lake Placid, USA. Volume 7898 of Lecture Notes in Computer
Science., Springer-Verlag (2013) 300–314

4. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference on

Generative Programming and Component Engineering. GPCE ’12, New York, NY,
USA, ACM (2012) 11–20

5. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual. (September
2009) Draft revision 1.235.

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10) (October 1969)

7. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In Aichernig, B., de Boer, F.S.,
Bonsangue, M.M., eds.: Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010). Volume 6957 of LNCS., Springer-
Verlag (2011) 142–164

8. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6) (1994) 1811–1841

9. Beckert, B., Klebanov, V.: Proof reuse for deductive program verification. In:
Third IEEE International Conference on Software Engineering and Formal Meth-
ods, IEEE Computer Society (2004) 77–86

10. Reif, W., Stenzel, K.: Reuse of proofs in software verification. In: Foundations of
Software Technology and Theoretical Computer Science. (1993) 284–293

11. Dovland, J., Johnsen, E.B., Yu, I.C.: Tracking behavioral constraints during object-
oriented software evolution. In Margaria, T., Steffen, B., eds.: Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies for Mastering
Change — 5th International Symposium, ISoLA 2012, Crete, Greece. Volume 7609
of Lecture Notes in Computer Science., Springer (October 2012) 253–268

12. Grigore, R., Moskal, M.: Edit & verify. In: First-order Theorem Proving Workshop,
Liverpool, UK. (2007)

13. Melis, E., Whittle, J.: Analogy in inductive theorem proving. J. Autom. Reasoning
22(2) (1999) 117–147

14. Walther, C., Kolbe, T.: Proving theorems by reuse. Artificial Intelligence 116(1-2)
(2000) 17–66

15. Felty, A.P., Howe, D.J.: Generalization and reuse of tactic proofs. In: LPAR.
(1994) 1–15

16. Hutter, D., Autexier, S.: Formal Software Development in MAYA. In: Mechanizing
Mathematical Reasoning. (2005)

17. Schairer, A., Hutter, D.: Proof transformations for evolutionary formal software
development. In: AMAST. (2002) 441–456

18. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In Beckert, B., Marché, C., eds.: International Conference
on Formel Verification of Object-oriented Software (FoVeOOS 2010), Revised Se-
lected Papers. Volume 6528 of Lecture Notes in Computer Science., Springer-Verlag
(2011) 61–75

19. Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A trans-
formational proof system for delta-oriented programming. In: SPLC (2). (2012)
53–60

20. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceedings
of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’05, New York, NY, USA, ACM (2005) 247–258

